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ABSTRACT The development of methods that combine different sources of information for medical
diagnosis is an essential challenge in the field ofmedical informatics. In this context, we introduce amachine-
learning framework for automatic voice pathology classification and, in particular, a modular deep learning
architecture that classifies voice signals stemming from four types of voice disorders. To this end, we design
a multimodal deep learning architecture that fuses medical metadata with voice signals. Our classifier is a
combination of fully convolutional and feed-forward sub-networks that simultaneously process low-level
and mid-level features which are extracted from acoustic signals of varying duration and medical records,
respectively. A key objective of our study is to develop an architecture that is capable of processing voice
samples of varying duration, to enhance the system’s learning and inference capabilities. Our research also
focuses on overcoming performance limitations of neural networks that stem from the lack of extensive
volumes of training data. We therefore, investigate problem-specific augmentation techniques based on the
feature sequence segmentation and coloured noise injection and we show that the proposed method gives
state-of-the-art results, achieving 64.4% classification accuracy, compared to the 63.5% classification score
of the best performing method of the 2019 FEMH data challenge.

INDEX TERMS Voice pathology classification, deep multimodal neural networks, fully convolutional
networks, data augmentation.

I. INTRODUCTION
The traditional approach to diagnosing voice pathology has
centered on assessing laryngeal structure and mobility and
examining respiratory dynamics. Laryngoscopy is the most
effective technique for observing and accurately assessing
the laryngeal structure, including the mobility of its tissues.
Respiratory dynamics, including lung volume, airflow, pres-
sure, and breathing patterns, are measured using spirometry
and pneumotachography techniques. To reduce reliance on
specialized medical equipment, implementing procedures for
evaluating phonatory and respiratory dynamics through auto-
matic speech signal analysis has proven to be a successful,
cost-effective, and non-invasive alternative.

Voice pathology classification refers to the task of
machine-driven decision-making of the type of pathology
present in a voice recording given a set of predefined
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pathology classes. This classification task is traditionally
approached from perspectives of pattern recognition and
statistical learning and, recently, using deep learning tech-
niques. Developing a robust voice pathology classification
system based on machine learning techniques has been a
prominent research assignment with a strong potential impact
on public health. In recent decades increasing research has
been made, primarily aiming at developing accurate feature
extraction techniques with the appropriate acoustic parame-
ters and applying classification algorithms that achieve high
classification precision. To that end, collections of voice
recordings of healthy subjects and patients with different
types of hyper - and hypofunctional vocal fold patholo-
gies have been gathered and arranged into databases. The
recordings contain the sustained vowels /a/, /i/, /e/, and/or
continuous speech. As stated in [1], the most popular voice
pathology databases are the Massachusetts Eye and Ear Infir-
mary (MEEI) database, the Saarbruecken Voice Database
(SVD) and the Arabic voice pathology database (AVPD), in
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descending order. Lately, during the COVID-19 pandemic,
several COVID-19 related datasets have been assembled,
including theMITCOVID-19 dataset, the University of Cam-
bridge COVID-19 Sounds dataset, the University of Stanford
Virufy dataset and the EPFL COUGHVID dataset, which
mainly focus on COVID-19 cough, breathing, and speech
sounds.

The development of automatic voice disorder classifica-
tion systems has led researchers to experiment with different
pathology types across multiple classification tasks based on
available voice disorder data collections. Among these tasks,
the binary classification problem of distinguishing healthy
voice samples from unhealthy voice samples has been a
primary focus of the investigation. According to [2], the
healthy and unhealthy sustained vowels of theMEEI database
turned out to be perfectly separable. This observation raises
the question of whether the reported methods can generalize
on unseen data, consequently increasing the need to conduct
experiments on new databases.

In this line of thinking, we undertake experiments with a
more challenging database of voice disorders, the Far East-
ern Memorial Hospital (FEMH) database. During the 2019
‘‘IEEE BigData Cup,’’ this database was introduced as part
of the FEMH voice data Challenge and focuses on a 4-class
classification problem involving voice recordings from four
different categories of voice disorders: functional dysphonia,
phonotrauma, laryngeal neoplasm and vocal paralysis. The
availability of medical information for the voice recordings
of the FEMH corpus aligns well with our research objec-
tive of integrating medical information into the classification
system.

The FEMH data corpus, as it is also the case with most
voice disorder databases, comprises a restricted amount of
data, thus posing a significant limitation when training deep
learning architectures. To the best of our best knowledge, the
literature has not extensively addressed data augmentation
techniques as a remedy for the lack of sufficient training
data. To resolve this research gap, we investigate various
data augmentation methods tailored to the voice pathology
classification problem.

The observation that the voice recordings have varying
duration in the dataset is another essential data-related char-
acteristic in the context of voice disorder classification since
the duration of sustained vowels correlates with the phona-
tion capabilities of the patients. For example, vocal fold
damage (as in the case of the neoplasm disorder) results
in altered Maximum Phonation Time (MPT) values, and
patients with incomplete glottis closure (a symptom of vocal
paralysis) present lower MPT values- because air leakage is
higher than in the case of healthy people [3]. Short phona-
tion times in the case of vocal paralysis also indicate a
patient’s inability to pronounce sustained vowels for a long
time. In addition, loudness fluctuations and silent parts in
the recordings indicate patients’ difficulties during vowel
pronunciation.

