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ABSTRACT To address the issues of low accuracy in existing small object detection algorithms, an improved
networkmodel algorithm calledYOLOv5s_2E is proposed. Thismethod first uses the k-means++ clustering
algorithm to calculate the prior boxes of the Visdrone dataset. Then, it introduces Soft_NMS and combines
it with EIoU to propose the EIoU_Soft_NMS algorithm to replace the non-maximum suppression (NMS) of
the original network, improving the detection of objects that are occluded. The bounding box regression loss
function uses Focal-EIoU, which speeds up model convergence and reduces loss. Additionally, a detection
layer is added to the original detection head to unify the channel numbers, and with the dynamic head
framework DyHead, the attention mechanism is integrated with the detector’s head to further improve
small object detection accuracy. Finally, the system robustness is improved by adjusting the ratio of data
augmentation methods Mixup and Mosaic.Experimental results show that the proposed algorithm improves
the mAP@0.5, mAP@0.5:0.95 and detection accuracy by 12.6%, 12.2%, and 20.5%, respectively, compared
to the previous method on the VisDrone dataset. The parameter size only increases by 4%, and the weight
file size increases by only 0.57MB, meeting the accuracy requirements for small object detection.

INDEX TERMS Data augmentation, DyHead, small object detection, soft_NMS, YOLOv5s.

I. INTRODUCTION
Object detection [1], [2], [3], [4] has always been a hot topic
in the field of deep learning and has been widely used in var-
ious fields such as unmanned driving [5], [6], medical image
lesion detection [7], and security systems [8], becoming one
of the research directions of many scholars. Existing object
detection algorithms can mainly be divided into two types:
two-stage algorithms and single-stage detection algorithms.
Two-stage algorithms, represented by Faster-RCNN [9], first
extract object regions and then perform convolutional clas-
sification recognition on these regions. In contrast, single-
stage detection algorithms, represented by YOLO [10] and
SSD [11], directly perform regression using convolutional
networks. Two-stage object detection can selectively choose
samples to make the positive and negative samples more
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balanced, but it requires a lot of computing resources for loca-
tion and classification tasks, leading to low efficiency. The
single-stage detection algorithm is classified and detected
at the beginning, which does not require more computing
resources and greatly improves the processing speed, but also
leads to a decrease in accuracy. These methods have become
the mainstream of object detection, but there are still diffi-
culties in detecting small objects. For example,YOLOv5 uses
CSPDarknet-53 [12] as a backbone for feature extraction, but
the final featuremap size is small, and the pixel receptive field
is large, which makes it easy to make location errors during
detection. To address this, Jiaqi Wang, Kai Chen, and others
[13] proposed the CARAFE upsampling operator to predict
the upsampling kernel using the upsampling core prediction
module, and then used the feature recombination module
tocomplete upsampling, achieving a larger receptive field
without introducing too much computational complexity.
Sun et al. [14] proposed a RSOD algorithm based on
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FIGURE 1. YOLOv5s_2E network structure diagram. The lower left and right corners are the structures of ‘‘Conv’’ and ‘‘C3’’ in the
model.

YOLOv3 [15], which uses fine-grained information-rich
shallow features to predict the positions of high-density
small objects. Zhao et al. [16] proposed a lightweight real-
time object detection network, Mixed YOLOv3-LITE, based
on YOLO-LITE [17] that can be used with non-graphics
processing units (GPUs) and mobile devices. Zhan et al. [18]
introduced an attention mechanism and new anchor box sizes
into the YOLOv5 network structure to preserve more infor-
mation about small objects.

However, existing small object detection algorithms can
still be optimized in the case of severe occlusion, and improv-
ing accuracy often comes at the cost of increased computa-
tional complexity. Consequently, this research proposes the
YOLOv5s_2E algorithm, which principally encompasses the
following tasks:

1) Using the K-means++ clustering algorithm to optimize
the initial anchor boxes of the VisDrone dataset to achieve
better location accuracy.

