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ABSTRACT In the modern era, artificial intelligence (AI) and deep learning (DL) seamlessly integrate into
various spheres of our daily lives. These cutting-edge disciplines have given rise to numerous safety-critical
applications such as autonomous driving with a paramount concern on ensuring a high promise of depend-
ability because of the high risk of human injury in the case of malfunction. Even the dependability becomes
more crucial as shrinking CMOS technology feature size enhances resilience concerns due to factors like
aging. In the context of DL accelerators, which heavily rely on the efficiency and speed of computations,
addressing the effects of aging is of utmost significance to ensure their optimal design and performance. This
paper addresses the overarching dependability issue of advanced deep neural networks (DNN) accelerators
from the aging perspective. Especially, a comprehensive survey and taxonomy of techniques used to evaluate
and mitigate aging effects are introduced. We cover different aging effects like permanent faults, timing
errors, and lifetime issues. We review research by the layer-wise approach and categorize several resilience
classes to bring out major features. The concluding part of this review highlights the questions answered and
several future research directions. This study is expected to benefit researchers in different areas of DNN
deployment, especially the dependability of this emergent paradigm.

INDEX TERMS Deep learning, AI accelerator, dependability management, resilience, safety-critical
systems, fault tolerance, aging, lifetime, permanent error, timing error, graceful degradable system, NBTI.

I. INTRODUCTION
Artificial intelligence (AI) and machine learning (ML) are
becoming pervasive in today’s applications with intelli-
gent autonomy. The deep neural networks (DNNs) deploy-
ment in these applications has prohibitive requirements of
throughput, latency, cost, and power consumption, while a
significant number of these applications are positioned in
resource-constrained embedded domains. Herein, the DNN
processing unit may be an ordinary commercial off-the-shelf
embedded edge device, including limited power and comput-
ing resources. Accordingly, the ever-increasing complexity
of emergent DNN models and algorithms poses challenges
in deploying them on edge devices that struggle to sup-
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port the complex models because of increasing computing
demand and the number of parameters. Thus, edge devices
need support from efficient special-purpose accelerators to
process DNNswhich are gaining popularity due to their broad
applications, excellent performance, and energy efficiency.

On the other hand, DNNs are increasingly employed in
safety-critical disciplines like healthcare [1], automotive [2],
avionics [3], space [4], railway [31], and industry [6] to
extract useful information from complex raw data. Hence,
the dependability of deployed accelerator-based systems is
rising in importance. Their failure can result in catastrophic
consequences such as the loss of lives or severe environmental
damage [7].Moreover, the continuous scaling of CMOS tech-
nology feature size significantly threatens the dependability
of emergent DNN accelerators due to factors like aging.
In other words, aging-induced permanent stuck-at faults
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(PSFs) and timing errors (TEs) dominate the dependability
of advanced AI chips under the nanoscale manufacturing
process.

The importance of considering aging in DNN accelerators
lies in the following aspects:

• Reliability and Lifetime: Ensuring the reliability and
longevity of these accelerators is essential to avoid unex-
pected failures that can result in costly downtime and
data loss. Aging mechanisms must be analyzed to esti-
mate the hardware’s lifetime and improve reliability.

• Performance Degradation: Over time, digital circuits
can degrade due to various aging mechanisms e.g., bias
temperature instability (BTI). These aging effects can
decrease the performance of DNN accelerators, affect-
ing the efficiency of training and inference tasks.

• Energy Efficiency: As aging impact the performance
of accelerators; it can result in higher power consump-
tion to maintain the same level of performance. Under-
standing and mitigating aging effects can help maintain
energy efficiency over the lifetime.

• Thermal Management: Aging can exacerbate ther-
mal issues in DNN accelerators. Higher temperatures
due to accelerated aging can lead to thermal throttling,
reducing the overall performance and causing stability
problems.

• Workload Balancing: Over time, different parts of the
DNN accelerator may age differently, leading to perfor-
mance variations across different hardware parts. Being
aware of this difference can help developers distribute
the workload effectively and maximize performance.

• Economic Implications: Designing DNN accelerators
to account for aging can have economic benefits by
extending the lifetime. It can reduce the need for fre-
quent hardware replacements.

• Design Optimization: Considering aging in the design
ofDNN accelerators allows hardware engineers to incor-
porate techniques like error correction codes or adaptive
resource allocation. These approaches can help mitigate
the impact of aging and prolong the lifetime.

To address these issues, researchers work on develop-
ing aging-aware DNN accelerator architectures, robust algo-
rithms, and adaptive techniques that can effectively manage
aging effects and ensure the continued efficiency and relia-
bility of hardware accelerators over time. The primary focus
of the prior research works have been on optimizing DNN
algorithms and architecture to improve performance and effi-
ciency based on compression and approximation [8], [9].
However, these methods may lead to reduced resilience due
to intrinsic redundancy reduction. In emergent intelligent
edge devices utilized in safety-critical domains, depend-
ability takes precedence as a first-class citizen. Thereby,
it is essential to highlight that dependability requires special
attention, as it has received comparatively less investigation
in this particular discipline. This paper provides a survey
of design-time and runtime considerations, techniques, and

tools presented to improve the dependability of DNN accel-
erators from the aging perspective.

A. CONTRIBUTIONS AND PAPER OUTLINE
Compared to related survey studies, the major contributions
of this paper are as follows:

1) The first survey of aging studies in DNN accelerators.
2) Explores dependability techniques from different

scopes related to aging concerns.
3) Considers safety-critical standards in review.
4) Introduces functional resilience, timing resilience, and

lifetime resilience for the first time
5) Proposes a new classification of timing resilience

according to countermeasures conducted in the litera-
ture.

6) Explores lifetime resilience considering existing mod-
els.

7) Highlights current challenges and future research ideas
in DNN accelerators from the aging perspective.

The overall outline of the paper, as illustrated in Fig 1,
is organized as follows. We present preliminaries for this
work in Section II. Section III overviews safety standards
and resilience importance in aging presence. In Section IV,
we study research conducted to enhance functional resilience.
Section V presents state-of-the-art research on timing
resilience improvement. Techniques for lifetime extension
are surveyed in Section VI. Finally, Section VII concludes
the paper. The proposed review is expected to improve the
existing surveys, especially considering aging factors through
a hierarchical and complete background study.

B. METHODOLOGY
The goal of this article is to answer the following questions
about DNN accelerators in aging presence:

1) Which dependability counterparts are essential for
aging?

2) Which safety standards are about the DNN accelerator?
3) What are the effects of aging on the DNN accelerator?
4) What are the main techniques for dealing with the

PSFs?
5) What are the major methods to mitigate TE effects?
6) What are the main approaches for extending the life-

time?
7) What are the differences in dealing with aging-induced

permanent faults in DNN deployment layers?
8) What are the scopes of dealing with aging-induced

TEs?
9) What is the efficacy of optimization on the resilience

of the aging-aware DNN accelerator?
This survey studies empirical research works issued as

papers, written in English, and peer-reviewed mainly during
the last few years. Database search and article identification is
conducted to collect related articles from popular electronic
databases and libraries like Springer, IEEE, ScienceDirect,
ACM, etc. Table 1 shows the keywords used to extract doc-
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FIGURE 1. Paper outline.

FIGURE 2. Selected paper timetable.

uments classified by the research questions. The collected
documents’ timetable and count are shown in Fig 2 including
journals, conferences, and others, e.g., books, standards, and
online documents. The papers mainly published from 2012 to
2023 are considered to analyze the recent trends. There has
been a major increase in publications since 2016 due to the
increasing adaptation of DNNs in different AI edge applica-
tions. A total of about 150 documents are extracted according
to research questions and are utilized to provide this review.
It should be noted that some of the referenced articles are
from before 2012, which include two parts. The first part
concerns defining basic concepts and tools like dependability,
safety, timing error sensor, etc. The second part is related
to papers previously proposed on SoCs (system on chip)
as underlying hardware of NN. We present them to draw
a comprehensive picture of techniques, tools, and research
opportunities with the ability to be updated for advanced
DNN accelerators.

II. BACKGROUND AND PRELIMINARIES
A. PAPERS WITH SIMILAR BACKGROUND
This subsection overviews the recent related survey papers
with scopes ranging from the DNN accelerator reliability and
resilience to hardware design, optimization, and safety con-
cerns. In the past, exploring neural network (NN) resilience
against dependability threats has been of some research
interest. In [10], the author studied the methods used to

TABLE 1. Keywords used for the extraction of relevant articles.

evaluate and optimize DNN accelerators’ reliability. It cov-
ered resilience threats related to transient, permanent, and
TEs induced by process variation, memory refresh rate scal-
ing, voltage scaling, and thermal effects. The study of [11]
proposes a survey on fault-tolerant deep learning with a hier-
archical approach studying proposedmethods from themodel
layer, architecture layer, circuit layer, and cross-layer views.
Moreover, [12] reviews the reliability issues of DNN acceler-
ators considering soft errors. It first studies the inherent fault
tolerance of DNN models and then classifies proposed meth-
ods for improving the reliability considering fault type and
passive and active fault tolerance. It analyzed different DNN
accelerators and compared the commonly used accelerators
to find a more robust one against transient faults. Another
similar work was conducted by [13] on fault-tolerant NNs
focusing on well-established passive techniques to improve
reliability using design-time techniques for feedforwardNNs.
It reviews fault types and provides a taxonomy of the tech-
niques and measures to improve the intrinsic fault tolerance
of the NN model, and finally, it reviews some works on
active fault tolerance in NNs. Resilience challenges and
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TABLE 2. Scopes of similar papers.

opportunities for the operation of DNN accelerators in NTC
(near-threshold computing) are studied in [14]. In the case
of the TPU systolic array, the paper discusses the inten-
sity of TEs and their effect on inference accuracy at NTC.
It evaluates factors such as delay difference within arithmetic
units, utilization pattern, hardware homogeneity, and work-
load characteristics and uncovers local and global techniques
to deal with the NTC-induced TEs. Another recent review
indicates that DNNs have intrinsic reliability threats and
provided an overview of reliability threats and corresponding
mitigation techniques [15].

The article [16] reviews research contributions to address
random hardware failures, systematic failures, and execu-
tion independence in GPU devices. It discusses several
challenges of safety certification in complex, parallel,
and compute-intensive software functions with different
safety-criticality levels on shared GPU devices. Recent
advances in DNN accelerator designs are presented in [17].
It explored various proposed architectures in terms of
dataflow optimization, internal communication network,
deployment of emerging technologies, and computing units
for advanced DNN applications. On the other hand, a com-
prehensive overview of existing optimization techniques to
deploy DNN accelerator on FPGA is provided in [18]. More-
over, [19] reviews prior efforts to deploy DNN models on the
end devices efficiently. The design ideas include the types
of DNN models, hardware and software requirements for the
development, resource constraints imposed by the computing
devices, and optimization techniques. It reviews the follow-
ing four dimensions: (1) The DNN model, (2) Hardware
requirement, (3) Resources utilization, and (4) Application
perspective. Finally, [20] explains the different DNN opti-
mization techniques. It reviewed recent research aiming at the
implementation of DNN models on FPGAs.

The features and scopes of prior studies are compared with
the contributions of our paper in Table 2. Additionally, Table 3
gives a summary of these articles. The subsequent section
defines the terms and concepts used in this paper.

B. AGING IN MODERN INTEGRATED CIRCUITS
Aging refers to the degradation due to continued electrical
stress on CMOS devices that may eventually lead to PSF
or TE occurrence and operational lifetime reduction. Aging
is affected by several factors, like temperature, voltage, and
stress. Shrinking CMOS feature size increases power density,
peak temperature, and electrical fields inside modern inte-
grated circuits, leading to more severe aging [21]. Overall,
there are mainly four different aging mechanisms:

1) BIAS TEMPERATURE INSTABILITY (BTI)
BTI relates to the transistor’s threshold voltage (Vth) increase
and the carrier mobility (µ) decrease [22]. This causes to
increase in circuit delay, which eventually leads to timing
faults. Depending on the transistor type, there are two types
of BTI (e.g., PBTI in nMOS transistors and NBTI for pMOS
transistors). Two main models proposed for BTI include
reaction-diffusion (RD) and trapping/de-trapping (TD) [23].
Both models describe BTI based on a two-phase process,
including stress and recovery. Applied voltage in the stress
phase causes the degradation, while in the next phase, the
accumulated degradation partially recovers.

