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ABSTRACT To solve the problem of selecting drones for passive positioning within unmanned aerial vehicle
(UAV) swarm and optimizing corresponding trajectories. This article constructs a method for determining
and optimizing the trajectory of UAVs based on an improved particle swarm optimization (PSO) algorithm.
Firstly, the time difference of arrival (TDOA) positioning principle was introduced and corresponding
algorithm models were organized. Afterwards, the objective function and constraint conditions for selecting
drones and optimizing flight paths were designed. The correlation between the optimal solutions of the
continuous time optimization problem is used to determine the UAV for positioning. This paper constructs
the UAVdetermination process based on similarity screening. At the same time, combinedwith the character-
istics of the problem to be optimized, the Particle SwarmOptimization (PSO) is improved from three aspects:
updating the initial position of particles, improving the iteration formula and setting the adaptive termination
condition. This paper further constructs the track optimization process based on improved particle swarm
optimization. Through simulation experiments and algorithm comparison, it can be seen that the method
constructed in this article can determine the drone used for positioning in real-time and optimize its spatial
position. Compared to the selected drones and mainstream passive positioning methods, the method in this
article reduces errors by more than 60% and 45%.

INDEX TERMS Particle swarm optimization, passive location, UAV swarm, trajectory optimization, time
difference of arrival.

I. INTRODUCTION
As electromagnetic space has become the fifth-dimensional
battlefield after ‘‘land, sea, air, and sky’’, the importance
and research efforts of various countries in electromag-
netic space have increased sharply. When using and radi-
ating electromagnetic waves, equipment also exposes its
own position, and passive location emerges as the times
require [1], [2], [3], [4], [5]. The accuracy of passive
positioning is highly correlated with the spatial position
of the sensor. With the rapid development of drones,
optimizing the spatial trajectory of drones for passive
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positioning has become a new way to improve positioning
accuracy.

The current research on passive location can be divided
into two main directions. The first is to study and improve
the location accuracy algorithm. Such as improving time of
arrival (TOA) [6], time difference of arrival (TDOA) [7],
received signal strength (RSS) [8] and angle of arrival
(AOA) [9], [10], etc. Since this article does not involve the
improvement of the location algorithm, it will not be dis-
cussed too much here.

The second type of research mainly focuses on optimiz-
ing the layout of passive positioning stations. Mainly by
designing various criteria to optimize the positions of local-
ization points, thereby improving the accuracy of passive
localization algorithms. Literature [11] deduced the optimal
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configuration of AOA positioning under different system
errors based on the criterion of minimum Circular error
probable (CEP). Geometric Dilution of Precision (GDOP)
[12], [13] was the most widely used localization criterion.
Literature [14] derived the optimal analytical solution of TOA
based on the GDOP criterion and quantified the positioning
accuracy of different configurations. This derivation process
is of great significance for related research. Literature [15]
utilized the GDOP criterion to determine and optimize the
sensor to be activated at the next moment, thereby achieving
optimal control decisions for the sensor and further improving
positioning efficiency. Literature [16] taken GDOP as the
objective function and optimizes the optimal configuration
of the sensor under coherent or non-coherent signal condi-
tions. This improves the positioning accuracy of the target.
Literature [17] derived the optimal positioning configuration
under the TDOA system using Cramer Rao Lower Bound
(CRLB) as the criterion. Based on this, literature [18] fur-
ther considered the impact of sensor measurement errors,
and obtained the optimal positioning configuration under
the TDOA system with correlated errors. Literatures [19]
and [20] studied the joint CRLB for estimating target velocity
and position, and thus obtained the optimal configuration for
measuring target velocity and position. Literature [21] used
particle swarm optimization (PSO) to optimize CRLB, and
obtained the optimal angle direction under TDOA system.
Literatures [22] and [23] both derived the optimal configura-
tions under AOA and TOA positioning systems using Fisher
Information Matrix (FIM) as the criterion.

One of the most obvious advantages of using drone clusters
for passive positioning is that each drone can optimize and
adjust its spatial position in real-time based on the target state,
thereby improving positioning accuracy [24]. Literature [25]
studied the feasibility of locating drone platforms loaded with
TDOA sensors, which is of great significance for studying
passive localization of drones. But only considering the drone
cluster flying in a fixed configuration. The article did not
study the impact of different configurations on positioning
effectiveness. Literature [26] taken the determinant value of
FIM as the optimization objective function, and optimizes the
track of dual UAVs positioning static targets in RSS mode.
Literature [27] was also based on the RSS, combining FIM
with Kalman-filtering to optimize the positioning trajectory
of unmanned aerial vehicles.

From the above literature, it can be seen that the current
research on passive positioning mainly focuses on improv-
ing passive positioning methods and static station layout.
By designing various criteria, the accuracy of passive local-
ization algorithms can be improved. Or study the optimal
station configuration under different positioning systems.
A few literature references involve using drone clusters to
locate targets. By utilizing drone clusters, the position of
each drone can be adjusted in real-time, thereby improving
positioning efficiency. Especially, the methods mentioned in
the above literature will be adaptively improved to solve
the passive localization problem of unmanned aerial vehicle

clusters. However, how to screen UAVs for positioning in real
time according to the target state has become an important
problem restricting the positioning efficiency. Therefore, this
article conducts research.