2) Introducing EIoU_Soft_NMS, which can improve
detection results in situations where objects are occluded and
prevent missed detections and false positives compared to the
original NMS algorithm.

3) Introducing Focal-EIoU into the bounding box regre-
ssion loss function to speed up network convergence and
reduce loss, improving system inference accuracy.

4) By unifying the channel numbers in the detection head,
integrating the attention mechanism with the detector’s head
using the dynamic head framework DyHead, our approach
enhances detection accuracy without excessively increasing
the number of parameters.

5) Introducing Mixup data augmentation and using it
together with Mosaic, adjusting the ratio of the two to select
the best method.

II. YOLOv5s_2E NETWORK DESIGN
A. OVERALL NETWORK STRUCTURE
YOLOv5s mainly consists of three parts: the backbone, neck,
and head. The backbone refers to the network used for feature
extraction, which extracts information from the image for
later use. The neck is placed between the backbone and
head to further utilize the features extracted by the backbone
and improve the model’s robustness. The head obtains the
network output and makes predictions using the previously
extracted features.

This paper puts forth the YOLOv5s_2E model algorithm,
specifically designed for small object detection based on
the proposed structure. The approach first employs the
k-means++ clustering algorithm to compute the prior boxes
of the dataset and then uses EIoU_soft_NMS to reduce the
chances of missed detections and false positives. To expedite
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network convergence and minimize loss, Focal-EIoU is intro-
duced into the bounding box regression loss function, thereby
enhancing system inference accuracy. Finally, three ordinary
convolutional layers are added to standardize the channel
numbers of the output from the neck, which is then fed
into the dynamic head framework before being passed to
the Detect layer. Figure 1 depicts the overall network model
structure.

B. INITIAL ANCHOR BOX OPTIMIZATION
The initial anchor box size used in the original YOLOv5s
algorithm is designed for detecting objects in the COCO
dataset, and when it is not suitable for some datasets, the
K-means clustering algorithm is used. The classic K-means
clustering algorithm implementation steps are as follows:

1) Select K samples from the dataset as initial cluster
centers C = {c1, c2, . . . , ck} .
2) Calculate the Euclidean distance between each sample

and the cluster center, classify it, and add it to the class with
the smallest Euclidean distance to the cluster center.

3) For each category ci, recalculate the cluster center for
each category, where n is the number of samples in each
category.

4) Repeat steps 2 and 3 until the cluster center no longer
changes.

Since the results of the K-means algorithm can vary
depending on the initial point selection, the anchor box size
calculated using this method may not achieve the desired
effect, which can affect the results. Therefore, in this paper,
we use the k-means++ clustering algorithm to recalculate the
initial anchor boxes of the VisDrone dataset. The k-means++

clustering algorithm process is as follows:
1) Randomly select the first cluster center c1.
2) Randomly select another point from the remaining

points as the next cluster center and follow the mechanism
that the farther away the distance, the greater the probability
of selecting the new cluster center (roulette method), until k
cluster centers are selected.

3) Calculate the distance between each samplepoint and the
nearest cluster center D(x).

4) Calculate the probability that each sample is selected
as the next cluster center, and choose the sample with the
maximum distance as the new cluster center with a certain
probability. Repeat the above process until all K cluster cen-
ters are determined.

5) Use the K-means algorithm to calculate the final cluster
centers for the K initial cluster centers. The clustering results
are shown in Table 1. To verify the effectiveness of this
method, a comparative experiment shown in Table 2 was
added.

C. USING EIoU_Soft_NMS
Non-maximum suppression (NMS) is an effective method for
obtaining local maximum values. It relies on the classifier to
obtain multiple candidate boxes, sorts them according to the
classifier’s probability of classifying the obtained category,

TABLE 1. Clustering results.