2) HOT CARRIER INJECTION (HCI)
Similar to BTI, HCI is manifested as increasing Vth and
decreasing carrier mobility. The trapping process occurs
when charge carriers in the channel gain sufficient velocity
to be injected into the dielectric. HCI degradation depends
on voltage, temperature, and transition density. HCI has no
recovery phase [24].

3) TIME-DEPENDENT DIELECTRIC BREAKDOWN (TDDB)
Unlike BTI and HCI with gradual degradation, TDDB occurs
as a sudden stuck-at-fault and the breakdown of a single
transistor. TDDB is caused by the buildup of gate oxide
defects due to a strong electric field, eventually producing a
conducting path between the gate and the channel [24].

4) ELECTROMIGRATION (EM)
EM is the dominant aging mechanism in metal layers. It is
characterized by an increase in wire resistance over time
due to the drifting of atoms in the same direction as charge
carriers. This creates atomic lattice distortions, reduces con-
ductivity, and potentially forms atomic voids. As a result,
conductors become permanently damaged, eventually, cause
to open circuit failure [22].
Considering the past research done in Samsung and TSMC,

NBTI is the dominant aging factor in recent CMOS technolo-
gies [25], [26]. Other research in Intel claims that NBTI is
the biggest contributing mechanism but not dominant [26].
Another work has claimed that different mechanisms are
dominated by voltage and temperature operating points [27].
According to the bathtub curve (Fig. 3), semiconductor prod-
uct lifetime includes three primary phases: 1) Early life
failure rate (or infant mortality) is characterized by a rel-
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TABLE 3. Summaries of related review papers.

FIGURE 3. The bathtub curve shows the failure rate evolution vs. time.

TABLE 4. Different semiconductor market constraints (modified
from [24]).

atively higher initial failure rate, which decreases rapidly.
2) Normal life consists of a relatively constant failure rate,
which remains stable over the useful lifetime of the device.
3) The wear-out phase represents the point at which intrin-
sic wear-out mechanisms begin to dominate, and the failure
rate increases exponentially. The product lifetime is typically
defined as the time from initial production until wear-out
onset. Table 4 summarizes the lifetime and temperature spec-
ifications required in some key markets [24].

FIGURE 4. Neural network structures. (a) Single neuron. (b) MLP.
(c) CNN. (d) RNN (modified from [163]).

C. BRIEF BACKGROUND OF DNN MODELS
In this section, we briefly explain the preliminaries of DNN
and review major models. A neural network is composed
of artificial neurons; each performs a weighted sum and a
nonlinear transform on the result to produce an output that
is multi-casted to the next layer. We name the connection
as a synapse, the connection influence as weight (W ), the
input signal as activation (X ), and the nonlinear transform as
activation function (φ). So, the operation of each neuron is as
follows:

yi = ϕ
(∑

j
xjwij+bi

)
(1)

where bi is a bias, as shown in Fig. 4(a). Usually, DNN has
many hidden layers, so-called deep. The most popular types,
according to the network structures, are as follows [28], [29]:

1) Multilayer perceptron (MLP) - Each node is composed
of a nonlinear function of a weighted sum of all the
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previous layer outputs (fully connected) [30], as shown
in Fig. 4(b).

2) Convolutional neural network (CNN) - convolution,
pooling, fully connected, and non-linear function layers
are sequentially stacked together, as shown in Fig. 4(c).
CNNs are powerful for feature extraction.

3) Recurrent neural network (RNN) -Each node is com-
posed of a nonlinear function of the weighted sum of
the previous layer outputs and the previous state of that
neuron. RNNs are capable of learning sequential tem-
poral dynamics in applications like speech recognition
and language processing, which is difficult for MLPs
and CNNs, as illustrated in Fig. 4(d).

DNNs are deployed in two distinct phases: training
and inference.At first, the network tries to adjust the parame-
ters (e.g., weights and biases) using a labeled dataset, includ-
ing forward and backward propagation, to update the weight
gradient. Next, an already trained NN makes predictions for
new unseen data involving the forward pass. Training deter-
mines the model’s parameters, while inference uses them to
make predictions. In contrast to the training procedure, which
is typically executed on distributed systems, the inference
is usually executed on a single device [29] (e.g., a mobile,
edge, and IoT device) where latency [55], as well as energy
constraints, may become more serious. So, we require huge
inference computation in a large DNN, which leads to higher
latency and energy consumption. Hence, against training,
inference has rarely been implemented directly, and several
optimizations are used to meet real platform limitations.

DNN comprises multiple types of layers, including con-
volutional, pooling, normalization, and fully-connected sub-
layers [30]. In each layer, there are several channels (i.e.,
feature maps) extracting different local features of the input
data. The convolutional layer performs the main portion of
network computation. It performs a dot product between
two matrices, namely the input feature map and weight set
known as the kernel. Pooling is used to reduce the activation
number of the next layer and thus reduce the memory and
computation required. Based on the fact that neural networks
usually have a normal distribution, the normalization layer
keeps output values in the same input range (e.g., Batch
Normalization [31]). It simplifies and speeds up the training
process to reach higher learning rates and helps to interfere
with lower cost and more resilience [32]. The activation func-
tions applied to the output of neurons improve the usability
of NNs by solving complex problems that cannot be solved
with linear algebra. Usually, ReLU (x)=max (x, 0) is used as
the activation function φ in recent networks.

D. DNN ACCELERATOR UNDERLYING HARDWARE
Since the beginning of the last decade, the deployment of
DNNs has not been limited to heavy computing systems, but
there is much interest in deploying DNNs in resource and
energy-limited edge devices. The underlying hardware ranges
from temporal to spatial architectures with the main ele-

ment of multiply-and-accumulate (MAC). In the following,
we review the appropriate platforms for DNN deployment.

Typically, hardware acceleration can be implemented by
CPU [33], GPU [34], FPGA [35], or ASIC [36] to improve
performance and energy efficiency. CPU and GPU are based
on temporal architecture, while spatial architecture has been
used in ASIC and FPGA-based platforms. Although the
similarities in the parallel computation of processing units,
temporal and spatial architecture have differences in elements
like control units, memory structures, and dataflows. The
temporal platform uses processing units, namely ALUs, with
centralized control. The ALUs have no dedicated local mem-
ory and no direct communication with each other. However,
processing elements (PEs) can have their local memory and
control logic in spatial platforms. PEs can directly communi-
cate with each other to produce a processing chain. Moreover,
CPUs use the single-instruction multiple-data (SIMD) for
parallel computing, while GPUs use the single-instruction
multiple-thread (SIMT).

In platforms with spatial architecture, the DNN implemen-
tation bottleneck is memory bandwidth. Therefore, local and
global buffers are embedded in and among PEs to reduce data
access from the DRAM. Accordingly, to execute convolution
throughMAC operations, PE arrays use direct-message pass-
ing to increase data reuse for decreasing the memory band-
width. Different techniques for memory access reduction
have been presented using local memory and data reuse by
storing the data in a hierarchy to be exploited in DNN acceler-
ators [37]: Input stationary (e.g., TPU [28]), weight stationary
(e.g., SCNN [38]), output stationary (e.g., Origami [39]),
and row stationary (e.g., Eyeriss [36]). In weight-stationary
dataflow, the weights are stored in the internal register of PEs
to be reused while inputs and the partial sums move among
PEs. The input-stationary accelerator buffers the input acti-
vations in the internal registers, and convolution is done by
passing the weight values to the PEs. In the output-stationary
dataflow, partial sums are accumulated and kept in PEs until
the final sums get ready to minimize the transfer of partial
sums. Finally, row-stationary accelerators jointly maximize
the reuse of the input activations, filter weights, and partial
sums.

E. TERMS AND CONCEPTS OF DEPENDABILITY
This subsection overviews basic terms and concepts related
to dependability theory. Dependability is an umbrella term
including several system attributes and countermeasures.
In this context, a system comprises different hardware and
software components, which may have subsystems them-
selves. Moreover, the system delivers certain services to other
systems in the surrounding environment. A system is depend-
able if it guarantees to deliver its intended level of service to
its users during a period [40].

As seen in Fig. 5, availability, reliability, safety, integrity,
and resilience are attributes leading to the dependability of a
system [7]. The availability of a system relates to the fraction
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FIGURE 5. Attributes of the dependable system (redesigned of [164]).

of time during which it is ready to propose its correct service.
On the other hand, reliability presents the probability that the
system continues to perform its correct service over a period.
Safety can be considered as an extension of reliability, namely
reliability concerning failures that may create safety hazards.
Safety can be seen as an attribute of the general concept of
dependability. The term safety is commonly defined as a con-
dition without danger or harm to humans or the environment.

Integrity has been provided if the system is not altered
improperly. Lastly, resilience can be considered as a further
desirable attribute of dependability, especially in complex
systems that are subjected to change [41]. The resilience of
a system is the persistence of dependability despite seen,
foreseen, or unforeseen faults [42]. Here, in the context of the
aging-aware DNN accelerator, we use resilience as the prob-
ability that the accelerator does not have a failure outcome
despite the degradation of the underlying hardware.

Dependability threats are specified as faults, errors, and
failures that put the system at risk, as well as countermeasures
that can neutralize these threats [7]. Faults can be categorized
as permanent, transient, or intermittent based on their tempo-
ral behavior. Transient and intermittent faults are both active
over a limited time, but they have different causes. While
transient faults are externally induced and occur at random
positions, intermittent faults occur in burst due to internal
shortcomings or instabilities and are usually recurring with
some periodicity at the same location [43]. Four basic means
against dependability threats are as follows:

1) Fault prevention reduces the possibility of fault occur-
rence through the design, deployment, and fabrication
quality control. For hardware, this includes design
reviews, component screening, and testing. For soft-
ware, this includes structural programming, modular-
ization, and formal verification.

2) Fault remova techniques reduce fault count or mitigate
the severity. It is for the development phase (verifica-
tion, diagnosis, and correction) or the operational life
(corrective and preventive maintenance) of a system.

3) Fault forecastin gives a quantitative estimation of the
present and future occurrence of faults and their conse-
quence effects.

4) Fault toleranc is the ability to prevent failure and per-
form the intended functions in fault presence [44].

Fault tolerance can be classified into passive, active, and
hybrid. In the passive case, the system exploits the implicit
redundancies embedded in the system, which can mask
the fault effects and ensure error-free outputs [45]. In this
approach, we do not require diagnostics, reaction, location,

TABLE 5. Comparison of safety levels [165].

or reconfiguration. In the active case, explicit and dynamic
redundancy is used to detect and manage the fault effects by
mechanisms like detection, localization, adaptation, retrain-
ing, or self-healing, which may lead to complexity [46]. For
example, in the case of the DNN accelerator, this approach
can be used for fault recovery by remapping, error detection,
or reconfiguration [47]. Overall, not all failure scenarios can
be considered at design time to provide passive or active
arrangements. However, in a hybrid tolerance, passive and
active approaches are used complementally to detect online
and replace faulty modules [48]. Moreover, we have two
kinds of redundancy in fault-tolerant systems: space and
time [46]. In the first, additional elements, functions, or data
are used, which lead to hardware, software, and information
redundancy, respectively, depending on the type of redun-
dancy added to the system. In time redundancy, the computa-
tion is repeated in fault presence.

III. SAFETY AND RESILIENCE
Generally, there are other types of critical systems rather
than safety-critical, like mission-critical, mixed-critical, etc.
The key difference between a safety-critical system and a
mission-critical system is that a safety-critical system is a sys-
tem that, if it fails, results in serious environmental damage
or human injury, while the mission-critical system fails some
goal-directed activities. Examples of mission-critical systems
are a navigational system for a spacecraft and software con-
trolling a baggage handling system of an airport.

