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ABSTRACT How to make full use of laaS resources while guaranteeing the quality of service is one of the
main issues facing laaS resource allocation. For the existing cloud resource configuration schemes at the
TaaS and PaaS levels, the randomness of user access (resource demand) and resource supply of applications,
as well as the revenue of application providers, are not considered enough, the optimal allocation strategy
of cloud resources with uncertain supply and demand for SaaS providers is proposed. This strategy is based
on the SaaS level, which ensures that the SaaS provider’s revenue is maximized without violating QoS
constraints and also facilitates the IaaS provider to allocate and fully utilize IaaS resources accurately. The
strategy proposes not only optimal allocation strategies for IaaS resources under three scenarios: uncertain
demand and certain supply, certain demand and uncertain supply, uncertain demand and uncertain supply, but
also establishes quantitative models of resources and demand. The effectiveness and efficiency of the three
algorithms are verified through experiments, and the results shows that the revenue of the SaaS provider and
IaaS resource utilization are effectively improved without violating the QoS constraint under the condition
of uncertain supply and demand at the same time.

INDEX TERMS SaaS provider, IaaS resources, optimal allocation strategy, maximize revenue, uncertain
supply and demand.

I. INTRODUCTION

Cloud computing, which offers IaaS, PaaS, and SaaS services
to various users via the Internet, has been widely used in
recent years. In particular, SaaS providers that offer services
to users use leased infrastructure to deploy application ser-
vices/programs to cloud platforms to reduce construction
and maintenance costs [1]. Gartner has continuously released
the TaaS market tracking data of cloud computing show-
ing that the global cloud computing market maintains high
growth in the number of SaaS products and users, Amazon
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Web Services (AWS), Oracle Certified Professional (OCP),
Google Cloud Platform (GCP), Microsoft Azure, IBM Cloud
Services, Sale force. Furthermore, some PaaS platforms and
multi-tenant public clouds, Amazon EC2, Microsoft Azure-
TaaS, Alibaba Cloud, IBM Cloud, and other IaaS resources,
have a high market share. In multi-tenant public clouds, many
SaaS share the same laaS infrastructure, and competition
for resources is frequent. Moreover, violations of SaaS QoS
constraints and even downtime are inevitable when the IaaS
load is overloaded and resource utilization is pursued exces-
sively; this has a destructive impact on the user experience
and consequently causes severe losses to the SaaS provider.
Allocating more resources to ensure the QoS constraints

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 80997


https://orcid.org/0000-0002-4085-2676
https://orcid.org/0000-0001-5067-858X

IEEE Access

L. Zhang et al.: Optimal Allocation Strategy of Cloud Resources

of SaaS, but the demand for SaaS is indeed uncertain, the
amount of resources allocated is challenging to determine.
Over-allocation of resources reduces resource utilization and
TaaS revenue. Therefore, the allocation of IaaS resources to
effectively improve system resource utilization while satis-
fying the QoS constraint of SaaS has become a pressing
challenge [2].

In response to the above issues, resource allocation
research can be carried out from the IaaS, PaaS, and SaaS
layers to achieve a guaranteed QoS constraint for SaaS and
improve cloud resource usage. The goal of resource alloca-
tion on IaaS layer or PaaS layer is to ensure high resource
utilization under QoS constraints, thereby achieving maxi-
mum revenue for laaS providers. The intention of service
selection and combination based on QoS [3] on SaaS layers
is to obtain the QoS optimal service.

However, an efficient SaaS resource allocation strategy
aims to improve cloud resource utilization while guarantee-
ing QoS constraints and maximizing the benefits of both
SaaS providers and laaS providers. The price of cloud
resources [4], [5] is an essential factor in determining the
revenue of SaaS providers and should be fully considered
when allocating resources. There is uncertainty in user access
and TaaS resource load, resulting in existing schemes that
cannot simultaneously guarantee QoS constraints and fully
utilize cloud resources. This paper proposes a two-stage opti-
mal allocation strategy for cloud resources with uncertain
supply and demand to address the existing problems. Its
basic idea is to allocate cloud resources based on a SaaS
revenue perspective, where SaaS providers actively request
the amount of cloud resources under the condition of maxi-
mum expected revenue based on user volume, revenue and
cloud resource prices, and the solution from this perspec-
tive does not violate QoS constraints. This way helps IaaS
providers allocate cloud resources accurately and thus effec-
tively improve resource utilization. Compared to the existing
research results, this article provides useful supplements from
the following aspects: (1) maximizing the benefits of SaaS
providers; (2) SaaS providers propose resource requirements,
and there is no violation of QoS constraints at the IaaS level.
TaaS providers accurately grasp resource requirements, laying
the foundation for further improving resource utilization;
(3) quantifying the resource demand for cloud resources,
virtual resources, and applications, laying the foundation for
effective integration of demand and supply; (4) solving the
problem of insufficient resource allocation in a random sup-
ply and demand cloud environment.

Section II summarizes the existing research; Section III
describes the problem and introduces the notation and
assumptions involved in the paper; Section IV models TaaS
resources and virtual resources; Section V details three
strategies for optimal allocation of resources under uncer-
tain demand and uncertain supply; Section VI evaluates the
effectiveness of the strategies proposed in the paper through
experiments; Section VII concludes the paper and introduces
the following research directions.
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Il. RELATED RESEARCH

In recent years, a great deal of research has been carried out
on cloud resource allocation. The problem of cloud resource
allocation that satisfies QoS constraints and can effectively
improve resource utilization is one of the problematic issues,
and this section will briefly describe the progress of research
work related to this problem.

A. CLOUD RESOURCE ALLOCATION WITH APPLICATION
QoS CONSTRAINTS BASED ON THE laaS PROVIDER
PERSPECTIVE

Applications deployed to virtual machines need to consider
the problem of placing virtual machines to physical nodes
that satisfy different application QoS constraints while being
able to achieve optimal resource usage. There are three main
approaches to achieve such problems: modeling resource
allocation as a multi-objective optimization problem, which
is then solved using heuristic algorithms; considering the
topological characteristics of physical nodes and application
deployment, mapping the resource allocation problem to a
graph matching. The problem is solved by machine learning
methods to predict the resource consumption, load variation
and performance metrics of the application and adjust the
resource allocation.

Heuristic algorithm. By modeling the application QoS
demand, load, and cloud resource demand distribution,
resource allocation is defined as a multi-objective opti-
mization problem with multiple constraints and a genetic
algorithm-based multi-objective optimization algorithm is
proposed [6]. There are also some studies on resource allo-
cation schemes based on immune cloning algorithms [7], ant
colony algorithms [8], symbiotic biological search [9], and
other heuristic algorithms. The main target of this class of
methods is to pursue resource search accuracy and speed that
meet application QoS requirements. Although dozens of such
algorithms have been developed to improve application QoS,
a heuristic multi-objective optimization algorithm that can
effectively adapt to such dynamically changing resource allo-
cation is still lacking so far due to the high uncertainty of
application QoS requirements and resource load.

