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ABSTRACT Addressing decision safety in the unpredictable arena of complex traffic scenarios represents
a significant hurdle for autonomous driving systems. Considering the inherent spatial-temporal uncer-
tainties associated with the future actions of surrounding traffic participants, real-time safety verification
of autonomous driving decisions is crucial to maintaining vehicular safety. Existing online verification
methodologies, such as Responsibility Sensitive Safety (RSS) and Safety Force Field (SFF), ensure driving
safety by formalizing human safe-driving rules and constraining the vehicle to maintain safe lateral and
longitudinal distances in real-time. While these methods effectively prevent collisions instigated by the
autonomous vehicle itself, they lack sufficient foresight and often result in less smooth driving trajectories.
To address these limitations, we propose an innovative, interpretable, formal safety verification framework.
This approach integrates both explicit and implicit traffic rules to anticipate all legally acceptable transitions
of traffic scenarios. It builds the lawful, short-term reachable region for each vehicle, and verifies the safety
of autonomous vehicle decisions by assessing whether the regions these vehicles inhabit, in accordance
with the expected trajectory, overlap with the accessible zones of other vehicles. Furthermore, in scenarios
presenting potential danger, a backup smooth safety trajectory is derived from the autonomous vehicle’s
legal reachability domain as a preventive measure to degrade safety threats. As a cornerstone of safety
for autonomous vehicles, our proposed method ensures a continual safe trajectory in all traffic scenarios,
provided that other participants adhere to traffic rules. Experimental outcomes, grounded in the ISO
34502 standard and real-world critical safety scenarios, demonstrate the method’s efficacy in identifying
potentially dangerous decisions and mitigating autonomous vehicle-induced traffic accidents.

INDEX TERMS Autonomous driving, online safety verification, reachability analysis, decision planning,
alternate safety trajectory.

I. INTRODUCTION
While autonomous driving technology promises to eliminate
human error, augment traffic safety, enable mobility for
the disabled, alleviate traffic congestion, and significantly
enhance the future transportation system’s intelligence, the
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technology in its current form struggles to ensure safe driving
under all weather and scenario conditions. The perception
and decision-making functionalities of autonomous driving
systems exhibit certain limitations in dense and complex
traffic scenarios and extreme weather conditions, leading to
potentially unsafe driving strategies [1]. These strategies not
only pose serious threats to the lives and property of drivers
and associated parties, but also provoke a crisis of public
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confidence, thus, impeding the broader adoption of
autonomous driving technology. To ensure that the
autonomous vehicle can skillfully and safely respond to any
intricate traffic scenarios encountered in real-world condi-
tions, and to prevent such vehicles from actively causing
accidents, it is critical to rigorously verify the safety of
decisions produced by autonomous driving systems.

Currently, most safety verification of such decision-
making systems is conducted offline, predominantly relying
on simulation and actual vehicle verification methodolo-
gies [2]. Real-road vehicle safety verification primarily
employs statistical principles to assert that autonomous
vehicles are statistically safer than their human-driven coun-
terparts, with one evaluative metric being the disengagement
rate [3]. While this methodology is effective, it still harbors
limitations. Firstly, to prove that the safety of autonomous
vehicles matches or exceeds that of human-driven vehi-
cles, these vehicles are required to maintain an accident-free
record over an astounding distance of 240 million kilome-
ters [4]. This stipulation significantly extends the verification
period. Secondly, ensuring that any updates to the algo-
rithms will not introduce new accidents within the mileage
already tested presents a complex task. Consequently, this
real-vehicle safety verification method encounters a bottle-
neck in persistently guaranteeing the safety of autonomous
driving decision-making.

Simulation-based safety verification for autonomous driv-
ing harnesses model-in-the-loop, hardware-in-the-loop, and
vehicle-in-the-loop testing [5], [6]. Model-in-the-loop testing
mandates that autonomous driving algorithms demonstrate
a safety performance akin to human-operated vehicles [7].
Hardware-in-the-loop testing encompasses continuous, com-
bination, and scalability testing [8]. Closed-field vehicle-
in-the-loop and hub-and-spoke platform vehicle-in-the-loop
are primarily used in vehicle-in-the-loop testing [9]. Yet,
these methods struggle with replicating dense, dynamic,
and complex traffic scenarios reflecting real-world con-
ditions. Researchers have made attempts to address this.
Zhao et al. [10] created lane change models based on
extensive natural driving data, facilitating more rapid eval-
uation of autonomous vehicle performance through estimat-
ing conflict, collision, and injury rates. Li et al. [11] and
Sinha et al. [12] leveraged simulation engines and explo-
ration techniques, respectively, to generate safety verifica-
tion scenarios. Feng et al. [13] employed deep reinforcement
learning to train background vehicles via neural networks,
thus crafting an AI-based adversarial testing environment
that drastically reduces necessary test miles. Despite these
advancements, challenges persist. Validating the accuracy of
these virtual environments in reproducing realistic traffic sce-
narios remains difficult, as does confirming the consistency
of autonomous decision-making error rates between virtual
and real environments. Moreover, these approaches predom-
inantly rely on offline data, such as position velocity of
the autonomous vehicle and other vehicles, for performance

evaluation. This limits their capacity for online correction of
decision algorithms, posing a potential risk to maintaining
strict safety standards [14], [15].

Online verification, as a supplement to offline methods,
can authenticate the real-time safety of autonomous vehicles.
Prevalent online verification approaches include Mobileye’s
Responsibility Sensitive Safety (RSS) model and Nvidia’s
Safety Force Field (SFF) model. Oboril and Scholl [16]
fused an online driving risk assessment methodology with
RSS to estimate the potential for accidents via a risk model,
subsequently expanding RSS [17] to evaluate all safety sce-
narios based on the probable future actions of other traffic
participants. They further calculated and assessed whether
the associated collision risk value was sufficiently low to
evaluate vehicular safety. Several researchers [18], [19], [20],
[21] have sought to refine RSS parameter ranges based on
physical constraints, legal requirements, and human driving
behavior, to enhance the practicality of RSS models. Pasch
et al. [22] conducted an extensive parameter assessment of
vulnerable road users within the RSS scope, illustrating how
RSS parameter values significantly influence the model’s
usability. However, these methodologies, while based on pre-
defined driving rules such as maintaining a safe distance, can
only verify whether the vehicle’s state meets the established
rules at a given moment. They fail to guarantee the safety
of the vehicle’s continuous trajectory and do not propose
alternative strategies to guide the vehicle into a safe state.

A number of studies have sought to authenticate the safety
of autonomous vehicle trajectories based on the reachability
analysis of traffic participants. Koschi et al. [23] scrutinized
pedestrian reachability, while Althoff and Magdici [24] com-
puted the reachable regions of surrounding traffic participants
predicated on acceleration and lane-following reachability.
Manzinger et al. [25] amalgamated reachability analysis
with a trajectory planner to compute driving corridors and
trajectories online. Pek et al. [26] incorporated reachability
analysis to evaluate the legality and safety of the ego vehi-
cle’s expected trajectory, providing an alternative trajectory
in hazardous situations. However, these methodologies inad-
equately account for implicit traffic rules, such as social
interaction information and road rights information pertinent
to cooperative driving. As such, these approaches do not
effectively correspond to cooperative driving in real-world
road conditions and neglect factors such as road signs or
temporary traffic restrictions present in actual traffic environ-
ments. They remain ill-equipped to handle the shifting road
environment in the real world. Concurrently, these methods
overlook the occupancy rate engendered by the size of the ego
vehicle on the expected trajectory, resulting in an overestima-
tion of the safety of the ego vehicle’s anticipated trajectory.