A. SAFETY CERTIFICATION STANDARDS
As mentioned before, DNN accelerators are being employed
in different domains, e.g., healthcare, defense, aerospace,
cybersecurity, finance, drones, avionics, transportation, traf-
fic control, railway, and autonomous driving. These disci-
plines contain safety-critical applications with an urgent need
for dependability. In the dependability study, a system is con-
sidered safe if it is free of catastrophic failure consequences
that may lead to harm the human or the environment [7].
In ISO 26262, the potential source of harm is hazard [49]
which can cause unreasonable risk and thus prevent safety.

Regardless of the critical system domain, validation and
certification of safety are done by international safety stan-
dards comprising guidelines. The safety levels of some major
domains are demonstrated in Table 5. For example, the
standard RTCA/DO-178C [50] guides several objectives to
be fulfilled for safety-critical airborne software. It assigns
a safety factor, namely design assurance level (DAL), to
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software, ranging from level A (high critical) to E (low crit-
ical), depending on the evaluation process and the criticality
determination. Higher safety levels require more strict anal-
yses of both hardware and software to ensure the required
assurance levels. In addition to RTCA/DO-178C, a frame-
work for safety analysis can be found in the standard ISO
26262 proposed for the automotive disciplines [2]. It defines
safety as the absence of unreasonable risk, where risk is
a factor that combines the severity and the probability of
harm, i.e., physical injury or damage to the health of per-
sons. Safety-critical systems must follow strict certification
processes according to domain-specific standards to reduce
the risk of causing such casualties.

The generic safety standard of IEC 61508 [37] is accepted
as a reference by several domains, such as robotics (ISO
10218 [51]) and railway (EN 5012X [52]). However, among
all these safety standards, there is considerable variability
in terminology, definitions, and requirements. For example,
in IEC 61508, the safety integrity level (SIL) is defined with
a discrete level range from SIL1 (the lowest) to SIL4 (the
highest), while in ISO 26262, the level is defined by the
automotive safety integrity Level (ASIL) with a range from
A the lowest (ASIL-A) to D the highest (ASIL-D).

B. SAFETY TECHNICAL REQUIREMENTS
According to IEC 61508 and ISO 26262 standards, to develop
aDNNaccelerator-based safety-critical system, the following
fundamental safety technical requirements, already declared
for multi-core platforms, must be addressed [53]:

1) Reliability of a component is defined as the ability to
perform as required, without failure, for a time interval,
under given conditions. It is quantified by FIT (Failure
in Time) or failure count per 109 hours of operation.

2) Diagnostic Coverage (DC) means the fraction of dan-
gerous failures detected by automatic online diag-
nostic tests. It is expressed as coverage percentage
classified in ranges: low (60%≤DC<90%), medium
(90%≤DC<99% ), and high (DC≥99%).

3) Temporal independence suggests that one element shall
not cause another element to function incorrectly by
taking too much execution time of the processor or
blocking another element by locking a shared resource.
The reference standards recommend techniques like
WCET (worst-case execution time) analysis, tempo-
ral diagnostics, and predictability (e.g., design time
scheduling).

4) Spatial independence indicates that data used by one
element shall not be changed by another. For instance,
a widely used technique to support spatial indepen-
dence is exclusive access to shared memory [54].

C. AGING-AWARE RESILIENCE
Resilience is an important dependability feature for a
safety-critical system operating in an open context, i.e., for
which a definitive characteristic of the desired output in

response to all possible inputs is impossible due to the
application and the environment’s complexity. We face this
open-context dependability challenge in upcoming technolo-
gies like autonomous vehicles [55]. DNNs are enabling such
technologies due to their ability to deal with open-context
situations. However, to guarantee safety, we must assess and
enhance the resilience against faults of the underlying hard-
ware platform.

DNN is considered to have a degree of inherent resilience
against faults of the underlying hardware. This is due to sev-
eral factors: First, DNN includes an extra number of neurons
(more than needed) to perform a specific task [59], so it can
continue its overall operation despite a few faults. Second,
DNN can tolerate some kind of faults in computation because
of its similarity to the human brain [56]. Third, the learning
enables DNN to find solutions to problems that are not trained
for [57], so the learning capability allows DNN to have a high
degree of resilience to computational errors and noise in input
data. Moreover, there are other reasons, including widely
used activation functions, pooling utilization, and output gen-
eration based on ranking. However, inherent resilience does
not guarantee fault tolerance against aging which may cause
substantial accuracy loss or lifetime reduction. Eventually,
we require more attention to the resilience of DNN accelera-
tors, especially in the safety-critical discipline [58], [59].

To explore resilience, the vulnerability of the DNN algo-
rithms and architecture must be evaluated. There are two
major approaches for evaluating resilience: 1) Experimental
and 2) Statistical or theoretical. In the first one, physical
faults are inducted in real hardware devices [33], [34], emu-
lated on hybrid platforms [60], virtually injected in model
simulation [34], [61], or eventually, errors are behaviorally
simulated at the algorithm level [62], [63]. According to
the literature, the majority of research on resilience evalu-
ation in DNN accelerators has been experimental. Overall,
experimental methods use different features like the type
and abundance of errors, the data type and precision, the
DNN type and structure, and the location of error occur-
rence. However, while this approach is useful for an accurate
resilience evaluation, it has heavy computation and provides
only a limited vision of design choices to improve resilience
during the development phase. The second approach pro-
poses a theory-guided approach that has the advantage of
interpretability and avoids heavy fault injection. In [64], the
authors proposed a method to evaluate the forward error
propagation of neurons with PSFs. They determined design
factors that affect the forward error propagation as activation
function and number of neurons per layer. Another ana-
lytic technique for DNN resilience prediction is proposed in
approximate computing [65]. Here, a technique to determine
weight updates in DNN training, namely backpropagation of
error gradients, was proposed to estimate the output vulnera-
bility to internal errors of neurons.

Our focus in the proposed survey is to classify the prior
research works on their contributions into three categories:
The first class is functional resilience, including software
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or hardware techniques to avoid the occurrence, remove or
manage the propagation of PSFs. Functional resilience can
be achieved, for example by passive fault tolerate archi-
tecture, active redundancies, or online error detection and
correction mechanisms. The second class is timing resilience,
which is the ability at design-time or runtime to evolve or
dynamically adapt to timing variations induced by aging.
Graceful degradation by frequency scaling, i.e., the ability
to continue DNN accelerator operation with only minor per-
formance decreases in the presence of TEs, is related to this
as well. Finally, the last class is lifetime resilience which
is related to design-time or runtime methods of conserving
or even extending the lifetime of the DNN accelerator, e.g.,
guard-banding.

Herein, we summarize studies performed to enhance the
resilience of DNN accelerators with a layer-wise approach in
different resilience classes. In the following, insights from the
literature for each resilience class are presented.

IV. AGING-AWARE FUNCTIONAL RESILIENCE
In this section, we discuss prior studies of functional
resilience improvement against permanent faults in DNN
accelerators considering aging mechanisms, e.g., TDDB and
EM. To mitigate or even remove permanent fault effects,
a lot of work has been conducted in different layers with
various means, including prevention, removal, forecasting,
and tolerance.

In this review, we investigate proposed studies with a
layer-wise approach that matches the general DNN deploy-
ment stack, including high-level models to low-level cir-
cuits. Fig. 6 illustrates the taxonomy of existing functional
resilience-improving techniques in layers of theDNNdeploy-
ment stack. Herein, we explore works done in 5 layers,
including 1) model, 2) algorithm, 3) architecture, 4) microar-
chitecture, and 5) circuit and device. According to this figure,
the DNN model’s inherent resilience, training approach, sen-
sitivity analysis and limiting of activators and weights, and
dataset effects are explored in the first layer. In the algorithm
layer, resilience enhancement based on data and software
redundancies for different parts of the network and with
software or hardware deployment, and variable precision
quantization are considered. Resilience enhancement using
DNN high-level structural factors like NN layers, PE and
ME mapping, replication and redundancy, pruning, selective
hardening, fault-aware mapping, deactivation, and reconfig-
uration are presented in the architecture layer. In the microar-
chitecture layer, low-level DNN factors such as datatypes,
numeric systems, computing element duplication and approx-
imation, and selective bit hardening are considered. Finally,
circuit and device layer techniques focus on low-level design
features such as partial reconfiguration, memory cell design,
synthesis, and sensor design for fault detection. Cross-layer
affords usually combines techniques of different layers in a
unified framework to achieve effective protection with low
overhead [66]. In the following, we explore some of the major
research conducted in each layer in more detail.

A. MODEL-LEVEL RESILIENCE
This subsection summarizes the research done at the top
level of the system stack. High-level techniques (i.e., the
model level and algorithm level) can have prohibitively lower
costs, especially scaling up the complexity of DNNs while
providing acceptable resilience because they have indirect
mitigating effects on more fault types of the underlying hard-
ware. There exists a big body of work exploring model-level
factors to facilitate resilience with lower overhead. The inher-
ent resilience of DNN is the key feature used by all high-level
techniques. Accordingly, only a fraction of neurons are vul-
nerable and have serious effects on output accuracy. Most
of the proposed works try to mitigate and compensate for
vulnerability through sensitivity analysis and training.

The major method for model-level resilience improvement
is sensitivity-based training and retraining of the DNNmodel.
Thereby, the resilience of feedforward NN considering the
sensitivity of neurons was explored in [67]. It deploys a
cross-layer technique to design networks with the required
resilience satisfaction. This method starts with a well-trained
network and follows two main approaches, i) removing
unimportant nodes in the hidden layers using the sensitivity
threshold, and ii) retraining the pruned network and adding
some redundant nodes to share the load of the most critical
ones in the network. Here, the sensitivity of links and nodes
is evaluated by output accuracy in mean square error (MSE).
After that, this work is extended by modifying the training
method and using explicit redundancy. This work restricts
weight values throughout the training to have lower magni-
tudes because of the resilience reduction by high-magnitude
weights. However, these methods require an exhaustive sim-
ulation to measure neuron criticality, which is infeasible for
large-scale DNNs. In the work of [68], a training approach
to adjust neuron sensitivities is introduced using an ana-
lytical approach instead of fault injection in training. The
authors claim that homogeneous (uniform) resilience in the
DNN can help to avoid special protection of critical parts.
Also, it introduces an explicit weight rescaling method to
balance the vulnerability of channels in a layer conduct-
ing the iterative rescaling and finetuning. It proposed minor
changes in layer placement of DNN architecture to avoid
layers with few neuron outputs (low resilience ones). Finally,
neurons with more than average criticality scores are pruned,
and neurons with less than average criticality scores are
expanded.

Overall, two major approaches can be identified for
resilience-aware training: fault-aware training and chang-
ing the learning rules. Fault-aware training tries to obtain
a resilient model by adding noise to input activations and
weights or direct error injection to PEs during the training.
The study of [69] explores DNN training to improve func-
tional resilience in permanent faults presence. This method
uses a fault map generated from a post-synthesis simulation
at design time [70] or a post-fabrication test for a specific
chip [66]. The produced fault map is used during training
to allow DNN adaption according to the fault presence at
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FIGURE 6. Taxonomy of techniques for functional resilience enhancement.

FIGURE 7. The flow of fault-aware training (modified from [66]).

the hardware. Fig. 7 shows the flow diagram of fault-aware
training after fabrication. The drawback of the proposed
approach is the complexity of the training loop by fault
injections or realistic fault simulations. Other works estab-
lish random weight or activation fault models to inject fault
during training and mitigate the effects of erroneous inputs
and weights [71], [72], [73]. In this way, the model can
learn to tolerate the type of injected fault to mitigate the
sensitivities of neurons and prevent accuracy loss. According
to [74], DNN accuracy is more sensitive to weights with large
magnitudes, and there are opportunities to improve functional
resilience by providing different protection mechanisms for
weights and activators, such as limiting weight magnitudes
in training [75].
Changing the learning rules can also be done by regulariza-

tion of conventional algorithms, adapting backpropagation,
or modifying learning algorithms to find weights values that
are more equally distributed and avoid saliency. A technique
of modified DNN training method considering the resilience
issues is proposed by [76]. Herein, backward propagation of
training is done on the error-free GPU or CPU while the for-
ward inference is performed on the error-prone FPGA-based
accelerator. This technique accounts for different sources of
error during DNN training to compensate for the predicted
accuracy loss, as shown in Fig. 8. The training is finished
when the accuracy loss goes below the threshold, and it
implies that the trained DNN can be safely used on the error
presence. A challenge of the proposed technique is that it
has a high overhead requiring conversion between fixed-point
and floating-point in each iteration of the training.

