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ABSTRACT Deep learning (DL)-based methods substantially enhance the speed of magnetic resonance
imaging (MRI). Recently, transformer network architectures have been increasingly applied to image
reconstruction owing to their exceptional ability to model long-range dependencies. However, directly
employing a transformer network for MRI reconstruction results in a considerable computational burden
because the computational complexity of the transformer is proportional to the square of the image spatial
resolution. To alleviate this limitation, this study aims to design a computationally efficient transformer
network with improved reconstruction performance. The proposed network, termed the global-local-
transformer (GLFormer), is based on a multi-input multi-output architecture consisting of three components.
A simplified self-attention, global attention is designed to extract the long-range dependency using a global
pooling operator while maintaining linear complexity. Furthermore, depth convolution is incorporated
into a feedforward network (FFN) to perform local feature aggregation, and a parallel-gated branch is
designed for the FFN, thereby enhancing the effectiveness of representation learning and improving the
reconstruction performance. To enhance the ability of the network to perceive frequency information, a deep
frequency attention module is proposed to adaptively decompose and adjust frequency domain features,
thereby enhancing the reconstruction performance. Experiments conducted on public datasets indicate that
GLFormer outperforms state-of-the-art DL-based methods for different undersampling rates and types of
undersampling patterns. Furthermore, GLFormer only exploits fewer model parameters and has a lower
computational burden (i.e., 2.4M and 19G) than the previousmethods, whilemaintaining high reconstruction
quality.

INDEX TERMS Magnetic resonance imaging, deep learning, deep frequency attention, transformer.

I. INTRODUCTION
Magnetic resonance imaging (MRI) is widely used in clinical
settings because of its excellent soft tissue contrast, low radi-
ation levels, and non-invasiveness. Despite these significant
advantages,MRI is restricted by the prolonged scanning time.
Fast MRI relies heavily on image reconstruction from under-
sampled k-space data using rapid imaging sequences [1], par-
allel imaging [2], and compressed sensing [3]. However, these
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conventional methods are hindered by limited acceleration
factors and slow nonlinear optimization processes.

Recently, deep learning (DL)-based methods have been
exceptionally effective in MRI reconstruction, and have
found extensive applications in commercial systems.
Wang et al. [4] were the first to utilize convolutional neu-
ral networks (CNN) for MRI reconstruction, which builds
a mapping between undersampled MR images and fully
sampled reconstructions. Schlemper et al. [5] introduced a
deep network called DCCNN, which comprises a cascade
of CNNs, to reconstruct MR images from undersampled
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data. Yang et al. [6] proposed an end-to-end reconstruction
model based on conditional generative adversarial networks
(DAGAN), that utilize U-Net as the generator.

A vision transformer [7] demonstrated superior perfor-
mance owing to the global receptive field characteristics of
the self-attention mechanism. Consequently, several studies
have investigated the potential of transformer models for
MRI reconstruction. For instance, Kang et al. [8] added a
reconstruction head to a vanilla transformer network and
directly applied it to magnetic resonance image reconstruc-
tion. Huang et al. [9] proposed a reconstruction framework
that utilizes a swin transformer as the backbone for fast MRI
reconstruction. They leveraged the advantages of the swin
transformer for image recognition and achieved state-of-the-
art results in MRI reconstruction. Similarly, Guo et al. [10]
introduced a texture transformer module for accelerated
MRI reconstruction, which captured the textural informa-
tion in MRI images and achieved excellent performance in
reducing reconstruction errors. Zhao et al. [11] proposed a
swin-transformer-based dual-domain generative adversarial
network (SwinGAN) consisting of a frequency domain gen-
erator and an image-domain generator for accelerated MRI
reconstruction. Finally, MTrans [12] is an accelerated multi-
modal MRI technique with a cross-attention module that
extracts and fuses complementary features from an auxiliary
modality with the target modality.