TABLE 2. Comparison of results of different clustering algorithms.

and the algorithm is shown in Equation (1).

si =

{
si, IoU (M , bi) < Nt
0, IoU (M , bi) ≥ Nt

(1)

In the process, the following steps are taken:
1) Sort all the box scores and select the highest score and

its corresponding box;
2) Traverse the remaining boxes, and if the overlap area

with the current highest score box is greater than a certain
threshold, delete the box;

3) Select the next highest score from the remaining unpro-
cessed boxes and repeat the above process.

For adjacent boxes with IoU≥NMS threshold, the tradi-
tional NMS method is to set their scores to 0, which is
equivalent to discarding them. This may cause missed detec-
tions of the bounding boxes, especially in occluded scenes,
as shown in Figure 2.

FIGURE 2. Occluded scene.

Both animals depicted in Figure 2 are objects to be
detected, and there are two detected boxes with scores
of 0.85 and 0.95, respectively. When utilizing the NMS
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algorithm, the box with the highest score is the red box. How-
ever, if the overlap between the green box and the red box,
determined by calculating the IoU, exceeds the set threshold,
the green box will be deleted, leading to a situation where
one animal is missed. Setting the threshold too low can lead
to false positives.

Soft non-maximum suppression (soft_NMS) [19] impr-
oves on traditional NMS algorithm, and the algorithm is
shown in Equation (2).

si =

 si IoU (M , bi) < Nt

sie−
IoU (M ,bi)

2

σ , IoU (M , bi) ≥ Nt
(2)

M is the current highest-scoring box, si is the current box
to be detected, IoU is the intersection over union, Nt is the
set threshold, bi is the box to be processed, and the larger
the IoU between bi and M , the more the score of si will be
reduced. For a boxwith an IoU greater than the thresholdwith
the highest-scoring box, it is not deleted but replaced with a
lower score to achieve better results. However, it only consid-
ers the overlap between two boxes, so the EIoU_Soft_NMS
algorithm is proposed by combini- ng with EIoU [20]. It not
only considers the overlap area, but also the distance between
the center points and the true differences in length and width.
The algorithm is shown in Equations (3) and (4).

si =

 si, EIoU (M , bi) < Nt

sie−
EIoU (M ,bi)

2

σ , EIoU (M , bi) ≥ Nt
(3)

EIoU = IoU −
ρ2(b, bgt )

c2

−
ρ2(ω, ωgt )

c2ω
−

ρ2(h, hgt )

c2h
(4)

b and bgt are the center points of the predicted box and the
ground truth box, respectively. ρ is the Euclidean distance
between the two center points. c is the diagonal length of the
minimum bounding rectangle that contains both the predicted
box and the ground truth box. cω and ch are the width and
height of the minimum bounding rectangle that covers both
boxes.

D. IMPROVED LOSS FUNCTION
IoU [21] is the intersection over union between the predicted
box and the ground truth box, which reflects the detection
performance and is insensitive to scale while possessing scale
invariance. However, when the predicted box and the ground
truth box do not overlap, according to Equation (5), the IoU
is calculated as IoU = 0 and Loss = 0, which leads to
the IoU being 0 and cannot accurately reflect the degree of
overlap between the two boxes when they do not overlap. As a
result, using the IoU as the loss function may not be the best
choice for object detection tasks, particularly when there are

FIGURE 3. Comparison of loss functions.

numerous non-overlapping predicted boxes.

IoU =
A ∩ B
A ∪ B

LIoU = 1 − IoU (5)

YOLOv5 uses CIoU [22] as the bounding box regression
loss function based on the original algorithm. The calcula-
tion formula is shown in Equation (6), which considers the
overlap area, distance between center points, and aspect ratio.
α is a weight parameter, υ is used to measure the similarity
of aspect ratios and reflects the difference in aspect ratios,
rather than the difference between width and height and their
confidence.