In an endeavor to bridge the gaps outlined above,
we present a formalized, online safety verification methodol-
ogy for autonomous driving decision-making. This approach
acts as a safety foundation for the existing motion planning
layer, combining explicit, and implicit traffic regulations to
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formally predict the legal reachable region for traffic par-
ticipant vehicles. Subsequently, it verifies the safety of the
vehicle’s anticipated trajectory and provides an alternative
safe trajectory. Through real-time online verification, this
method corrects autonomous driving decisions, displaying a
robust generalization ability to adapt to all traffic scenarios.
The primary contributions can be summarized as follows:

1. Firstly, our method holistically amalgamates both
explicit and implicit traffic regulations to calculate the
reachable regions for our vehicle and surrounding traffic
participants. It verifies in real-time and continuously if the
space occupied by the ego vehicle intersects with the reach-
able regions of other traffic participant vehicles. This process
aids in evaluating the safety of the trajectory produced by
the decision-making layer and helps avoid dangerous situa-
tions. The calculation of reachable regions takes into account
regulations tied to road traffic, vehicle motion, and coop-
erative driving, allowing the derived reachable regions to
adapt to changing road environments. Furthermore, these
rules are reusable, scalable, and can be generalized to all
traffic scenarios.

2. Secondly, our approach can generate redundant and
smooth alternative safety trajectories based on the ego vehi-
cle’s legal reachable region. These trajectories serve as
fallback safetymeasures in precarious situations, ensuring the
strict safety standards of the vehicle’s journey.

3. Thirdly, we conducted extensive experiments to demon-
strate the effectiveness and real-time performance of the
proposed method. According to the ISO 34502 test scene
standard for autonomous driving systems and the real-world
critical safety events, six random hazardous scenarios were
constructed for simulation analysis. The results indicate that
our method utilizes minimal computational resources while
displaying robust real-time performance. It can complete the
safety verification of the expected trajectory and generate a
smooth alternative safety trajectory promptly, ensuring the
vehicle’s driving safety while maximizing comfort.

The remainder of this paper is structured thusly: Section II
delineates the model and system problematics; Section III
elucidates the paper’s framework; Section IV introduces
safety verification of the expected trajectory, rooted in a
reachable region, and explicates the derivation of an alternate
safety trajectory; Section V outlines the experimental design
and reports the resulting data; the manuscript culminates in
Section VI, which presents the conclusion.

II. SYSTEM MODELING AND PROBLEM FORMULATION
A. VEHICLE AND ROAD MODELING
Vehicle classifications consist of ego vehicle and those par-
ticipating in traffic, the latter of which are subdivided into
motorized and non-motorized categories as illustrated in
Fig. 1. Employing a point-mass model, all vehicles are
accounted for, incorporating a degree of measurement uncer-
tainty. The ego vehicle is conceptualized as a rectangle
defined by length lego andwidthwego, with the reference point

FIGURE 1. Schematic of vehicle and road models.

situated at the rear axle’s center. The rectangle’s front end
maintains a distance l fego from this reference point, while the
distance from the rear end is denoted as lrego. The i(i = 1,
2,. . . , Nobj) traffic participant is characterized by a rectan-
gular model with length lobj,i and width wobj,i, its reference
point being the rectangle’s center. We define the vehicle’s
kinematic model using a second-order integrator:[

px
py

]
=

[
px,0
py,0

]
+

[
vx,0
vy,0

]
(t − t0)+

1
2

[
ax,0
ay,0

]
(t − t0)2

(1)

where px and py represent the X and Y coordinates of the
vehicle reference point at time t , while px,0 and py,0 corre-
spond to the x and y coordinates of the same point at time t0.
Similarly, vx,0 and vy,0 denote the velocities in the x and y
directions, respectively, of the vehicle reference point at time
t0. The terms ax,0 and ay,0 stand for the accelerations in the
x and y directions of the vehicle reference point at time t0.

Roads are bifurcated into non-overlapping and overlap-
ping categories: non-overlapping roads consist solely of a
primary thoroughfare without subsidiary lanes or intersec-
tions, while overlapping roads incorporate branching lanes
and intersecting areas. The overlap area is defined as the
intersection of each subsidiary lane, its centroid taken as the
confluence of the centre lines of each branch. The distance
from the ego vehicle to this centroid is denoted as dcego, and
the corresponding distance from the ith traffic participant is
represented by dcobj,i. Roadway typologies encompass motor-
ways, non-motorways, and shoulders. For any given lane, it is
presumed that the lane centreline, along with its left and right
boundaries, constitute smooth directed curves. Furthermore,
the lane centreline is assumed parallel to the left and right
boundary lines of the lane, both of which comprise a series of
narc segments.
Within the Frenet coordinate system, the lane centreline

serves as the reference line with the lane width symbolized as
wlane. The unit normal vector at the reference line position s is
denoted as r⊥ (s), while the tangential angle corresponding to
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FIGURE 2. Depiction of lane model.

the reference line at point F is αF , as illustrated in Fig. 2. The
set comprising all points enclosed within the lane boundary
R is represented as:

R = {r (s)+ γwlaner⊥(s)|s∈[smin, smax], γ∈[−
1
2
,
1
2
]} (2)

In this context, r(s) represents the point corresponding
to the reference line position s. The variable γ is a scalar
factor ensuring all points are constrained within the lane
boundary, with a range of defined values. The parameters smin
and smax respectively represent the minimum and maximum
magnitudes of the lane reference line lengths. Our approach
to road modelling is aligned with the road network standards
proposed by OpenDRIVE [27].

B. FORMALIZATION OF TRAFFIC REGULATIONS
To ensure the unambiguous safety compliance of ego vehi-
cle, we articulate the constraints posed by both explicit and
implicit traffic regulations on each participant in traffic.
Explicit traffic regulations encompass legally mandated rules
governing vehicular behavior, whereas implicit traffic regula-
tions pertain to norms typically observed by seasoned drivers,
yet not officially codified in regulatory statutes. As delineated
in Table 1, constraints on individual traffic participants are
categorized into three broad classifications: those related to
road traffic, vehicle movement, and cooperative driving.

C. PROBLEM DEFINITION
The issue of real-time safety verification for autonomous
driving decision-making premised on dynamic reachability
domain can be defined as follows: In each verification cycle,
this study computes the accessibility of other vehicles partic-
ipating in traffic, guided by the established vehicle and road
models, along with explicit and implicit traffic regulations.
This process relies on comparing the area encompassed by
the ego vehicle’s anticipated trajectory to the space occupied
by the expected trajectories of others. The safety of the ego
vehicle’s predicted trajectory is assessed based on the pres-
ence or absence of overlap between these areas. Furthermore,
the legally reachable region for the ego vehicle is calculated,
contingent upon the reachability regions of other traffic par-
ticipants, to derive an alternate safe trajectory. The success of
this alternate safety trajectory generation is contingent upon
whether the area it occupies falls within the ego vehicle’s
lawful reachability region. Ultimately, the safety of the antic-
ipated trajectory and the successful generation of an alternate
safe trajectory dictate the trajectory of the ego vehicle in the
subsequent verification cycle.

TABLE 1. Restrictions imposed on traffic participants.

FIGURE 3. Schematic representation of online safety verification.

III. PROCEDURE FOR ONLINE SAFETY VERIFICATION
METHOD
The proposed online safety verification method ensures the
safety across consecutive verification cycles. This section
explains the verification procedure as illustrated in Fig. 3
to Fig. 5. The intended path (represented by a black line)
from the ego vehicle’s trajectory planner is evaluated for
possible intersections with the reachable zones (shown as
blue areas) of other traffic entities. In case of a potential
hazard, an alternate safe trajectory (depicted by a red line)
will be employed

The ith traffic participant’s attainable regions encom-
pass: the roadway-related region Aroad,i (tk , tk+1) (the green
area in Fig. 4a), the vehicular motion-related region
Amot,i (tk , tk+1) (the orange area in Fig. 4b), and the cooper-
ative driving-related region Acoop,i (tk , tk+1) (the blue area in
Fig. 4c). The comprehensive attainable regionAobj,i (tk , tk+1)
(the area circumscribed by the blue line in Fig. 4d), is the
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FIGURE 4. Illustration of regions of additional traffic participants: (a) the
roadway-related region Aroad ,i

(
tk , tk+1

)
, (b) the vehicular

motion-related region Amot,i
(
tk , tk+1

)
, (c) the cooperative

driving-related region Acoop,i
(
tk , tk+1

)
, (d) the comprehensive

attainable region Aobj,i
(
tk , tk+1

)
.

intersection of these three regions. The collective region
Aobj (tk , tk+1) can be derived by concatenating the regions
of each traffic participant:

Aobj (tk , tk+1) =
⋃

Aobj,i (tk , tk+1) (3)