Graph matching algorithm. In the analysis of application
deployment, it is found that the topology of cloud resource
nodes is represented as a complex heterogeneous network
graph, and the application deployment requirements pro-
posed by different tenants can also be represented as a
heterogeneous network graph with multi-dimensional per-
formance requirement attributes. Therefore, the problem of
cloud virtual machine placement for large-scale applications
is mapped to a sub-graph query matching problem of nodes
in the topology graph of the cloud resource, and the hetero-
geneous graph query matching method based on the partial
order relationship can obtain a set of cloud resource nodes
that meet user requirements [10]. In addition, the litera-
ture [11] has also done some exploration of cloud resource
allocation based on graph theory. Although this method can
achieve agile delivery and deployment of applications, there
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is still much room for improvement in the problems of solu-
tion accuracy, dynamic changes in QoS of cloud resources
and applications, and cloud resource utilization.

Machine learning algorithm. Based on the characteristics
of cloud resource sharing, researchers obtain job run-time
monitoring data and cloud resource allocation information,
establish heuristic rules for job classification and optimal
cloud resource allocation, and apply the rules to a Bayesian
optimization algorithm for resource allocation [12]. In order
to adapt well to the dynamic changes in the cloud envi-
ronment toward service-based systems, a model-free online
learning algorithm is applied to solve the complex problem
of guaranteeing system performance due to changes in user
concurrency, which is achieved by repeating the ‘“‘execution-
accumulation-learning-decision” process. This method can
continuously accumulate the empirical data and optimize
decision results by repeating the process [13]. There are
also studies on resource allocation based on algorithms such
as neural networks [14], Markov prediction [15], [16], and
supervised learning [17]. The fundamental problems with this
class of methods are that the accuracy of the prediction of user
QoS demand and resource operation is difficult to guarantee,
and the violation of QoS constraints cannot be avoided as
there is always some deviation between the predicted and
actual results due to complex factors. In addition, the algo-
rithms need to be trained and tuned, and thus the overhead
system problem arises.

In addition, there are resource allocation methods based on
cybernetics [18], game theory [19], [20], etc. The generation
of cloud service user concurrency is highly uncertain. A sin-
gle resource allocation cannot keep the cloud service running
to meet the QoS constraints, so it needs to dynamically adjust
the resource allocation while the cloud service is running,
and adaptive resource adjustment can more effectively cope
with real-time changes in the cloud environment [21], as in
the literature [22], [23]. This approach is useful for cloud
environments and applications that change more frequently.
QoS requirements are difficult to cope with and incur a large
additional system overhead. The use of resource reservation
to guarantee QoS constraints is an effective approach. The
literature [24] addresses the problem that if only one QoS
metric demand (even a non-functional QoS parameter) cannot
be satisfied in the entire reservation request. Using resource
reservation is an effective method to ensure QoS constraints.
They improved the calculation method of QoS deviation dis-
tance and reduced the rejection rate of reservation requests in
the negotiation phase. However, reserving too many resources
can lead to severe resource waste, even though it can effec-
tively reduce the violation of QoS constraints.

B. CLOUD RESOURCE ALLOCATION BASED ON THE Paa$S
OR SaaS PROVIDER’S PERSPECTIVE OF APPLICATION

QoS CONSTRAINTS

The main task of cloud resource providers is to ensure the
adequate provision of resource utilization under user QoS
constraints. Current resource allocation mechanisms mainly
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focus on the TaaS layer, with insufficient consideration of
the application characteristics of the PaaS layer. Applications
deployed on the PaaS platform vary significantly in their
usage of resources, and accesses show different characteris-
tics over time. Different types of applications are deployed
together by predicting the changes in application request rates
and the overhead of each resource. Applications with larger
request volumes are divided into multiple units with rela-
tively fixed resource overheads for processing to use server
resources efficiently. This solution is helpful for applications
with request volumes. However, the accuracy of the charac-
terization of resource overhead and application request rate
variation directly affects the effectiveness of the resource
allocation scheme, and its accuracy is difficult to guarantee
in the current approach [25].

There is no research related to cloud resource allocation
based strictly on the SaaS perspective. Most of the research is
based on QoS service selection and service combination [26],
[27], this type of problem does not involve cloud resource
allocation, and there are many research results. As described
in reference [27], a cloud model is used to describe the
QoS of services, and a TOPSIS method based on the cloud
model is designed to select QoS stable services. Various
uncertainties lead to alternative service QoS is uncertain or
even service is failed, violation of QoS constraints often
occurs, and shortcomings in terms of SaaS provider revenue
considerations.

C. SUMMARY AND COMMENTS

On the basis of achieving dynamic cloud resource supply and
elasticity, TaaS and PaaS providers attempt to adopt various
possible methods to achieve efficient resource utilization
under QoS constraints, in order to maximize the benefits
of TaaS providers. Unfortunately, random resource demands
often make it difficult for TaaS providers to make accurate
resource allocation decisions. For example, Alibaba Cloud
provides a cloud resource service that can be self-obtained
at any time, autoscaling, and cost guaranteed. This flexibility
also poses a huge challenge to the supply chain. To meet
customer service levels while maximizing cloud resource uti-
lization and reducing supply chain costs, Alibaba is soliciting
solutions from around the world [28].

The relevant researches and our work are summarized
and compared in Table 1. In summary, the current research
work based on IaaS providers and PaaS providers still cannot
effectively address the under-utilization of cloud resources
under the application of QoS constraints, especially under
the conditions of substantial uncertainty in the concurrency
of service users and highly randomized cloud resource loads.
More importantly, previous studies have focused on maxi-
mizing cloud resources while meeting QoS constraints, with-
out considering the benefits of SaaS providers, resulting in
increased costs. In our understanding, solving the problem of
precise resource allocation decision-making should start from
two aspects: the randomness of demand and the randomness

80999



IEEE Access

L. Zhang et al.: Optimal Allocation Strategy of Cloud Resources

TABLE 1. Summary of the previous literature related to cloud resource allocation.