CIoU = IoU −

(
ρ2
(
b, bgt

)
c2

+ αυ

)

υ =
4
π2

(
arctan

wgt

hgt
− arctan

w
h

)2

α =
υ

(1 − IoU) + υ
(6)

Although the existing method has shown some effectiveness,
it suffers from ambiguity and does not adequately balance the
difficulty of detecting samples. Therefore, this study proposes
Focal-EIoU as the bounding box regression loss function to
overcome the ambiguity of CIoU’s width-height difference
and improve the balance of detecting samples. From a gradi-
ent perspective, Focal-EIoU segregates high-quality anchor
boxes from low-quality ones and emphasizes the former. The
formula is presented in Equation (7), where γ is a parameter
controlling the degree of outlier suppression. EIoU separates
the loss term of the aspect ratio of CIoU into the difference
between the predicted width and height and the minimum
bounding box width and height, as shown in Equation (4) in
the previous section.

LEIoU = 1 − EIoU

LFocal−EIoU = IoUγ LEIoU (7)

YOLOv5 has three types of losses, including box_loss
(localization loss), obj_loss (confidence loss), and cls_loss
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FIGURE 4. DyHead network structure.

(classification loss). To verify the performance of Focal-EIoU
on this dataset, the results of CIoU and EIoU were compared,
as shown in Figure 3. The total loss is calculated according to
the following formula:

Loss = box_loss+ obj_loss+ cls_loss

From Figure 3, it can be clearly seen that the loss of Focal-
EIoU is significantly lower than that of CIoU and EIoU.
Therefore, Focal-EIoU was selected as the loss function for
this experiment.

E. DYNAMIC HEAD FRAMEWORK DyHead
Although traditional algorithms have attempted to improve
head detection, they lack a unified perspective on the detec-
tion problem. In contrast, a recent approach known as
DyHead [23] combines three self-attention mechanisms in
the detection head, redefines of the four-dimensional tensor
L × H × W × C as a three-dimensional tensor L × S × C.
The approach employs scale-aware attention, spatial-aware
attention, and task-aware attention in the L, S, and C dimen-
sions, respectively.

1) Scale-aware attention module fuses features of different
scales based on their semantic importance, and its expression
is shown in Equation (8).

πL (F) · F = σ

(
f

(
1
SC

∑
SC

F

))
· F (8)

f (·) is a linear function that is approximated using a
1 × 1 convolution, σ (x) = max

(
0,min

(
1, (x + 1)

/
2
))

2) Spatial-aware attention module first uses deformable
convolution [24] to learn sparsity, and then aggregates cross-
level features at the same spatial position. Its expression is
shown in Equation (9).
K is the number of sparse sampling positions, pk + 1pk

is the shifted position where self-learned spatial offsets 1pk
focus on a distinctive region, and 1mk is the self-learned
important scalar at position pk , all learned from the input
features of the intermediate level F .

3) Task-aware attentionmodule dynamically turns on or off
feature channels to select different tasks, and its expression is
shown in Equation (10).

πs (F) · F =
1
L

·

L∑
l

K∑
K=1

ωl,k · F(l; pk + 1pk ; c) · 1mk

(9)

πc (F) · F = max
(

α1 (F) · Fc + β1 (F) ,

α2 (F) · Fc + β2 (F)

)
(10)

[α1, β1, α2, β2]T = θ (·) is a hyperfunction used to learn
to control the activation threshold. θ (·) first performs global
pooling to reduce the dimensionality in the L × S dimension,
then uses two fully connected layers, a normalization layer,
and finally uses a shifted sigmoid function to normalize
the output to [-1, 1]. The DyHead structure is shown in
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FIGURE 5. Connection scheme of DyHead blocks.

TABLE 3. Comparison of different dyhead blocks.

Figure 4, where πL , πS , and πC correspond to the scale-aware
attention, spatial-aware attention, and task-aware attention
modules, respectively.