It is worth noting that relevant research work mainly
focuses on network architectures and methods that require
pre-processing and resizing audio recordings to segments
of predefined length, often using zero-padding techniques.
As the duration of recordings correlates with the presence of
pathology, segmentation to fixed length segments can result
to information loss and subsequent inferior classification
performance. In order to overcome the limitations of conven-
tional classifiers that require fixed duration input, we propose
a ‘‘fully-convolutional’’ architecture which is capable of pro-
cessing 2-D representations of audio recordings of arbitrary
duration. We also define a data augmentation method which
splits the audio recordings into variable-length segments.

Overall, we propose a novel classifier that simultaneously
processes data from two modalities (bimodal classifier),
namely audio signals and medical records, based on a fully
convolutional architecture [4] that analyzes voice record-
ings as images of varying width, thus overcoming the need
for assumptions regarding recording duration. Furthermore,
we enhance the training stage with custom augmentation
techniques that produce variable-length training data injected
by different noise types.

The rest of the paper is structured as follows: Section II
presents related work and Section III describes the collection
of audio recordings and medical data of the FEMH corpus
and introduces the four pathologies of our study. Section IV
presents the proposed method, including the feature extrac-
tion stage and the model architecture. Section V describes our
experimental setup, training procedures, adopted augmenta-
tion techniques, classification results, and network perfor-
mance interpretation by means of visualization techniques.
Finally, Sections VI and VII discuss and summarize our
research findings.

II. RELATED WORK
During the past few years, several research attempts have
shown that automatic voice pathology classification systems
can provide solutions to a spectrum of tasks related to voice
impairment assessment by means of various feature extrac-
tion schemes and machine learning methods.

Recently, Support vector machine (SVM) classifiers [5],
[6], Naïve Bayes solutions, decision trees, and ensemble
classifiers [7] were employed for the detection of vowel
pathology in the SVD dataset. Furthermore, [8], [9], [10],
[11], [12], [13] investigated the capacity of deep neural net-
works to classify voice pathology in the SVD dataset.

As the four-class classification problemwhich we are deal-
ing with is relatively new, we also include results reported in
the literature for related voice pathology classification prob-
lems, starting with a feature extraction stage survey. More
specifically, the work in [14] has shown that Mel-frequency-
coefficients (MFCCs) combined with pitch frequency mea-
surements yields a 99.44% classification accuracy for the
binary problem of discriminating normal from pathological
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speech for the case of the sustained vowel /a/. Furthermore,
in [15], perturbation methods (including jitter and shim-
mer), in combination with signal-to-noise ratio, and nonlinear
dynamic methods (correlation dimension and second-order
entropy) were tested for the analysis of sustained and contin-
uous vowels with laryngeal pathologies. In paper [16], com-
plexity measures of noise parameters and MFCC coefficients
were analyzed, while in [17], the wavelet packet transform
was employed to analyze dysphonic voices. For the special
case of dysphonia detection in recordings of the sustained
vowel /a/, biologically inspired AM Analysis features [18],
modulation spectral features combined with MFCCs [19]
and modulation spectral features [20] have shown to exhibit
good performance. Recently, bio-inspired algorithms with
innovative graphical representations of audio signals and
heuristic methods were introduced in [21]. In [22], fea-
tures extracted from pitch contours, MFCCs, gramatone
cepstral coefficients (GTCC), Gabor wavelets and auditory
spectrograms, were processed to address the problem of
impaired voice classification. Furthermore, research reports
have stated that mel-frequency coefficients and their deriva-
tives can serve as discriminating features for voice pathology
types [12], [23], [24]. For the more specific case of laryngeal
carcinomas, MFCCs were proposed as a feature [25].

Relevant studies can be found in the list of submit-
ted methods at the FEMH 2018 challenge which intro-
duced a three-class pathology detection problem (neoplasm,
phonotrauma and vocal palsy). It can be observed that
MFCCs, delta MFCCs and Mel-scaled spectrograms
were proposed by most of the participants as the most
discriminative features for detection and classification
tasks [26], [27], [28], [29], [30], [31], [32], [33]. The work
in [34] has shown that the pertrubation features of Nor-
malized Noise Entropy, Cepstral Harmonics-to-Noise Ratio,
Glottal-to-Noise Excitation Ratio, Smoothed Cepstral Peak
Prominence and Low-to-High Frequency Spectral Energy
Ratio can serve to measure the presence of noise resulting
from incomplete glottal closure of the vocal folds, as well as
the presence of modulation noise due to irregularities in vocal
fold movement.

Interesting results have also been reported on the integra-
tion of electroglottographic signals (EGG) as a source of
supplementary information and related studies have used the
Saarbrücken Voice Database. Specifically, in [35] and [36],
convolutional neural networks are used to classify healthy
and pathological voice signals and the integration of EGG
signals has shown to increase classification accuracy. Simi-
larly, in [37], a pre-trained convolutional neural network in
combination with a Long short-term memory network ana-
lyzes EGG data to obtain a better classification result. The
inclusion of EGG data via a convolutional neural network
has also increased classification performance in [38] and [39],
a two-level classifier based on a combined CNN-RNN archi-
tecture has given good results for the problem of detecting
voice pathology. Recently, in [40], spectrograms of the EGG

signals are used for detecting the presence of post-COVID-19
disease.

From a classification perspective, the detection of func-
tional dysphonia, phonotrauma, laryngeal neoplasm and
vocal paralysis is a 4-class problem that was introduced
by the 2019 ‘‘IEEE BigData Cup’’ challenge, which only
reported performance results of the participating methods
without disclosing algorithmic details. The authors of this
paper also submitted amethod that introduced a deep learning
architecture that fused mid-term fixed-length segments of
acoustic features and medical descriptors into convolutional
and feed forward neural networks [41]. Based on published
results, the method achieved a 57% classification accuracy on
the test set of the challenge, with the best-performing method
reaching a 63.5% classification score.