Literature Objective Perspective  Solution Method Existing problems
Q. Lietal. [6] Minimize the violation rate of service level objectives for Genetic algorithm
multiple applications, reduce the use of physical nodes.
D. Sun al. [7] Improve cloud system availability, load balancing deviation Immune clonal
and valid time. algorithms
S.K. Addyaetal. [8] Maximize the overall revenue of SPs. Ant colony
algorithms
A.Belgacemetal. [9] Minimize the execution time of resources allocation, improve Symbiotic biological
the QoS given to cloud users. search
W. Guo et al. [10] Improve the efficiency of multi-dimensional heterogeneous Graph matching
cloud resource placement strategy.
G.J.Kuangetal. [11] Maximize satisfaction between cloud tasks and cloud Graph theory
resources.
Y. W. Wuetal. [12] Improve QoS and reduce costs. Bayesian
optimization
Y.M. Yanetal. [13]  Ensure application performance by dynamically adjusting reinforcement
resource allocation. TaaS learning
. - . . . Violation of QoS
J.J. Sun et al. [14] Maximize market surplus and overall prestige information of ~ provider back  propagation .
participants. neural network 'constral'nts . énd
insufficient utilization
P. Zhou et al. [15] Achieve rapid cloud service recovery and to improve the Markov process
C. Liuetal. [16] reliability of cloud services. of 'resources, Saas
Minimize the average completion time of tasks under migration provider revenue
cannot be guaranteed.
energy budget.
M. Chen et al. [17] Guarantee a reliable Quality of Service (QoS) supervised learning
L. Yuetal. [18] Improve the utilization ration of virtual resources. control theory
Y. Ying et al. [19], Guarantee the profit of service providers and increase game theory
Y. Wang et al. [20] infrastructure provider's revenue;
Balance the utilities of users and service providers in service
transactions.
P. Haratian et al. [22], Reduce the number of SLA violations. adaptive  resource
A. Alsarhan et al. [23] allocation
Z. A. Wu et al. [24] Guarantee Quality of Service advance resource
reservation
H. Wei et al. [25] Save various resources and keep service quality PaaS elastic resource
provider management
mechanism
L. Qi et al. [26], H.  Improve Quality of Service SaaS Context-Aware,
Ma et al. [27] provider cloud model theory
Our study Not violate QoS constraints at [aaS and PaaS layers, improve  SaaS Inventory theory There may be some
IaaS resource utilization, and maximize application provider provider users whose QoS

revenue.

cannot be guaranteed.

of load. IaaS and PaaS ultimately aim to provide services
for applications, and the benefits of SaaS providers should
be fully considered to ensure the sustainable development
of cloud platforms. This paper proposes a cloud resource
allocation strategy that maximizes the expected revenue of
the SaaS provider based on the SaaS provider’s perspective,
considering the resource allocation under uncertain demand
and uncertain supply conditions, and maximizing the SaaS
provider’s revenue while ensuring that there is no violation
of QoS constraints.
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Ill. PROBLEM, ASSUMPTIONS AND NOTATIONS

A. PROBLEM DESCRIPTION

In the cloud computing ecosystem, the software and ser-
vices provided by the SaaS provider to the users run on
the infrastructure leased from the IaaS provider, which is
only responsible for operating and maintaining the SaaS,
thus effectively reducing the SaaS provider’s costs in infras-
tructure construction, operation, and maintenance. At the
beginning of a service period, the SaaS provider leases aaS
to run its SaaS to provide services at a certain rental rate
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to meet the QoS requirements of users and is responsible
for SaaS operation and maintenance. As the number of SaaS
user visits is not only influenced by subjective factors such
as users’ needs, preferences, loyalty, service reputation, and
QoS expectations but also largely influenced by many objec-
tive factors such as service quality, natural environment,
network environment, and computing environment, resulting
in a high degree of uncertainty in the actual number of user
visits. As laaS providers are not only affected by factors such
as hardware, network, and resource allocation algorithms in
the process of providing infrastructure services to multiple
tenants at the same time, but also primarily influenced by
uncontrollable factors such as uncertainty in user demand
and the dynamics of resource consumption of SaaS, which
results in uncertainty amount of SaaS user access they can
support (i.e., the number of resources under the condition
that QoS constraints are met supply uncertainty). Aiming at
the problem of uncertain access and resource allocation of
SaaS users under the IaaS lease model, a minimum optimal
IaaS resource allocation strategy is proposed to maximize the
expected revenue of SaaS providers without violating service
QoS constraints.

B. NOTATION

TABLE 2. Relevant symbols are defined.

Symbols Description
(1) Parameters

D the total number of users forecast by the SaaS provider

R the amount of virtual resources consumed to provide the
service to a user

Pu the price of providing the service to one user

c the unit rental cost of the IaaS resource

L the unit cost of virtual resources out of stock (the cost of
missing a unit of virtual resources)

u the unit idle cost of a virtual resource (the loss of a unit

of idle virtual resource)
(2) Random Variables

the amount of virtual resource demand (i.e. DXxR), is a

random variable whose probability density function,
u cumulative distribution function and expectation are
f(u), F(u), U, respectively, 0 <u < D0 < +oo, DO
is a constant.
the amount of IaaS virtual resources that can be Amount
the amount of virtual resources supported per unit IaaS
computing instance, is a random variable whose
probability density function, cumulative distribution
function and expectation aref(y),F(y),Y, respectively
,0 <y <k < +oo, where outputQ = XXE(y)

(3)  Decision variables
The demanded amount of virtual resources

The allocated amount of IaaS resources (i.e., computing
instances)

C. ASSUMPTION
This study builds a mathematical model based on the fol-
lowing assumptions: (1) There is only one IaaS provider in
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the system, who offers the infrastructure services to multiple
tenants, and there is competition for resources among the
tenants. (2) The SaaS in the system is a single product, the
service period is fixed, and the distribution of the number
of users accessing the SaaS during the service period can be
described by a function. (3) The distribution of the amount
of TaaS virtual resources during the service period can be
described by a function and is independent of the distribution
of the number of users. (4) The SaaS provider is rational
and risk-averse neutral. (5) The amount of IaaS resources
required by each user instance can be quantified and is the
same or similar in quantity. (6) The amount of IaaS resources
allocated is insufficient, and SaaS denies service to an exces-
sive number of users, and this denial process does not affect
the user’s willingness to continue using it. (7) laaS resource
over-provisioning results in non-efficient use of resources
(i.e., idle), where redundant resources are not returnable but
can enhance the QoS of the service, improve the user experi-
ence, and increase the hidden revenue of the SaaS provider,
and are measurable. Thus, the cost of idleness can be lower
than the cost of leasing.