To extract feature pyramids, a backbone network of any
type can be employed, and these pyramids can be resized to a
3D tensor L × S × C with the same size. This tensor is then
fed to the dynamic detection head, which comprises several
DyHead blocks connected as illustrated in Figure 5. The
output of DyHead can be utilized for various tasks, including
classification and bounding box regression.Multiple DyHead
blocks are arranged in the order of L, S, and C. Based on the
number of DyHead blocks, this study compares the network
depth, floating-point operations per second (GFLOPs), final
mAP@0.5, and mAP@0.5:0.95, as presented in Table 3.
After conducting an analysis, it is concluded that the optimal
number of DyHead blocks is 2.

F. DATA AUGMENTATION METHODS
Mosaic data augmentation is a method of combining four
images by random scaling, cropping, and arranging. It has
the following advantages:

1) Enriching the dataset: Randomly using four images,
randomly scaling, and then randomly arranging them greatly
enriches the detection dataset, especially increasing many
small targets, making the network more robust.

2) GPU Memory Consumption Reduction: The approach
directly computes the data of four images, minimizing GPU
memory consumption.

Due to the large amount of occlusion in the Vis-
Drone dataset, Mixup data augmentation [24] is combined

with Mosaic. The Mixup principle is to mix two random
images proportionally to generate a new image, and the train-
ing process uses the new image for training. The formula for
generating the new image is as follows:

x̃ = λxi +
(
1 − λ

)
xj

ỹ = λyi +
(
1 − λ

)
yj (11)

(xi, yi) and (xj, yj) are two randomly selected samples and
their labels, λ is a randomly sampled number from the beta
distribution, λ ∈ Ê [0, 1], according to the literature [25],
λ performs best when it is set to 0.5. Using Mixup can
improve the robustness of the model.

III. EXPERIMENTAL ANALYSIS
For this experiment, we employed the VisDrone2019 dataset,
which encompasses ten categories: pedestrian, people, bicy-
cle, car, van, truck, tricycle, awning tricycle, bus, and motor.
The dataset comprises 6,471 training images and 548 val-
idation images. Figure 6 illustrates the dataset distribution,
highlighting that small targets constitute the majority of the
dataset. Moreover, Figure 7 showcases some of the training
set images. All experiments were carried out under uniform
environmental conditions and hyperparameters. The environ-
ment is shown in Table 4. The training epochs were set to
150, the batch size was set to 16, the initial learning rate
was 0.01, the learning rate momentum was 0.937, and the
weight decay coefficient was 0.0005. The initial three epochs
are recognized as a warm-up phase during training. The SGD
optimizer was used, and the input image size was 640 × 640.
All training was conducted without pre-trained weights.
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FIGURE 6. Distribution of the dataset. The left figure shows the overall data distribution map, and the right figure
shows the proportion of each category.

FIGURE 7. Some images from the dataset.

TABLE 4. Experimental environment.

TABLE 5. Confusion matrix.

A. EXPERIMENTAL RESULTS AND ANALYSIS
The experimental results are mainly evaluated based on mean
average precision (mAP), precision, number of parameters,
and model file size. Precision and recall are calculated using
the confusion matrix shown in Table 5.

Precision mainly checks whether the prediction results are
correct, and the formula is as follows:

Precision =
TP

TP+ FP
(12)

Recall mainly checks whether the prediction results are
comprehensive, and the formula is as follows:

Recal l =
TP

TP+ FN
(13)

AP is the area enclosed by the precision-recall (PR) curve
for a specific category in the training results, and its calcula-
tion formula is as follows:

AP =

∫ 1

0
p (r)dr (14)

mAP is the average of all APs for different categories, and
is an important indicator for evaluating the performance of
object detection algorithms. The calculation formula is as
follows: N is the number of categories in the dataset.

mAP =
1
N

N∑
i=1

APi (15)

B. ABLATION EXPERIMENTS
According to Table 6, the comparison between groups A and
B shows that, without increasing the number of parameters or
model size, mAP@0.5 is improved by 2.90%. After using the
K-means++ clusteringmethod, the initial anchor box obtains
better localization results.