The competition was an extension of the 2018 challenge,
where the objective was the simpler task of distinguish-
ing recordings of healthy subjects from pathological cases
belonging to three voice pathologies (neoplasm, phono-
trauma, and vocal palsy). Based on the respective tech-
nical reports, the methods of the 2018 challenge showed
a preference for mainstream machine learning approaches.
More specifically, several approaches employed SVMs [26],
[27], [30], [32], [42], [43], Gaussian mixture models [32],
[44], Bayesian networks and Random forest classifiers [28]
while neural network architectures were less popular [28],
[32], [33]. For the classification task of healthy against patho-
logical recordings, the best-performing method with respect
to classification accuracy was [27], which was based on
Gaussian mixture models to achieve a classification accuracy
of 96.9%. In the FEMH 2018 three-class voice pathology
classification problem the unweighted average recall was
employed as a performance metric. The best result (60.67%)
was achieved by the method presented in [30] that used
Gaussian mixture models. The incorporation of demographic
data was initially investigated in [32], [33], and [42]. Com-
pared to our approach, which is an end-to-end one without
intermediate, hand-crafted features, the method in [33] uses
deep neural networks to combine acoustic and medical data
but only considers conventional feed-forward architectures,
thus enforcing the use of Gaussian Mixture Model (GMM)
as a pre-processing step to represent an audio recording sta-
tistically before feeding it to the neural network architecture.

Finally, for the sake of completeness, we provide
references to the neighbouring task of Covid-19 infection
detection, which was treated by voice pathology classifiers
operating on speech recordings. Specifically, SVMs were
used to detect the presence of COVID-19 cough in [45]
and [46], along with linear regression models in [47].
Convolutional neural networks (CNN) were employed
in [48] and [49] and bi-directional long short-term memory
(BiLSTM) networks were used in [50] and [51]. Further-
more, several studies leveraged transfer learning techniques,
as in [52], where three pre-trained ResNet50 networks were
employed to process cough recordings. Similarly, in [53]
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FIGURE 1. Four balanced classes training-testing datasets.

and [54], pre-trained deep neural networks involving CNN,
LSTM, and Resnet50 architectures were adopted to process
recordings of coughing, breathing, and speech sounds.

All the previously mentioned studies propose a wealth
of methods that experiment with feature extraction mecha-
nisms and network architectures, but they do not investigate
database augmentation techniques. As the performance of
deep learning models depends strongly on the quantity of
training data, data augmentation is crucial for developing a
robust voice pathology classifier. Our work, therefore, aims
to overcome this limitation by developing augmentation tech-
niques tailored to the task of voice pathology detection.

III. DATASET DESCRIPTION
The 2019 FEMHdataset consists of voice signals andmedical
records of patients with four types of voice disorders, namely
hyperfunctional dysphonia, phonotrauma, vocal palsy, and
neoplasm but there are no recordings of healthy speech.
The voice recordings and the related medical records were
obtained from a voice clinic in the Far Eastern Memorial
Hospital (FEMH). The dataset formed the basis of the 2019-
FEMH Challenge of the 2019 IEEE Big Data Cup. Each
medical record contains 34 demographic questions, some
of which are categorical and others binary, including age,
gender, job, habits, and symptoms at the time of voice quality
degradation, how it happened, whether internal surgery took
place or not, how severe the gastroesophageal reflux was and
so on. The training dataset consists of fifty voice recordings
per disease, in which the sustained vowel /a/ is pronounced
by pathological speakers of different ages and sex. Notable
characteristics of the dataset are the varying recording dura-
tion in the range of [2-39] seconds and the fact that different
sampling frequencies were employed during the recording
procedure. The challenge rules defined that classification
accuracy would be the metric for ranking submissions, com-
puted over a testing set of 200 recordings covering the four
types of pathology. Fig. 1 summarizes most of the FEMH
2019 dataset characteristics.

The aforementioned four types of pathology can be
described in brief from a medical perspective as follows:

• Hyperfunctional dysphonia is an excessive involun-
tary muscle contraction, as a consequence of improper
phonation [55]. It results from the overuse of the laryn-
geal muscles and occasionally, the use of the false vocal
folds (the upper two vocal folds that are not involved
in vocalization). Its typical symptoms include breathy,
hoarse, or rough voice, voice instability, and voice
fatigue, which are common to many voice disorders.

• Phonotrauma, is defined as ‘‘trauma to the laryn-
geal mechanism (vocal folds) as the result of vocal
behavior that includes yelling, screaming and throat-
clearing’’ [56]. It refers to the formation of common
vocal-fold lesions (e.g. vocal fold nodules) that affect
how the folds vibrate, and its symptoms are similar to
dysphonia.

• Vocal fold paresis/paralysis (palsy) refers to the situation
where one (unilateral) or both (bilateral) vocal folds
are paralyzed [57]. The airway and breathing are thus
severely compromised, and this results in voice changes
like hoarseness, breathy voice, extra effort while speak-
ing, need for excessive air pressure during the usual con-
versational voice style and diplophonia (voice sounds
like a gargle).

• Finally, the term neoplasm, refers to various types of
cancer, including laryngeal, voice box, or vocal cords
tumors. Common symptoms are hoarseness, painful
swallowing, and fatigue. [58].