IV. THE RESOURCE MODEL

The resources required for SaaS operation are mainly com-
puting resources such as CPU, memory, and external mem-
ory. A vector Rq = (r1,r2--- , rn) describes the resources
required to provide services to each user under QoS con-
straints, and the total resource requirements are linearly
related to the number of user accesses [25], where the
resource requirements for providing services to a user need
to be determined. In order to satisfy QoS constraints, there
are certain dependencies between them 71, 72 - - - rn, and thus
only one class of resources needs to be quantified to deter-
mine the other resource requirements. SaaS is packaged in
virtual machines that run on specific IaaS compute instances
in cloud computing, thus the demand, virtual resources,
and compute resources need to be quantified to form an
articulation relationship for subsequent resource allocation.
The following are definitions of the relevant concepts and
relationships.

Definition 1: TaaS computing resources: laaS resources
mainly include hardware resources, software resources, and
network resources. SaaS providers mainly lease hardware
and network resources, such as CPU/GPU, memory, external
memory, I/O devices, switches, and bandwidth. IaaS comput-
ing resources refer to the abstraction of these hardware and
network resources, such as CPU, storage, network.

Definition 2: TaaS computing instance: A hardware plat-
form consists of computing resources that can run software
systems independently. Different levels of instances are con-
figured according to the performance requirements of the
SaaS provider, and an instance with a basic configuration
is set as a standard computing instance (i.e., it is set as a
measurement unit of the instance’s computing power, called
Calculation Instance Power Unit - CIPU). For example, if a
standard computing instance consists of 1G memory, 200G
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external memory, 100M network bandwidth, and 0.5G CPU,
then a computing instance with 2 CIPU units consists of 2G
memory, 400G external memory, 200M network bandwidth
and 1G CPU.

Definition 3: Virtual computing instance: A system that
contains some of the computing resources of an laaS comput-
ing instance and is capable of running SaaS independently,
simulated by software with the full functionality of an IaaS
computing instance. A virtual compute instance runs on one
or more specific [aaS compute instances and is measured
in CIPUs.

Definition 4: laaS virtual resource volume: A measure of
the number of virtual compute instances required for a SaaS
to provide services to a user under conditions that guarantee
the user’s QoS (e.g., response time, throughput, etc.) require-
ment is called the IaaS virtual resource volume. Given that
SaaS provides services to a user, the amount of [aaS virtual
resources that a user instance needs to configure in a service
period under the condition of QoS constraints is R CIPU, i.e.,
the IaaS virtual resource amount R.

In this study, the amount of user access is converted into
virtual resource requirements, and then the virtual resource
requirements are converted into virtual compute instance
requirements, which are then packaged to run on specific
compute instances.

V. IAAS OPTIMAL RESOURCE ALLOCATION STRATEGY
The process of leasing laaS resources to run SaaS from
SaaS providers to provide services to users involves four
parts of sales revenue and cost expenditure: service sales rev-
enue, laaS resource leasing cost, out-of-stock cost, and TaaS
resource idle cost. The minimum optimal allocation strategy
of TaaS resources is established under the uncertainty of both
user access and laaS virtual resource supply. The service
sales revenue is earned by the SaaS provider for providing
services to users; the IaaS resource leasing cost is the SaaS
provider’s expenditure for leasing computing resources to run
SaaS, which must guarantee the users’ QoS requirements for
SaaS; the out-of-stock cost is the loss caused by the SaaS
provider having to refuse to provide services to subsequent
users because the access volume has reached its limit; the
loss due to the configured TaaS resources are able to support
more virtual resources than the amount of user demand and
the cost of resource idleness, which arises from two factors:
(1) virtual resource overload enhances QoS and user expe-
rience and somehow invisibly increases the SaaS provider’s
revenue, and (2) IaaS providers recycle the use of tenants’ idle
reserved resources in the form of financial incentives [29].
Other revenues and costs involved in the actual resource
allocation process can continue to be added without affecting
the core idea of this study’s minimum optimal allocation
approach for IaaS resources.

During the service period, the number of users access-
ing SaaS may be randomly variable, i.e., demand is uncer-
tain; there also exists a fixed group of users of SaaS
(especially enterprise users, where the volume of users
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remains constant over time), i.e., demand is deterministic.
As aresult, fewer IaaS infrastructure service tenants have suf-
ficient computing instances to obtain a deterministic amount
of IaaS virtual resources to meet QoS requirements, i.e., the
supply of IaaS virtual resources is certain. There are also
more laaS infrastructure service tenants forming resource
competition among tenants. Under the condition of satisfying
QoS demand, the IaaS resource provider will dynamically
allocate resources for each tenant according to the virtual
resource demand and the total resource quantity, which leads
to uncertainty in the supply of laaS virtual resources for the
tenant. Three [aaS resource optimal allocation strategies are
designed to address the existing problems in the following.
The relationship between the three optimal resource alloca-
tion strategies is shown in Figure 1.

ORAS UC Solving the problem of resource

allocation with stochastic demand
+X_> and deterministic supply

\_/\

Solving the problem of resource
allocation with deterministic
demand and stochastic supply

\/\

(0.X)=ORAS_UC(C,R,T,Pu,L,H)

D::Q
h 4

X=ORAS_CU(C,R.D,Pu,L,H,{(y))

_é__

-—
Solving the problem of resource
| allocation with stochastic demand

I\ and stochastic supply |
—_— —

—_—

FIGURE 1. The relationship between the three optimal resource
allocation strategies.

A. OPTIMAL RESOURCE ALLOCATION STRATEGY WITH
UNCERTAIN DEMAND AND CERTAIN SUPPLY (ORAS_UC)
The following calculates the demand for virtual resources
under demand uncertainty. In this case, the SaaS provider
tries to meet the market demand while maximizing its
expected revenue while satisfying the user QoS constraints,
i.e., by maximizing the following function:

max {P x E [min (Q,u)] — C x (Q/Y) —L x E [(u— Q)]*
—H x E[(Q—-w]"} (1

Because the price of providing services to users is Pu, the
price of selling virtual resources is P = Pu / R. Uncertainty
in the number of users leads to uncertainty in the demand
for virtual resources. The demand for virtual resources u is
a random variable obeying the probability density function
and cumulative distribution function f (1), F («), respectively.
In dealing with uncertain variables u in the objective function,
the objective function is transformed into the expected objec-
tive function, as shown in Eq. (2):

0
GQ =/0 (P x w) — H x (Q — u)]f (u) du

+o00
+/ [PxQ—L x (u—Q)f(wydu—C x Q/Y
0
2)
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Proposition 1: The optimal demand for ITaaS virtual
resources Q over a service period satisfies Eq. (3) under
uncertain demand and deterministic supply conditions.