Despite the promising results of previous studies, the direct
application of transformer networks to MRI reconstruction
has several limitations. First, traditional self-attention mech-
anisms require the computation of attention maps, which
entails quadratic complexity, resulting in considerable com-
putational burden and memory usage. This, in turn, hinders
the further application of transformer networks in MRI. Sec-
ond, linear projection layers in feedforward networks (FFN)
only aggregate information within channels, which hinders
their ability to capture spatially local information, restrict-
ing the capacity of the network to represent local features.
Finally, the existing neural network methods generally per-
form poorly in recovering high-frequency details when recon-
structing magnetic resonance images. Previous research has
suggested that this may be related to the frequency prefer-
ences of the neural networks [13], [14].
In this paper, we propose a global-local transformer

(GLFormer), a computationally efficient and high-
performance transformer network for fast MRI reconstruc-
tion. Our approach combines both global and local infor-
mation from MRI data to improve reconstruction accuracy
while maintaining computational efficiency. The main con-
tributions are as follows:

•Obtaining a global feature vector through pooling simpli-
fies the query cost of attentionmaps, reduces square complex-
ity to linear complexity, and preserves the capture of global
features.

• The aggregation of local spatial features through depth
convolution while improving the information flow of the

network through a gating mechanism improves representa-
tion learning.

• A deep frequency attention module adaptively adjusts
the frequency information distribution of deep features to
enhance the final reconstruction performance.

II. RELATIVE WORKS
A. CLASSIC MRI RECONSTRUCTION
In the classical framework of compressed sensing magnetic
resonance imaging (CS-MRI) reconstruction, the acquisition
of undersampled MRI signals follows a specific forward
process:

y = Fux + ϵ. (1)

where Fu is a subsampled Fourier transform, which is a
combination of the Fourier transform and a binary sampling
operator, x is the fully sampled MR image, y refers to the
acquired undersampled data and ϵ is the noise introduced
during the acquisition process. MRI reconstruction can be
viewed as an inverse problem, as follows:

min
x

1
2
||Fux − y||22 + λ||x − Fcnn(xu|θ )||22. (2)

where ||Fux − y||22 is the data confidelity term, that ensures
that the reconstructed image x conforms to the forward pro-
cess, and ||x − Fcnn(xu|θ )||22 is the difference between the
reconstructed image, denoted as Fcnn(xu|θ ), generated by
the neural network, and the ground truth image x. Here, xu
represents the downsampled input image, and θ represents
the learnable parameters of the network.

B. TRANSFORMER
The performance of CNNs is frequently limited by two
main factors: limited receptive fields and the inability to
learn instance-level features [15]. Transformers have under-
gone significant development in numerous fields because
of their capacity for modeling long-range dependencies
[16], [17]. Although the transformer model has been shown
to be a notable advancement over CNNs by addressing their
drawbacks, including limited receptive fields and inadequate
adaptability to input content, the computational complexity
of the transformer model increases quadratically with spa-
tial resolution. Therefore, applying a transformer network
directly to magnetic resonance (MR) reconstruction results
in high computational complexity.

C. FREQUENCY LEARNING
Frequency learning, which involves filtering and image com-
pression methods, is a well-established technique in tradi-
tional image processing [18], [19]. More recently, frequency
learning has been applied to deep learning tasks. For exam-
ple, zhang et al. proposed a frequency-suppression mod-
ule that removes high-frequency components to enhance the
robustness of classification [20]. Similarly, Chen et al. [21]
designed a frequency enhancement module that incorporated
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FIGURE 1. Architecture of the proposed GLFormer for MRI reconstruction.

frequency-aware cues into CNN models. In F3-Net [22], the
input image is adaptively partitioned by a learnable frequency
filter, revealing a preference for specific frequencies in both
the CNN and transformer models. Bai et al. [23] divided the
features into high and low frequencies, and learn different
frequencies independently. Dar et al. [24] introduced high-
frequency information priors to aid in theMRI reconstruction
process. In contrast to the existing methods, we propose a
novel approach called the deep frequency attention (DFA)
module. The DFAmodule permits flexible adjustments of the
frequency domain representations of deep features, resulting
in a superior recovery of high-frequency details.