The state-of-the-art research [77] proposes an approach
to improve functional safety (FuSa) in DNN accelerators

FIGURE 8. The modified training of which performs FWP using FxP on the
accelerator and BWP using FP on the GPU (modified from [76]).

for mission-critical applications using the concept of gen-
erative adversarial networks (GANs). The proposed method
produces a set of functional test patterns based on GAN
that are independent of the DNN model and the accelerator
features. It injects memory faults that may violate FuSa and
tries to detect unsafe application behavior using the generated
test patterns to improve the training process and functional
resilience.

Also, if the error rate exceeds a threshold, some works
conduct retraining to adapt the DNN weights for increasing
functional resilience and mitigating the impact of errors.
Moreover, retraining can only be done in the limited sections
of DNN, like fault-prone FC layers, to reduce the overhead of
complete retraining [78].

Apart from manual model design and modification, state-
of-the-art work [79] proposes FTT-NAS framework (fault tol-
erant training - network architecture search) to automatically
find and tune a resilient neural network model. The frame-
work first finds a primitive resilient model and then applies
fault-tolerant training to improve its resilience and precision.
NAS includes a controller to sample different architecture
rollouts from the search space and a shared weights-based
evaluator to evaluate the performance of different rollouts on
datasets using fault-tolerant objectives.

B. ALGORITHM-LEVEL RESILIENCE
Although DNNs have a certain degree of the inherent
resilience of algorithms, improving functional resilience
by exploiting the algorithmic features is an active field
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FIGURE 9. The spatial (a) and temporal (b) checksum in the convolutional
re-illustrated from [82]).

of research. In the following, we try to summarize tech-
niques that have been taken. The main approaches for
algorithm-level resilience improvement are layer-wise quan-
tization and algorithm-based fault tolerance (ABFT).

Layer-wise quantization tightens the safety margins and
matches the utilized range in different DNN layers to reduce
the vulnerability. In state-of-the-art work of [80] a new reg-
ularization method namely outlier is proposed in the training
phase to further tighten the numeric range and shape the dis-
tributions of parameters. Herein, DNNs of higher resilience
merely through algorithmic modifications can be achieved by
the proper design of the quantization schemes for each layer
using the guidance offered by appropriate training technique.

Noting that a large fraction of DNN computation is spent
on convolutions, [81] employs ABFT to improve functional
resilience in this layer. In the case of matrix multiplication
as the basic block of convolution, this research adds the
sum of rows and columns to the original input matrices.
In the output, the sum of both extended multiplication and
accumulation of output matrix elements are compared to
detect error occurrence. In other words, the checksum of the
results was calculated by two approaches on both row and
column to detect and recover errors. This work proposes a
workflow to integrate techniques with limited overhead and
conducts ABFT for runtime error detection and correction,
supporting different convolution implementations and fault
configurations.

The authors of [82] proposed the Sanity-Check, which is an
error detection mechanism for the convolutional layer using
linear checksums. They introduced a dedicated hardware unit
integrated with modern DNN accelerators to mitigate the per-
formance overhead of the software methods with a little area
and power overhead. Sanity-Check offers an alternative for
low-cost error detection in safety-critical DNN applications
based on spatial and temporal checksums. In the first, the
output checksum is calculated in the spatial dimension. In the
second, the summation is performed through the point-wise
accumulation of the inputs over the temporal batch and com-
pared with the expected value, as illustrated in Fig. 9.
To reduce the overhead, a lightweight ABFT, namely Con-

vGuard has been proposed by state-of-the-art research [83],
which only predicts the convolution checksum on the bor-

FIGURE 10. Generalized ConvGuard architecture that supports arbitrary
convolutions (modified from [83]).

der pixels of the input feature map. ConvGuard computes
the checksum of the output pixels and compares it to its
predicted checksum value in parallel to the operation of the
convolution engine. Also, the stride convolutions are used
on selected sub-image / sub-filter pairs. After computing the
convolution, the appropriate common sums per channel are
subtracted from the coefficient accumulators, as shown in
Fig. 10. The common sums and the filter coefficients related
to the same channel are selected by the mask logic. Similar
to reducing the overhead of retraining and as the last layer
of DNNs directly affects the output, [84] proposes a method
based on the ECC instead of conventional SoftMax to tolerate
permanent faults. Specifically, this research uses an variable-
length decode-free ECC coupled with a collaborative logistic
classifier for asymmetric binary classification to detect and
correct errors in the output.

C. ARCHITECTURE-LEVEL RESILIENCE
In safety-critical discipline, it is insufficient to protect the
DNN accelerator with only model, algorithm, or inherent
resilience because of the progressive aging fault configura-
tion space that cannot be considered in design time. Also,
model layer approaches typically require time-consuming
training to cover the runtime faults. Moreover, algorithmic
techniques usually rely on DNN input data which may not
always be accessible during the deployment step. Architec-
tural techniques for resilience enhancement are investigated
to mitigate aging effects with fewer limitations compared to
high-level algorithms. There are three high-level architectural
approaches for improving resilience: redundancy, pruning,
and mapping.

1) RESILIENCE ENHANCEMENT BY REDUNDANCY
Redundancy is the conventional mechanism of resilience
improvement. A forefront mechanism called augmentation
is proposed by [85] which can improve resilience by repli-
cating hidden neurons and their associated connections.
Also, [86] proposes a technique to detect more sensitive
elements and duplicate inputs, biases, weights, or even neu-
rons, according to the evaluation criteria. Moreover, state-
of-the-art research [87] focuses on selective sensitive neuron
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FIGURE 11. The fault-tolerant systolic array (modified from [91]).

duplication to achieve higher robustness with lower over-
head. Here, selective redundancy is only applied to critical
neurons.

The study of [88] proposes an approach of k-modular
redundancy which is created by k-fold replicating of hid-
den neurons and dividing the weights to k compared with
the voting mechanism of the conventional methods. The
authors evaluated the method for three applications on the
NN accelerator: Black-Scholes, RSA, and Sobel. It concluded
that for small-size NN, the proposed method is more effec-
tive. Moreover, [89] proposes FT-HNN (fault-tolerant Hop-
field neural network) on the FPGA by inserting additional
links to the baseline and providing hidden accumulation
states to vote among them for fault tolerance. The pro-
posed FT-HNN requires less hardware overhead compared
to the baseline TMR because of sharing partial results in
accumulations.

Moreover, [90] introduces a method of adding spare Pes,
which can be reconfigured to replace any neuron. It can
be used for both fault detection and correction, but it is
limited to spatial architecture and can be used to recover
from limited faulty PEs. In the state-of-the-art study [91],
the authors proposed FSA (fault-tolerant systolic array) by
adding re-compute units to the base accelerator array to
conserve accuracy loss in the presence of PSFs. The key
factor of FSA is a unified re-computing module (RCM) that
dynamically recalculates computations of faulty PEs with
minimal latency and power consumption (Fig. 11).
According to previous layers, there is an observation

that the activation function and adders of the output layer
have the most effect on the output accuracy, thereby the
resilience of the NN accelerator can be increased by hard-
ening these elements [92]. Based on this, [93] selectively
applies TMR to the hidden layer and the last FC layer to
provide a better balance between resilience and resource
utilization than the full TMR. Also, the study of [94]
proposes SHIELDeNN, an online resilience assessment
approach, to determine the most vulnerable elements of
DNN. Based on the vulnerability assessment, a hardening
strategy based on selective TMR is employed to provide an
optimal design for a resilient DNN accelerator with resource
constraints.

FIGURE 12. Fault-aware pruning (modified from [95]).

2) RESILIENCE ENHANCEMENT BY PRUNING
A permanent fault-aware pruning technique to improve the
functional resilience of systolic array DNN accelerators is
presented by [95]. The proposed technique drops the mapped
computations to a faulty PE. Fig. 12 shows the hardware
modification needed to enable this technique. Also, [58]
presents a technique to add a zero-bypass data path for
PEs which will be enabled in PSF presence in PEs. Zero-
bypassing can cause a loss of accuracy, although the impact
on DNN accuracy is more predictable than random erroneous
values. After pruning, the authors used retraining to address
the accuracy and adapt to different fault configurations. The
state-of-the-art study of [96] presents an application-driven
approach to bin the DNN accelerator chips and reduce yield
loss by correlating the faults in the PEs with the desired
accuracy of the target AI application. The authors explored
the inherent resilience of trained models and a strategy of
selective faulty PEs deactivation to mitigate yield loss. They
derived an analytical relationship among fault location, fault
rate, and the AI task’s accuracy to decide if the accelerator
chip could pass the final yield test. Finally, yield-loss-aware
fault isolation and test flow are provided for the PEs.

3) RESILIENCE ENHANCEMENT BY MAPPING
As seen, the state-of-the-art research works address func-
tional resilience by adding homogeneous redundant PEs to
the baseline array and bypassing faulty PEs. However, this
methodology induces accuracy loss, extra hardware costs,
and performance overhead. Another approach to increase
functional resilience is to change the mapping of neurons to
PEs. SalvageDNN [97] proposed a mapping methodology to
reduce the effects of pruning on functional resilience without
the need for retraining. It employs a fault-aware mapping
of DNN elements on the hardware accelerator by leverag-
ing the saliency of the DNN parameters and the underlying
hardware fault map. Moreover, it introduced modifications in
the design of the systolic array DNN accelerator to further
improve resilience. Fig. 1 demonstrates an example of the
mapping adaptation by the fault map change corresponding
to a systolic array including 16 PEs. Black and red crosses
correspond to fabrication and wear-out faults, respectively.
Also, [98] considers the neuron’s sensitivity in the DNN
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FIGURE 13. Mapping adaptation example (modified from [97]).

FIGURE 14. Implementation of an accelerator using (a) time multiplexing
or (b) spatial-unfolding approach (modified from [92]).

model and proposes a heterogeneous array of PEs in two
levels of resilience. In this case, more sensitive neurons are
allocated to highly resilient PEs of the computing array while
lower sensitive neurons are allocated to the rest of the PEs,
which ensures higher resilience with lower overhead.

Comparedwith time-multiplexed architecture, the research
of [92] proposed a design with spatially unfolding for a
DNN accelerator to achieve higher functional resilience
(Fig. 14). Spatial-unfolding mitigates energy consumed by
data movement, placing PEs closer to MEs. Despite the
time-multiplexed architecture with a high impact of faults
on accuracy and resilience reduction, the impact of faults
on spatially-unfolded designs is more restricted. Herein, the
control unit is employed only at the input/output stage, and
its vulnerability can be easily mitigated by hardening. Even-
tually, in the proposed design, if the size of DNN exceeds
the maximum size of the spatially unfolded accelerator, time
multiplexing can be used to reuse the computing resources.

D. MICROARCHITECTURE-LEVEL RESILIENCE
In this subsection, we explore several research works con-
ducted in the microarchitecture layer to improve functional
resilience based on data precision adjustment, selective bit
hardening, symptom-based ECC, and computing unit dupli-
cation. To increase functional resilience, some works store
weights with different formats, e.g., floating-point and fixed-
point [69], or hold both exact and inexact weights [99]
to ensure training convergence. The state-of-the-art study
of [100] explores the resilience mitigation approaches of

neuromorphic DNN underlying hardware. First, it considers
the DRAMmemory of commercial systolic array DNN accel-
erators in the presence of faults. Then, it quantifies the impact
of fault presence on output accuracy considering operators’
LSBs to MSBs. Finally, it proposes a mapping approach to
improve endurance in emerging neuromorphic hardware.