The main work and contributions of this paper can be
summarized as follows:

(1) This paper constructs a method of UAV screening
and route optimization in UAV cluster, so as to realize the
real-time scheduling of UAVs in the cluster and the optimal
positioning of the target.

(2) This paper analyzes the characteristics of the con-
tinuous time UAV parameter optimization problem, and
proposes the strategy of inheriting the optimization results
to improve the optimization accuracy and reduce the
time-consuming of the algorithm.

(3) Aiming at the continuous time optimization prob-
lem, this paper improves the particle swarm optimiza-
tion algorithm from three aspects. Through simulation and
standard function test, it can be seen that the improved
algorithm has good optimization efficiency and faster
speed.

This article takes drone clusters as the research object,
optimizes and determines the drones used for positioning in
real-time, and optimizes their next spatial position to improve
positioning efficiency. Introduced the passive positioning
principle of TDOA and established the corresponding mea-
surementmodel in Section II. Designed the objective function
and constraint conditions for selecting drones and optimiz-
ing flight paths, and provided the optimization process in
Section III. Sort out the two characteristics of the problem to
be optimized, and then improve the particle swarm algorithm
in Section IV. Conduct simulation verification and algorithm
comparison to highlight the advantages of the method in
Section V. The final conclusion is drawn in Section VI.

II. LOCATION MODEL AND AND ERROR ANALYSIS OF
UAV SWARM BASED ON TDOA
A. PRINCIPLES OF TDOA
TDOA location, also known as hyperbola location, is an
important part of passive location. The principle is that
the time difference occurs because different sensors receive
the target emitter signal at different times. According to the
time difference, the distance difference between the target
and different sensors can be obtained. Thus, the position
of the target can be estimated. That is, the position of the
target can be obtained by measuring the time difference
of the target signal reaching different sensors, as shown
in Figure 1.
As shown in Figure 1, any two receivers determine a group

of hyperbolas, and the intersection of multiple hyperbolas is
the position of the target. Assuming the position of the i-th
drone used for passive positioning is (xi, yi, zi), i =0,1,2,3.
The target location is (xt , yt , zt ). Set ri as the distance from
the i-th drone to the target. Using 0-th drone as the main
station, the basic equation set for TDOA positioning can
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FIGURE 1. Schematic diagram of TDOA location.

be obtained as follows:
r0 =

√
(xt − x0)2 + (yt − y0)2 + (zt − z0)2

ri =

√
(xt − xi)2 + (yt − yi)2 + (zt − zi)2

1ri = r0 − ri

(1)

Solve formula (1), and the result is the estimated value of
the target.

B. MODEL SOLUTION BASED ON CHAN ALGORITHM
Use the Chan algorithm to solve formula (1). Firstly, organize
formula (1) as follows:

(r0 − 1ri)2 = r2i (2)

Expand and then simplify formula (2) to obtain:

(xi − x0) xt + (yi − y0) yt + (zi − z0) zt = Di + r01ri (3)

where,

Di =
1
2

(
x2i + y2i + z2i − x20 − y20 − z20 − 1r2i

)
(4)

Then the formula (3) can be rewritten as:x1 − x0 y1 − y0 z1 − z0
x2 − x0 y2 − y0 z2 − z0
x3 − x0 y3 − y0 z3 − z0

xtyt
zt

 =

D1 + r01r1
D2 + r01r2
D3 + r01r3


(5)

Let,

A =

x1 − x0 y1 − y0 z1 − z0
x2 − x0 y2 − y0 z2 − z0
x3 − x0 y3 − y0 z3 − z0

 (6)

X =

xtyt
zt

 (7)

F =

D1 + r01r1
D2 + r01r2
D3 + r01r3

 (8)

Then formula (5) can be rewritten as:

AX = F (9)

Assume A is fully ranked, namely rank(A) =3. Using the
pseudo inverse method to solve formula (9), it is obtained
that:

X =

(
ATA

)−1
ATF (10)

Let,

B =

(
ATA

)−1
AT =

b11 b12 b13
b21 b22 b23
b31 b32 b33

 (11)

The location of the target is:
xt = n1r0 + m1

yt = n2r0 + m2

zt = n3r0 + m3

(12)

where,

nj =

3∑
i=1

bji1ri (13)

mj =

3∑
i=1

bjiDi (14)

Bring formula (12) into formula (1) and simplify it to
obtain:

a0r20 + a1r0 + a2 = 0 (15)

where,
a0 = n21 + n22 + n23 − 1
a1 = 2n1 (m1 − x0) + 2n2 (m2 − y0) + 2n3 (m3 − z0)
a2 = (m1 − x0)2 + (m2 − y0)2 + (m3 − z0)2

(16)

Then solve formula (15) to achieve the positioning of the
target.