III. METHODS
A. MULTI-INPUT-MULTI-OUTPUT ARCHITECTURE
Inspired by MIMO-Unet [29], our architecture follows a
MIMO design by integrating multiple-resolution inputs and
outputs. The term ‘‘multi-resolution inputs’’ refers to the orig-
inal input image and downscaled images obtained through
bilinear interpolation downsampling at two times and four
times lower resolutions. In the input stage, the encoder ini-
tially extracts shallow features from the input image, which
then undergoes n transformer blocks. Next, we extract the
low-resolution features from the downsampled image using a
shallow convolutional module [29]. Subsequently, the down-
sampled deep features and low-resolution features are fused
together by a feature attention module [29] and passed
through the transformer block once again, and this process

continues iteratively. The decoder receives deep information
from the same branch and combines it with the deep features
from other branches by an adaptive fusion module [29] to
obtain a more comprehensive set of features. In the output
stage, each decoder generates a reconstructed image at a
specific resolution. Since the output of each decoder consists
of a set of feature maps, we employ a convolutional operation
to map the feature maps to an intermediate output image.
The intermediate outputs enable the model to better learn
image features and details at different resolutions, facilitating
its adaptation to diverse scales and structures in the image.
An overview of the proposed network is shown in Fig. 1.

B. GLOBAL ATTENTION
The traditional self-attention layer has O(H2W 2) complexity
for aW ×H image [25]. Therefore it is difficult to apply it to
a reconstruction task. To address this limitation, we propose
a global attention module with linear complexity, as shown in
Fig. 2. Considering the sparse nature of magnetic resonance
images, an attention map with quadratic complexity is unnec-
essary. Themain component of our module is a global context
feature generated by a pooling operator, which requires only
linear complexity for attention map queries.

From the layer-normalized tensor X ∈ RC×W×H , the
global attention module first generates a query (Q), key (K),
value (V) by applying 1×1 convolutions. Next, a global
context feature is obtained through average pooling.
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FIGURE 2. The structure of global attention module.

FIGURE 3. The details of local gated feedfoward network.

This global feature represents the expected information of
the features and is characterized by its global nature. Subse-
quently, we multiply it by Q to obtain an attention map with
linear complexityO(HW ), instead of a large regular attention
map of size O(HW × HW ). Overall, the global attention
process is defined as:

Xout = Xin + Attention(Q,K ,V ). (3)

Attention(Q,K ,V ) = softmax(Q,Pooling(K ))V . (4)

where Xin and Xout are the input and output feature,
Q ∈ RC×HW , K ∈ RC×1, V ∈ RHW×C

C. LOCAL-GATED FEED FORWARD NETWORK
The traditional FFN performs a nonlinear transformation of a
feature representation into a high-dimensional space at each
position via fully connected layers and a nonlinear activation
function. Subsequently, this high-dimensional representation
is remapped back to the feature dimension. Nonetheless,the
linear mapping present in the FFN is equivalent to a 1 × 1
convolution, which causes inadequacies in the ability of the
network to extract local features in the transformer structure.
The design of the local-gated feedforward network (LGFFN)
is illustrated in Fig. 3. In this paper, we propose two mod-
ifications to enhance the feature extraction capabilities of
the FFN architecture. First, we introduce a 3 × 3 depth
convolution [26] after a 1 × 1 convolution layer to capture
interpixel information in the vicinity, resulting in an increased
ability to extract superior local image structures during the
reconstruction process. Second, the gating selection mecha-
nism consists of parallel branches of a 1×1 convolution and a
3×3 depth convolution applied to high-dimensional features,
followed by an element-wise multiplication operation. This
mechanism effectively enables the network to learn the rele-
vant information flow required for the current level, resulting

in a highly competitive learning process. The entire LGFFN
is formulated as follows:

Xout = WpGating(Xin) + Xin. (5)

Gating(Xin) = φ(WpWdLN (Xin)) ⊙WpWd ((LN (Xin))). (6)

where Xin denotes the input features. Wp is the 1×1 convo-
lution used for mixing channels, and Wd is the 3×3 depth
convolution used for aggregating local features. φ repre-
sents the non-linear activation function Gelu, and ⊙ denotes
the element-wise multiplication used to implement the gate
mechanisms.

D. DEEP FREQUENCY ATTENTION
To facilitate the network’s ability to perceive a variety of
frequency information and precisely reconstruct the image
content, especially high-frequency details, we propose a
deep-frequency attention module based on frequency domain
learning, as illustrated in Fig. 4. Previous methods for learn-
ing in the frequency domain typically involved decompos-
ing images or features into different frequency spaces to
address issues, such as smoothing or making explicit adjust-
ments to certain frequency components. However, these
approaches have limited flexibility and adaptability. Our pro-
posedmethod involves both frequency domain feature extrac-
tion and adaptive frequency recombination, which enables the
decoupling of all the frequency components and implicitly
allows for flexible adjustments. To acquire a comprehensive
representation of the frequency space, we utilized a Fast
Fourier Transform (FFT) [27] to convert the image features
into the frequency domain, as expressed by Eq. (3):

XF (x, y) =

H−1∑
h=0

W−1∑
w=0

X(h,w)e
−j2π

(
x h
H +y wW

)
. (7)

Given a spatial feature X with dimensions (CHW), we apply
a Fourier transformation to each channel of the feature to
obtain the corresponding frequency domain representation.
We utilize the torch.rfft function from the PyTorch frame-
work, which separates the real and imaginary components of
the complex numbers and takes advantage of the conjugate
symmetry property in the frequency domain. As a result, we
only utilized half of the input size. The resulting transformed
feature, denoted by XF , has dimensions of (2C, H/2, W/2),
which allows for the analysis of image characteristics in the
frequency domain. Our method provides two benefits for
the acquisition of frequency domain representations. First,
the implementation of FFT effectively decouples the image
space into all frequencies, thereby producing a more compre-
hensive frequency representation. Secondly, each frequency
component in the frequency representation is the summation
of all image points, resulting in operations in the frequency
space being more global in nature. Next, we introduce the
frequency attention operation, that adaptively modulates dif-
ferent frequency components by generating two masks along
the channel and spatial dimensions of XF . Specifically, we
applied a 1 × 1 convolution to project XF onto a spatial
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FIGURE 4. The details of deep frequency attention module.

embedding space, enabling a spatial frequency modification.
Channel-dimension embedding was simultaneously imple-
mented using a pooling operator. This allows the adaptive
generation of two masks that can effectively modulate the
contribution of each frequency component and enhance the
performance of the network. The proposed deep frequency
attention can be formulated as:

X ′
F = Maxout(XF ⊗ Smask (XF ),XF ⊗ Cmask (XF )). (8)

Smask applies a 1×1 convolution to aggregate pixels channel-
by-channel, followed by a sigmoid function. Cmask uses a
pooling layer to spatially aggregate the pixels, followed by
a fully connected layer and a sigmoid function. These masks
allow for effective modulation of the contribution of each fre-
quency component, thereby enhancing network performance.
Our frequency attention embedding operation was primar-
ily inspired by CBAM [28]. Finally, we utilized an inverse
Fourier transform to convert the adjusted frequency features
into the image domain. These features were subsequently
inputted into the following network for further processing.
The corresponding mathematical expression for the inverse
Fourier transform is given by Eq. (9).