Moreover, [101] proposes techniques for fault effects mit-
igation in DNN accelerators. First, the authors exploited
layer-wise data precision adjustment with a numeric range
just sufficient for the values of the layer. As an example, they
adjust fixed-point numbers precision to reduce the FIT (fail-
ure in time) rate of the data path. Next, they hardened themost
significant bits to reduce SDCs (silent data corruption). These
hardening schemes mitigate the FIT rate of the data path
by two orders of magnitude with only a 20% area penalty.
They also suggested adding normalization layers in the DNN
model and placing circuit-level error-detection sensors after
them to avoid benign faults identification.

Although on-chip buffers allow data reuse to reduce
data movement energy, these buffers have high sensitivity,
which makes it difficult to protect them through ECC. The
study of [102] proposes a symptom-based error detection
mechanism to protect buffers. First, it learns the thresh-
olds considering the typical range of values in each layer
with fault-free execution and adding a guard band. Then,
operational values are compared with these thresholds to
identify errors during actual execution. Here, the latency can
be ignored by detecting errors at the time of data usage as
the input of the next layer. However, this method is effec-
tive only for networks and datatypes in which the internal
values lie in a reasonable range and show strong symp-
toms. Also, [103] proposes a cross-layer approach employing
the dynamic fixed point (DFP) and device variability-aware
(DVA) training methodologies to improve the resilience of
ReRAM based DNN accelerator. The authors used the DFP
for representing data with dynamic decimal point position
considering the data range and minimizing the unused most
significant bits (MSBs). They employed a DVA training
method with stochastic noise addition to the parameters dur-
ing training to improve the resilience of the network against
faults and variations or improve the robustness to input
data noise.

Moreover, [104] exploits the advantages of relaxing some
PEs due to inherent NN resilience instead of using TMR to
protect them. This technique employs selective TMR only for
cells of the ripple-carry adder, which affects the higher bit
position of the output (Fig. 15). It protects cells related to the
higher output bits more seriously, and the protection strategy
depends on the corresponding resilience level of the applica-
tions. The experimental results illustrated less chip area and
a shorter critical path compared to full TMR protection under
a similar protection level.

Another approach to increase functional resilience is to
provide different protection for weights and activators. The
research of [105] introduces a significance-driven mapping
of weight bits to memory cells with different resilience.
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FIGURE 15. (a) A relaxed 6-bit adder with AUC = 2 (FA = full adder, CSA =

carry-save adder) (b) A relaxed 5 × 5 multiplier (re-illustrated from [104]).

Similarly, [106] presents the partial mapping of different
neurons to inexact or unreliable PEs to increase efficiency.
Finally, another state-of-the-art research [107] proposes an
automated tool to evaluate the sensitivity of running DNN
inference to be used in microarchitecture-level selective
TMR. The tool triplicates the most sensitive computations to
increase the resilience of the DNN accelerator without full
TMR. Designers use this tool to provide the trade-off between
resilience and hardware costs.

E. CIRCUIT-LEVEL RESILIENCE
This subsection discusses techniques conducted in the cir-
cuit layer. Previously, many techniques were presented for
circuit-level functional resilience improvement using hard-
ware reconfiguration. Herein, partial reconfiguration is the
major approach to repair components and mitigate perma-
nent faults. The research of [108] proposes a small flexible
controller to drive the reconfiguration process in PSF pres-
ence. This technique uses alternative pre-synthesized config-
urations for permanent fault reduction, bitstream relocation
reducing the required bitstream, and fault type detection in
case of success in previous repairs, etc. In [109], the authors
presented a method to extend the lifetime of SRAM-based
FPGAs in space missions. They focus on recovering perma-
nent faults. This technique uses a fix-sized fault detection
module to detect permanent faults and propose a permanent
fault recovery mechanism. By partial reconfiguration, they
developed a lifetime estimation model to find an optimal
partition for designing the module-based fault recovery with
the maximum lifetime. Moreover, dynamic partial reconfigu-
ration (DPR) has been employed as a solution to deal with
permanent faults in space-borne using off-the-shelf FPGA
devices. DPR mechanisms detect the permanent fault in a
module and perfor the reconfiguration process. The amount
of silicon resources reserved for DPR is the main issue and
is different for the same module in the designs employed
so far.

Finally, Table 6 presents the summary and key factors of
proposed techniques in the literature to enhance functional
resilience at different levels of the DNN deployment stack,
which was indicated with different colors similar to Fig. 6.

V. AGING-AWARE TIMING RESILIENCE
In digital circuits, TEs occur due to several phenomena
like process, voltage, and temperature (PVT) variations or
aging [110]. We should mention that aging and the con-
sequent TE rate are increasing in the scaling of emergent
process technologies. TEs can lead to performance reduction,
energy penalties, and also a big loss of accuracy. In this
section, we discuss prior research related to the timing
resilience of DNN accelerator against TE that occurs due
to aging mechanisms, i.e., NBTI and HCI. Fundamentally,
timing resilience in digital circuits is based on the observa-
tion that timing critical paths are rarely activated, and the
worst-case clock cycle produced by statistical timing analysis
is used infrequently. Thereby, the circuit has an inherent
timing resilience, and if the errors can be handled, the system
can continue to perform in the case of TE while improving
the lifetime and performance or even reducing the power
consumption. To mitigate TE and improve resilience, many
studies have been conducted in different layers and life spans
of the system, including overheads in terms of latency and
power consumption. According to the four basic counter-
measures of dependability specified in Section II-B, we can
classify proposed techniques according to the approach they
take facing TEs:

1) TE avoidance (TEA) by design time methods such as
transistor sizing, fault-aware synthesis, or static timing
analysis for conservative guard bands to eliminate the
possibility of TE at the expense of efficiency loss.

2) TE propagation (TEP) scheme ignores the TEs and lets
tomove forward relying on inherent resilience ormech-
anisms arranged in design time based on TE tolerance
or graceful degradation. Inherent resilience is not quite
effective alone if the accelerator is blasted with inter-
mittent TEs. TE mitigation techniques are based on
fault-aware training, masking, skipping, normalization,
quantization, etc. The common denominator of both
TEA and TEP is to characterize the timing resilience
at design time.

3) TE detection (TED) tries to detect errors in runtime
using Razor-like flip-flops [111] or checksum cod-
ing [112]. Afterward, removes errors or mitigates the
effects by runtime (active) methods like ECCs [9], [99],
dropping [113], or mapping [74], respectively.

4) TE forecasting (TEF) prevents TE occurrence by rely-
ing on runtime TEs prediction and monitoring like the
Canary circuit [69] or dynamic timing analysis [110].
We have different runtime adaptation mechanisms con-
sidering TEF, such as model retraining [95], hardware
reconfiguration [47], and DVFS adaption [114].

The Razor is a circuit-level mechanism for timing speculation
based on the dynamic detection of critical path errors. It uses
a double sampling flip-flop to detect TEs in a pipelined
design [111]. A timing mis-speculation causes a delay alarm
which is generated by comparing the speculative execution
output with worst-case assumptions. In such cases, recovery
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TABLE 6. Functional resilience evaluation and improvement techniques and their key characteristics.
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FIGURE 16. Techniques for timing resilience enhancement.

mechanisms are engaged to achieve a correct state. Herein,
computational correctness is not achieved through worst-case
guard bands but rather through in situ error detection and
recovery. On the other hand, the common method for TEs
prediction and forecasting the failure point at the circuit level
relies on the Canary. Canary circuits are typically imple-
mented by delay chains as an approximation of the critical
path delay of the main circuit. They are employed to track
the critical path delay across PVT corners and aging.

Fig. 16 illustrates the taxonomy and techniques proposed
for TE handling in DNN accelerators. As seen in this figure,
gaur-banding, transistor sizing, and dynamic timing anal-
ysis (DTA) are the three main methods of avoiding TEs
in CMOS circuits, including DNN accelerators. The sec-
ond class of TEP techniques includes sensitivity analysis,
retraining, numeric system change, time borrowing, quan-
tization and approximation, masking, and voltage scaling.
Moreover, in 3rd category, Razor-based designing, TE drop-
ping, TE pruning, TE skipping, TE compensation, TE-based
mapping, and TE-based voltage scaling are placed. Finally,
TEF contains methods such as Canary-based circuits, predic-
tive voltage scaling, erroneous pattern detection, predictive
timing speculation, and predictive reconfiguration. In the
following, we explore major techniques in more detail.

A. TIMING ERROR AVOIDANCE
The study of [115] presents a design time method to alleviate
NBTI-induced TEs in CMOS 6T-SRAM cells. The proposed
method is based on nMOS access transistors sizing of SRAM
cells to mitigate the NBTI effects in pMOS pull-up transistors
and improve cell robustness. Accordingly, access transistors
are sized to improve static hold noise margin under NBTI,
other transistors of the 6T-SRAM cell could be properly sized
for improving read stability or write-ability.

B. TIMING ERROR PROPAGATION
In this subsection, we review research done considering TEP
in DNN accelerators. Herein, the first step is to evaluate
TE probability and effects. Next, different techniques e.g.,
training, arithmetic system change, approximation, and oper-
ational parameters adaptation can be employed tomitigate TE

effects and improve resilience. The study of [116] is one of
the first works that has been done to analyze aging-induced
TEs on performance degradation of DNN accelerator. In this
study, the authors prepared a framework using the ASIC
design flow to investigate degradation on MAC arrays
based on library characterization by commercial synthesis
tools.

According to this research, the classification accuracy of
DNN accelerators running at peak throughput may drop to
84% after a year by degradation progress, versus throughput
relaxation can compensate for the loss of accuracy consid-
erably. Moreover, [70] explores two questions related to TE
propagation: (a) What variations affect the accuracy of DNN
output? and (b) Are there opportunities to optimize the DNN
deployment to improve TE resilience The results of this
study on MLP and CNN show that TEs can significantly
affect inference accuracy. This paper presents a two phases
cross-layer approach that first extracts timing faults from
20 operating conditions by hardware simulation, and next
injects extracted faults back into the software simulation to
answer the second question.

As mentioned before, if fault reduces the DNN output
accuracy significantly, it will be better to update weights by
retraining to avoid the critical situation. Thereby, a method-
ology for TE-aware training is proposed by [117] for ASIC
DNN deployment, as shown in Fig. 17. Herein, the RTL
description is synthesized into a gate-level netlist using syn-
thesis tools and technology libraries to prepare placement and
routing. Then, STA (static timing analysis) is conducted to
provide the timing information. Next, the timing-aware gate-
level simulation could discover the behavior of the design
under a given working clock frequency. After that, joint
forward TEs propagation and MSE monitoring are done on
the datasets of real applications. For the selected dataset and
working frequency, the current MSE is compared with the
minimum. In the case of being smaller, the minimum MSE
will be updated, and current accuracy and weights will be
recorded. At last, the backward propagation algorithm will
be used to generate modified weights to be fed back during
retraining. Retraining repeats until the maximum epoch is
reached.
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FIGURE 17. The overall flow of TE-aware training methodology
(redesigned from [117]).

The conventional arithmetic system, i.e., parallel binary,
does not fail gracefully in the face of aging or PVT variations
when arriving beyond the conservative timing margins deter-
mined by STA. Since TEs are mainly occurring due to long
carry propagation chains, it has less impact on online arith-
metic than conventional ones. The study of [118] explores
online arithmetic proposed for digit serial operation. It syn-
thesizes digit parallel online operators to provide graceful
degradation. This work shows that substantial performance
benefits can be obtained by online arithmetic. Through the
analytical exploration and experimental FPGA deployment,
it claims that significant TE reduction and performance
improvement can be achieved by online arithmetic in front
of aging or variations.

Recently, approximate computing has been used to address
aging and improve performance in error-tolerant applica-
tions [119]. The state-of-the-art study of [120] is one of the
recent works conducted to mitigate TE effects using approx-
imation. This study proposes a resilience-aware quantization
based on an adaptive approximation to remove extra guard
bands and mitigate aging effects in DNN accelerators. The
proposed technique tries to compensate for the delay increase
by managed quantization and provides a graceful accuracy
degradation over the lifetime. The authors claimed that for
the lifetime of 10 years, the average accuracy loss is merely
3%while achieving 23% higher performance due to the elim-
ination of the guard band. Fig. 18 summarizes the proposed
aging-aware quantization flow starting from the device level
up (down in figure) to the model level where the inference
accuracy is impacted. Here, α and β are the compression bit
number for activations and weights.