The expected trajectory within the interval [tk , tk+1],
denoted as TRintendk , is verified as safe (TRsafek ) before time tk .
To prevent the deployment of an unsafe path after time tk+1,
a continuous alternative safe trajectory TRalterk is provided,
forming a composite trajectory TRsafek |TR

alter
k . If both TRintendk

and TRalterk are successfully verified prior to time tk , the
composite trajectory is deemed valid, thus permitting the ego
vehicle to transition into automatic mode and initiate the
execution of TRsafek , as demonstrated in Fig. 5 for validation
cycles i = 1 and i = 2. If the trajectory remains unverified
at time tk , as shown for cycles i = 3 and i = 4 in Fig. 5,
the vehicle continues on the previously verified trajectory
TRalterk−c (0 < c < k) until a new valid path emerges. If the
duration te of the currently active alternate safe trajectory
satisfies the condition ta ≤ te ≤ tb (where ta and tb are con-
stants and 0 < ta ≤ tb ≤ Talter ), a legally reachable region
from the vehicle at a specific time is computed to generate
an alternate safe trajectory for duration Talter . If the vehicle is
unable to generate an alternate safe trajectory and te < ta,
considering the constraint Rsafe_distance, a path that ensures
legal safety is established along the vehicle’s current lane
centerline, involving maximum deceleration. This pathway is
recorded as the subsequent alternate safe trajectory TRalterk .

IV. ONLINE SAFETY VERIFICATION METHOD BASED ON
REACHABILITY ANALYSIS
A. PREDICTION OF REGIONS FOR TRAFFIC PARTICIPANTS
We categorize the region Aobj,i (tk , tk+1) of the ith traffic
participant vehicle within the time interval [tk , tk+1] into
three types according to the primary constraints delineated
in the traffic statute formalism: the road-traffic-associated
region Aroad,i (tk , tk+1), vehicle movement-related region

FIGURE 5. Timeline for generation of alternate safety trajectories.

FIGURE 6. Regions in relation to road traffic: (a) the lane-following-based
region A

following
road,i

(
tk, tk+1

)
, (b) the road-signage-based region

A
sign
road,i

(
tk, tk+1

)
, (c) the V2X cooperation-based region AV2X

road,i
(
tk, tk+1

)
.

Amot,i (tk , tk+1), and cooperative driving-related region
Acoop,i (tk , tk+1). These three types of regions are derived
from the stipulations set forth in the traffic statute formalism.

Aobj,i = Aroad,i ∩Amot,i ∩Acoop,i (4)

The three methodologies we have proposed for region
calculation ensure an over approximation of the results. That
is, the calculated region surpasses the actual region, thereby
strictly verifying the potential for collision between the ego
vehicle and other traffic participants. This approach eradi-
cates the possibility of missed detection, thus ensuring the
safety of the anticipated trajectory of the ego vehicle.

1) REACHABILITY PERTAINING TO ROAD TRAFFIC
Road-traffic-associated regions Aroad,i (tk , tk+1) are con-
tingent upon road geometry, traffic signs, and real-time
status. These encompass lane-following-based regions
A
following
road,i (tk , tk+1), road-signage-based regions A

sign
road,i

(tk , tk+1), and Vehicle-to-Everything (V2X) cooperation-
based regions AV2X

road,i
∁ (tk , tk+1), as depicted in Fig. 6.

Aroad,i = A
following
road,i ∩A

sign
road,i

⋂
AV2X
road,i

∁ (5)
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The lane-following reachable region A
following
road,i (tk , tk+1)

primarily considers the influence of the lane boundary
constraint Rroad_boundary and the vehicle’s speed Rvelocity.
By imposing the lane boundary constraint along the lane’s
shortest path, we ensure the maximum possible travel dis-
tance is equivalent to or exceeds the vehicle’s actual travel
distance. Once the maximum travel distance is established,
the vehicle is assumed capable of reaching any point
within the perpendicular lane boundaries, resulting in a
hyper- approximate estimation of the lane-following reach-
able region. We determine the minimal travel path through
a given road segment under the principle of lane network,
as depicted in Figure 6(a). In the Frenet coordinate system,
the lane’s centerline serves as the reference line, with ξsF
representing the shortest path length at sF on the reference
line. Here, sF is the reference line’s length at point F , while
|1α(s)| reflects the absolute alteration in the reference line’s
tangential angle corresponding to the reference line length s.
Consequently, we derive:

ξsF = sF −
wlane
2

∫ sF

0
|1α(s)| ds (6)

The shortest path ξ corresponds to s, thus s = f (ξ ). Con-
sidering the constraint Rvelocity, assume the furthest reachable
distance by other traffic participants within the time interval
[tk , tk+1] is dmax . Consequently, the current location s0 of
these traffic participants corresponds to the shortest path
ξ0, and their furthest reachable location smax aligns with
the shortest path ξmax . These should satisfy the following
equation:

ξmax = ξ0 + dmax (7)

Thus, we set smax = f (ξmax) and, in order to overestimate
A
following
road,i (tk , tk+1), we set smin = s0. Accounting for the

dimensions of the ego vehicle, the construction of a polygon
perpendicular to the corresponding lane boundaries between
smin − lrego and smax + l fego within the lane yields the region

A
following
road,i (tk , tk+1) pertaining to the lane under consideration.

Therefore, the region A
sign
road,i (tk , tk+1) that corresponds

to relevant road signs takes into consideration constraints
Rroad_permit , such as lane markings, turn signals, or road-
blocks. Each traffic participant is expected to follow the
guidance of these road signs and remain within the desig-
nated area. We obtain information about permissible lanes
based on the directives of these road signs, as depicted in
Fig. 6(b). By constructing corresponding polygons along the
boundaries of these permissible lanes, we can generate the
region that is pertinent to these road signs.

V2X warning messages serve as indicators of non-
navigable sectors on the road network, which may include
regions compromised by traffic accidents or ongoing con-
struction activities. As delineated in Fig. 6(c), V2X tech-
nology is employed to accrue information regarding these
non-navigable polygonal regions O(O1,O2, . . . ,Onpol ), sub-
sequently projecting this data onto the spatial domain.

FIGURE 7. Diagram of regions for movement of other traffic participants:
(a) without accounting for vehicle size, (b) with consideration of vehicle
size.

Thus, the intended depiction of the unreachable region
AV2X
road,i (tk , tk+1) within this spatial domain can be deduced

through the lens of V2X intelligence.

2) REACHABILITY RELATIVE TO VEHICLE MOTION
The feasible regionAmot,i (tk , tk+1) associated with vehicular
motion is contingent upon the vehicle’s intrinsic physical
and dynamical characteristics, primarily focusing on the con-
straint Racceleration, which signifies the maximum achievable
acceleration amax . This realm is derived from the vehicle’s
physical schema incorporating maximal acceleration data
and vehicular geometry; it also takes into account the most
recent measured state of the vehicle, encompassing positional
information p0, directional heading H0, and speed v0. Con-
sequently, the feasible motion region Amot,i (tk , tk+1) for the
vehicle within a specified time frame is computable. Presum-
ing px,0 = 0, py,0 = 0, vx,0 = v0, vy,0 = 0 for other vehicles
participating in traffic, the feasible region for the reference
point at time [tk , tk+1] is delineated by a circle with center
c(t) and radius r(t) [24], as visually represented in Fig. 7(a):

c(t) =
[
px,0
py,0

]
+

[
vx,0
vy,0

]
t,r(t) =

1
2
amax t2 (8)

The boundary delimiting the reachable region is character-
ized by the two-dimensional function

[
bx(t),by(t)

]T , where:
bx(t) = v0t −

a2max t
3

2v0
, by(t) =

√
1
4
a2max t4 −

(
a2max t3

2v0

)2

(9)

The feasible region for other traffic-engaged vehicles
within a specified time interval [tk , tk+1] is demarcated by
two circles and a concave boundary at instances tk and tk+1.
A convex hexagonM (m1, . . . ,m6), as depicted in Fig. 7(a) by
points, can serve as an overestimation of the occupancy zone,
disregarding the scale of the vehicle, to provide a conservative
approximation of this region:

m1 =
[
cx(tk )−r(tk ),cy(tk )+ r(tk )