X(h,w) =
1

H ×W

H−1∑
h=0

W−1∑
w=0

X ′
F (x, y)e

j2π
(
x h
H +y wW

)
. (9)

To maintain consistency with the lightweight objective
of this study, we incorporate the deep frequency attention
module into the third branch of the network, which exhibits
reduced parameter count and computational burden on deep-
level features.

E. MULTI-SCALE SUPERVISED LOSS
The selection of an appropriate loss function is critical for
low-level vision tasks because it can significantly affect
model performance. The use of different loss functions during
training can result in widely divergent outcomes within the
same model [30]. In this study, we employed the L1 loss,
which has been demonstrated to be more effective for image
restoration. Previous research has shown that this loss func-
tion exhibits superior convergence characteristics compared
to the L2 loss [30].

To maintain consistency in our multi-input multi-output
structure, we designed a multiscale loss function. By incorpo-
rating intermediate outputs, this function provides additional
loss signals to the model, thereby expediting the convergence
and mitigating the risk of overfitting. We used three types

of multiscale supervised L1 losses: image, frequency, and
gradient losses.

The first loss function we introduce is content loss, which
is defined as follows:

Lcontent =

K∑
k=1

1
tk

||x̂k − xk ||. (10)

where x̂k represents the reconstructed image, while xk denotes
the ground truth label. k is the number of branches. We divide
the loss by the number of total elements tk for normalization.

TABLE 1. Parameters of compared methods.

Because the primary objective of MRI reconstruction is to
restore lost frequency components, it is crucial to minimize
the differences in the frequency space. To achieve this, we
propose a multiscale frequency reconstruction loss function,
which can be expressed as:

Lfreq =

K∑
k=1

1
tk

||F(x̂k ) − F(xk )||. (11)

where F denotes the fast Fourier transform (FFT) that trans-
fers the image signal to the frequency domain.

Moreover, to restore the high-frequency details of the
image better, we introduce a multilevel gradient loss, defined
as follows:

Lgrad =

K∑
k=1

1
tk

||∇ x̂k − ∇xk ||. (12)

The symbol ∇ denotes the gradient operator. The overall loss
function for training the network is determined as follows:

L = αLgrad + βLcontent + γLfreq. (13)

where α, β, and γ are the weights that control the balance
each loss.

IV. EXPERIMENT
First, we tested our model on the MICCAI 2013 Grand
Challenge,1 IXI2 and fastmri datasets [31] to verify its recon-
struction performance. To validate the effectiveness of the
proposed module, ablation experiments were conducted on
each module.

A. DATASETS
From the MICCAI 2013 Grand Challenge dataset,
100 T1-weighted brain MRI datasets were chosen and split
into two groups:16,095 2D images for training and 5,033
valid 2D images for validation. In the testing phase, we

1http://masiweb.vuse.vanderbilt.edu/workshop2013/index
2http://brain-development.org/ixi-dataset/
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TABLE 2. Quantitative assessment of PSNR, SSIM, NMSE (×10−2) of the comparison methods in the MICCAI 2013 brain dataset, using different
undersampling rates of Spiral 2D undersampling mask.

TABLE 3. Quantitative assessment of PSNR, SSIM, NMSE (×10−2) of the comparison methods in the MICCAI 2013 brain dataset, using different
undersampling rates of Gaussian 1D undersampling mask.

TABLE 4. Quantitative assessment of PSNR, SSIM, NMSE (×10−2) of the comparison methods in the IXI brain dataset, using different undersampling rates
of Radial 2D undersampling mask.

TABLE 5. Comparison experiments in the fastmri dataset.

used 50 independent datasets containing 9,854 2D images.
From the IXI dataset, 373, 92, and 116 T1-weighted brain
images were randomly selected for training, validation, and
testing, respectively. The fastmri dataset consists of raw k-
space data, including real acquired noise. From the knee data,
we randomly selected 7000 slices as training data, 2000 slices
as validation data, and 4000 slices as testing data. The input
images were cropped to a size of 256×256 and fed into the
network for reconstruction. For each dataset, images from a
single subject were kept separate for training, testing, and
validation, ensuring the independence of training and testing
procedures. All settings were consistent with those used in
previous studies.