FIGURE 18. Aging-aware quantization in NPUs (Redesigned from [120]).

Lastly, [114] presents a technique for TE handling in
SRAM-basedDNN accelerators using operating voltage scal-
ing. The authors investigated fault propagation effects on
the accuracy of a fully connected NN using different data
types. They found that the weights are more sensitive to TEs
rather than activations. Moreover, faults in the first layer have
a larger effect than the last layer because the fault affects
accumulation until it reaches the output. They proposed a
technique to control the voltage for every memory opera-
tion with no latency penalty. It sets distinct voltage-level for
SRAM cells storing weights of different layers, activations,
outputs, and control bits. For example, a low voltage is set
for input activations with more resilience.

C. TIMING ERROR DETECTION
In this subsection, we explore TEP-based research works
conducted to enhance resilience. These works are mainly
based on Razor-like flip-flops and use different knobs such as
masking, dropping,mapping, and frequency scaling. It should
be noted that some techniques are mainly proposed to mit-
igate TEs induced by voltage scaling of NTC. However,
aging also has the same effects on delay and the proposed
methods can be used to mitigate aging-induced TE effects
too. The study of [33] proposes a method of minimizing
the worst-case guard band by circuit-level timing violation
detection. Based on the inherent error resilience of DNN, the
authors used a simple technique instead of error correction
through the replay. They proposed an accelerator processor
with a five-stage pipeline equipped with Razor flip-flops to
monitor the timing violation in two timing-critical stages:
1) the WMEM load and 2) the MAC execute units. More-
over, the authors reduced intermittent bit flips potential by
two implicit techniques rather than explicit methods of error
correction: 1) using the sign-magnitude number system and
2) use of time borrowing (TB) in data-path among pipeline
stages. Considering small magnitude weights with random
signs, the use of the sign-magnitude numbering system causes
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switching activity reduction, eventually leading to a lower TE
probability.

Word masking [121] and TE-Drop [113] aim to recover
TEs on SRAM memory and PEs, respectively. We classify
these two methods as zeroing since they reset the operation
result to zero after error detection. A cross-layer optimization
framework in pipelined DNN processor is presented by [121]
which employs five means of training, microarchitecture
exploration, quantization, ineffectual operation skipping, and
SRAM voltage scaling in different layers of DNN imple-
mentation. The last stage of optimization introduces a TE
mitigation technique, which allows for aggressive SRAM
supply voltage reduction. The proposed technique first tries
to detect TE location by Razor flip-flop. Next, it uses simple
schemes to mitigate the fault effects by masking in two
granularities, including word masking, in which all of the bits
of a faulty word are put to zero, and bit-masking, in which
only the faulty bit is replaced with the sign bit. Word masking
removes the corresponding connection from the DNN by
zeroing faulty PE’s weight. In bit masking, the magnitude of
a faulty weight is reduced by rounding a faulty bit position
towards the sign bit. Fig. 19 illustrates modifications applied
to the DNN processor microarchitecture in red.

A circuit-level technique of TE-drop for a systolic array
accelerator is presented by [113]. This technique employs
Razor flip-flops to detect TEs and consequently steals a cycle
from the next PE to mitigate the error effects by dropping
erroneous computations. TE-drop decreases the latency and
power overhead compared with error correction. It uses a
multiplexer to select between the previous layer’s error-free
partial sum in case of TE presence, or the usual partial sum
computed by theMAC unit itself in case of TE absence, based
on the error signal received from Razor shadow flip-flop.
The TE-drop mitigates TE effects with less than 1% loss of
accuracy and without performance loss. The only limitation
will be when it is used for the last row of PEs which may
affect performance and accuracy. In this case, the impact of
TE is high because the values of partial sums are large at the
bottom of the array. The final accuracy reduces significantly
with increasing fault rate and skipping the update of some
PEs.

To improve the timing resilience considering the sensitiv-
ity of neurons, [74] presents another cross-layer TED-based
approach by skipping and mapping for a TPU-like systolic
array accelerator. First, the sensitivity of a neuron is approx-
imated by the product of the gradient and the fault rate.
The authors calculated the gradient by differentiating and
averaging over the target variable for the whole dataset. They
claim that weights with small values have higher sensitivity,
whereas those with larger values have less sensitivity against
TEs. Then, the Razor flip-flop is used between the multiplier
and the adder as an extra pipeline stage to measure the fault
rate. In the case of TE, the multiplication output is ignored
and the unmodified partial sum passes to the next stage. Here,
the throughput is not affected, whereas the latency increases
by a clock cycle. Finally, they proposed a mapping strategy

to mitigate TE. The ideal case is to assign weights with
higher sensitivity to more robust MAC units and vice versa,
which requires large interconnect overhead and non-trivial
changes to the hardware. The proposed mapping technique
assigns filters with higher sensitivity to the MAC column
having lower mean TE rates. Using the sensitivity of neurons
provides better results than the TE-drop for the same accuracy
loss.

The state-of-the-art study of [122] proposes a counter-
measure to handle TEs utilizing shadow flip-flops for error
detection and lightweight mechanisms for predictive error
correction. The forward error compensation circuit corrects
the error-inflicted partial sum by estimating the difference
between the correct and incorrect results. The difference is
added back to the final result at the next cycle without stalling
the pipeline. Lastly, the forefront research of [123] proposes
a technique to improve the efficiency of DNN accelerators
with spatial architecture based on overclocking (timing spec-
ulation) and inherent error resilience. The authors presented
an algorithmic-based lightweight TE detection mechanism
to protect convolution layers, enabling aggressive timing
speculation. They developed an algorithmic error detection
mechanism using algebraic properties of the computation.
Fig. 20 demonstrates the system-level overview of the pro-
posed architecture, including the TE detection mechanism.
After error detection, a recovery mechanism using dynamic
frequency scaling adjusts the clock speed to prevent TEs.

D. TIMING ERROR FORECASTING
Here, we discuss the state-of-the-art works in timing
resilience improvement based on error forecasting using
Canary, erroneous pattern detection, and delay estimation.
In the case of error prediction approximation, frequency, and
voltage adjustment are employed to remove forecasted errors.
In this regard, [119] presents a methodology to monitor the
critical path delay at runtime according to TEF and turn the
aging-induced timing violation into approximate computing
error without the conservative guard bands or increasing the
supply voltage level. The method was evaluated in two levels:
RTL level and system level. The experimental results show
a significant improvement in terms of MSE. The proposed
approach successfully converts the aging-induced TEs into
much less harmful approximate computing errors, and thus it
improves quality up to perceptually acceptable levels.

A technique of TE mitigation in NTC (applicable for
aging) is proposed by forefront research [124]. This research
investigates the delay distribution of PEs by supplying all
possible input combinations. The authors claimed that all
multiplication operations activate paths with small delays
except a few input patterns, which leads to TE. So, TE pre-
diction is easy as they occur due to the same input sequences.
The erroneous input patterns are highly likely to create TEs
in the next layers, too, as long as remaining in the input.
This technique predicts TEs based on the erroneous input
pattern detection by adding a TE control unit (TECU) in each
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FIGURE 19. The microarchitecture of a single data-path lane (modified from [121]).

FIGURE 20. Block diagram of GreenTPU (re-illustrated from [124]).

FIGURE 21. A system-level overview of timing speculation [123].

row input, between the activation memory and the accelerator
array to predict TE in PE before it occurs, as shown in Fig. 21.
Razor-like flip-flop is used to detect TEs and record relevant
input patterns. Eventually, the voltage of PEs increases in the
face of recorded patterns to prevent further TEs.

In [125], the authors proposed an approach based on TEF
for fast and accurate timing evaluation (FATE) of DNN
accelerators, e.g., Google TPU. FATE has two novelties: (i)
DelayNet, a DNN-based timing model for timing estimation
of MAC units for different inputs; and (ii) a statistical sam-
pling method to reduce the number of timing estimations.
They reached 8× to 58× speed-up using FATE for timing
simulations, while less than 2% error in accuracy. DelayNet is
trained using main DNN inputs profiling and TEs detected by
the Razor mechanism. Also, [69] presents a technique based
on TEF, named MATIC (adaptive memory training with in-
situ canaries), that mitigates TEs occur in weight buffer due
to aggressive voltage scaling (applicable for aging). MATIC

FIGURE 22. Voltage control, error management unit, and enhanced PEs of
PREDITOR (modified from [126]).

employs training and voltage adaptation to mitigate TEs.
First, it creates an SRAM fault map by performing the read-
after-write and read-after-read operations on different SRAM
addresses to find the preferred state of bit cells. It uses
fault-aware training using the fault map to allow CNN to
compensate for the TEs. Next, the in-situ canary circuit is
used in weight SRAM to predict TE and dynamically control
voltage.

The state-of-the-art study of [126] proposes another TEF-
based technique, namely PREDITOR as a low-power TPU
operating in the NTC (can tolerate aging effects too). PRED-
ITOR uses mathematical analysis to mitigate the TEs by
boosting the voltage of selective PEs at specific intervals
to enhance the performance, thereby ensuring a high infer-
ence accuracy at low voltage. PREDITOR includes an error
collection unit (ECU), a 16-bit error counter and a content-
addressable memory, and a voltage control unit (VCU) as
shown in Fig. 22. Herein, PEs of the systolic array is enhanced
with a modified Razor flip-flop. VCU is composed of the
control unit (CU) and the boost unit (BU) itself. CU computes
the range of operational clock frequency based on analyzing
the TE control in ECU and voltage boosting. BU boosts the
voltage of PEs for the clock cycle interval predicted by the
CU. ECU collects and stores the TE count from each cycle.
The voltage boosting aids in mitigating both detectable and
undetectable TEs. They proposed a cross-layer method to
evaluate the proposed design across DNN applications.
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Finally, for the FPGA deployment of the DNN accelera-
tor, continuous runtime monitoring of on-chip delays at the
circuit level allows us to detect and adapt for TEs induced
by aging. A TEF-based method to monitor transitions and
estimate the remaining timing margin is presented by [127].
The proposedmethod identifies the individual degraded paths
with the worst-case delay using a lightweight mechanism of
DDFFL (difference detector with first-fail latch). Combined
with fine-grained repair alternatives like partial reconfigura-
tion, the authors introduced a runtime and in-system mecha-
nism for incremental repair of links with timing degradation.

Table 7 presents the summary and features of proposed
techniques for timing resilience enhancement according to
the mentioned categories marked with colors similar to
Fig. 16.

VI. AGING-AWARE LIFETIME RESILIENCE
In this section, the last aspect of resilience related to conserv-
ing or even extending the lifetime of the DNN accelerator is
discussed. We explore prior works in two periods of accelera-
tor life, including before wear-out and wear-out. Referring to
the bathtub curve mentioned in Subsection II-B (Fig. 3), the
first period includes early life and normal life phases. Herein,
lifetime resilience can be conserved by monitoring and man-
aging effective factors according to the lifetime-expressing
models. In the wear-out phase, the accelerator is aged, and
different permanent or timing faults occur in PEs or MEs due
to aging progress. All of the techniques related to functional
and timing resilience enhancement, which we have already
discussed in Sections V and VI, could be employed to extend
the wear-out phase. In the following, we review techniques
presented to extend the first period. Fig. 23 demonstrates a
taxonomy of techniques for lifetime resilience improvement
categorized by appropriate time to apply and affecting factors.
According to the figure, there are two main approaches to
express lifetime: 1) threshold voltage-based and 2) MTTF-
based. In the following, we survey research done in these two
disciplines, including voltage scaling, dual Vth assignment,
body biasing, power gating, workload monitoring, mapping,
dynamic thermal, and reliability management.

As mentioned before, NBTI is the dominant aging phe-
nomenon among aging mechanisms, i.e., NBTI, HCI, TDDB,
and EM. Thus, we mainly study previous research related
to lifetime resilience considering NBTI effects. Although,
in general, proposed methods for NBTI-aware lifetime exten-
sion can mitigate the effects of other aging mechanisms too.