]T (10a)

m2 =
[
bx(tk ),cy(tk+1)+ r(tk+1)

]T (10b)

m3 =
[
cx(tk+1)+ r(tk+1),cy(tk+1)+ r(tk+1)

]T (10c)

m4 =
[
cx(tk+1)+ r(tk+1),cy(tk+1)−r(tk+1)

]T (10d)

m5 =
[
bx(tk ),cy(tk+1)−r(tk+1)

]T (10e)
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m6 =
[
cx(tk )−r(tk ),cy(tk )−r(tk )

]T (10f)

When accounting for vehicle dimensions within the fea-
sible region, the precise region Amot,i (tk , tk+1), can be
conservatively estimated via an encompassing hexagonal
region denoted by N (n1, . . . ,n6) as presented in Fig. 7(b),
whereby:

n1 = m1 +
1
2

[
−lobj,i,wobj,i

]T (11a)

n2 = m2 +
1
2

[
−lobj,i,wobj,i

]T (11b)

n3 = m3 +
1
2

[
lobj,i,wobj,i

]T (11c)

n4 = m4 +
1
2

[
lobj,i,−wobj,i

]T (11d)

n5 = m5 +
1
2

[
−lobj,i,−wobj,i

]T (11e)

n6 = m6 +
1
2

[
−lobj,i,−wobj,i

]T (11f)

The aforementioned derivation presumes a specific rel-
ative position and orientation of other vehicles in traffic
with respect to the subject. To facilitate the derivation of
an acceleration-based feasible region for any conceivable
scenario, this acceleration-centered feasible area is sub-
sequently rotated and transformed in alignment with the
authentic initial position and orientation of the other vehi-
cles engaged in traffic. Under adverse weather conditions,
the Rcautious_driving constraint ought to be observed, thereby
adjusting the vehicle’s maximum velocity to vcautiousmax and the
absolute acceleration to acautiousmax .

3) REACHABILITY ASSOCIATED WITH CO-DRIVING
BEHAVIOR
The region Acoop,i (tk , tk+1) associated with vehicle
co-driving is determined jointly by the participating vehi-
cles, mainly considering the region Adist

coop,i (tk , tk+1) asso-
ciated with safe distance unreachable and the region
A
right
coop,i (tk , tk+1) associated with the right of way. The right-

of-way regions and the complement of the relevant safe
distance unreachable areas are intersected to obtain the
regions associated with vehicle coordination:

The cooperative feasible region Acoop,i (tk , tk+1) associ-
ated with vehicular co-driving is ascertained collectively by
engaged vehicles, primarily focusing on the safe distance
unattainable region Adist

coop,i (tk , tk+1) and the feasible region

associated with right-of-way A
right
coop,i (tk , tk+1). The intersec-

tion of the right-of-way feasible regions and the complement
of pertinent safe distance unattainable regions yields the fea-
sible areas associated with vehicular coordination:

Acoop,i (tk , tk+1) = A
right
coop,i (tk , tk+1)∩A

dist
coop,i (tk , tk+1)

(12)

Traffic regulations mandate the maintenance of an ade-
quate safe distance between adjacently positioned vehicles,
also stipulating that lane transitions must not imperil trailing

traffic. Given that vr,0 and vf ,0 represent the initial velocities
of the following and leading vehicles respectively, and δ

symbolizes the reaction delay time — the interval between
the leading vehicle’s complete halt from its initial state and
the following vehicle’s full brake application — we refer
to the longitudinal safety distances dictated by the RSS
model. In order to secure an overestimated feasible region
Acoop,i (tk , tk+1) the corresponding safety distance unattain-
able area Adist

coop,i (tk , tk+1) is deemed an underestimation.
Acknowledging that the reaction time of an autonomous vehi-
cle is comparatively shorter than that of a human, we suitably
underestimate the safety distance by assigning the human
driver’s reaction time δhuman = 0.5s and the autonomous vehi-
cle reaction time δvehicle within the range of 0 to δhuman. The
presupposition being that the trailing vehicle reacts promptly
to decelerate and brake, maintaining the maximal braking
deceleration rate throughout, the safety distance, disregarding
the area occupied by the vehicle, is computed in (13), as
shown at the bottom of the next page.
As depicted in Fig. 8, when other engaged vehicles are pro-

ceeding in the same direction as the ego vehicle, irrespective
of whether they occupy the same lane or a distinct lane, or are
trailing the ego vehicle in the same lane, they are required to
maintain a specific safety distance both in front and behind
the ego vehicle. To generate an underestimation of the safety
distance, accounting for the effect of the area occupied by
the ego vehicle and other traffic-engaged vehicles on the
safety margin, we consider that, for time interval [tk , tk+1],
the traffic-engaged vehicles in different lanes at time tk are
positioned ahead of the ego vehicle, and the safety distance is
therefore calculated as:

dsafe,front = dsafe +
1
2
lobj + l fego (14)

Herein, vr,0 = vego,0 and vf ,0 = vobj,0, where vego,0 repre-
sents the initial speed of the ego vehicle and vobj,0 denotes
the initial speed of other engaged traffic vehicles.

At instance tk+1, if the traffic-engaged vehicle is deemed
to be trailing the ego vehicle, the safety distance is calculated
as:

dsafe,rear = dsafe +
1
2
lobj + lrego (15)

where vr,0 = vobj,0, vf ,0 = vego,0.
The calculated safety distances above pertain to values

within the Frenet coordinate system. An aggregate underes-
timation of the safety interval at a specific time instance can
be deduced by amalgamating the derived underestimations of
safety distances with the starting point at the self-reference
point. The unattainable region corresponding to the rele-
vant safety distance Adist

coop,i (tk , tk+1) can be delineated by
constructing a polygon perpendicular to the respective lane
boundary.

Areas reachable in consideration of the right-of-way
A
right
coop,i (tk , tk+1) primarily for overlapping roads, incorporate

the constraint Rroad_right : vehicles are obliged to yield to
others with right-of-way precedence. Absent traffic signals,
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FIGURE 8. Diagram of unreachable area for maintaining safe following
distance.

FIGURE 9. Illustration of region in consideration of right-of-way:
(a) entire lane, (b) cut-off to road overlap area.

FIGURE 10. Occupied area of the ego vehicle at a given instant.

proximity to the overlap zone confers priority. Initially, the
distance to the overlap area’s center is determined for each
vehicle necessitating intersection crossing. The right-of-way
dependent region hinges on whether the vehicle can traverse
the overlap zone within the time interval [tk , tk+1]. No other
vehicle is permitted to intrude into the overlap zone until the
vehicle proximate to the overlap area’s center has completed
intersection crossing. The right-of-way feasible region for the
vehicle closest to the overlap area’s center spans the entirety
of its current lane, as depicted in Fig. 9(a); whereas, the right-
of-way feasible region for other vehicles extends up to the
overlap area, as illustrated in Fig. 9(b).

When traffic signals are present at the junction, the right-
of-way contingent region A

right
coop,i (tk , tk+1) must additionally

factor in whether the vehicle can penetrate the road overlap
area within the remaining permissible time frame. Given that
the distance from the ith traffic participant to the overlap
area’s center is dcobj,i and the current speed is vobj,0, the
corresponding trajectory is verified for a time of [tk , tk+1].
Furthermore, the residual time allowance between the present
moment and tk+1 is denoted as tpassable. The ith traffic partic-
ipant’s right-of-way related feasible region corresponding to
the [tk , tk+1] engaged vehicle under various circumstances is
illustrated in Table 2.

TABLE 2. Regions for additional traffic participants during the time
interval

[
TK , TK+1

]
in consideration of right-of-way.

B. EXPECTED TRAJECTORY SAFETY VERIFICATION
Predicated on the anticipated trajectory engendered by the
ego vehicle’s decision system, its occupancy area within
the time interval [tk , tk+1] is calculated. Accommodating for
the vehicle’s dimensions, as depicted in Fig. 10, the ego
vehicle’s occupancy area at a given instant is a rectangle
Q(q1, q2, q3, q4), where the coordinates of the reference point
of the ego vehicle are

(
px , py

)
and the angle between the

longitudinal axis of the vehicle and the x-axis is denoted
as β. Utilizing the axis rotation formula, we can derive
in (16a)–(16d), as shown at the bottom of the next page.