B. IMPLIMENTATION DETAILS
For model training, we used the Adam optimizer [32]. The
learning rate was initially set to 10e-4 and decreased by a

factor of 0.5 every 30 epochs. There are eight transformer
blocks. To prevent overfitting, training was terminated when
the validation loss did not decrease over 5 epochs. A uniform
set of hyperparameters was adopted for different sampling
rates and markers: batch size = 8, α = 1, β = 0.1, γ = 1.
All experiments were conducted on a GTX 3090 GPU with
24 GB of memory using the PyTorch framework.

To simulate undersampling, we obtained undersampled
k-space data using one-dimensional (1D) Gaussian, Carte-
sian, radial, and spiral masks. Each used different under-
sampling rates of 10%, 20%, and 30%, representing accel-
erations of 10×, 5×, and 3.3×, respectively. To ensure a fair
comparison, we chose zero-filled images as inputs throughout
the whole training process.

C. EVALUATION METRICS
The most important evaluation criterion for image restoration
is the image quality [33], so three experimental metrics are
used: the normalizedmean square error (NMSE), peak signal-
to-noise ratio (PSNR) [34], and structural similarity index
(SSIM) [35]. The PSNR and SSIM indices are commonly
used metrics for assessing image reconstruction quality. Both
involve pixel-wise comparisons between the fully sampled
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FIGURE 5. Qualitative visualization of different methods using Radial 30% mask (R2D30%), For every three rows of figure, row 1: GT(ground
truth image), ZF(zero-filled image) and reconstructed images of different methods; row 2: The zoomed-in images and corresponding error maps
which are pointed out in the first row by a red rectangle; row 3:The error maps of reconstructed images (10×). The upper part shows the
quantitative results of the MICCAI2013 dataset, and the lower part shows the quantitative results of the IXI dataset.

MR image and the reconstructed image. PSNR calculates
the ratio between the maximum possible signal power and
the power of the corrupting noise, as measured by the mean
squared error (MSE). The SSIM index is a symmetrical mea-
sure that considers the interdependence between pixels in an
image and the mean and variance of the image intensities.

D. COMPARISON WITH OTHER METHODS
To validate the effectiveness of GLFormer, we evaluated
four established models: DAGAN (a GAN-based model)
[6], DCCNN (a CNN-based model) [5], and SwinMR
(a transformer-based model) [9].

Table 1 lists the parameters of the four methods. It is evi-
dent that the proposed network has fewer model parameters
and fewer FLOPs especially compared to SwinMR. This is
attributed to the design of an efficient global attention module
and LGFFN module.

We performed the quantitative experiments on the MIC-
CAI 2013 dataset using a 1D Gaussian (shown in Table 2)
and a spiral undersampling mask (shown in Table 3). Addi-
tionally, we performed experiments on the IXI dataset with
a radial undersampling mask (shown in Table 4). The best
results are indicated in bold. The results in Table 2 demon-
strate that the proposed method generated better numeri-
cal results than DAGAN, DCCNN, and SwinMR. Similarly,
Table 3 shows that the proposed method achieved the best
performance in terms of PSNR and SSIM compared to the
other models. GLFormer outperformed several other recon-
struction methods on the IXI dataset, as shown in Table 4.