C. ERROR ANALYSIS
Differentiating the third equation in formula (1),

d (1ri) = (c0x + cix) dxt +
(
c0y + ciy

)
dyt

+ (c0z + ciz) dzt + (ki − k0) (17)

where, 
cix = (xt + xi) /ri
ciy = (yt + yi) /ri
cix = (xt + xi) /ri
ki = cixdxi + ciydyi + cizdzi

(18)

Then the positioning error of the target can be expressed as:

dXt =

dxtdyt
dzt

 (19)
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The error caused by UAV position can be expressed as:

dXU =

k1 − k0
k2 − k0
k3 − k0

 (20)

The position relationship between the target and the drones
is represented by C, which is:

C =

c0x − c1x c0y − c1y c0z − c1z
c0x − c2x c0y − c2y c0z − c2z
c0x − c3x c0y − c3y c0z − c3z

 (21)

The error caused by the time difference is:

dY =

d1r1
d1r2
d1r3

 = CdXt + dXU (22)

By adjusting the spatial position of the drone, C can be fully
ranked. The positioning error of the target obtained through
pseudo inverse method is:

dXt =

(
CTC

)−1
CT (dY − dXU ) (23)

Let,

B =

(
CTC

)−1
CT

=
(
bij
)
3×3 (24)

Assuming the mean error 1ri of measurement is 0, and the
position error of each drone are independent of each other.
The covariance of the positioning error is:

P = E
[
dXtdXTt

]
= B

(
E
[
dYdY T

]
+ E

[
dXUdXTU

])
BT (25)

where,

E
[
dYdY T

]
=

×

 σ 2
1r1

η12σ1r1σ1r2 η13σ1r1σ1r3
η21σ1r2σ1r1 σ 2

1r2
η23σ1r2σ1r3

η31σ1r3σ1r1 η32σ1r3σ1r2 σ 2
1r3


(26)

E
[
dXUdXTU

]
=

E

 k1 − k0
k2 − k0
k3 − k0

( k1 − k0 k2 − k0 k3 − k0
)

= diag


 c

2
1xσ

2
x1 + c21yσ

2
y1 + c21zσ

2
z1

c22xσ
2
x2 + c22yσ

2
y2 + c23zσ

2
z3

c23xσ
2
x3 + c23yσ

2
y3 + c23zσ

2
z3


T

+

(
c20xσ

2
x0 + c20yσ

2
y0 + c20zσ

2
z0

)
× I3×3 (27)

where ηij is the correlation coefficient between 1ri and
1rj. σ1ri represents the standard deviation of distance mea-
surement error between 0-th drone and the i-th drone. σ 2

xi

represents the variance of the error of the i-th drone in the
X-axis direction, σ 2

yi and σ 2
zi are the same. Let:

P = [mlh]3×3 (28)

The positioning error of the target is:
σ 2
xt = m11

σ 2
yt = m22

σ 2
zt = m33

(29)

The positioning accuracy of the target can be expressed as:

GDOP =

√
trace (P)

=

√
σ 2
xt + σ 2

yt + σ 2
zt (30)

The trace(P) in formula (30) represents the sum of ele-
ments on the main diagonal of matrix P in formula (25).
According to formulas (25) - (27) and (30), it can be seen

that the spatial position of the drone affects the positioning
accuracy of the target. Therefore, the next sectionwill analyze
and study the impact of drone position.

D. THE INFLUENCE OF DRONE POSITION ON PASSIVE
POSITIONING ACCURACY
It is assumed that the four UAVs adopt linear, Y-shaped,
T-shaped and Cross-shaped spatial distribution respectively.
In the four modes, the shortest distance between two UAVs
is 40 kilometers, and the performance of passive positioning
equipment is the same. The correspondingGDOP distribution
is shown in Figure 2.

As can be seen from Figure 2, different configurations of
UAV clusters have a great impact on positioning accuracy.
When using drone clusters for passive localization of targets,
the different configurations of the cluster have a significant
impact on the accuracy of target localization.

At present, research mainly focuses on the static layout
of passive positioning stations. How to select fixed position-
ing points to achieve optimal overall positioning efficiency.
By using drone clusters to locate targets, the relative position
between the drone and the target can be gradually adjusted
based on the positioning results, thereby achieving gradual
optimization. According to the status of each drone in the
UAV cluster, the route of the corresponding UAV is selected
and optimized.

Through the analysis in this section, in cases where the per-
formance of positioning equipment is similar, the positioning
accuracy is only related to the spatial configuration of the
drone.

III. METHOD FOR SELECTING AND OPTIMIZING
TRAJECTORY BASED ON OPTIMAL SOLUTION
SIMILARITY SCREENING
A. OBJECTIVE FUNCTION
Assuming there are M drones, the position of the i-th drone
at time t is [xi(t), yi(t), zi(t)]. Meanwhile, due to the use of
TDOA positioning, only four drones are required. Therefore,
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FIGURE 2. Comparison diagram of GDOP under different distribution
modes.

FIGURE 3. Schematic diagram of motion constraints.

it is necessary to select 4 drones from theM drones for passive
positioning. According to the principle of arrangement and
combination, it can be obtained that:

C4
M =

M (M − 1) (M − 2) (M − 3)
4 × 3 × 2

= CM (31)

There are a total of CM selection methods. By optimiz-
ing these CM methods and ranking the results, the optimal
scheme for positioning can be obtained.