The ego vehicle’s self-occupancy area corresponding to
each point of the anticipated trajectory within [tk , tk+1] can
be calculated, and the self-occupied area Aego (tk , tk+1) can
be determined by consolidating the resultant set.

To ascertain whether the anticipated trajectory proposed by
the ego vehicle’s trajectory planner is safe, it is incumbent to
examine whether the ego vehicle’s occupied area, engendered
by the anticipated trajectory at the respective time, intersects
with the regions of other traffic-engaged vehicles. If an antici-
pated trajectory generates a self-occupied areaAego (tk , tk+1)
that does not intersect with the region Aobj (tk , tk+1) of all
other traffic-engaged vehicles at this time, then this antici-
pated trajectory can be validated as safe; if not, it is deemed
unsafe.

C. GENERATION OF ALTERNATIVE SAFETY TRAJECTORIES
The formulation of the alternate safe trajectory chiefly
encompasses the selection of the ego vehicle’s alternate safe

dsafe = max

vr,0δvehicle − 1
2
amax,brakeδ2vehicle +

(vr,0 − amax,brakeδvehicle)
2
− v

2
f ,0

2amax,brake
, 0

 (13)
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trajectory endpoint and the generation of the ego vehicle’s
alternate safe trajectory. The endpoint selection for the ego
vehicle’s alternate safe trajectory serves to select the endpoint
of the alternate safe trajectory meeting requisite conditions.
The generation of the ego vehicle’s alternate safe trajectory
employs either the quintic polynomial method or the lane
centerline method to create the alternate safe trajectory, con-
tingent upon whether the ego vehicle requires lane change.

1) SELECTION OF TRAJECTORY ENDPOINT
The alternate safe trajectory TRalterk must satisfy three stip-
ulations: firstly, TRalterk is required to seamlessly link with
TRsafek , thereby setting the starting point (xs, ys) of TRalterk
as the endpoint of TRsafek ; secondly, TRalterk must guarantee
the ego vehicle’s legal safety, ensuring that the vehicle’s
occupancy area along the entire alternate safety trajectory
does not intersect with the region of other traffic-engaged
vehicles, hence TRalterk should be within the legally reachable
region of the ego vehicle A

legal
ego :

Alegal
ego = A

sign
road

⋂
A
right
road

⋂
AV2X
road

∁
⋂

A∗obj
∁ (17)

where A
sign
road represents the ego vehicle’s region concerning

road signsAC
road,V2X symbolizes the unreachable area regard-

ing V2X information, and A∗obj
∁ denotes the complement

of the region A∗obj of all other traffic-engaged vehicles con-
cerning the vehicles and roads. Equation (17) designates all
regions corresponding to the time [tk+1, tk+1 + Talter ]. Given
that the trajectory of the ego vehicle remains indeterminate,
only the reachable regions A∗obj of vehicles and roads related
to other traffic-engaged vehicles are calculated. It is then
incumbent to select the endpoint (xe, ye) of the alternate
safety trajectory TRalterk within A

legal
ego (tk+1, tk+1 + Talter ).

Lastly, the length of TRalterk must cater to the requirements
of normal driving, enabling the ego vehicle to transition into
the safety area. Provided that the speed of the ego vehicle is
vego,0 and the maximum braking deceleration is amax,brake,
to ensure that the alternate safety trajectory TRalterk allows
for sufficient deceleration for the ego vehicle to stop, in the
Frenet coordinate system, it is presumed that the starting point
(xs, ys) of the alternate safety trajectory TRalterk corresponds
to the length of the reference line sstart , and the endpoint
(xe, ye) corresponds to the length of the reference line send .

FIGURE 11. Scenarios for generation of alternate safe trajectories: (a) No
lane alteration necessitated, (b) The terminal point of the lane shift
resides within the legally reachable region of the vehicle, (c) The terminal
point of the lane shift falls outside the legally reachable region of the
vehicle.

Consequently, send must satisfy:

send ≥ vego,0Talter + l fego + sstart (18)

In consideration of the increased risk associated with
lane changes compared to maintaining the current lane, the
ego vehicle is programmed to avoid changing lanes unless
absolutely necessary. When a lane change is required, it’s
programmed to choose the adjacent lane with a larger legally
reachable region for the maneuver. Initially, the lane center-
line of the current lane of the ego vehicle is assessed against
formula (18) at the point corresponding to the longest refer-
ence line length in the legally reachable region. If it satisfies
the formula, the point with a reference line length of send on
the lane centerline is chosen as the endpoint of the alternate
safety trajectory. Otherwise, the point corresponding to the
longest reference line length in the legally reachable region
of the adjacent lane is examined to see if it meets the criteria
of formula (18). If it does, the point with the reference line
length of send on the lane centerline is selected as the endpoint
of the alternate safety trajectory for the next calculation.
If none of these conditions are met, the generation of the
alternate safety trajectory fails.

2) TRAJECTORY GENERATION METHODOLOGY
The generation method for the alternate safety trajectory
reference line is determined by whether a lane change is
required. In cases where a lane change is not necessary,
as illustrated in Fig. 11(a), the starting and ending points of
the alternate safety trajectory are on the same lane center-
line. Conversely, in cases where a lane change is required,
as shown in Fig. 11(b) and (c), the starting and ending points
of the alternate safety trajectory are not on the same lane
centerline, necessitating a lane change.

q1 =
[
−lregocosβ −

1
2
wegosinβ + px ,−lregosinβ +

1
2
wegocosβ + py

]T
(16a)

q2 =
[
l fegocosβ −

1
2
wegosinβ + px , l fegosinβ +

1
2
wegocosβ + py

]T
(16b)

q3 =
[
l fegocosβ +

1
2
wegosinβ + px , l fegosinβ −

1
2
wegocosβ + py

]T
(16c)

q4 =
[
−lregocosβ +

1
2
wegosinβ + px ,−lregosinβ −

1
2
wegocosβ + py

]T
(16d)
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FIGURE 12. Diagram demonstrating prediction of lane change trajectory.

The starting point for the lane change is the starting point
(xs, ys) of the alternate safety trajectory, and an endpoint
(xc, yc) for the lane change completion needs to be selected
on the centerline of the target lane. In the Frenet coordinate
system, it is crucial to reserve enough distance for the lane
change. To ensure the distance required from the start to the
completion of the lane change is dchange, the reference line
length schange corresponding to the endpoint (xc, yc) should
satisfy schange≥sstart + dchange. By taking schange = sstart +
dchange and retrieving it on the target lane centerline, the lane
change endpoint (xc, yc) that satisfies the condition can be
determined.

When the given alternate safety trajectory endpoint (xe, ye)
corresponding to the reference line length send is greater than
(xc, yc) corresponding to the reference line length schange,
as shown in Fig. 11(b), the ego vehicle can continue driving
along the target lane centerline from (xc, yc) to (xe, ye) after
completing the lane change. The reference line of the alter-
nate safety trajectory is the curve (xs, ys)− (xc, yc)− (xe, ye).
However, if the length send of the reference line correspond-
ing to (xe, ye) is less than the length schange of the reference
line corresponding to (xc, yc), as shown in Fig. 11(c), only a
partial lane change trajectory is generated, and the endpoint(
x∗e , y

∗
e
)
is selected on the generated reference line, so that its

corresponding reference line length is send .
The derivation of the alternate safety trajectory, premised

on the centerline method, proceeds as follows: As delineated
in Fig. 12(a), the origin and termination points of the alternate
safety trajectory reside on the identical lane centerline. The
lane centerline spanning from coordinates (xs, ys) to (xe, ye)
is adopted as the reference line for the alternate safety trajec-
tory, as it obviates the necessity for the vehicle to alter lanes.