IV. METHOD DESCRIPTION
A. FEATURE EXTRACTION
To extract the input feature vector, we follow the approach
presented in the baseline implementation of our classi-
fier [41]. Specifically, we design input vectors from audio
recordings and medical data. The audio feature vector is
defined to capture the spectral shape of the speech signal
and its evolution over short periods. It includes the first 13
MFCCs coefficients, augmented with their first-order deriva-
tives and the logarithm of the mel-filterbank outputs. This
input modality is fed to a fully convolutional network branch.
The perturbation-medical feature vector fuses the mid-term
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FIGURE 2. Overview of the structure of proposed network architecture. The audio features branch implements a fully
convolutional network with four convolutional layers (Conv1, Conv2, Conv3, Conv4) followed by a GlobalMaxPooling layer.
The perturbation and medical features processing branch consists of two fully connected layers (Dense1, Dense2). The
pooling output of the GlobalMaxpooling layer and the output of the ReLu of the second fully connected layer (Dense2) merge
into the final fully connected layer (Dense). The final branch uses a softmax layer to output classification results.

features of the fundamental frequency, jitter, and harmonic-
to-noise ratio with the metadata descriptors from the medical
records. The second input vector is fed into a fully connected
network branch.

In more detail, each audio recording is first resampled
to 44.100Hz and its amplitude is normalized in the interval
[−1,+1]. Then, the signal is parsed with a 40ms long mov-
ing window with a hop size of 20ms. During each frame,
the Discrete Fourier Transform (DFT) is computed, and the
resulting DFT coefficients are then fed as input to a mel-
filter bank. Each mel-filter in the bank performs a weighted
sum of the magnitudes of the DFT coefficients that lie within
its specific frequency range. After obtaining the filterbank
output, the logarithm of each output is calculated, and sub-
sequently, the discrete cosine transform of the logarithms is
computed.

The literature suggests that only the first 13 MFCCs con-
tain usable information and that the first coefficient must
be discarded. Against common practice, we follow a dif-
ferent approach and include the first MFCC in our feature
vector. The first MFCC corresponds to the mean value of
signal intensity. We experimentally prove that the signal
intensity and its fluctuations correlate with certain types of
pathology.

In addition, to capture the dynamics of the signal, we com-
pute the first-order derivative of the MFCCs vector over time,
and append it to the vector of the MFCCs. Then we augment
the feature vector with the logarithm of 26 mel-filterbank
outputs, thus resulting in a total of 52 feature values per frame
and a varying-length sequence of 64 feature vectors per audio
recording. The resulting feature sequence is formed as a 2-D
image representation with dimensionality N × 64, where N

ranges in [124, 1462], defined by the samples’ duration, and
gets processed by the convolutional module.

To compose the second perturbation-medical input vec-
tor, we stack the 34 medical measurements described in
the database metadata and the 3 mid-term segment features,
namely fundamental frequency, jitter, and harmonic to noise
ratio measurements.

Themean fundamental frequency (F0) is computed accord-
ing to the probabilistic YIN (pYIN) algorithm [59]. Since
F0 does not yield a sufficiently detailed representation of
vocal fold vibratory patterns, we include a more sensitive
acoustic measurement of vocal function, jitter. Jitter mea-
sures the cycle-to-cycle variations of the fundamental fre-
quency and it is computed as the average absolute difference
between consecutive periods. The Harmonic-to-Noise Ratio
(HNR) reflects cycle-to-cycle variability both in frequency
and amplitude, as well as additive noise generated at the
glottis. It serves as a descriptor of the breathiness and hoarse-
ness of a voice. HNR is defined as the ratio of the energy
of a periodic signal to the energy of the noise in the signal
expressed in decibels. This ratio is estimated and included in
the feature vector.

The medical records contain features related to gender and
age, along with patients’ answers regarding the symptoms
they experience, like fatigue, breathiness, etc. The corre-
sponding categories are incorporated into the perturbation-
medical feature vector, preserving their numerical values as
numbers. As a result, for each human subject, a 37×1 dimen-
sional data vector is formed, with each element normalized
within the interval of [−1,+1]. Finally, the resulting vector
is processed through the feed-forward input branch for further
processing.
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B. SYSTEM ARCHITECTURE
We propose a modular deep learning architecture that pro-
cesses data stemming from two modalities and performs the
tasks of feature representation learning, information fusion,
and class prediction. This classifier processes two informa-
tion sources via two sub-networks, the outputs of which are
concatenated and fed into a learningmodule that produces the
final classification decision. Fig. 2 presents the architecture of
our model.