0 _
/ fdu= PTE=C/Y 3)
0 P+L+H

Proof: Expand G (Q)
0
G(Q) :/ (P x u)f(u)du
0
0
—/ (H x Q)f(u)du
0Q +00
+/ (qu)f(u)du+/ (P x Q)f(u)du
0 0
+00
—/ (L x u)f(u)du
0

+00
+/ LxQfdu—CxQJY
0

Finding the first-order derivative of the function G (Q) with
respect to Q:

3(;(QQ) — (P x Q)f(Q)—/OQH x f(u)du — QxH x f(Q)
+HXQXf(Q)—/QPXf(u)du
_prxf(Q)+LjQ><f(Q)
_[.OQfo(u)du—LXQXf(Q)—C/Y

3(;(QQ) _ —/OQH x £ () du

0 0
—/ Pxf(u)du—/ Lxf(du—C/Y

oo oo

=(P+L)x/oof(u)du—H
0

0]
x/ f(u)du—C/Y
0

12t du = 1- Ja £ (wdu. So, we have the following
equation:
G (Q)
90

0
:(P+L)><|:1—/ f(u)du}—H
0
0
x/ f(wdu—C/Y=P+L-CJY
0

0
—(P+L+H)/ f(u) du
0

Let the first order derivative function be 0, and the optimal
solution Q satisfies the following equation.
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If the optimal solution Q is proved to satisfy the above
equation, it is sufficient to prove the convex function by
finding the second-order derivative of the function G (Q) with
respect to Q:

°G(Q)
T —(P+L+H) xf(Q) <0

The minimum optimal virtual resource requirement Q
is obtained from Eq. (3). Since the amount of virtual
resources generated by the laaS instance is determinis-
tic Y (i.e., the supply is deterministic), IaaS calculates
the minimum optimal allocation of the instance as follow:

X=0/Y .

Algorithm 1 ORAS_UC

Input: the unit price of IaaS resource lease C, each user
instance needs to consume R CIPU virtual resources, prob-
ability distribution table 7' of virtual resource demand u as
a random quantity, each user service charge Pu, IaaS virtual
resource shortage cost L, IaaS virtual resource idle cost H,
IaaS instance produces virtual resource quantity Y.

Output: optimal virtual resource demand @ and IaaS
resource allocation amount X

Steps:

Step 1: Obtain the sales price of virtual resources according
to P =Pu/R.

Step 2: According to Eq. (3) and check the probability dis-
tribution table 7', get the minimum optimal virtual resource
demand Q.

Step 3: Calculate the minimum optimal IaaS resource alloca-
tion amount X according to Eq. (4).

B. OPTIMAL RESOURCE ALLOCATION STRATEGY WITH
CERTAIN DEMAND AND UNCERTAIN SUPPLY (ORAS_CU)
The following calculates the amount of IaaS resources allo-
cated under supply uncertainty. In this case, user access
D is determined, the demand for virtual resources D1 =
DxR, the price per unit of virtual resources sold P =
Pu /R, the SaaS provider leases as many laaS resources
as possible to meet the market demand while obtaining
the maximum revenue for itself, the decision variable IaaS
computing instance allocation amount X at this time. The
virtual computing instances that can be supported per IaaS
computing instance is a random variable y, obeying the
probability density function, cumulative distribution func-
tion f(y), F(y), respectively, that is, the amount of vir-
tual output resources 0 = Xxy, with the following
formula:

max {P x E [min (D1,0)] —C x X —L x E[(D1 — Q)"]
—H xE[(Q—-DD7]} “4)

Due to the uncertainty of virtual resource availability, the
objective function is transformed into the desired objective
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function when dealing with uncertain variable Q in the objec-
tive function, as shown in Eq. (5):

G (X)
DI

z/" [Px Q—L x (Dl — Q)f(y)dy

0

+00
+A [Px DIl —H x (0 —DDIf(y)dy — C x X
’ 5)

Proposition 2: The optimal leasing strategy for a single
service period X satisfies Eq. (6) under uncertain supply and
deterministic demand conditions.

[Tyxtod=con/eiLem©
0
Proof: Expand G (X)

GX)

:/T[PxXxy—Lx (D1 =X xy)]f(y)dy
0

+00
+/ [PxDl —H x (X x y—DD]f(y)dy — CxX

DI

X
DI D1

=/X PxXxf(y)dy—/X L x DIxf(y)dy
0 0
Dl

+/X LxXxyxf(y)dy+/
0

DI
X

+00
P x D1 x f(y)dy

+o0
— HxX xyxf(y)dy

D1

X+oo
+ o HxDlxf(y)dy—C=xX

x
Finding the first -order derivative of the function G (X)
concerning X :

Dl
X DL
9G ( )—/X Pxyxf(y)dy
0

X
D1 D1
—i—PxXxY X f

X
D1 D1 D1
X|——= ) —LxDIxfl—)x|——=
X2 X X2
D1
x D1 Dl
+/ Lxyxf(y)dy+L xXx— xf|—
0 X X

Dl D1 Dl
X|——)—-PxDIx fl— | x|——
X2 X X2
~+00
—/ H xyxf(y)dy+ HxX
D1 D1 D1
X —xfl—)x|——
X X X2
D1 D1
—HxDlIxfl—|xl—-——=])-C
X X2
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Reduce and we have

D1 DI
G (X X X
(X) =/ nyxf(y)dy+/ L x yxf(y)dy
X 0 0

400
- Hxyxf(yydy—C

X

Let the first-order derivative function be 0, and the optimal
solution X satisfies the following equation

/Tyxf(y)dyz(C—i-l)/(P—i-L—}-H)
0

If the optimal solution X is proved to satisfy the above
equation, it is sufficient to prove that it is a convex function
by finding the second-order derivative of the function G (X)
concerning X:

932G (X) D1 D1 D1
ox2 :(P+L+H)x7xf < X Xz <0

The function is obtained as a convex function, with the point
of maximum value taken to be the point where the first- order
derivative is 0.

Eq. (6) is an increasing function. There is only one root,
which is very suitable for using an efficient dichotomous
search algorithm to solve. This section uses the dichotomous
search method to solve, such as Algorithm 2.

Algorithm 2 Finding Function Solution by Binary Search
(FFS_BS)

Input: Solve g (x) =0

Output: Approximate solution x*

Steps:

Step 1: Determine the initial interval (I, r) of the objective
function g (x), where g (/) < 0 and g (r) > 0, the termination
condition ¢ (i.e., |1 — 1| < ¢).

Step 2: Calculates g ((l +r) /2)

Step 3: if g ((l +r) / 2) < 0, the approximate solution of
function is within the interval [(l +r) / 2,r], then | =
(I+r /2

Step4:ifg ((/ + r) /2) > 0, indicating that the extreme value
point is within the interval [l, I+ r)/Z], r=U+r) /2.
Step 5:if |1 —1] < &, x* = 2 x Dl/ (I + r), terminate the
iteration; otherwise, return to Step 2.