Subsequently, the generation of the alternate safety trajec-
tory via the quintic polynomial method is characterized as
follows: Referencing Fig. 12, a coordinate system is instan-
tiated, its origin residing at the initial position of the ego
vehicle’s reference point, and its x-axis aligned with the
ego vehicle’s velocity vector. Given that the lateral velocity
of the ego vehicle is presumed negligible, its influence is
disregarded. The equation of the reference line dictating the
ego vehicle’s lane-changing trajectory is defined as:

y = a0x5 + a1x4 + a2x3 + a3x2 + a4x + a5 (19)

Presuming the current velocity of the vehicle as vego,0,
and the transverse pendulum’s angular velocity as ωego,0,

the tangent point upon completion of lane change with the
target lane centerline is denoted as Pc. The lane line sensor is
capable of quantifying the coordinates of the target point on
the lane centerline for lane change as (xc, yc), as well as the
gradient rc, and the curvatureKc.Within the extant coordinate
system, the coordinates of the initial position for lane change
point (xs, ys) is set as (0,0). The gradient at point (xs, ys) is
zero, and the corresponding curvature of the reference line at
point (xs, ys) can be inferred from the vehicle’s velocity and
the transverse pendulum’s angular velocity. Consequently,
the equation of the reference line at point (xs, ys) ought to
satisfy the ensuing conditions:

y = 0 (20a)

y′ = 0 (20b)

K =
y′′(

1+ y′2
) 3
2

=
ωego,0

vego,0
(20c)

At the terminal point of lane change (xc, yc) the gradient
and curvature of the reference line for the alternate safety tra-
jectory should harmonize with those of the lane centerline at
this location. Hence, the equation defining the reference line
at point (xc, yc) ought to meet the subsequent relationship:

y = yc (21a)

y′ = rc (21b)

K =
y′′(

1+ y′2
) 3
2

= Kc (21c)

Basing on the preceding pair of equations, we can deduce
the quintic polynomial reference line equation for the ego
vehicle’s lane change. This requires the initial state data of
the ego vehicle, the terminus point (xc, yc) of the lane change,
and the parameters of the target lane centerline pertaining to
the lane change: x5c , x4c , x3c

5x4c, 4x3c, 3x2c
20x3c , 12x

2
c 6xc

  a5
a4
a3

 =
 yc −

ωego,0
2vego,0

x2c
rc −

ωego,0
vego,0

xc
Kc −

ωego,0
vego,0

 (22)

where a0 = 0, a1 = 0, a2 =
ωego,0
2vego,0

.
Upon the evaluation of the coefficient matrix, the val-

ues for a3, a4, and a5 can be determined. It is essential to
underscore that the aforementioned derivation is performed
in the specified coordinate system, necessitating a rotational
transformation of the coordinates to obtain the equation for
the reference line change in global coordinates. The compu-
tation of the alternate safety trajectory reference line is thus
concluded at this juncture.

Subsequent to this, it becomes imperative to verify whether
the ego vehicle’s occupied area, generated by the alternate
safety trajectory, is encompassed within its legally reachable
region. Should the ego vehicle’s occupied area lie within its
legally reachable region, the generation of the alternate safety
trajectory is deemed successful; otherwise, it is considered a
failure.
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D. ONLINE SAFETY VERIFICATION ALGORITHM
This section presents the online safety verification algorithm
for autonomous driving decisions. The pseudocode flow for
each verification cycle is characterized as Algorithm1.The
initialization parameters requisite for each verification cycle
encompass road geometry information Igeoroad , road travel
constraint information I restroad , traffic participant vehicle state
information Iobj,i, and ego vehicle state information Iego.
Igeoroad includes road width wroad , the location of the road’s
center overlap area pcenter , and lane line information Ilane.
I restroad encompasses maximum vehicle speed vmax , maximum
vehicle acceleration amax , remaining passable time tpassable,
road sign information Isign, V2X information IV2X , with Iobj,i
detailing dimensions lobj,i, wobj,i of other traffic participating
vehicles, speed v0,i, position p0,i and heading angle Hobj,i.
Iego encapsulates the size of the ego vehicle l fego, lrego, wego,
speed vego,0, the expected trajectory TRintendk provided by the
trajectory planner, the last successfully generated alternate
safety trajectory TRalterk−c , the transverse angular velocity of the
ego vehicle ωego,0, the lane change distance dchange, and the
time corresponding to the generation of the alternate safety
trajectory Talter .
To ascertain the safety of TRintendk , the algorithm ini-

tially calculates three reachable zones for each traffic
participant, namely Amot,i (tk , tk+1), Aroad,i (tk , tk+1), and
Acoop,i (tk , tk+1). The intersection of these three reach-
able zones yields the overall region for each traffic par-
ticipant Aobj,i (tk , tk+1). The intersection of the overall
regions of all traffic participants is then determined to
obtain the combined reachable zones of all traffic par-
ticipants Aobj (tk , tk+1). The algorithm then computes the
self-occupied area Aego (tk , tk+1), and differentiates it from
Aobj (tk , tk+1) to verify the safety of TRintendk (lines 2-6).
Assuming TRintendk is deemed safe, the algorithm then

attempts to generate the alternate safe trajectory TRalterk .
Based on TRintendk , the algorithm can determine the start-
ing point (xs, ys) of TRalterk , compute A

legal
ego – the legally

reachable region for the vehicle within [tk+1, tk+1 + Talter ],
and subsequently determine the end point (xe, ye) of TRalterk
based on A

legal
ego . If the distance between (xe, ye) and (xs, ys)

is sufficiently large, then TRalterk is generated and the
self-occupied area Aalter

auto engendered by TRalterk is computed.
If Aalter

auto resides within A
legal
ego , the alternate safety trajectory

is successfully generated and TRintendk is executed within
[tk , tk+1] (lines 7-14). However, if Aego (tk , tk+1) intersects
with Aobj (tk , tk+1), if (xe, ye) is not distanced sufficiently
from (xs, ys), or ifAalter

auto does not belong toA
legal
ego , then TRalterk−c

is executed within [tk , tk+1] (lines 1-17).

V. TESTING AND EVALUATION
A. EXPERIMENT SETTINGS
Utilizing a co-simulation of PreScan (version 8.6.0) andMat-
lab (version R2021b), we tested and validated the proposed
online safety verification methodology for autonomous driv-
ing decision-making. PreScan facilitated the construction of

various prototypical traffic scenarios, encompassing road net-
work development, establishment of the road’s surrounding
environment, parameter setting and trajectory planning for
each traffic participant, and the creation of the perception
layer. Matlab was utilized for data transmission and process-
ing, implementing the online safety verification algorithm via
the M language.

The AIR sensor was employed to gather information about
other traffic vehicles, including speed vobj,i, heading angle
Hobj,i, distance from the vehicle Robj,i, and azimuth angle
θobj,i.

Algorithm 1 Online Safetyverification
Input: road geometry information Igeoroad (wroad , pcenter , Ilane), road driving restraint infor-
mation I restroad (vmax , amax , tpassable, Isign, IV2X ), traffic participation vehicle status information
Iobj,i(lobj,i,wobj,i, v0,i, p0,i,
,Hobj,i), ego vehicle status information Iego(l

f
ego, lrego,wego,

vego,0,TRintendk ,TRalterk−c , ωego,0, dchange,Talter ),current time t0 , verification time tk , tk+1
Output: Safety trajectory TRexek executed in [tk , tk+1]
1: TRexek ← TRalterk−c
2: Aroad,i (tk , tk+1) , Amot,i (tk , tk+1) , Acoop,i (tk , tk+1) ← calculate three regions
(Igeoroad , I

rest
road , Iobj,i, Iego)

3: Aobj,i (tk , tk+1) ← calculate the overall region(
Amot,i (tk , tk+1) , Aroad,i (tk , tk+1) , Acoop,i (tk , tk+1))
4: Aobj (tk , tk+1)←

⋃
Aobj,i (tk , tk+1)

5: Aego (tk , tk+1)← calculate the area occupied by the ego
vehicle(l fego, lrego,wego,TR

intend
k )

6: ifAego (tk , tk+1) ∩Aobj (tk , tk+1)= ∅ then
7: (xs, ys)←TRintendk
8: A

legal
ego (tk+1, tk+1 + Talter )←A

sign
road (tk+1, tk+1 + Talter )

⋂
A

right
road (tk+1, tk+1 + Talter )

⋂
AV2X

road
C (tk+1, tk+1 + Talter )

⋂
Aobj (tk+1, tk+1 + Talter )