The framework contains two main parallel branches that
process the audio feature vectors and the perturbation-
medical data respectively. The two branches merge into the
last module, where the final prediction is made. In more
detail:
• The first branch processes feature sequences extracted
from the audio recordings. It is built by adopting the
principles of a fully convolutional neural network [4].
This type of neural network architecture operates on the
input of arbitrary dimensions and produces an output
vector of fixed dimensionality.
Standard convolutional neural network classifiers usu-
ally repeat a pattern of a convolutional layer followed
by an average pooling layer with a fully connected layer
at the end of the processing pipeline. The feature maps
are then flattened and fed to a cascade of fully con-
nected layers to yield the final prediction. The last fully
connected layer has a fixed number of inputs, which
enforces the requirement for input images of fixed size.
To overcome this constraint, ‘‘fully convolutional net-
works’’ are adopted. To this end, the final dense layers
of a hybrid convolutional-dense classifier are omitted
and replaced by a block of a convolutional layer with
kernel size 1 × 1, and stride 1, followed by a global
max pooling layer. The output of this block has constant
dimensionality, defined by the number of filters, n, i.e.,
1× 1× n, independently of the size of the input image.
In our implementation, we transform each audio record-
ing into a one-channel, two-dimensional ‘‘image’’ of
size h × w, where h and w are spatial dimensions.
The image dimensions depend on the duration of
each recording. As described, the feature vector is an
N × 64 matrix, where N depends on sample duration
and lies in the range [124− 1462]. The resulting feature
vector is fed to the first fully convolutional network
branch. As a consequence, the input shape of the first
convolutional layer does not have fixed dimensions.
As we adopted a batch size equal to one, the batch shape
is eventually 1× N × 64× 1.
The respective branch consists of four consecutive con-
volutional - max pooling - batch normalization blocks
and a final global max pooling layer. The first three con-
volutional layers contain 64, 64, and 32 convolutional
masks respectively, with ReLu activation functions and
each one has a kernel of size 3 × 3 with stride equal to
1 (without zero padding). The last convolutional layer
performs the 1 × 1 convolution through 32 masks with

stride equal to 1 (again without zero padding). The last
global max pooling layer subsamples the output.

• The second branch, designed to process the remaining
features, is a feed forward neural network with two
hidden layers consisting of 128 and 128 units, respec-
tively, with Rectified linear unit activation functions.
It processes each 37×1 input vector of medical metadata
and perturbation features, as described in the subsection
feature extraction.

• Subsequently, the outputs of the aforementioned ‘‘sub-
networks’’ are concatenated and fed to a dense layer with
128 neurons and a ReLu activation function.
The architecture of the network with a detailed descrip-
tion of the dimensionality of the layers and hyper-
parameters values are listed in Table 1.

V. EXPERIMENTS AND RESULTS
The proposed architecture is formulated trough extensive
experimentation over possible model configurations and data
augmentation techniques. Specifically, we experiment with
early-stage, intermediate, and late-stage fusion strategies.
The results demonstrate that the network’s performance
improves when the intermediate features learned from differ-
ent modalities are concatenated to inform the classification
decision.

A. TRAINING
An ablation study analyzed the impact of the growth in size
and complexity of the network architecture. We conducted an
extensive set of experiments in which various components of
the network architecture were removed or replaced to assess
their impact on the system’s performance. We validated the
network’s complexity by experimenting with the number of
layers of the two sub-networks and the number of filters of
the convolutional layers.

Reducing the number of convolutional layers to 3 resulted
in a decrease in classification accuracy. However, when we
experimented with a configuration using three convolutional
layers and the number of filters set to 64, 64, 64, classification
accuracy increased to 58.5%, with the number of filters spec-
ified to 64, 64, 128 equals 60.5%, while setting the number
of filters to 128, 128, 64 leads to a value of 60.6%. Adjusting
the number of filters to 64, 64, 128 yielded a higher accuracy
of 60.5%, while setting the number of filters to 128, 128, 64
led to a slight improvement at 60.6%. The highest accuracy
of 62.99% was achieved when using 128, 128, 128 filters.

On the other hand, increasing the number of layers and
filters led to a drop in classification accuracy. With four
convolutional layers and filter sizes set to 64, 64, 128, 128, the
accuracy reduced to 60%. Similarly, using 64, 64, 64, 64 fil-
ters resulted in a classification accuracy of 63.1%. Adding an
extra layer with 64, 64, 64, 64, 64, filters further decreased
the accuracy to 58%.

Additionally, we conducted experiments to explore dif-
ferent sizes for the fully connected layers. An additional
layer with 512 nodes significantly reduced the accuracy
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TABLE 1. Network configuration description. The output of every layer is fed as input to the next layer. ReLu and dropout layers always follow
convolutional and fully connected layers. Parameter N lies in the range of [124 − 1462] depending on the audio recording duration.

FIGURE 3. Feature sequence segmentation.

to 51%. Moreover, when we attempted to decrease the
number of neurons in the fully connected layer from
1024 to 512, the performance dropped, resulting in an
accuracy of 49%.

Through our hyper-parameter optimization, we observed
that when the Stochastic Gradient Descent optimizer is
assigned, the performance of the classifier decreases, with
testing accuracy reported to be 63%. Our ablation studies also
involved the investigation of alternative loss functions; when
the sigmoid was tested, classification accuracy dropped to
53.5%, and with tanh a further decrease was observed down
to 51.5%. At the final configuration, Rectified linear unit was
used. To validate the importance of learning rate we trained
the model with three alternative learning rates, 0.1, 0.01, and
0.001 with testing accuracy scores of 48%, 52%, and 59%
respectively.

All network configurations are trained using a 4-fold cross-
validation scheme. In other words, at each run, three folds
are used for training and one for validation (for a total of
four runs), and the final classifier accuracy is computed
over a separate testing set. The FEMH training dataset con-
tains 200 audio recordings, while the testing dataset contains

200 audio recordings. Since we adopted a 4-fold cross-
validation training scheme, 150 samples are used for train-
ing and 50 for validation. Augmentation methods are only
applied on the training subset and produce a balanced set
of 750 audio clips with 175 samples per pathology class.
The models are trained for a maximum of 300 epochs using
the Adam gradient descent algorithm with a learning rate
of 0.0001 while observing the validation error. An early-
stopping criterion of 5 epochs is used to restrict training
times. The categorical cross-entropy loss is used to compute
the error signal, and validation accuracy is used as an auxil-
iary metric. To prevent over-fitting, a dropout regularization
scheme is adopted with the dropout value set to 0.5 for
the convolutional and dense layers. From an implementa-
tion perspective, to address the training requirements of the
fully convolutional branch, a data generator is used to create
batches of one image (recording) at a time.