Based on the above modelling, solution and algorithm
implementation, the following ORAS_UC algorithm is
designed, as shown in Algorithm 3.

C. OPTIMAL RESOURCE ALLOCATION STRATEGY WITH
UNCERTAIN DEMAND AND UNCERTAIN

SUPPLY (ORAS_UU)

The uncertain demand and uncertain supply refer to the uncer-
tainty in demand for virtual resources and the uncertainty
in the supply of virtual resources due to the uncertainty in
user access. Therefore, when calculating the minimum opti-
mal allocation of IaaS instances, both uncertainty in demand
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Algorithm 3 ORAS_CU

Input: IaaS resource rental unit price C, each user instance
needs to consume virtual resources R CIPU, virtual resource
demand is D, per user service fee Pu, [aaS virtual resource
shortage cost L, IaaS virtual resource idle cost H, the amount
of TaaS instance supporting virtual resources y is a random
variable with probability density function f (y).

Output: Optimal allocation amount of IaaS instance X
Steps:

Step 1: Yield the virtual resource sales price based on P =
Pu/R

Step 2: Yield the virtual resource demand based on D1 =
DxR

Step 3: Call the FFS_BS algorithm to find the solution to
equation (6) and obtain the minimum optimal IaaS resource
allocation X

for virtual resources and uncertainty in supply need to be
considered.

Algorithm 4 ORAS_UU

Input: TaaS resource rental unit price C, each user instance
needs to consume virtual resources R CIPU, each user service
fee Pu, the uncertainty of user volume leads to uncertainty of
virtual resource demand, the virtual resource demand u is a
random variable obeying the probability distribution table T';
lTaaS virtual resource shortage cost L, laaS virtual resource
idle cost H, the amount of virtual resources supported by
IaaS instance is a random variable y with probability density
function f (y).

Output: Optimal allocation amount of IaaS instance X
Steps:

Step 1: Call ORAS_UC(C, R, T, Pu,L, H) to get Q.

Step 2: Call ORAS_CU(C, R, Q,Pu,L,H,f(y)) to get X.

VI. EXPERIMENTAL ANALYSES

A. ALGORITHM PERFORMANCE ANALYSIS

In this section, experiments show that the Time complex-
ity and Space complexity of the algorithms in this paper
are constant orders. The environment and parameter set-
tings are as follows. The hardware configuration is Intel (R)
Core (TM) i17-10750H with 2.60 GHz CPU, 16.0 GB of
RAM, Windows 10 operation system, and the algorithm is
implemented in Python. The minimum optimal resource allo-
cation in ORAS_UC is independent of the number of user
accesses, so the impact of user variation on the algorithm’s
execution time does not need to be considered in the exper-
iments. In ORAS_CU and ORAS_UU, the dichotomous
search method is used to obtain the minimum optimal allo-
cation, which is related to the amount of provisioning, so the
impact of the change in the mean value of the random variable
provisioning on the performance of the algorithm is set.
Figure 2 shows that the time complexity of all three algo-
rithms is constant. The storage space mainly involves the need
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FIGURE 2. Time complexity analysis of the three algorithms.

for temporary space to establish a probability distribution
table. The Space complexity of the three algorithms is O (n),
and usually » is a constant. For example, the complexity of
the normal distribution is O (320).

B. NUMERICAL EXAMPLES

This section describes the calculation process of optimal
resource allocation for the three algorithms using specific
examples.

(1) Basic parameters setting. Our methods are suitable
for scenarios where user access is random and cloud instance
support capacity is random. We selected a literature read-
ing service from a certain university as the experimental
object, which runs on a shared cloud platform. We selected
a literature reading service from a certain university as the
experimental object, which runs on a public cloud platform.
The service provider provides literature reading service to
readers, service price Pu = 4 ¥, the amount of virtual
resources consumed per user accessing the service R = 10
CIPU, virtual resource price P = 0.4 ¥, IaaS resource unit
rental cost C = 10 ¥, virtual resource unit out-of-stock
cost L = 0.3 ¥; virtual resource unit resource idle cost
H = 0.1 ¥; The amount of users obeys a normal distribution
u ~ N (5000, 500); The amount of virtual resources available
per TaaS computing instance follows a normal distribution
y ~ N(100,9). The basic parameters setting is shown
in Table 3.

TABLE 3. Basic parameters.

R P, P C L H u y
10 4 04 10 03 01 N(5000500) N(100,9)

(2) ORAS_UC numerical example. In this example, only
the case of uncertainty in demand is considered, which is
given by Eq. (3),

Q 044+0.3-0.1
fWdu= —— =0.75
0 0.4+03+0.1
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A table of the normal distribution gives,

0.67 0.68
/ f(ul)dul < 0.75 </ f (u2)du2
0 0

0 _
1029 1067,0.68], which is Q0 e

=00 [53350, 53400].
As the supply is determined in this example, Y= 100.
According to Eq. (4), the IaaS instance optimal alloca-
tion X e[533.5,534.0] can be obtained X € [533.5, 534.0],
we can take the average value of 533.75 CIPU.

(3) ORAS_CU numerical example. In this example, only
supply uncertainty is considered, and demand is determined,
1.e., the number of user visits is 5000, then the virtual resource
demand D1 = D x R = 50000 is obtained. from Eq. (6), the
following equation can be got

D1

/Tyxf(y)dyz(C+1)/(P+L+H)= 13.75
0

The solution of the equation is calculated using the
FFS_BS algorithm, and X = 543.4783 is obtained, the opti-
mal allocation of IaaS resources under demand-determined
and supply-uncertain is 543.4783 CIPU, and the iterative
process of FFS_BS algorithm is shown in Figure 3.

90
80 1\

/
/
/
/
N
/

/
N

2
AN
/>

/
“
e

The first derivative

N
\/ Ny

_1041L< 4250 8445 465 B85 505525 545

(e

The feasible solution
FIGURE 3. The iterative process of FFS_BS.

(4) ORAS_UU numerical example. In this example, the
uncertainty of demand and the uncertainty of supply are
considered. The uncertainty in the number of user accesses
is considered first, and the demand for virtual resources
Q = 53375 is calculated from Eq. (3). Then, considering
the uncertainty of the number of virtual resources that IaaS
computing instances can support, the optimal IaaS computing
instance allocation X = 580.1630 CIPU is solved by Eq. (6)
and FFS_BS.