9: (xe, ye)← calculate alternate safety trajectory endpoint
{Alegal

ego (tk+1, tk+1 + Talter )}
10: if (xe, ye) is far enough away from (xs, ys) then
11: TRalterk ← calculate alternate safety trajectory {(xe, ye), (xs, ys)}
12: Aalter

auto ← calculate occupied area (TRalterk )
13: if Aalter

auto ⊆A
legal
ego (tk+1, tk+1 + Talter ) then

14: TRexek ← TRintendk
15: end if
16: end if

17: end if

We encapsulated the point mass models of other traffic
participants in a rectangle with lobj,i of 4m, and wobj,i of 2m.,
and the point mass models of the ego-vehicle in a rectangle
with l fego of 4m, lrego of 1.3m, and wego of 2m. The maximum
acceleration amax,acc and maximum deceleration amax,brake
of the ego-vehicle and other traffic participants were set to
8m/s2. The length send of the reference line correspond-
ing to the termination of the alternate safety trajectory is
determined by vego,0Talter + l fego + sstart . The online safety
verification replanning period is set at 0.1s, the duration of
each expected trajectory TRintendk at 0.3s, and the duration
of the alternate safety trajectory Talter at 0.6s, with ta as
0.1s and tb as 0.3s. Assuming that the expected trajectory
remains unaltered within a 0.3s interval and that the online
safety verification replanning period is 0.1s, the expected
trajectory TRintendk corresponds to a duration of [tk , tk+0.3s].
Each expected trajectory needs verification thrice; a single
successful instance out of the three leads to a successful
verification of TRintendk and its execution starting from tk .
However, if all three instances of verification fail, TRintendk
will be adjudged a verification failure, and the alternate safe

VOLUME 11, 2023 93303



F. Gao et al.: Online Safety Verification of Autonomous Driving Decision-Making

TABLE 3. Parameter settings for simulation scenarios.

trajectory TRalterk−c from the last successful verification will be
executed at time tk , thus yielding the trajectory to be executed
in each cycle.

Based on the ISO 34502 automatic driving system test
scene construction standard, common test scenarios in the
research and development of automatic driving, and actual
road safety-critical traffic scenarios, we created one-way
multi-lane, two-way multi-lane, intersections and Y-shaped
intersections in PreScan. A typical scene is used as a test.
At the same time, the road with temporary road traffic signs
and bad weather was tested on the one-way multi-lane. The
parameters of each simulation scene are shown in Table 3.

B. SIMULATION AND VERIFICATION OF SPECIFIC
AUTONOMOUS DRIVING SCENARIOS
The above-mentioned online safety verification method-
ologies were individually validated based on the specific
typical traffic scenarios defined in the experimental design.
The ensuing analysis of the test results primarily encom-
passed two dimensions: safety and real-time performance.
Safety implies that the technology is capable of adapting
to a plethora of traffic scenarios, accurately evaluating the
safety of the anticipated trajectory, and generating an alter-
nate safe trajectory that can guide the vehicle to a secure
state, without actively instigating traffic accidents or violat-
ing traffic regulations, thereby ensuring the vehicle’s lawful
safety. Real-time, on the other hand, indicates the ability
of the technology to complete computations and processing
within the prescribed time, and promptly verify the safety
of the anticipated trajectory and generate an alternate safe
trajectory.

1) SIMULATION VALIDATION FOR TWO-WAY MULTI-LANE
SCENARIOS
Fig. 13(a) illustrates the initial speed and relative position of
each traffic participant in the constructed two-way six-lane

FIGURE 13. Validation of two-way multi-lane scenario: (a) Two-way
six-lane straight road scenario, (b) safety verification outcomes for
two-way six-lane straight scenario.

straight road scenario, while Fig. 13(b) showcases the online
safety verification result for this scenario:

At t = 4.2s, owing to an anticipated lane change from the
vehicle directly ahead on the right, the ego vehicle’s proposed
trajectory failed to pass verification, prompting the execution
of the latest successfully verified alternate safety trajectory
from the 3.9s - 4.2s interval, thus initiating a lane change to
the left. At 5.7s, the expected trajectory for the ego vehicle
failed verification, thus invoking the alternate safety trajec-
tory validated in the 5.4s - 5.7s period. At 3.5s, 5.4s, 6.6s,
and 8.7s, the ego vehicle’s proposed trajectory successfully
passed verification and was subsequently executed. The ego
vehicle adhered to the alternate safety trajectory during the
4.2s - 5.4s and 5.7s - 6.6s intervals, while executing the
verified expected trajectory for the remaining duration.

2) SIMULATION VALIDATION FOR ONE-WAY MULTI-LANE
SCENARIOS
Fig. 14(a) illustrates the initial speed and relative position of
each traffic participant in the constructed one-way three-lane
curve scenario, while the online safety verification result for
this scenario is depicted in Fig. 14(b):

At t = 4.5s, the anticipated trajectory verification of
the ego vehicle (indicated in blue) fails due to the leading
vehicle (marked in red) preparing to change lanes (the antic-
ipated trajectory corresponding to the verification failure is
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FIGURE 14. Validation of one-way multi-lane scenario: (a) One-way
three-lane curved road scenario, (b) safety verification outcomes for
one-way three-lane curved scenario.

delineated in black). Consequently, the latest successfully
verified alternate safety trajectory within the time frame of
3.9s - 4.2s (highlighted in red) is executed, initiating the lane
change to the immediate right lane. At 6.0s, the verification
of the ego vehicle’s anticipated trajectory fails, leading to the
execution of the most recent successfully verified alternate
safety trajectory within the time period of 5.7s - 6.0s. At 5.1s,
6.6s, 7.5s, and 8.7s, the ego vehicle’s anticipated trajectory
successfully passes the verification, subsequently leading to
the execution of the anticipated trajectory. The ego vehicle
executes the alternate safety trajectory within the time inter-
vals of 4.5s - 5.1s, 6.0s - 6.6s, 7.2s - 7.5s, and 7.8s - 8.7s,
while for the remaining durations, it executes the successfully
verified anticipated trajectory.

3) SIMULATION VALIDATION FOR TEMPORARY ROAD SIGN
SCENARIOS
Fig. 15(a) presents the initial speeds and relative positions of
each traffic participant in the constructed scenario of a one-
way, three-lane curved road with temporary road signs. The
online safety verification results for this scenario are shown
in Fig. 15(b).
At t = 5.4s, due to a roadblock causing the vehicle ahead to

prepare to change lanes, the expected trajectory verification
for the ego vehicle fails. As a response, the latest successfully
verified alternate safety trajectory within the time range of

FIGURE 15. Validation of temporary road sign scenario: (a) one-way
three-lane curved road scenario with temporary road signs, (b) safety
verification outcomes for one-way three-lane curved road scenario with
temporary road signs.

5.1s - 5.4s is executed, resulting in a reduction in the vehicle’s
speed. At 8.7s, as the ego vehicle is too close to the vehi-
cle in front, the expected trajectory verification fails again,
leading to the execution of the latest successfully verified
alternate safety trajectory within the time range of 8.4s - 8.7s.
At 6.0s, 7.2s, 7.8s, and 10.2s, the expected trajectory of the
ego vehicle successfully passes the verification, and thus
is executed. The ego vehicle executes the alternate safety
trajectory within the time ranges of 5.4s-6.0s, 7.5s-7.8s, and
8.7s-10.2s, and for the rest of the time, executes the expected
trajectory which has successfully passed the verification.

4) SIMULATION VALIDATION FOR INTERSECTION
SCENARIOS
Fig. 16(a) displays the initial speeds and relative positions of
each participating vehicle in the constructed two-lane inter-
section scenario, while Fig. 16(b) presents the results of the
online safety verification for this scenario.