The visualization results for the radial 2D 30% and spiral
2D 30% undersampling settings on the IXI andMICCAI2013
datasets are shown in Figs. 5 and 6. The error maps were
magnified ten fold and displayed within the range of [0, 1].
The error maps demonstrate that the proposedmethod had the
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FIGURE 6. Qualitative visualization of different methods using Spiral 30% mask (S2D30%), For every three rows of figure,
row 1: GT(ground truth image), ZF(zero-filled image) and reconstructed images of different methods; row 2: The zoomed-in images and
corresponding error maps which are pointed out in the first row by a red rectangle; row 3:The error maps of reconstructed images (10×)
The upper part shows the quantitative results of the MICCAI2013 dataset, and the lower part shows the quantitative results of the IXI
dataset.

lowest reconstruction error for both datasets. Additionally,
the zoomed-in images demonstrate that the proposed method
reconstructed details and textures more effectively. The visu-
alization results for the Guassian 1D 30% and radial 2D 20%
undersampling settings on the fastmri dataset are shown in
Fig. 7. Table 5 provides the quantitative results for the fastmri
dataset. In comparison to the SwinMR method, our approach
demonstrates a lower reconstruction error.

E. ABALATION STUDY
Table 6 shows the results of ablation experiments conducted
on the overall network. Residual-Baseline model refers to the
use of residual modules instead of transformer modules, and
it does not include the DFA module.

1) IMPROVEMENTS IN GLOBAL ATTENTION
Table 6(c) shows that our global attentionmechanism resulted
in a significant improvement of 1.19 dB over the baseline.
To further verify the global modeling ability of the mecha-
nism, we visualized the output results of the first attention

block for each branch. The results presented in Fig. 8 show
that our global attention mechanism efficiently captures
global features at a low computational cost. Moreover, each
branch focuses on different image details, indicating that the
multi-input multi-output structure results in more efficient
reconstruction.

A quantitative comparison was conducted on the IXI
dataset using a 20% Cartesian sampling pattern to assess
the performance of the self-attention mechanism and the
global attention mechanism. The results in Table 7 demon-
strate that the global attention mechanism exhibited superior
reconstruction quality compared to the self-attention mech-
anism. This performance improvement may be attributed to
the presence of considerable redundancy in the computations
involved in the self-attention mechanism.

2) IMPROVEMENTS IN LGFNN
Table 6(d) demonstrates the effectiveness of the parallel gat-
ing mechanism in controlling the information flow within the
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FIGURE 7. Qualitative visualization of different methods in fastmri dataset using Gaussian 1D 30 % mask (G1D30% ) and radial 20% mask
(R2D20% ). For every three rows of figure, row 1: GT(ground truth image), ZF(zero-filled image), and reconstructed images of different methods;
row 2:The error maps of reconstructed images (10×).

TABLE 6. Ablation experiments for GLFormer.‘‘Baseline’’ refers to the use of residual blocks as the basic module. × means that the component is not
used, instead,

√
means that the component is used.

FFN. The addition of a local pixel-aggregating mechanism
also provides performance benefits. Our LGFFN module
shows a PSNR gain of 1.87 dB over the baseline model.
Furthermore, our contribution to the transformer block led to

a substantial improvement of 2.45 dB over the baseline as
shown in Table 6(e)
To compare the reconstruction performances of the pro-

posed LGFFN and traditional FFN, we evaluated the
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TABLE 7. Comparison experiments with Self attention.

TABLE 8. Comparison experiments between LGFFN, FFN, and residual
block.

TABLE 9. Comparison experiments for DFA.

TABLE 10. Comparison experiments with Dual domain network.

reconstruction results using the baseline model (using resid-
ual blocks), FFN, and the LGFFN module proposed in this
study. As shown in Table 8, the results suggest that the
LGFFNmodule not only reduces the parameter and computa-
tional burden but also achieves superior reconstruction results
compared to the original FFN.

3) IMPROVEMENTS IN DFA
We proposed a deep frequency domain attention module to
improve the frequency deviation of the reconstruction net-
work. The effectiveness of our frequency attention module,
which showed improved reconstruction results, is presented
in Table 6(f). To further investigate the module’s effective-
ness, we compared the performance of frequency adjustment
using only channel embeddings and only spatial embeddings
and analyzed the performance differences between parallel
and serial learning for both types of embeddings. The results
presented in Table 9. demonstrate that channel embeddings
alone are superior to spatial embeddings in terms of frequency
adjustment. Furthermore, the simultaneous parallel learning
of both types of embeddings leads to maximum performance
gain.