C. SENSITIVITY ANALYSIS
This section evaluates the sensitivity of the output results of
the three algorithms to input parameters by changing the val-
ues of service sales price, [aaS resource leasing cost, virtual
resource out of stock cost, and virtual resource idle cost.
ORAS_UC parameters analysis: based on Table 3, the
service sales price is varied from 0.2 to 0.6, the IaaS resource
leasing cost is varied from 8 to 12, the out-of-stock cost of
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TABLE 4. (1) Sales price and leasing cost analysis for ORAS_UC. (2) out of
stock cost and idle cost analysis for ORAS_UC.

@

Sales price changes Leasing cost changes

P Q X GQ ¢ Q AN )
0.2 52150  521.5  3909.20 8 53800 538.0  14800.3
0.3 52800 528 8810.31 9 53550 5355  14263.6
0.4 53350 5335 137289 10 53350 5335 137289
0.5 53800 538 18659.9 11 53200 532.0 13196.1
0.6 54200 542 23600.2 12 53000  530.0  12665.3
(@)
Sales price changes Leasing cost changes

L Q X G(Q) H Q X G(Q)
0.1 52150 521.5 3909.20 0.08 53650 536.5 13813.5
0.2 52800 528  8810.31 0.09 53500 535.0 13770.6
0.3 53350 5335 137289 0.10 53350 5335 13728.9
0.4 53800 538  18659.9 0.11 53200 532.0 13688.2
0.5 54200 542 23600.2  0.12 53050  530.5  13648.6

virtual resources varies from 0.1 to 0.5, the idle cost of virtual
resources varies from 0.08 to 0.12, and the SaaS provider
revenue and the optimal amount of resources allocated are
shown in table 4 (1) and 4 (2). From the table, the sales price
and out of stock cost have the greatest impact on the revenue
of SaaS provider.

ORAS_CU parameters analysis: based on the parameters
in Table 3 and set D = 5000, the service sales price
varies from 0.2 to 0.6, the IaaS resource leasing cost varies
from 8 to 12, the out-of-stock cost of virtual resources varies
from 0.1 to 0.5, the idle cost of virtual resources varies from
0.08 to 0.12, and the SaaS provider revenue and the optimal
amount of resources allocated are shown in table 5 (1) and (2).
From the table, the sales price and Leasing cost have the
greatest impact on the revenue of SaaS provider.

TABLE 5. (1) sales price and leasing cost analysis for ORAS_CU. (2) out of
stock cost and idle cost analysis for ORAS_CU.

@
Sales price changes Leasing cost changes
P Q X GQ ¢ @ X 6@
0.2 53763  537.6 389496 8 55556 555.6 14852.8
0.3 54348 5435 878046 9 54945  549.5  14242.3
0.4 54945  549.5 136929 10 54945 549.5  13692.9
0.5 55556  555.6 18587.9 11 54347 5435 13187.0
0.6 55556  555.6 235544 12 54347  543.5  12643.5

@

out-of-stock cost changes idle cost changes

L Q X G(Q) H Q X G(Q)

0.1 53763  537.6 13895.0 0.08 54945 549.5 13799.7
0.2 54348 5435 13780.5 0.09 54945 5495 13746.3
0.3 54945 5495 136929 0.10 54945 5495 136929
0.4 55555 5556  13587.9 0.11 54945 5495 13639.5
0.5 55555  555.6 135544  0.12 54945 549.5 13586.0

ORAS_UU parameter analysis: based on Table 3, the ser-
vice sales price varies from 0.2 to 0.6, the IaaS resource
leasing cost varies from 8 to 12, the out-of-stock cost of
virtual resources varies from 0.1 to 0.5, the idle cost of virtual
resources varies from 0.08 to 0.12, and the SaaS provider
revenue and the optimal amount of resources allocated are
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TABLE 6. (1) sales price and leasing cost analysis for ORAS_UU. (2) out of
stock cost and idle cost analysis for ORAS_UU.

@

Sales price changes Leasing cost changes
P__Q X GQ ¢ Q X 6@
0.2 52150 560.8 406244 8 53800 597.8 15852.0
0.3 52800 5739 927216 9 53550 588.5 152535
0.4 53350 5863 146103 10 53350 586.3 146103
0.5 53800  597.8  20000.5 11 53200 5783  14030.9
0.6 54200 6022 255329 12 53000 5761  13402.1

@

out-of-stock cost changes idle cost changes

L Q X G(Q H Q X G(Q)

0.1 52150 560.8 144924 0.08 53650 589.6 14807.1
0.2 52800  573.9 145522  0.09 53500 587.9 14708.6
0.3 53350 586.3 14610.3 0.10 53350 586.3 14610.3
0.4 53800 597.8 14620.5 0.11 53200 584.6 145124
0.5 54200  602.2  14692.9 0.12 53050 583.0  14414.8

shown in table 5 (1) and 5 (2). It can be seen from the table
that the sales price has the greatest impact on the revenue of
SaaS provider, followed by the lease cost.

D. ALGORITHM COMPARISON ANALYSIS

This section compares the algorithm proposed in this paper
with existing algorithms in terms of revenue, QoS violation
rate, and resource utilization.

Our methods are based on the perspective of SaaS
providers, and the goal is to maximize SaaS revenue while
not violating QoS constraints and high IaaS resource uti-
lization. There are few research results on resource allo-
cation based on the perspective of SaaS providers. In this
section, SS_MaCM [27] (cloud model-based SaaS selection
algorithm) and AFERM [25] (the application feature-based
elastic resource manager) are selected to compare with the
methods presented in this paper (the relevant introduction of
the two algorithms can be found in Sec. II-B.). SS_MaCM
considers the randomness of QoS, while AFERM considers
the randomness of the number of users in the application.
If the revenue of ORAS_UC are verified to be superior
to the two algorithms mentioned above, and then the ben-
efits of ORAS_UU algorithm are verified to be superior
to ORAS_UC and ORAS_CU, it can be verified that the
algorithm proposed in this paper maximizes the benefits of
SaaS providers in a stochastic supply and demand environ-
ment.

Regardless of the impact of the service itself and dynamic
environment on QoS violation rates, the best QoS accuracy
predicted by SS_MaCM is used as a reference for QoS
violation rates; SS_MaCM did not consider the impact of
user access on the service, and set its [aaS resource config-
uration to meet the maximum user access required by QoS
constraints. The actual resource usage is proportional to the
expected user access. The AFERM approach only considers
the effect of experiments on services with relatively good
request rate patterns as a reference, as it weighs resource
overhead and deployment flexibility. The overhead limit for
virtual resources is set at 80%, and the amount of virtual
resources remaining without reaching the overhead limit is
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not considered. In the ORAS_UC, the SaaS provider proposes
to configure the amount of IaaS resources based on the prob-
ability distribution of user visits. From the perspective of the
IaaS provider, there is no violating QoS constraints. There-
fore, the QoS violation rate of the ORAS_UC is setting to 0.
Figure 4 shows a comparison of QoS constraint violations and
resource utilization. From Figure 4, ORAS_UC has a high
resource utilization rate and a low QoS constraint violation
rate.