Comparing group B and C in terms of mAP@0.5 and
precision, it can be seen that mAP@0.5 is improved from
33.1% to 33.8%, an increase of 0.7 percentage points, and the
model size remains the same. The use of Focal-EIoU reduces
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TABLE 6. Ablation experiments on the visdrone dataset.

FIGURE 8. Loss comparison results. Where a is the CIoU result graph, and b is the Focal-EIoU result graph.

the overall loss, speeds up model convergence, and focuses
more on high-quality anchor boxes, The loss contrast results
are shown in Figure 8, where a is the original YOLOv5 result
graph and b is the result graph using Focal-EIoU.

Comparing group C and D, there is a significant improve-
ment after using EIoU_Soft_NMS, and mAP@0.5 and
mAP@0.5:0.95 are improved to 40.3% and 24.8%, respec-
tively, which are increased by 6.5% and 6.3%, respectively.
The VisDrone dataset has a large amount of occlusion, and
traditional NMS may miss detections after reaching the set
threshold. EIoU_Soft_NMS replaces the original high score
with a low score and then recalculates the score of the
current detection box, whichmaximizes the retention of heav-
ily occluded targets. The improved method has significant
improvements for data with severe occlusion.

Comparing group D and E in terms of mAP and other
aspects, using two DyHead blocks increases the number
of parameters by 4% and the model size by 0.57MB.
mAP@0.5 is improved by 2.2%, Adding a very small number
of parameters brings about an improvement in accuracy.

The overall decrease in FPS is mainly due to the need
for more calculations using Soft_NMS, including calculating
the similarity between different bounding boxes, applying
attenuation functions, and performing loop operations on
each bounding box to update the score or confidence of the
bounding boxes. These additional calculations will increase
the computational load and inference time of the model,
resulting in a decrease in FPS.

Regarding the mixed data augmentation method, the pro-
portions of Mosaic and Mixup were adjusted, and the total
sum was kept at 1. The results of experiments with differ-
ent proportions are shown in Table 7, evaluated based on
mAP and precision. The final choice of the proportion of
Mosaic and Mixup is 0.5:0.5, which improves mAP@0.5 and
mAP@0.5:0.95 by 0.3% and 1.9%, respectively, compared to
not using Mixup.

In order to assess the effectiveness of the proposed
improved method, we conducted a comparative analysis of
the detection outcomes of YOLOv5s_2E and the original
YOLOv5s model under suboptimal lighting conditions and

80486 VOLUME 11, 2023



T. Shi et al.: YOLOv5s_2E: Improved YOLOv5s for Aerial Small Target Detection

TABLE 7. Different proportions of data augmentation.

FIGURE 9. Comparison diagram of the test results.

in the presence of occluded objects. Specifically, A1, B1,
C1 shows the original image, while the detection results
of the original YOLOv5s model and the improved detec-
tion results are depicted in images A2, B2, C2, and A3,
B3, C3, respectively. The comparison results are detailed
in Figure 9.

Group A depicts the detection outcomes under subop-
timal lighting conditions. The original model exhibited a
misclassification error, mistaking a pedestrian for a bicycle.
Conversely, the proposed improved approach achieved an

accurate detection of the pedestrian while simultaneously
enhancing the confidence of other detections. The detec-
tion results under obstructed conditions are illustrated in
Groups B and C. In Group B, the improved method success-
fully detected an obscured individual on the left, whereas
the original model misidentified a backpack as a person.
In Group C, the original model demonstrated an inability
to recognize a pedestrian, as well as a heavily obstructed
vehicle in the lower left corner. Furthermore, two vehicles
were falsely detected. In contrast, the proposed enhanced
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TABLE 8. Ablation experiments on the RSOD dataset.

TABLE 9. Results of ablation experiments on the aquarium dataset.