A. VTH-BASED LIFETIME EXTENSION
As we have already stated, NBTI leads to the threshold
voltage (Vth) shift in PMOS transistors which increases the
critical path delays and eventually causes timing violations
or TE. NBTI can be understood in terms of two differ-
ent phenomena: stress and recovery. NBTI occurs when the
PMOS transistors are under stress with negative voltage bias
(VGS = −Vdd ). The Vth change is partially recovered after the
removal of the negative bias. As it undergoes repeated stress

and recovery, the Vth of the device is gradually increased.
The long-term NBTI degradation model based on reaction-
diffusion (RD) theory estimates 1Vth as follows [128]:

1Vth = A · f (Vdd ,Vth,T ,R) .tn (2)

A denotes the aging factor, which reflects the actual
stress/recovery pattern along with all technological and oper-
ational parameters. f is a function of voltage (Vdd ), Vth,
temperature (T ), and R as an indication of all device parame-
ters. According to this model, the delay degradation due to the
Vth shift can be calculated by the alpha power model [129]:

d =
J

(V dd − Vth0)∝
× d0 (3)

According to this model, the lifetime is defined as a period
in which 1V th reaches the critical fraction Pcrt of the initial
value (1V th/Vth ≤ Pcrt ). In practice, Pcrt is typically defined
as 10% [130]. The amount of degradation will be diverse for a
chip that runs different workloads and experiences changing
operating conditions. For example, high utilization of MAC
units in a DNN accelerator [131] causes faster aging of
constituent transistors because of continuous stress without
enough time for recovery. Moreover, higher operating tem-
perature worsens the degradation as the majority of aging
mechanisms exponentially depend on [132]. In the follow-
ing, we survey the works conducted to mitigate the gradual
progression of degradation by managing contributing factors,
i.e., temperature, stress, and supply voltage.

1) THERMAL MANAGEMENT
In previous studies, thermal issues have been explored,
while thermal management is still an active research area.
In advanced CMOS technologies, higher chip tempera-
ture accelerates transistor aging. High temperature incurs
resilience challenges since all aging mechanisms, e.g., NBTI,
are exponentially dependent on temperature. On the other
hand, power management techniques can help to control tem-
perature by reducing power density. Although, power dissipa-
tion reduction is not always effective alone and may conflict
with thermal management when they turn off underutilized
parts and concentrate activities in a smaller area, which
may increase power density. Here, we classify techniques
of thermal management into six categories; liquid cool-
ing, floor planning, dynamic thermal management, thermal-
aware mapping, temperature monitoring, and microarchitec-
ture modification.

a: LIQUID COOLING
Liquid cooling technique is an alternative to traditional air
cooling. Many high-performance MPSoCs use air cooling
due to simplicity and cheapness. However, as the thermal
issue became more important, other cooling techniques have
been investigated. Water is an emerging coolant for its high
heat capacity. The study of [133] introduces an indirect liq-
uid cooling technique in stacked integrated circuits using
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TABLE 7. Timing resilience evaluation and improvement techniques and their key characteristics.

microchannels between layers. Contrary to the indirect tech-
nique, [134] introduces a direct liquid cooling approach for
the 3D integrated chip. It uses a water tank, inlet, and outlet.
Water flows through silicon vias (TSV) between the dies.

b: FLOOR PLANNING
Floor planning research includes both CAD and microar-
chitectural works and covers thermal-aware floor planning
techniques for 2D and 3D chips. Already, floor planning is
used for performance improvement and energy reduction by
reducing wire length. But it can also mitigate the temperature
considering increasing power density in emergent circuits.
Thereby, a tool, namely HotFloorplan, for temperature-aware
floor planning is developed [135]. It proposed a floor plan-

ning algorithm using peak steady-state temperature, chip
area, wire delays, and simulated annealing.

c: DYNAMIC THERMAL MANAGEMENT (DTM)
One representative research area of thermal management
is DTM which was followed by some researchers trying
to decrease the temperature by low-power techniques, e.g.,
DVFS. Such techniques reduce performance and may not
alleviate the growing severity of thermal stress at the rated
performance. Considering proposed DTM techniques for
high-performance processors [136], there is an initial delay
before DTM activation when the temperature of the chip
reaches the predefined trigger. After the DTM is engaged,
the processor checks the temperature periodically. When the
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FIGURE 23. Lifetime resilience improving taxonomy.

temperature drops below the DTM trigger, the DTM is disen-
gaged, and the processor runs normally again. Deactivation
may also have some delay. The proposed DTM mechanism
is based on voltage/frequency scaling and rate throttling.
The study of [137] proposes an online learning algorithm to
evaluate DTM on MPSoCs, formulating a loss function. The
loss function includes four factors: hotspots, thermal cycles,
spatial gradients, and performance.

d: THERMAL-AWARE MAPPING/SCHEDULING
This subsection discusses prior works related to tempera-
ture management by task assignment and scheduling. In the
conventional priority queues, tasks are sorted according to
their importance. The proposed technique in [138] adds the
thermal features to the priority queues; their policy gives
a lower priority to the hot tasks (tasks may exceed the
predefined temperature threshold due to high power con-
sumption). The control system monitors tasks at runtime
through the performance counter values to detect hot tasks.
If all tasks are hot, a thermal emergency can be avoided with
hardware-supported clock gating as a failsafe mechanism.
The scheduling technique proposed by [139] is based on
temporal thermal correlations of tasks, while thermal-aware
task scheduling usually uses spatial correlations among pro-
cessing elements to balance the workloads. Moreover, this
technique focuses on choosing the appropriate threads to keep
the processor temperature below the threshold. For example,
with two hot and cool tasks waiting in the run queue, the
hot-cool sequence causes less temperature increase compared
to the cool-hot ones.

The study of [140] introduces a technique to address ther-
mal issues of hybrid NNs execution on a DNN accelerator
with 3D+2.5D stacking. In this design, the PE array can
be flexibly partitioned into two portions to accelerate Con-
vNet and sparse FC computations. This method decreases
memory access by data reuse and peak access reduction. The
complementarymemory access patterns of different networks
are mixed to reduce both steady-state and peak temperature
without performance loss (Fig. 24). The key idea is to avoid

FIGURE 24. (a) Sequential execution of ConvNet and FCNet/RNN leads to
high memory temperature (b) parallel execution presents a uniform
temperature profile (modified of [140] [10]).

burst memory access using spatial division mapping (SDM).
SDM executes ConvNet and sparse FC in parallel and reduces
the peak memory bandwidth demand based on the bandwidth
difference of CONV and sparse FC. For ConvNet, it uses a
batch size of one, whereas, for RNN and FCNet, a larger batch
size is used. The introduced compiler allocates PE array and
SPM buffer between ConvNet and RNN/FCNet to minimize
overall inference latency and peak bandwidth demand.

High-bandwidth memory (HBM) improves memory band-
width based on vertically stacked memory architecture and
through-silicon via (TSV) fast interconnect. But the stacked
architecture increases power density leading to thermal issues
when running modern memory-hungry DNNs. Prior research
on the DTM of 3-D DRAM ignored the physical structure of
HBM and caused heavy DTM performance overhead. The
state-of-the-art study [141] proposes an application-aware
task mapping technique to mapDNN to PEs based on exploit-
ing the HBM channel layout and temperature gradient across
DRAM dies. The proposed method considers variations in
the memory access of DNN layers and tries to minimize
stalling due to thermal hotspots in the HBM stack. It also
uses application-aware DVFS and DRAM low-power states
to further improve performance. NeuroMap includes two
main elements: 1) Mapper and 2) DTM Engine. The Map-
per dynamically conducts an efficient task-to-core mapping,
migration, swapping, and workload-aware DVFS, depending
on the type of task and memory footprint of the current
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FIGURE 25. Static core to channel mapping to minimize vertical stacking
of thermal hotspots (redesigned from [141]).

executing layer and the data reuse policy. The DTM Engine
periodically monitors the temperatures of the memory chan-
nels and detects the proper power state for each rank to
be applied by the memory controller. NeuroMap considers
a layer as a task and classifies the DNN layers into three
categories: 1) heavy; 2) medium; and 3) light, based on their
memory access rates. The task mapping assigns cores to tasks
where a light layer is mapped to a core in the bottommost
row of the 4 × 4 grid, a heavy layer is mapped to a core in
the topmost row, and a medium layer is mapped to a core in
the middle rows. Fig. 25 illustrates core-to-channel mapping
introduced by NeuroMap. The workload knowledge helps
to limit the memory traffic to HBM channels in a way that
mitigates the DTM penalty by minimizing the heating of the
bottommost channels.

e: TEMPERATURE MONITORING
Temperature estimation and sensor allocation techniques are
important since DTM uses the results as feedback to control
the temperature or allow higher performance, as appropriate.
Typically, there are two types of digital and analog ther-
mal sensors which they mainly employed to detect localized
hotspots or to read on-die temperatures [142]. In a sensor-
based approach, we have to deploy many sensors to measure
temperature accurately. An efficient allocation of the limited
number of sensors is conducted by [143] to reduce the cost.
In addition to hardware sensors, there have been studies on
thermal estimation models with performance counter and
software techniques to minimize hardware overhead [144].
Herein, model-based temperature estimation is presented,
which may be more robust than a sensor that is vulnerable
to noise or process variation.

f: MICROARCHITECTURE MODIFICATION
Here, we reviewmicro-architectural methods of thermalman-
agement for MEs and PEs. A thermal management technique
for simultaneous multi-threading processors is introduced
by [145] which adjusts the instruction fetch policy of con-
ventional architecture. The proposed thread selection mech-
anism chooses the coolest thread by looking at the profiled
register file access frequency when the integer register file
or the floating-point register file is overheated. The other
research [146] proposes a register file bank-switching tech-

FIGURE 26. Thermal-aware weight decomposition (modified of [148]).

nique, given that a smaller register file leads to little perfor-
mance loss. The proposed technique divides the register file
into two banks, primary and secondary. Banks are activated
periodically, thus halving the power density of the register
file and eventually leading to better thermal management.
Another work for a specific functional unit is the O2C (occa-
sional two-cycle operation) proposed by [147] which applies
O2C to the adder and the multiplier. When thermal sensors
detect the processor overheating, VDDL (the lower VDD) is
supplied to the execution pipeline stage instead of VDDH (the
nominal VDD). Consequently, it leads to an increase in the
execution stage latency to two cycles (originally one cycle)
due to voltage reduction.

In the ReRAM-based DNN accelerator, thermal effects
reduce the lifetime and inference accuracy. To address
this, [148] proposes state-of-the-art temperature optimization
methods, including three offline temperature optimization
and one online error compensation. Offline steps for tempera-
ture mitigation include thermal-aware weight decomposition,
thermal-aware column reordering, and fine-grained weight
adjustment. Fig. 26 illustrates examples of thermal-aware
weight decomposition, which selects a presentation of
weights with minimum cost. The proposed online method
compensates for errors that occur due to temperature varia-
tion based on the mirror circuit adaptation, which illustrates
reliable performance regardless of temperature change.

DNN accelerator includes thousands of PEs requiring high
energy consumption. To decrease energy consumption and
consequently reduce the temperature, approximate comput-
ing is employed, while complex DNNs can be sensitive
to approximation. To satisfy tight temperature constraints,
thermal-aware design approximation of a DNN accelera-
tor based on trading-off approximation with temperature
effects. Another state-of-the-art study [149] demonstrates
how approximation reduces the temperature of the accurate
circuit from 139◦C down to 79◦C. The authors claimed that
it enables DNN accelerators to fulfill thermal constraints,
improve performance and decrease energy consumption with
an accuracy loss of about 0.44% on average. Moreover, they
explored reliability improvement from the aging perspective
due to the reduced voltage and temperature of the approxi-
mate design. According to the presented experimental results,
the approximate design exhibits 40% less aging degradation
compared to the baseline (Fig. 27). The evaluation is first
done in the circuit-level full-chip deployment and is expanded
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FIGURE 27. Vth increase due to BTI and HCI (re-illustrated of [149]).

up to the system level to evaluate the accuracy and latency
of inference. They achieved significantly higher throughput
by approximate MAC arrays compared to the baseline. They
reduce the voltage of the approximate MAC arrays from
0.7V to 0.6V, leveraging throughput gain to mitigate power
consumption.