SS_MaCM does not consider the impact of user accesses
on resource and service QoS, assuming that user accesses are
mean values (i.e., u = 5000, Q = 50000, X = 500), the num-
ber of users accesses in the example parameters (see Table 3).
Instead, AFERM considers the impact of user accesses on
resource demand and service QoS, the basic idea being to
satisfy all concurrent user requests and minimize violations
of QoS constraints by taking the maximum number of user
accesses (i.e., u = 500043 x 500 = 6500, Q = 65000, X =
650). Then, the revenues of SaaS providers obtained from
SS_MaCM and AFERM were calculated by Eq. (2). Figure 5
shows the revenue comparison, which considers only the
revenue of a SaaS provider with uncertain demand. From
Figure 5, ORAS_UC can achieve higher revenue for SaaS
providers.

In stochastic environment of supply and demand (the
parameters are shown in Table 3), we compare the revenue of
our three algorithms. Figure 6 shows the revenue comparison,
which considers the revenue of a SaaS provider with uncer-
tain demand and supply. From Figure 6, it can be seen that
ORAS_UU can achieve higher revenue for SaaS providers.

Comparison with existing algorithms: in response to the
uncertainty of user access and laaS load, the existing [aaS
provisioning solutions based on IaaS and PaaS levels either
predict user access and IaaS load for provisioning, or mon-
itor user access and load changes for adaptive adjustment,
or reserve laaS resources to reduce the number of QoS
constraint violations. The prediction method is challenging
to guarantee the accuracy, and the monitoring and adaptive
method cannot achieve timely response and often violates
QoS constraints; the reserved IaaS method can reduce the fre-
quency of QoS constraint violations but reduces the resource
utilization of the cloud system and the cost of the SaaS
provider. The algorithm proposed in this study obtains the
optimal number of IaaS allocations that maximize the SaaS
provider’s benefit under the uncertainty of user access and
virtual resource provisioning and no QoS constraint violation
at the TaaS and PaaS levels.

E. SUMMARY

This section validates the advantages of our methods from
the following four aspects. (1) Algorithms performance anal-
ysis proves that the time and space complexity of three
algorithms are constant orders. (2) The numerical exam-
ples clearly describe the calculation process of the optimal
resource allocation for the three algorithms, and indicate that
their calculations are reasonable. (3) In sensitivity analysis,
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it was found that ORAS_UC is more sensitive to sales prices
and out of stock costs, ORAS_CU is more sensitive to sales
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prices and leasing costs, and ORAS_UU is more sensitive to
sales prices. (4) In algorithm comparison analysis, it has been
proven that our methods can maximize the revenue of SaaS
providers, while having lower QoS violation rates and higher
resource utilization.

VII. DISCUSSION

Our method’s adaptability: (1) The main input parameters
involved in our method include service price, rental cost, out
of stock cost, and idle cost. The service price can also be
the service value, if it can be measured in currency. The cost
parameters can be added or deleted according to actual sce-
narios, and the basic idea of the method remains unchanged.
(2) For the two random variables of demand and supply, they
can be either discrete or continuous. For the sake of intuitive
calculation, the continuous type is used in the text. The distri-
bution types of random variables can be binomial distribution,
Poisson distribution, uniform distribution, exponential distri-
bution, normal distribution, etc., but not limited to those. If the
random variables with stable distribution tables, the optimal
allocation of resources can be calculated by our methods. (3)
The probability distribution table of virtual resource demand
is obtained by calculating the probability distribution of user
volume. It is necessary to establish a mapping relationship
between user and virtual resource demand based on actual
scenarios (which is common). In the paper, a constant is used
to describe the virtual resource required by a user. Functions,
constants, or other types of relationships are applicable to our
methods.

The limitations of our methods: In addition to meeting the
assumptions in Section C of Part 3, our method also has some
limitations. (1) Being able to maximize the expected revenue
of SaaS providers, cannot maximize the revenue of SaaS
providers in every resource allocation, and cannot maximize
the revenue for PaaS and IaaS providers. (2) Suitable for envi-
ronments with random demand and supply, not suitable for
deterministic environments. (3) Due to the lack of a dynamic
adaptive mechanism, it is not suitable for scenarios where
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the distribution characteristics of random variables change
dynamically. (4) Suitable for single resource configuration,
not suitable for multi-resource joint configuration.

VIil. CONCLUSION

In the existing studies on IaaS resource allocation under ser-
vice QoS constraints at the IaaS and PaaS levels, the problems
of QoS constraint violation and low resource utilization under
uncertainty in user access and virtual resource provisioning
(i.e., IaaS resource load) are still highlighted, and the revenue
of SaaS providers is not considered. Regarding the above
difficulties, this study proposes a minimum optimal alloca-
tion strategy for IaaS resources that maximizes the expected
revenue of SaaS providers and designs three minimum opti-
mal allocation strategies for IaaS resources with uncertain
demand and supply, demand and uncertain supply, and both
uncertain demand and uncertain supply, to achieve the goal
of maximizing the expected revenue of SaaS providers. The
experimental analysis proves that the method in this study
can effectively obtain the optimal allocation of IaaS resources
and has high operational efficiency, with the following advan-
tages: (1) it can effectively determine the minimum optimal
allocation of IaaS resources in the three cases that max-
imize the expected revenue of the SaaS provider (2) the
SaaS provider determines the IaaS allocation, and there is
no violation of QoS constraints, which is also conducive to
its accurate allocation of IaaS resources and improvement of
system resource utilization; (3) it can effectively cope with
the problem of complicated IaaS configuration caused by
uncertainty in user access and laaS resource load.

As this study’s research on IaaS configuration for max-
imizing the revenue of SaaS providers is still in its initial
stage, there are still many shortcomings that need further
improvement. (1) There is still room for improvement in SaaS
provider revenue; (2) How to ensure the QoS requirements of
users who have been transferred services; (3) How to fully
utilize idle resources to further enhance SaaS provider rev-
enue; (4) How to allocate resources under multiple resource
requirements; (5) How to allocate resources under different
resource leasing price models; (6) How to allocate resources
for multiple infrastructure providers; (7) How to establish an
adaptive resource allocation model under stochastic supply
and demand conditions.

APPENDIX A

SOURCE CODE OF ALGORITHMS

The algorithm source code proposed in this article can be
downloaded from the following link: https://pan.baidu.com/
s/1j4TbrD-DovZRJIGulLbvFVg, and the extraction code
is 1234,
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