Based on the idea of model predictive control (MPC). Set
the objective function as:

F = argmin
C4
M

(
K∑
k=1

γ kGDOP (t + k)

)
(32)

where γ is the attenuation factor, k is the subsequent time,
where k = 1, 2, . . . , K .

The meaning of formula (32) is to select 4 drones from the
M UAVs and optimize their spatial positions at the following
K times, to minimize the sum of positioning errors.

Through the above process, the next moment of UAV
motion parameters can be optimized. The following track can
be obtained by continuously iterating the above process.

B. CONSTRAINT CONDITION
Constraints mainly include individual motion constraints and
obstacle avoidance constraints, and cluster communication
constraints and collision avoidance constraints.

It is assumed that themotion state of the UAV is at k and the
next moment, that is, the motion state at the moment k+1kis
shown in Figure 3.
The position and speed of m-th UAV at time k are Pkm =

[xkm, ykm] and vkm = [vkxm, vkym]. Take it as the initial condition,
optimize it to get the position and velocity at the next moment
as Pk+1k

m = [xk+1k
m , yk+1k

m ] and vk+1k
m = [vk+1k

m , vk+1k
m ].

The corresponding relationship is shown in Figure 3. The
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motion constraints should be satisfied, namely:
Pk+1k
m = Pkm + vkm1k

vk+1k
m = vkm + 1vkm∥∥∥Pk+1k
m − Pkm

∥∥∥
2

≤

∥∥∥vkm∥∥∥2 1k
(33)

∥∥2means to take the 2-norm. Where 1vkm is the value of
the velocity change, which should satisfy:

∥∥∥1vkm
∥∥∥
2

≤ 1vmax

vmin ≤

∥∥∥vk+1k
m

∥∥∥
2

≤ vmax
(34)

That is, the speed and the amount of speed change cannot
exceed its allowable limit.

Similarly, the change amount 1θkm of the UAV direction
can be calculated according to the velocity vector at two
moments, which should satisfy:∣∣∣1θkm

∣∣∣ ≤ 1θmax (35)

where || represents the absolute value.
The above are the motion constraints that the UAV should

meet.

C. OPTIMIZATION PROCESS BASED ON SIMILARITY
SCREENING
Due to the different positions of drones at each moment, the
drones used to achieve optimal positioning may not neces-
sarily be the same. At every moment, the drones used for
positioning are selected based on the status information of
the drones in the cluster, and their positioning efficiency is
inevitably not inferior to the designated drones.

From formula (33), it can be seen that the parameters that
need to be optimized are extremely complex and require a
huge amount of computation. If C4

M optimization calculation
is performed at every moment, the computational complexity
is extremely high. But it is obvious that there must be some
less effective or normal combination methods in the C4

M
arrangement and combination. There is no need to further
optimize and solve the formation.

Which combinations are worth further optimization and
which do not require further calculation are the issues to be
addressed in this section. Therefore, this section constructs an
optimization process based on similarity filtering. As shown
in Figure 4.
The optimization process in Figure 4 is divided into the

8 steps:
Step 1: Initialization time variable t = 1.
Step 2: Optimize the positioning results of a combination

using an improved particle swarm optimization algorithm.
Sort all combinations based on their positioning performance
and execute the best results.

Step 3: Select the drone combination coordinates with
positioning efficiency in the first K groups as an alternative
solution set S. And then update the spatial locations of all

FIGURE 4. Algorithm flow.

drones. The four selected drones in the cluster perform cor-
responding optimization results, while the remaining drones
remain in their original motion state.

Step 4: Using formula (36), calculate the similarity
between the spatial position of the drone at the next moment
and each set of solutions in the alternative solution set S.

Rij =

4∑
i=1

√(
xi − xj

)2
+
(
yi − yj

)2
+
(
zi − zj

)2
, i ∈ C4

M ,

× j ∈ S (36)

Step 5: Sort the similarity and select the top K groups for
further search and optimization. Execute the optimal solution
and update the alternative solution set S.

Step 6: Time variable t plus 1. Determine whether the
task has ended. If it ends, execute Step 7; otherwise, execute
Step 8.

Step 7: Output all optimization results. That is, the selected
drone at each moment and its corresponding optimized posi-
tion.

Step 8: Determine if t is approximately the set global
update cycle T0. If greater than, return to Step 1, otherwise,
return Step 2.

At this point, the UAV number used for positioning at
each time and the corresponding spatial position can be deter-
mined.

The improved particle swarm optimization algorithm in
Step 2 will be introduced in the next section.

Calculating similarity in step 4 is inspired by static posi-
tioning. For static positioning, there is an optimal configura-
tion, and the more similar it is to the optimal configuration,
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the better its positioning effect. Therefore, the higher the
similarity with the previous optimal positioning configu-
ration, the more likely it is to achieve better position-
ing results. This is also the core of this optimization
process.