TABLE 10. Results of CIoU versus focal-EIoU in the aquarium dataset.

TABLE 11. Results of ablation experiments on the SSDD dataset.

approach demonstrated a substantial improvement in detec-
tion performance.

C. PERFORMANCE ON OTHER DATASETS
The proposed improved method was tested on other
datasets. The RSOD dataset is a remote sensing image
dataset for object detection, which contains airplanes, oil
tanks, playgrounds, and overpasses. The dataset consists of
753 training images and 183 validation images, with approx-
imately 7000 annotations. The Aquarium dataset includes

7 categories of fish, jellyfish, penguins, puffins, sharks,
starfish, and stingrays. The training set consists of 448 images
and the validation set consists of 127 images. The SSDD
dataset contains only the Ship class, with 928 training sets and
232 validation sets. The training epoch is 150, and the batch
size is 16. The same environment as the VisDrone dataset was
used for training.

Table 8 shows the ablation experiments on the RSOD
dataset, mainly evaluating the mAP@0.5 of each category
on the validation set. With one DyHead block, the improved
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TABLE 12. Comparative experiments of different algorithms.

method achieved a mAP of 96.0% on the RSOD dataset, and
YOLOv5s_2E improved the mAP@0.5 by 2.2% compared to
the original YOLOv5s model.

The results of ablation experiments on the Aquarium
dataset are shown in Table 9. ThemAP@0.5 for each category
was compared using the validation set, and the conditions
were consistent with the RSOD dataset. From the ablation
experiments in Table 9, it can be seen that CIoU outperforms
Focal-EIoU on the Aquarium dataset, the results of the two
loss functions are shown in Table 10. Therefore, the CIoU
loss function and a DyHead block of 2 were selected for
this dataset. The final results show that our method improves
the mAP@0.5 on the Aquarium dataset by 7.3%, further
demonstrating the effectiveness of our approach.

Table 11 illustrates the results of the ablation experiments
conducted on the SSDD dataset. Focal-EIoU was not utilized
due to the lower overlap in the center point of the two boxes
in the SSDD dataset, a DyHead block of 3 was selected. The
model algorithm presented in this paper maintained the mAP
@ 0.5 score while improving the mAP @ 0.5:0.95 score by
3.5%, further supporting the effectiveness of the proposed
algorithm.

D. COMPARATIVE EXPERIMENT ANALYSIS
To demonstrate the advantages of our proposed algorithm,
we compared it with other object detection algorithms under

the same training parameters. The main evaluation met-
rics were the mAP@0.5 and mAP@0.5:0.95. As shown in
Table 12, the improved YOLOv5s outperformed the same
series of m and l models, with a lower number of param-
eters than the YOLOv5m and YOLOv5l models, and an
increase of 8.2% and 5.7% in mAP@0.5, and 7.6% and 6.0%
in mAP@0.5:0.95, respectively. Compared with YOLOv7-
tiny, mAP@0.5 and mAP@0.5:0.95 increased by 10.2% and
10.1%, respectively. Compared with the latest algorithms
GBS-YOLOv5 [26], DMS-YOLOv5 [27], etc., mAP@ 0.5 is
also improved to different degrees, which proves the perfor-
mance of this method on small target detection.

IV. CONCLUSION
Detection of small targets, particularly when they are heav-
ily occluded, poses significant challenges, often leading to
missed detections and false alarms. In this paper, we pre-
sented an enhanced small target detection algorithm founded
on YOLOv5s. Empirical findings revealed that the proposed
model achieved remarkable improvements in all evaluation
metrics with only a minor increase in the number of param-
eters, satisfying the accuracy requirements for small target
detection. Nonetheless, there is still ample room for improve-
ment in our model, In future studies, we aspire to tackle the
challenges of streamlining the inference process in the Detect
module and minimizing the model’s parameters to enhance
the efficacy of the proposed approach.
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