In addition, as it is common practice, we include normal-
ization layers to reduce the so-called internal covariance shift,
defined as changes in the distribution of network activations
due to changes in network parameters. To evaluate the perfor-
mance of batch normalization in such a setup and investigate
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FIGURE 4. Segmentation flowchart.

the effect of mini-batch size, we performed a grid search on
normalization techniques.

We experiment with four alternative normalization
approaches: batch normalization [60], layer normaliza-
tion [61], weight normalization [62] and instance normal-
ization [63]. We also evaluate the contribution of non-linear
activation functions (hyperbolic tangent, sigmoid, and ReLu).
At first, we construct a network architecture without any
normalization layers and with sigmoid activation functions.
This network configuration gives a testing accuracy of 49%.
An alternative configuration without normalization layers
and tanh as the activation function yields an improved testing
accuracy of 58.9%. The use of a weight normalization layer
decreased classification accuracy to 57%. Instance and batch
normalization achieved an almost identical testing accuracy
of 63%. As a final system configuration, we adopt a scheme
with batch normalization and Rectified linear units.

B. AUGMENTATION METHODS
1) SEGMENTATION
The FEMHdatabase contains a small amount of training data,
which is an important limitation when training deep learning
architectures. More specifically, the training set consists of
200 recordings for the four types of pathology, and recording
duration varies in the range of [2−39]s. Despite this require-
ment of analyzing recordings of varying duration, current
methods for voice pathology classification favor fixed length
inputs, hence the need for fixed size segmentation and zero
padding procedures. When it comes to voice pathology clas-
sification tasks, this is only a simplified approach, because
recording duration is often correlated with some patients’
disability to pronounce certain vowels.

Therefore, in order to deal with the limitations imposed
by the small amount of training data and overcome the side
effects of fixed-length segmentation and zero padding tech-
niques, we propose an augmentation method that extracts
multiple segments per recording as it is shown in Fig.3.
The length of all segments stemming from a recording has
been set equal to two-thirds the length of the recording but
with different endpoints. As recording length varies, the set
of extracted segments will inevitably contain segments of
varying duration. The flowchart of the method is given in
Fig. 4 and a respective pseudocode description is presented
below:

• Step 1: Define a random starting point, stk , between
zero and one-third of the recording length measured in
frames, i.e.,

stk ∈ [0,
Li
3
] (1)

where Li is the number of frames of the i-th fea-
ture sequence (Li ∈ [124, 1462] in our experiments).
We refer to frame numbers because it is assumed that
a moving window technique is applied on the recording
during a subsequent feature extraction stage, yielding a
feature sequence per recording.

• Step 2: Define an endpoint, enk , as:

enk = stk +
2× Li

3
(2)

• Step 3: Repeat the previous two steps five times, i.e.,
k = 1, . . . , 5, yielding five segments starting in random
positions of the recording, while ensuring that segment
length is equal to two-thirds of the length of the record-
ing (measured in number of frames).

Algorithm 1 Segmentation Algorithm
startvalue← 0
endvalue← random in [0,≤ Li/3]
k ← 1
while k ≤ 5 do
startpoint ← random in [startvalue, endvalue]
stk ← startpoint
enk ← stk +

2∗Li
3

k ← k + 1
end while

The aforementioned values for endpoint and segment dura-
tion selection are the result of a grid search performed in
conjunction with the measurement of the classification per-
formance of the classifier.

2) DATA AUGMENTATION WITH NOISE INJECTION
In addition to segment-based augmentation, we experiment
with noise injection techniques. Of course, we note the exis-
tence of alternative popular time-domain methods for dataset
augmentation, including time warping, pitch shifting, and
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dynamic range compression [64], [65]. For example, time-
warping methods stretch or compress the duration of a given
audio signal without significantly altering basic signal prop-
erties. Pitch-shifting, on the other hand, lowers or increases
the pitch of the audio recording without altering its length
and dynamic range compression reduces the dynamic ampli-
tude range of the audio signal. However, due to the nature
of the audio signals under study, applying transformations
that affect signal duration, pitch, or amplitude could alter
sound properties that are necessary for discriminating among
different types of voice pathology. Therefore, we excluded
these data augmentation methods and instead focused on
noise injection techniques, which are known to help mit-
igate over-fitting and improve the generalization capabili-
ties of a model [66], [67]. We apply noise injection at the
input signal during the training phase and not on the neural
network parameters (layer activation outputs, weights, and
gradients).

We experiment with the application ofGaussian noise, as in
[67] and [68] and then proceed with coloured noise, which
exhibits a different power spectrum profile.More specifically,
we adopt established techniques for generating white, pink,
and brown noise signals. In the augmented training dataset,
each recording is randomly corrupted by one noise type.
A pseudocode description follows:

For each audio recording in the training set:
Generate a white noise corrupted signal w.
Generate a pink noise corrupted signal p.
Generate a brown noise corrupted signal b.
Insert w, p and b in the training.
Noise injection is applied before the segmentation tech-

nique and, during the training stage, batches are formed via
random selection over the final augmented training set. The
classification impact of the data augmentation techniques
under study is presented in the next section.