Setting the global update cycle T0 in Step 8 is to prevent
the poor positioning effect of Type C4

M from causing large
positioning errors. Because the subsequent optimization is
based on the results of the pre-results. If the previous results
are poor, the subsequent results will not be good. Therefore,
after T0 optimizations, it is necessary to conduct a global
search again. If T0 is set too large, if the first search result is
not ideal, the subsequent T0 will inherit the result, resulting in
poor optimization effect. If T0 is set too small, although it will
reduce the possibility of the above problems, it will increase
the calculation amount of the algorithm due to frequent global
search. Therefore, t0 should be taken as appropriate. Let
T0 =10 later.

IV. IMPROVED PARTICLE SWARM ALGORITHM
A. PARTICLE SWARM ALGORITHM
Particle Swarm Optimization (PSO) is established by observ-
ing the predation characteristics of birds [28]. The algorithm
is simple to operate and efficient to search, which has been
widely used in many fields.

Assume that the dimension of the search space to be opti-
mized is D, the total number of particles is N , and the total
number of search iterations is T . Then the update iterative
formula for optimization is:

vp+1
id = ωvpid + c1r1

(
ppibest − xpid

)
+ c2r2

(
ppgbest − xpid

)
(37)

xp+1
id = xpid + vp+1

id (38)

where vpi =
(
vpi1, v

p
i2, · · · , vpiD

)
represents the set of velocities

of the i-th particle in each dimension during the t-th iteration,
x ti represents the set of particle position, i = 1,2,. . . ,N,
d = 1,2,. . . ,D, p = 1,2,. . . ,P, ω is the inertia coefficient,
c1 and c2are learning factors, r1 and r2 are random numbers
uniformly distributed between [0, 1]. ppibest and p

p
gbest are the

best position in individual history and the best position in
population history.

Then calculate the fitness function corresponding to the
particle position. The better the fitness, the better the position
of the particle. All particles adjust their speed direction and
move towards a better position by comparing their fitness
functions with other particles.

The above is the core formula and basic principle of the
PSO algorithm.

Although PSO is fast, the problem to be optimized in
this article is extremely complex. If we re optimize and
calculate every time, it will waste computing resources and
time.

Therefore, this article makes targeted improvements to the
PSO based on the problems to be optimized.

FIGURE 5. Changes in the positions of both parties at consecutive times.

B. CHARACTERISTICS OF THE PROBLEM TO BE
OPTIMIZED
Assuming time k , the optimization result of UAV cluster
and the subsequent motion state of the target are shown in
Figure 5.

Combining Figure 5 and the motion constraints of the
drone, it can be seen that the problem to be optimized has
two characteristics. The first characteristic is that the position
of each drone will not change significantly at two adjacent
moments. When there is no significant change in the initial
condition and objective function, the optimization results will
not change significantly. Especially for the continuous time
optimization problem to be optimized in this article. Inher-
iting the optimization results from the previous moment as
the initial state of the next moment can significantly improve
search efficiency.

The second characteristic is that in the process shown in
Figure 4, K sets of optimization results are obtained for
each optimization. All K optimization results may become
the optimal solution. Therefore, in the optimization process
of particle swarm optimization, if these optimization results
can be utilized, it is of great significance to improve the
optimization speed.

C. IMPROVED PARTICLE SWARM OPTIMIZATION
ALGORITHM
In response to the above two characteristics, this article
improves the PSO from three aspects.

1. Adjusting the initial position of particles for optimiza-
tion at the next moment

According to the first characteristic of the problem to be
optimized, which is that the initial conditions and optimiza-
tion functions at adjacent times are relatively similar. The new
optimal solution has a high probability of appearing near the
optimal solution or suboptimal solution at the previous time.
The combination of the optimal solution and the suboptimal
solution is the alternative solution set S in the above.
Suppose the position of the m-th UAV at time t

is Pm(t) =[xm(t), ym(t), zm(t)]. In order to ensure
that the optimal solution can be found, CM-time opti-
mization is required. Let Sopt be the optimal solution,
Sopt = Si,j,k ,l(t+1)=[Pi(t+1), Pj(t+1), Pl(t+1), Pik (t+1)].
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At this time, as long as the i-th, j-th, k-th, l-th UAV move to
the optimized position, the optimal positioning of the target
can be achieved.

At the same time, the optimization results of group CM are
sorted. According to the optimization result, from the best to
the worst, the sorting result is Sall =[Sopt, S2, S3,. . . , SCM ].
Taking the first K solutions sorted in Sall, the alternative
solution set S =[Sopt, S2, S3,. . . , SK ] can be obtained.

Therefore, in each optimization process, there is no need
to randomly distribute the spatial positions of the initialized
particle swarm within the feasible space. Just randomly dis-
tribute around the candidate solution set S, centered around
the previous feasible solution. This will enable faster search
for the target function.

As mentioned earlier, the number of solutions in the alter-
native solution set S is K , and the number of particles opti-
mized is N . Since K is preset, N can be adjusted. Therefore,
Z points are set at each solution for optimization, i.e. N=ZK.
Set the upper and lower limits of the d-th optimization

dimension as Dd,max and Dd,min. Divide this length into K
segments, and generate initial particles near the k-th solution
xdk,optof this dimension that meet:

xdm ∈

[
xdk,opt −

Dd,max − Dd,min

2K
, xdk,opt

+
Dd,max − Dd,min

2K

]
(39)

This ensures that the newly generated particles appear near
the previous optimal solution.