At t = 4.8s, the anticipated trajectory of the ego vehicle
failed to pass the verification test due to a vehicle proceeding
through the intersection from the front-left. As a result, the
most recently validated alternate safety trajectory within the
interval of 3.5s - 4.8s was executed, leading to a deceleration
of the vehicle. At t = 5.7s, with a vehicle on the right infring-
ing on the right-of-way through the intersection, the proposed
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FIGURE 16. Validation of intersection scenario: (a) Two-lane crossroads
scenario, (b) safety verification outcomes for two-lane intersection
scenario.

trajectory for the ego vehicle again failed the verification,
which led to the execution of themost recently validated alter-
nate safety trajectory during the 5.4s - 5.7s timeframe, again
slowing the vehicle. At t = 2.7s, 5.4s, 8.1s, and 10.2s, the
ego vehicle’s anticipated trajectory successfully passed the
verification and was subsequently executed. The ego vehicle
adhered to the alternate safety trajectory during the 4.8s -
5.4s and 5.7s - 8.1s intervals, while executing the verified
expected trajectory for the rest of the time.

5) SIMULATION VALIDATION FOR Y-JUNCTION SCENARIOS
Fig. 17(a) displays the initial speeds and relative positions
of each participating vehicle in the constructed two-lane Y-
intersection scenario, while Fig. 17(b) showcases the results
of the online safety verification for this scenario.

At t = 6.3s, the expected trajectory of the ego vehicle fails
the verification due to a vehicle on the left-front crossing
the intersection against the right-of-way. As a result, the
latest successfully verified alternate safety trajectory from the
6.0s - 6.3s interval is executed, slowing down the vehicle.

FIGURE 17. Validation of Y-junction scenario: (a) Two-lane y-shaped
intersection scenario, (b) safety verification outcomes for two-lane
y-shaped intersection scenario.

At 6.9s, the expected trajectory of the ego vehicle again fails
the verification and the latest successfully verified alternate
safety trajectory continues to be executed, resulting in further
deceleration. At 5.4s, 7.5s, 8.1s, and 8.7s, the expected trajec-
tory of the ego vehicle is successfully verified and executed.
The ego vehicle follows the alternate safe trajectory between
6.3s - 7.5s, while for the remaining time, it executes the
expected trajectory which has passed verification.

6) SIMULATION VALIDATION FOR SEVERE WEATHER
SCENARIOS
Fig. 13(a) illustrates the initial speeds and relative positions
of each traffic participant in the constructed scenario of a
one-way, three-lane curved road under adverse weather con-
ditions. The online safety verification results for this scenario
are shown in Fig. 18.
At t = 5.1s, due to the vehicle ahead preparing to change

lanes, the expected trajectory verification of the ego vehicle
fails. The latest successfully verified alternate safety trajec-
tory within 4.8s-5.1s is then executed. At 9.0s and 11.1s,
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FIGURE 18. Safety verification outcomes for one-way three-lane curved
road scenario under adverse weather conditions.

the ego vehicle gets too close to the vehicle in front, caus-
ing the expected trajectory verification to fail again, leading
to the execution of the latest successfully verified alternate
safety trajectory within 8.7s-9.0s. At 7.8s, 10.2s, and 12.0s,
the expected trajectory of the ego vehicle passes the veri-
fication and is thus executed. The ego vehicle executes the
alternate safety trajectory within 5.1s-7.8s, 9.0s-10.2s, and
11.1s-12.0s, while for the rest of the time, it executes the
expected trajectory that has passed the verification.

To further understand the efficiency of the safety verifi-
cation method, we conducted 10 repeated measurements for
the calculation time involved in the expected trajectory safety
verification and the alternate safety trajectory generation for
the six different scenarios. We calculated the average time
for both the expected trajectory safety verification and the
generation of the alternate safety trajectory across these six
scenarios. We also determined the average of the total time
value along with its overall variance. The results of these
calculations are shown in Table 4.

These simulation tests were conducted on a computer
featuring a 2.60GHz AMD Ryzen 3 3200U processor and
8GB of memory. Given that the computing power of the
testing hardware used is lower than what most manufacturers
typically use, these results should have a strong practical
relevance.

The simulation analysis conducted across the aforemen-
tioned six scenarios demonstrates the capability of our
proposed online safety verification technique. It can adeptly
adapt to a wide array of complex traffic scenarios and
accurately judge the safety of the expected trajectory. This
ensures that our ego vehicle maintains legal safety under haz-
ardous operating conditions and does not actively instigate
traffic accidents. The alternate safety trajectories generated

TABLE 4. Computational time for simulation validation.

can effectively guide the ego vehicle towards a safe state.
Furthermore, the computation time for each scenario can
be contained within a 100ms replanning cycle, indicating
that our proposed online safety verification technology can
promptly complete the safety verification of the expected
trajectory and generate the alternate safety trajectory. The
current simulation verification time is influenced by the soft-
ware overhead of the high-level language and the simulation
environment. When this method is ported to an embed-
ded environment, the real-time performance can be further
improved, optimizing the process even further.

C. SIMULATION VERIFICATION FOR FULL RANDOMIZED
SCENARIOS
This section comprehensively evaluates the performance of
the proposed method in continuous random scenarios. Each
participating vehicle was assigned a distinct closed-loop tra-
jectory TRi, aligned with the corresponding road centerline.
The initial velocity v0 for each participating vehicle was set to
15 m/s, while ensuring that the maximum velocity vmax was
limited to 30 m/s. The acceleration ai for each participating
vehicle was confined to the range [8, -8] m/s2, and the
duration of each ai, represented by tai , varied within the range
of [1, 3] s. In the Frenet coordinate system, the lateral offset
di, between each participating vehicle and TRi was defined
as di ∈ {d0, d1, . . . , dk}, where d0, d1, . . . , dk denote the
offsets corresponding to each lane centerline relative to TRi.
The duration of this offset tdi , ranged from [10, 30] s.

For this scenario, random values conforming to a normal
distribution were assigned to ai, tai , di, and tdi . Different
quantities of participating vehicles were introduced into the
simulation test over a duration of three hours to validate
our online safety verification algorithm. The experimental
results obtained from this simulation are presented in Table 5.
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TABLE 5. Computational time for simulation validation.

As other participating vehicles comply with traffic regu-
lations during their travel, their driving area consistently
remains within the predicted reachable region.With the appli-
cation of our online safety verification algorithm, we can
ensure the legality and safety of ego vehicle at all times.

The simulation analysis conducted across the aforemen-
tioned scenarios demonstrates the capability of our proposed
online safety verification technique. It can adeptly adapt to a
wide array of complex traffic scenarios and accurately judge
the safety of the expected trajectory. This ensures that our
ego vehicle maintains legal safety under hazardous operating
conditions and does not actively instigate traffic accidents.
The alternate safety trajectories generated can effectively
guide the ego vehicle towards a safe state. Furthermore, the
computation time for each scenario can be contained within a
100 ms replanning cycle, indicating that our proposed online
safety verification technology can promptly complete the
safety verification of the expected trajectory and generate the
alternate safety trajectory. The current simulation verification
time is influenced by the software overhead of the high-level
language and the simulation environment. When this method
is ported to an embedded environment, the real-time perfor-
mance can be further improved, optimizing the process even
further.

VI. CONCLUSION
We present an innovative method for real-time online safety
verification in automated driving decision-making. This
methodology employs a synergy of both explicit and implicit
traffic regulations to systematically predict all legal per-
mutations of traffic scenarios. Following this prediction,
it calculates the potential reachability area for each traffic par-
ticipant, and subsequently verify the validity of the expected
trajectory against legal safety measures, creating an alterna-
tive safety trajectory where necessary. The efficacy of our
proposed online safety verification approach, particularly its
safety and real-time performance, is evaluated using the PreS-
can and Matlab platforms within a simulated environment.
Its robustness is tested across characteristic traffic scenarios,
demonstrating the method’s ability to uphold a safe trajectory
for the autonomous vehicle, thereby averting potential haz-
ards. The proposed method effectively addresses the safety

‘‘long tail’’ problem of autonomous driving decision-making
in unfamiliar and complex traffic scenarios. It can be inte-
grated into autonomous driving systems, running in parallel
with existing decision-making systems, to continuously ver-
ify the safety of the current decision-making process in
real-time. Additionally, it enables the system to switch
to alternative trajectories promptly in hazardous situations,
providing crucial support for the safety and reliability of
autonomous driving decision-making.

In future investigations, we aim to expand the complexity
of the traffic scenarios, examine the regions for pedestrians,
and explore the potential use of machine learning algorithms
to compute alternative safe trajectories within the legally
reachable region of the autonomous vehicle.
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