C. ABLATION STUDY OF MODALITIES
We first explore the contribution of each modality to the
classification accuracy. Therefore, we start with testing a uni-
modal classifier that processes the extracted two-dimensional
representations of audio signals through a convolutional
branch. To understand why it is important to analyze signals
at their original duration, we compare two versions of this
classifier while ignoring data augmentation options. The first
version employs a standard segmentation procedure with zero
padding to extract fixed-length segments (1.28 seconds long)
from each recording and create the training set. The classifier
used in this version is a standard convolutional architecture
consisting of a cascade of convolutional-ReLU layers fol-
lowed by a dense layer comprising 128 neurons. On the
other hand, we also evaluate an alternative fully convolutional
architecture, where a global max-pooling operation replaces
the dense layer. This modified version enables the analysis of
each recording at its original duration, thus eliminating the
need for a prior segmentation stage.

Table 2 displays a notable performance difference between
the fully convolutional architecture and the conventional one.
The fully convolutional model achieves a classification accu-
racy of 48.5% on the testing set, outperforming the conven-
tional method’s score of 36.5%. This result can be perceived
as experimental evidence that processing audio recordings at
their initial duration is a preferable approach compared to
architectures that demand fixed-length segments at the input.

Furthermore, to assess the contribution of the medical
parameters and perturbation features to the overall system
performance, we experiment with two alternative config-
urations. The first configuration relies entirely on a fully
connected branch that processes medical information and
perturbation features. The second configuration implements
the complete system shown in Fig. 2, where all input modal-
ities are present. As it can be seen in Table 2, the fusion of
medical and audio modalities yields a significantly improved
classifier that exhibits a classification accuracy of 54.5%, i.e.,
an accuracy that is almost 8% higher than the performance of
the medical/perturbation processing branch (47%).

TABLE 2. Classification accuracy for unimodal and bimodal classifiers.

D. DATA AUGMENTATION IMPACT
All previous models were trained without the application of
data augmentation techniques at the training stage. To inves-
tigate the impact of augmentation methods on classification
performance we conducted experiments and their results
are shown in Table 3. Table 3 demonstrates the effect of
segmentation-based augmentation on testing accuracy where
it is observed that the application of segmentation-based aug-
mentation raises the testing accuracy to 57.8%. This small
increase is obtained by extracting five audio segments per
recording using the algorithm described in Section V-B.

We further experiment with noise injection and investigate
different power spectrum distributions of the added noise
signals. We first add a standard Gaussian layer at the input of
the fully convolutional branch of the combinedmodel, to gen-
erate additive zero-mean Gaussian noise, with a standard
deviation equal to 0.1. We use the relevant Keras implemen-
tation for this layer, which is only active during the training
phase of the model. We observe that the presence of additive
Gaussian noise contributes a further small improvement to the
testing accuracy (accuracy is now increased to 58.5%).
We then study the impact of coloured noise injection on the

model’s performance. As shown in Table 3, whenwhite noise,
pink noise, and brown noise are individually injected, the
classification accuracy becomes 59.5%, 60.0%, and 62.0%,
respectively. Brown noise mainly targets low frequencies
and therefore affects the first 13 MFCC coefficients of the
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feature vector. This targeted effect on low frequencies is
advantageous and enhances the classification robustness in
that range compared to other types of noise. Therefore, the
improved results obtained with brown noise injection can be
attributed to its ability to specifically address low-frequency
components.

Finally, we create an augmented training set by randomly
corrupting each recording with one of the three noise types.
This setup yields the best results, with the classification
accuracy reaching 64.4%, a score that outperforms the best
classifier of the 2019 FEMH voice data challenge (63%).

Table 3 summarizes our findings and shows that the best
classification performance is achieved when sequence seg-
mentation and injection of three coloured noise types are
simultaneously applied during the training stage.

TABLE 3. Classification accuracy with respect to different augmentation
techniques.

To gain a deeper understanding of the performance of the
best classifier across the four types of pathology, we also
compute the confusion matrix (Table 4), with element (i, j)
representing the number of testing samples with true label
in the i-th class and predicted label in the j-class. It can be
easily observed that in the case of hyperfunctional dysphonia
(first row of the matrix), class recall is high and the distribu-
tion of errors is practically uniform across the other classes.
A slightly different behavior can be observed for the case of
phonotrauma (second row of the matrix), where the majority
of false predictions are assigned to the class of vocal palsy
and no neoplasm misclassification is observed. The third row
indicates that the class of neoplasm disorder suffers from
low recall (only eighteen neoplasm samples were correctly
classified), with errors distributed almost uniformly over the
remaining classes. Finally, from a classification perspective,
vocal palsy behaves similarly to dysphonia regarding class
precision and recall. Overall, it can be stated that classi-
fication performance is imbalanced over the four types of
pathology, with the class of dysphonia attracting most of
the errors (low-class precision) and the class of neoplasm
pathology exhibiting the lowest recall.

E. NETWORK INTERPRETATION
Model explainability has been widely acknowledged [69] to
be important in the field of healthcare and we thus provide
insight into the functionality of the intermediate feature layers
of the proposed network architecture and the learned patterns
during the training stage.

TABLE 4. Confusion matrix of the best-performing classifier.

We first focus on the functionality of the convolutional
layers. To this end, we visualize the 2-D representation at
the input of the network along with the feature activation
maps for the four convolutional layers. It can be observed
that the input images of different pathology classes exhibit
similarities regarding the presence of common patterns and
their variations, which, in turn, explains to a certain degree
why the classification task under study is a hard one. Rep-
resentative images are shown in Fig. 6, 7, 8, and 9, for
vocal palsy, hyperfunctional dysphonia, phonotrauma, and
neoplasm respectively. In addition, in Fig. 6b, 6c, 6d, 7b,
7c, 7d, 8b, 8c, 8d, 9b, 9c and 9d we show an indicative
subset of the 32 activation maps of the fourth convolutional
layer. These maps exhibit maximum activation output for the
respective convolutional mask.