2. Improving iterative formulas
The speed update in formula (37) of the PSO only consid-

ers the historical optimal and global optimal of this search.
In the early stages of the search, both the historical optimal
and the global optimal are relatively poor. At this point, the
two optima have almost no guiding effect on the search, and
even have a misleading effect. As the number of iterations
increases, the role of these two optima becomes increasingly
apparent until the algorithm converges.

The optimization results of the drone at the previ-
ous moment were obtained through numerous iterations.
Although it was the solution from the previous moment.
However, there was no significant change in the initial condi-
tions and optimization objective function at this moment. The
optimal solution from the previous moment has a significant
impact on this optimization, especially in the initial stage,
which is much greater than the global and historical optima
of the particles in this optimization process. To achieve this,
the optimal solution from the previous moment can be used
to guide the initial stage of optimization.

The optimization results from the previous moment have a
significant impact in the early stages of this search, but as the
iteration progresses, the effectiveness should become increas-
ingly weak. This avoids the optimization result from falling
into the previous moment’s optimal state. As the iteration

progresses, the role of global and historical optima in this
iteration should become increasingly apparent.

Let the total number of particle iterations be P, and accord-
ing to the above discussion, adjust formula (37) to:

vp+1
id = ωvpid +

p
P
clrl

(
ppibest − xpid

)
+ cgrg

(
ppgbest − xpid

)
+
P− p
P

K∑
k=1

ckrk
(
xSk,opt − xpid

)
(40)

Compared to formula (37), formula (40) incorporates the
influence of the previous optimal solution. At the same time,
a time adjustment factor was added before each item. Thus
adjusting the degree of influence of different factors in differ-
ent iterations. And then improve the speed of the algorithm.
3. Set adaptive termination conditions

The above two improvement points both improve the
efficiency of the algorithm. And if the algorithm still under-
goes P iterations, the total computational complexity of this
algorithm increases instead of decreasing, and the efficiency
of the algorithmwill not be improved. To reduce the total time
of algorithm operation, try to minimize the total number of
iterations of the algorithm asmuch as possible. Therefore, it is
necessary to set a new algorithm termination condition to stop
searching when the particles converge, avoiding subsequent
meaningless operations.

When the algorithm converges, the fitness function will not
change. Let the change value of fitness function be 1F ,

1F =
∣∣Ffit (p) − Ffit (p− q)

∣∣ (41)

where Ffit (p) represents the corresponding fitness function
value at iteration p. Due to the possibility of particles falling
into local optima. When performing a few more iterations at
this point, 1F will not change. But at this point, the particles
did not converge to the optimal solution. Therefore, when
considering the change of fitness, it is necessary to increase
the iteration gap when calculating the fitness function twice.
Therefore, formula (41) introduces the constant q.

When the value of formula (41) is 0, the optimization can
be terminated and the corresponding solution can be output.

By improving the above three aspects, the efficiency of the
algorithm can be improved. At this point, the optimization
process in Figure 4 can be used to determine the drone used
for positioning and the corresponding spatial location for
optimization in real-time.

V. SIMULATION AND VERIFICATION
A. PASSIVE LOCATION PERFORMANCE VERIFICATION
AND ALGORITHM COMPARISON
To verify the performance of the localization algorithm pro-
posed in this paper, the algorithm is compared with the
localization method of the selected unmanned aerial vehicle,
the method proposed in literature [2], literature [29] and
literature [30].
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FIGURE 6. Optimization results of the algorithm in this paper.

Our 20 drones were initially randomly distributed in an
area with a horizontal axis of [0, 20] km and a vertical axis of
[0,100] km, and the initial flight altitude is 5km. The speed
limit is 30km/h. The initial position of the target is at (80, 20,
0) km, moving in a uniform straight line towards (100,100, 0)
km. The target speed limit is 50km/h.

The particle swarm population is set to 6000, c1 =

c2 =0.3, the number of alternative solution sets S is set to 6,
the upper limit of algorithm iteration times P is 10000, and
the algorithm termination discrimination parameter q = 200.
Use the above five methods to locate the target. The other

four methods, that is, the selected drone in the method of
selecting drones, are the combination of drones with the best
positioning effect after the first global search. Set a target
movement for 100 minutes, positioning once every minute.
The results obtained are shown in Figures 6- Figures 10.

By comparing the five sets of results in Figure 6- Figure 10,
it is evident that the positioning effect of our method is supe-
rior to the other methods. The reason is that the method in this
article selects the optimal drones for positioning, and tracking
in real-time based on the target position. At the same time,
according to the set objective function, the three-dimensional
track of each UAV used for passive location is optimized to
achieve the optimal location.