Another state-of-the-art research [150] proposes a config-
urable approximate multiplier with three modes of operation,
i.e., exact, positive error, and negative error. Also, it proposes
a filter-oriented approximation approach to map the weights
to modes of multipliers. The mapping algorithm balances
the positive error and the negative error of approximation to
maximize the energy reduction while minimizing the overall
approximation error. Finally, to tackleDVFS for power reduc-
tion, the forefront work of [151] introduces a new control
knob based on the size of input batches fed to the DNN
inference in the GPU. The authors first analyzed the effects
of batch size on power and performance. Then, they designed
and deployed a fast and lightweight runtime system called
Batch DVFS for dynamic batching by adaptive changing
batch size to trade-off throughput with power consumption.
They used binary search to find the proper batch size in a short
period. Batch DVFS Combines dynamic batching with DVFS
to control power in wider ranges while conserving throughput
in the presence of power caps.

2) STRESS MITIGATION
Based on the reaction-diffusion model, aging in terms of
Vth shift is dependent on workload-induced stress. Along
with other effective parameters, i.e., time, temperature, and
voltage, [152] takes the workload features into account. The
workload features include signal probability (SP) and tran-
sition density. The SP is the ratio of the number of periods
with logic one at a gate input to total clock periods, while the
probability of 0’s determines the NBTI-induced degradation
in PMOS devices. Thus, SP and 1-SP are important to cover
both NBTI and PBTI in aging estimation models. These
factors are given to the model to estimate the gate delay
degradation. Here, we review prior works that try to alleviate
aging in accelerator PEs orMEs by stress reduction. There are
four main approaches for stress mitigation, including power
gating, workload characterization, runtime monitoring, and
mapping/scheduling.

Neuromorphic computing using non-volatile memory
(NVM) can improve performance and reduce energy con-

FIGURE 28. The proposed architecture (redesigned from [154]).

sumption based on spike-based computations and bio-
inspired learning algorithms. Although, high voltages of
NVMs operations can accelerate aging in PEs leading to
the lifetime reduction of neuromorphic hardware. The state-
of-the-art study of [153] analyzes the long-term impact of
DNN execution on a neuromorphic accelerator, considering
different aging mechanisms, e. g. NBTI. To mitigate aging,
it proposes the resilience-performance trade-off based on
periodic relaxation of neuromorphic circuits, i.e., a stop-and-
go pattern and de-stressing of all PEs at fixed intervals.

Due to the NBTI effect on SRAM weight memory of
DNN accelerators, another state-of-the-art work [154], intro-
duces the DNN-Life framework for agingmitigation by stress
reduction in DNN accelerators. The authors, first, evaluated
different DNN quantization effects on the distribution of the
bits of weight values at the algorithm level. Next, using the
insights of this evaluation, they introduced a microarchitec-
ture to employ low-cost memory write (and read) transducers
to achieve an optimal SP at runtime, thereby balancing the
aging of the weight memory cells. Transducers periodically
change the coding of weight values by bit-flipping random-
ization to store them in the SRAM buffer with balanced SP.
Weights are decoded back to the original value for feeding
the PEs. As a result, the DNN-Life framework enables effi-
cient aging mitigation of weight memory of DNN hardware
at minimal energy overhead during the inference process.
The main drawback of this work is the overhead of data
encoding and decoding. Fig. 28 demonstrates the introduced
architecture and microarchitecture of DNN life, respectively.
The highlighted boxes are used to mitigate NBTI.

Also, because of the vulnerability and continuous degrad-
ing of SRAM storage due to NBTI wear-out effects, the state-
of-the-art research of [155] is concentrated on aging mitiga-
tion of on-chip SRAM activation buffers of DNN accelerator
mitigating the stress. It is aimed at minimizing both NBTI and
HCI aging effects. The authors quantified aging degradation
induced by performing different DNN inferences considering
factors of duty cycle (or SP), transition density, and access
patterns in activation memory cells. Using the insights gained
from this study, this work proposes a micro-architectural
technique, namely Gated-CNN, to ensure a uniform degra-
dation of memory cells. The key idea of Gated-CNN is to
joint use of bank address rotation and bank power-gating
mechanisms to balance transition density, access patterns,
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FIGURE 29. Gated-CNN main modules (modified from [155]).

and switch-off cycles for uniform duty cycle distributions
across all the memory banks. Gated-CNN includes four main
sequential modules of effective bank module, inter-bank rota-
tion module, power-gating bitmap generator module, and
bitmap update module. The first module calculates the bank
id where a requested activation is found in the I/O buffer.
The 2nd module identifies the starting and ending banks
needed by the next inference. The 3rd module generates a
bitmap that shows banks that should be powered on/off in the
next inference step. The last module updates the bitmap of
power-gating at runtime to mask the bank wake-up latency
penalty. The main advantage of Gated-CNN is leveraging the
workload features, e.g., the memory size of activation layers,
temporal and spatial localities, and I/O buffers that alterna-
tively exchange input and output roles. The main drawback
of Gated-CNN is that power gating can cause thermal cycling
problems. Fig. 29 demonstrates the Gated-CNNmodules and
architecture.

3) VOLTAGE ADAPTATION
Herein, we review proposed techniques of lifetime resilience
improvement based on operating voltage adaptation. In this
regard, [156] introduces a technique to hide the effects of
aging and slow degradation down based on adaptive supply
voltage (ASV) and adaptive body biasing (ABB). According
to the literature, ASV and ABB techniques can be used to
mitigate aging effects [157]. In ASV, the chip’s Vdd is slightly
changed around the nominal value. Under ASV+, the gates
become faster and spend more dynamic and static power
and vice versa. In ABB, a voltage is applied between the
chip’s substrate and the source (or drain) of the transistors,
which requires addition of on-chip signal lines for the bias
voltage. It either decreases the Vth(FBB or forward BB) or
increases it (RBB or reverse BB) depending on the voltage
polarity. Under FBB, the gates become faster and consume
more leakage power and vice versa. The proposed framework,
namely Facelift, hides aging through aging-driven application
scheduling. It mitigates aging by applying voltage adaptation
at key times. It employs a non-linear optimization algorithm
to balance the effects of voltage adaptations on the aging rate
and the critical path delays. Moreover, Facelift can gainfully
configure the chip for a short service life while improving per-

formance. Accordingly, by hiding and slowing down aging,
designers can design chips for 7-year life while running at a
15% higher frequency or design for 5 to 7 months of service
life and still use it for seven years.

Moreover, [158] proposes scheduled voltage scaling,
a technique to gradually increase the operating voltage of
the chip to compensate for the NBTI degradation instead
of setting a fixed operating voltage guard band to rectify
aging. In scheduled voltage scaling, the voltage increases
gradually at runtime and has the potential to increase IC
lifetime by about 45%. In the state-of-the-art study of [159],
a statistical optimization framework is presented to improve
the lifetime resilience of digital circuits in the presence of
aging degradation based on the gate-level delay degradation
model. Here, to estimate a criticality metric, a set of statisti-
cally optimized critical gates is selected. The dual-threshold
voltage assignment technique is used for the identified critical
gates enabling the target chip to improve lifetime resilience
and reduce timing yield loss.

B. MTTF-BASED LIFETIME EXTENSION
Lifetime can also be expressed by the measure of mean time
to failure (MTTF). Here, NBTI can be modeled as follows:

MTTFNBTI =

{[
ln(

A
1 + 2eB/kT ) − ln(

A
1 + 2eB/kT − C)

]
×

T
e−D/kT

}1/β

(4)

where A, B, C, D, and β represent appropriate parameters,
and k represents Boltzmann’s constant. This lifetime relia-
bility model was built on experiments done at IBM [160].
Herein, the temperature is the main parameter affecting the
lifetime in the long term. The critical point in this model is
that the MTTF becomes smaller as the temperature increases.
Another important implication of this model is that the life-
time resilience of CMP (chip multiprocessor) depends on the
running workload because of the temperature dependency.
An MTTF-based mapping approach is proposed by [156] to
mitigate aging effects. Assuming the same clock frequency,
which is determined by the slowest core for all PEs of CMP,
the proposed technique maps relatively cool tasks to the
slower cores, where the pipeline slack margin is tighter com-
pared to the faster cores and vice versa. Consequently, aging
distributes across the cores uniformly. Here, the average tem-
perature of each task is measured using per-core sensors.

1) DYNAMIC RELIABILITY MANAGEMENT
The idea of dynamic reliability management (DRM) is to
monitor system elements continuously and make periodic
decisions for control knobs to shift operations to a state where
the lifetime is as close as possible to a desired predefined
value. DRM has two components, theMTTF online estimator
and the DRM controller. DRM usually employs task mapping
and DVFS techniques to improve the lifetime resilience of
the desired target. In [161] a dynamic reliability manage-
ment (DRM) technique was presented based on the MTTF
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TABLE 8. Lifetime resilience evaluation and improvement techniques and their key characteristics.

enhancement. In this technique, the performance is dynami-
cally adjusted using DVFS and architectural adaptation based
on different resilience target points of PEs. For example,
considering the target FIT (Failure-In-Time), if there is a
margin in terms of MTTF, applications can be run faster.
Otherwise, performance should be degraded tomeet the target
MTTF design point. Finally, the study of [162] proposes a
hybrid DRM algorithm that combines thread migration and

DVFS. The goal is to increase the lifetime resilience of the
overall system to the desired target withminimal performance
degradation. The DRM idea is to propose a control algorithm
that continuously monitors the temperatures of processing
elements of the CMP to extend the lifetime based on the
MTTF model.

Table 8 demonstrates the summary and key features of
proposed techniques to enhance lifetime resilience based on
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TABLE 9. Some answered questions in this survey.

TABLE 10. Some new research opportunities.

different aging factors and introduced models which are cat-
egorized by different colors similar to Fig. 23.

VII. DISCUSSION AND FUTURE SCOPE
DNNs have affected many aspects of our lives while it is
utilized in different safety-critical disciplines with a high
demand for dependability. In this regard, DNN accelerators
have shown a high degree of efficiency with great potential
for acceleration beyond what is possible on conventional
processors, making them the primary framework for DNN
deployment on edge devices. Despite the inherent resilience
of DNN applications, the proposed systems are highly vul-
nerable to dependability threats requiring special attention,

particularly with the technology shrinking to Nano Era,
which worsens the dependability concerns due to factors like
aging. Some safety-critical application disciplines, such as
autonomous cars and healthcare, require very strict depend-
ability specifications. DNN accelerators will find adoption
in these disciplines only if their dependability has been thor-
oughly proven. As such, the studied techniques can be used as
the ultimate method of the efficacy of dependable solutions.

In this survey, we reviewed the major techniques for
evaluating and improving the resilience of DNN algorithms
and accelerators as a measure of dependability regard-
ing different paradigms of aging. We studied the impact
of various design decisions on accelerator resilience and
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summarized the techniques of aging mitigation. The survey
started with a brief review of related articles studying DNN
accelerator resilience and efficiency issues. Next, we stud-
ied safety-critical standards, certification requirements, and
mixed-critical system specifications. After that, we proposed
preliminaries of this survey, including aging paradigms, DNN
models, underlying platforms, and resilience concerns. Thus,
we introduced a taxonomy of enhancing techniques of DNN
accelerator resilience composed of functional, timing, and
lifetime resilience according to considering different aging
threats, e.g., PSFs, TEs, and lifetime. In this survey, we shed
light on each category and show the amount of attention
they gain separately from the aging perspective. Herein,
we considered the deployed layers and platforms, scopes and
approaches, time to apply, and possible overheads. For each
category, the literature studies were analyzed, and representa-
tive works were presented in a uniform figure and a summary
table.

Finally, this survey ended with a conclusion, answers to
research questions, and a summary of some notable chal-
lenges and directions for future research. Table 9 shows
answers to the main questions of this study. Also, Table 10
summarizes several topics for future research.
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