To further study the performance of the fully connected
layers, we use the post-hoc interpretability method of feature
analysis as in [70], where the interpretation of the functional-
ity of a deep model can be extracted from each layer directly
by the activation values of all neurons. Therefore, for each
of the three fully connected layers, we depict the values of
the activation weights of all neurons of the layer (x-axis) in
relation to the layer’s thirty-seven medical-perturbation input
features sequence (y-axis). The process results in the three
images in Fig. 5. More specifically, Figure 5b illustrates the
values of the weights of the 64 neurons of Dense layer 1 with
respect to the 37 input features. Horizontal linear patterns
help us gain insight into which neurons are dominantly acti-
vated and, as a consequence, which corresponding features
have the highest contribution. More specifically, we observe
that features with indices 14, 15, 16 and 25, 26, and 27 have
the greatest share in the model’s prediction outcome. Accord-
ing to our mapping formula for transforming the medical
descriptors to numbers, the specific indices represent param-
eters that describe a patient’s symptoms (i.e., if they feel
dysphonia, dryness, lumping, and if they have occupational
vocal demands, hypertension, and head and neck cancer).
On the other hand, we can observe that features with assigned
indices into regions [0, 4] and [20, 25], trigger the lowest
activation values. Therefore, we can conclude that these med-
ical features have a smaller contribution to the network’s
inference capabilities. These features correspond to patients’
demographic information, i.e., sex, age, onset, tiredness and
night meal, chocking, eye dryness, smoking, and drinking.

Figure 5c shows the last fully connected layer, (Dense 3).
At the input of this layer, audio and medical-perturbation
embeddings are concatenated, with 32 features originat-
ing from the fully convolutional module and the remaining
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FIGURE 5. Visualization of all the weights of the three fully connected layers.

FIGURE 6. Vocal palsy: input ‘‘image’’ along with three feature activation maps of the final convolutional layer.

FIGURE 7. Hyperfunctional dysphonia: input ‘‘image’’ along with three feature activation maps of the final convolutional layer.

FIGURE 8. Phonotrauma: input ‘‘image’’ along with three feature activation maps of the final convolutional layer.

FIGURE 9. Neoplasm: input ‘‘image’’ along with three feature activation maps of the final convolutional layer.

FIGURE 10. Perceptually uniform sequential colour map inferno.

64 ones from the fully connected branch. The image depicts
the weight values of the 128 neurons of the Dense layer.
An analysis of the graph reveals that the upper region (which
refers to feature indices 0 − 30) exhibits lower weight acti-
vation values, compared to the lower part that shows higher

activation values. The lower region of the image refers to the
feature embeddings created by the fully connected branch.
This observation justifies that the second module of our
model, which learns features stemming from medical infor-
mation, is a vital part of the fused model. Therefore, medical
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features improve considerably the classification capabilities
of the model.

VI. DISCUSSION
A key feature of the proposed modular deep learning archi-
tecture is that it is trained in the presence of limited training
data. Furthermore, different modalities are merged into a
single model via separate processing branches, intermediate
feature representations are consequently learned and the final
classification decision is taken after concatenating learned
features from the individual modalities. Our experimental
results verify that the fusion of data from different modalities
increases classification performance. In particular, compara-
tive results among unimodal and bimodal architectures reveal
that the inclusion of medical information contributes to a
6% performance improvement and that mid-term descriptors
have a non-negligible contribution to the final classification
decision.

Our study has also shown that recording duration and voice
pathology are correlated. Therefore, our classifier, which is
designed to process recordings of arbitrary duration via a
fully convolutional stack, exhibits improved classification
performance compared to fixed duration schemes. To that
end, ignoring data augmentation techniques, the proposed
architecture exhibits an improved classification accuracy of
48.5%, compared to the 36.5% accuracy of a conventional
convolutional configuration.

Moreover, our study has revealed that an augmentation
scheme that extracts segments of varying duration from the
audio recordings can lead to improved generalization capa-
bilities. In addition, noise injection with pink, white and
brown coloured noise contributes to a further significant per-
formance improvement, yielding a final classification accu-
racy of 64.4%, which outperforms the winner of the FEMH
2019 challenge by approximately 1%.

VII. CONCLUSION
We propose a multimodal classification framework for the
four types of voice pathology of the FEMH dataset (hyper-
functional dysphonia, phonotrauma, laryngeal neoplasm, and
unilateral vocal paralysis). Our experiments on the fusion
of audio-based features and medical descriptors verify that
medical parameters can serve as a supplementary informa-
tion source for voice pathology classification. Furthermore,
the proposed segmentation-based data augmentation and
coloured noise injection techniques have shown to be effec-
tive data augmentation techniques for the task at hand. Our
exploratory study has also justified our claim that in a voice
pathology classification task, models should be designed to
process audio recordings at their original, possibly varying
duration. This result reinforces the conclusion that sustained
utterance duration and intensity are frequently affected by
the disorder and, therefore, such information should not be
discarded, as it has so far been the case with conventional
fixed-size segmentation schemes and zero padding proce-
dures. Future work will focus on problems involving a larger

number of phonemes and transfer learning among datasets
and tasks, to provide a solution that will be able to deal
with diverse information sources regarding structure and data
volume.
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