From Figure 7, it can be seen that as the target moves fur-
ther away from the initial four drones used for positioning, the
positioning effect deteriorates. This is because TDOA uses

FIGURE 7. Optimization results of selected UAVs.

time difference for positioning. As the distance increases,
there is no significant change in the distance difference.
But the measurement error is positively correlated with the
distance difference. As the target continues to move away,
the measurement error will continue to increase. Ultimately,
when there is no significant change in distance difference, the
measurement error continues to increase, thereby affecting
the measurement results. This is another reason why the
performance of the method in Figure 7 is weaker than that
in Figure 6.
It can be seen fromFigure 8 that the results of themethod in

literature [29] are better than those in Figure 7. This is because
literature [29] uses Doppler rate to improve the accuracy of
moving target positioning. At the same time, CRLB is used
as the objective function to optimize the configuration of
UAV cluster. Therefore, compared with the classic TDOA
method in Figure 7, the performance is improved. While, the
performance of the method in literature [29] is still weaker
than that in this paper. Firstly, literature [29] also adopts
TDOA positioning mode, which has the shortcomings of
TDOA discussed in the previous paragraph. Secondly, liter-
ature [29] only gives the final optimal configuration of UAV
positioning. Without a detailed description of the positioning
process, it is difficult to ensure the gradual optimization of
the positioning process. Finally, the method in literature [29]
does not consider the correlation of the target motion position,
and only takes it as a single point positioning each time, which
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FIGURE 8. Optimization results of the algorithm in literature [29].

will also lead to an increase in error. However, due to the
inheritance of the optimization results, this paper makes use
of the correlation between the target positions to a certain
extent. At the same time, the real-time location optimization
method is given. Therefore, the performance of the method in
this paper is better than that of the literature [29].

From Figure 9, it can also be seen that as the target
moves, the positioning effect of the drone deteriorates. This
is because [2] uses the received signal strength localization
method (RSS). This method locates based on the difference in
signal strength. Similarly, as the distance increases, the signal
transmission distance increases. The receiving end receives a
decrease in the strength of the signal itself, while the noise
intensity remains almost unchanged. This leads to a decrease
in the strength and signal-to-noise ratio of the receiving sig-
nal. This affects the positioning accuracy. Similarly, this is
one reason why the method in Figure 9 is weaker than the
method in this paper.

The method in Figure 10 is also based on RSS positioning
mode, it also has the shortcomings discussed in the previous
paragraph. Meanwhile, the research in literature [30] is sim-
ilar to that in literature [29], and only the final positioning
results are given. At the same time, the method in litera-
ture [30] does not consider the relevance of target motion.
As a result, the performance of the method in literature [30]
is weaker than that in this paper, and also weaker than that in
literature [2].

FIGURE 9. Optimization results of the algorithm in literature [2].

In order to further quantify and compare the location per-
formance. Under the condition that the simulation conditions
remain unchanged, 50Monte Carlo experimental simulations
are carried out for each algorithm. Take the average value
of the errors at each moment to obtain a comparison chart,
as shown in Figure 11.

From Figure 11, it can be intuitively seen that over time.
The positioning error of this algorithm is relatively stable and
superior to the other fourmethods. This is because themethod
proposed in this paper can select the optimal combination
of drones for positioning based on their spatial positions at
different times. This ensures positioning accuracy. The other
methods are increasingly affected by measurement errors due
to the increasing distance difference between the drone and
the target, resulting in a significant decrease in performance.

The reason why the method of literature [2] is superior
to the other three methods is that literature [2] uses deep
learning to predict the motion state of the target, so as to
improve the positioning accuracy. However, due to the influ-
ence of increasing distance, the performance of the method
is significantly reduced. The main reason why the method in
literature [29] is better than that in literature [30] is that RSS
is more sensitive to distance than TDOA. That is, the error
of RSS increases with the distance, which is higher than that
of TDOA. Therefore, the results in literature [29] are slightly
better than those in literature [30]. At the same time, it can
be seen that the positioning result of the selected UAV is not
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FIGURE 10. Optimization results of the algorithm in literature [30].

FIGURE 11. Comparison of average errors.

ideal. While, from the perspective of practical application,
this method only needs to specify the UAV and does not
involve the optimal scheduling of resources, which is simple
and easy to implement.

Then take the mean value of each curve in Figure 11, and
the results are shown in Table 1.

As can be seen from table 1, the error of the algorithm in
this paper is reduced by 60.23%, 45.37%, 51.46 and 52.47%
respectively compared with the other four methods. This is
because this algorithm always selects the optimal combina-
tion of UAVs in the cluster, so as to obtain good positioning
effect.

TABLE 1. Comparison of algorithm errors.

FIGURE 12. Error comparison chart.

B. OPTIMIZATION ALGORITHM PERFORMANCE
COMPARISON
In order to further measure and compare the performance
of the improved PSO algorithm. The algorithm in this paper
is compared with the classical PSO algorithm, the Holonic-
PSO (HPSO) in literature [31], the improved Holonic-PSO
(IHPSO) in literature [32], and the improved artificial bee
colony algorithm (IABC) in literature [33]. The simulation
conditions are the same, and 50 Monte Carlo simulations are
performed to obtain a comparison chart of the mean error
value, as shown in Figure 12.

From Figure 12, it can be seen that the proposed method
has better optimization results compared to the classic PSO
algorithm. This is because in the subsequent iterations of this
article, the optimization results of the pre-time were consid-
ered and result inheritance was implemented. In this way, the
subsequent results will not be significantly weaker than the
previous results, and there will be no prominent purple line in
Figure 12. These points are caused by the convergence of the
PSO algorithm to local optima, and the method proposed in
this paper reduces the possibility of such situations occurring.