To gain a deeper understanding of the mechanism of
deep-frequency attention, we visualized the channel and spa-
tial masks. The visualization results are shown in Fig. 8.
We found that adaptive decoupling of different spatial fre-
quencies was achieved by the channel and spatial masks.
Moreover, the channel and spatial masks paid more attention

FIGURE 8. Visualizing first global attention module of different network
branches. The first row presents images from the MICCAI 2013 dataset,
and the second row presents images from the IXI dataset. (a) input
images (b) visualization results of the first branch, (c) visualization results
of the second branch, (d) visualization results of the third branch.

FIGURE 9. Visualization of the spatial mask and channel mask of DFA.
(a) The left side of the figure represents a channel mask, which mainly
learns low-frequency information, (b) the right side of the figure
represents a spatial mask which mainly learns a large amount of
high-frequency information.

to low-frequency information and high-frequency informa-
tion, respectively.

We further compared our proposed network with dual-
domain networks [11], [36]. As shown in Table 10, GLFormer
outperforms the two most recent dual-domain networks in
terms of reconstruction performance while requiring only a
lightweight frequency domain module.

V. DISCUSSION
While the transformer model overcomes the limitations
of CNNs, such as a limited receptive field, its quadratic
computational complexity limits its applicability in mag-
netic resonance imaging reconstruction. To address this
issue, we propose an efficient transformer-based network,
termed GLFormer. The experimental results demonstrate that
GLFormer has smaller reconstruction errors than those of
several other methods and significantly reduces both compu-
tational and parameter costs. The visualization results demon-
strate that the proposed global attention module captures
global features at a linear computational cost. The abla-
tion experiments listed in Table 6 demonstrate that both the
global attention and LGFFN modules significantly improve
the reconstruction results. Additionally, the proposed DFA
module was adapted to decouple the learning of different

83218 VOLUME 11, 2023



R. Wang et al.: GLFormer: An Efficient Transformer Network for Fast MRI Reconstruction

frequency distributions based on the visualization results
shown in Fig. 9, leading to improved reconstruction details.
However, considering the potential presence of noise and

pathological data in real-world scenarios, further exploration
is required to enhance the network’s noise robustness and
ability to reconstruct pathological data. In addition, we only
tested the undersampled reconstruction of brain images, and
the distribution differences between different parts may affect
the reconstruction performance of the network.

In future work, we will extend the network to utilize multi-
contrast magnetic resonance images for improved recon-
struction. Furthermore, owing to the small computational
burden of GLFormer, we can apply this lightweight trans-
former to high-resolution imaging scenarios such as cardiac
imaging [37], [38], [39].

VI. CONCLUSION
In this study, we propose a novel efficient transformer net-
work based on MIMO architecture. The proposed GLFormer
includes two improvements over conventional models. The
first is a simplified self-attention mechanism that obtains
global feature representations through pooling and attention
queries. This effectively reduces the computational complex-
ity while preserving the representation ability of global fea-
tures. The second improvement is the introduction of local
feature aggregation and gating mechanisms in the feedfor-
ward network, which emphasizes the spatially local context
and improves information flow. Additionally, we propose a
deep frequency attention operation that learns the embedding
of frequency domain features obtained from Fourier trans-
forms in both the channel and spatial dimensions and adjusts
the distribution of frequency domain features accordingly.
Qualitative and quantitative experiments conducted on pub-
lic datasets demonstrated that GLFormer surpasses existing
methods on public datasets and exhibits superior reconstruc-
tion performance. Our study presents an innovative solution
for efficient MRI reconstruction with transformer networks,
providing significant potential for clinical applications.
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