It can be seen from Figure 12 that the performance of the
algorithm in this paper is inferior to that of HPSO and IHPSO
algorithms in terms of optimal times. But the optimization
result is close to the best optimal result. At the same time,
the method in this paper inherits the results of the previous
sequence time. Such iteration is more stable. It can also be
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FIGURE 13. Comparison curve of algorithm convergence of F7.

seen from Figure 12 that the red line is more stable than the
blue and the black one.

At the same time, we can also see that the performance of
this method is slightly better than IABC algorithm. This is
because the literature [33] mainly optimizes the search direc-
tion of bees and the selection method of some parameters of
the population, and the improvement of the internal search
strategy is limited.

In order to further compare the performance of the
algorithm, the experimental results in literature [31] and
the previous work of the author [32] are combined. The
10 standard benchmark functions F1-F10 in Annex A of
document [31] are used to further compare the performance
of the algorithm. These ten functions include four types:
unimodal, shifted rotated unimodal, multimodal and shifted
rotated multi modal, which have good testing ability.

After 50 Monte Carlo simulations of the above five algo-
rithms, the comparison results are shown in Table 2 and
Figure 13.
It can be seen from the results in Table 2 and Figure 13

that the method proposed in this paper can find the optimal
solution. For some complex functions, the results are weaker
than those of HPSO and IHPSO, but the results are close to
those of the two methods, and there is no difference in order
of magnitude. This is because this algorithm optimizes the
particle position at the next moment to ensure the cumulative
growth of the efficiency of the algorithm. The optimization
result is used as the initial state of the next time, which
improves the efficiency of the algorithm. This makes the
results of the above 50 Monte Carlo simulation experiments
cumulative. Compared with HPSO and IHPSO, which are
independent experiments each time, the proposed method has
approximate optimization efficiency.

It can also be seen from Figure 13 that the fitness function
of the algorithm in this paper decreases the fastest. This
is because the improved iterative function has the guidance
of the previous optimal parameters, which can make the
algorithm converge quickly.

FIGURE 14. Comparison chart of algorithm time consumption.

The improvement of PSO in this article mainly focuses
on algorithm speed. Perform 50 Monte Carlo experiments
and calculate the average algorithm time, and the results are
shown in Figure 14.

From Figure 14, it can be seen that the method proposed in
this paper takes the shortest time. The PSO algorithm has the
fastest single iteration among all intelligent algorithms. How-
ever, due to the fact that the classic PSO algorithm requires P
iterations to complete. The algorithm in this article requires
more computation in a single iteration than the classic PSO
algorithm. However, due to the setting of result inheritance
and adaptive termination conditions, the algorithm can stop
before running P times. Basically, it stopped when it ran to
0.68P. Significantly improved the speed of the algorithm.

The HPSO algorithm in literature [32] sets the level
of particles, and each iteration involves information inter-
action between groups. Therefore, its algorithm is more
time-consuming than PSO. IHPSO in literature [32] adjusted
the particle grouping strategy and designed adaptive termi-
nation conditions on the basis of HPSO. When the algorithm
meets the termination conditions, it will stop searching, so the
algorithm time-consuming jitter is large, even lower than
the classic PSO sometimes. However, IHPSO algorithm also
involves the information interaction between levels. As a
result, the computational complexity of its single iteration is
significantly higher than that of the classical PSO algorithm.
Therefore, the time consumption of the algorithm is higher
than that of the classical PSO algorithm.

Because the classic PSO algorithm is recognized as the
fastest intelligent algorithm. ABC algorithm is slower than
PSO. Literature [33] mainly optimizes the search strategy and
population parameters of ABC algorithm, and has no mea-
sures to promote its algorithm speed. Therefore, the IABC
algorithm in document [33] is slower than ABC and PSO.

Through the above comparison, it can be seen that the
improved PSO algorithm in this article is not inferior to
mainstream algorithms in terms of optimization accuracy, and
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TABLE 2. Evaluation results on ten functions (F1-F10, D =10).

is more stable. Its algorithm speed is significantly better than
other algorithms. At the same time, the method constructed
in this article has a good reference value for solving similar
time series decision-making problems.

VI. CONCLUSION
This article constructs a passive localization method for
unmanned aerial vehicle clusters based on TDOA, providing
an algorithm flow for real-time selection of unmanned aerial
vehicles for localization and optimization of their spatial
positions in the cluster. Firstly, by constructing a TDOA posi-
tioning model, the main factors affecting positioning were
sorted and analyzed. Afterwards, an objective function for
drone selection and trajectory optimization was constructed,
and corresponding constraint conditions were constructed.
Considering that the real-time trajectory planning problem
of unmanned aerial vehicles is a continuous time decision-
making problem, where the solutions at adjacent times are
relatively similar. We constructed a similarity based result
inheritance method and provided an algorithm optimization
process. Then sort out the two characteristics of the problem
to be optimized, and improve the PSO algorithm based on
this. Finally, the advantages of the method were demonstrated
through simulation experiments and algorithm comparisons.
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