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ABSTRACT In this paper, we propose a trajectory planning method for high-density flights in a complex
environment with multiple buildings in the city. Moreover, a simulation study of four-dimensional trajectory
planning for aircraft is conducted with different flight densities in an urban environment. In this paper, the
Rapidly Exploring Random Tree Star (RRT∗) algorithm is improved to adapt to urban air traffic, including
node expansion angle constraint, dynamic collision detection, adapting to stratified airspace, and adding
virtual obstacles. The urban environment model with multiple obstacles is established, the stratified airspace
and flight parameters of the vehicle are set, and simulation experiments are conducted. The experimental
results demonstrate the effectiveness of the proposed algorithms and the necessity of real-time and unified
management of high-density flights in urban air traffic. The proposal of maximum aircraft density and
airspace layer construction in the stratified airspace of the simulation environment is obtained. Lastly, a four-
dimensional trajectory planning method for high-density flights in an urban multi-building environment is
provided.

INDEX TERMS Improved RRT∗ algorithm, 4-dimensional trajectory planning, urban air traffic.

I. INTRODUCTION
The demand for urban transportation continues to rise as the
scale of cities expands, and the population grows rapidly.
Traditional ground transportation can no longermeet people’s
travel demands. In many large cities, the traffic demand
is often much greater than the urban traffic capacity. New
transportation modes must be developed [1] to solve the
contradiction between traffic demand and supply in large
cities, enhance traffic construction, and explore better traffic
management modes. Compared with increasingly saturated
land transportation, urban air traffic has a large development
space, sufficient application potential, and a considerable
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market to be explored. Adding air traffic to the existing com-
prehensive three-dimensional urban transportation system
can relieve the existing urban traffic pressure and improve the
efficiency of urban traffic operations.

The Federal Aviation Administration (FAA) has struc-
tured airspace into six classes based on site distribution and
airspace altitude. Urban air traffic is still in its early stage,
and airspace classification should refer to the existing civil
aviation airspace classification standards. However, the cur-
rent research and practice of urban air traffic have proven
that urban air traffic will fly in multiple classes of airspace
in the future [2]. National Aeronautics and Space Adminis-
tration (NASA) researchers have considered urban air traffic
and airspace integration [3], [4]. Vascik [5] assessed the
challenges and opportunities of introducing urban air traffic
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services and unmanned aircraft systems. Mueller [6] pointed
out that it may soon enter the On-Demand Mobility (ODM)
era with quiet, efficient, and largely automated air cabs.

The European Commission and the European Aviation
Safety Agency (SEASA) [7] proposed the establishment of
a public Unmanned Aerial System (U-Space), which pro-
vides a new set of digital and automated service proce-
dures for UAVs regarding parameters such as route planning
and air interaction. The Japanese Unmanned Traffic Man-
agement (UTM) Association and the New Energy Indus-
try Technology Development Organization established the
National UTM Project [8]. The project focuses on managing
Unmanned Aerial Vehicles (UAVs) flight intelligence and
operators. The Civil Aviation Authority of Singapore orga-
nization [9] proposed the Unmanned Aerial Control System
TM-UAS to implement geo-fencing and conflict avoidance
technologies.

Tang [10] pointed out that trajectory planning is a task
that must be accomplished to conduct UAV autonomous
flight. Moreover, it is an important contribution to improving
UAV timeliness and reducing path selection costs. Whether
man-piloted or unmanned, operational safety and efficiency
must be considered in urban air traffic when conducting
vehicle trajectory planning. Path planning is widely used in
unmanned mechanical devices such as mobile robots [11]
and in various transportation activities requiring high time-
liness. In urban air traffic management, advanced flight path
planning of an aircraft can avoid collision between an air-
craft and an obstacle or two aircraft. Trajectory planning can
improve flight safety and reduce the cost of secondary path
planning. There are many mature path planning algorithms
due to the continuous research in various disciplines and
promotion by companies, such as ant colony algorithm [12],
genetic algorithm, artificial potential field, particle swarm
optimization algorithm, A∗ algorithm, Rapidly Exploring
Random Trees (RRT) [13], and bee colony algorithm [14].
Furthermore, the dynamic reassignment model of multi-
ple UAVs under swarm intelligence and emergency adjust-
ment scenarios was also established [15], [16], [17].
Tang [18] proposed an anti-collision algorithm for multi-
rotor UAVs based on geometric constraints and dynamic
equations.

The intelligent optimization algorithm was invented by
simulating natural biological phenomena. This algorithm has
the advantage of relaxed requirements for optimization prob-
lems. TheRRT algorithm [19] implements path search step by
step by random sampling in space and is characterized by low
algorithm complexity. Nevertheless, it does not consider the
trajectory optimization problem. However, the applications
of these algorithms are mostly static scenarios, and there are
mergers of global static track planning with in-process local
path re-planning. Tan et al. [20] proposed an ant colony parti-
cle swarm fusion algorithm. This algorithmwas improved for
the shortcomings of the ant colony algorithm and combined
with the particle swarm algorithm for secondary trajectory

adjustment. Static track planning is performed first in the
track planning process. Then, path adjustment is performed
by dynamic track planning.

In the future urban low-altitude airspace, the aircraft den-
sity will be much higher than that in traditional airspace.
Establishing systematic aircraft path planning and airspace
management systems must be accompanied by research on
aircraft conflict and deconfliction to enable more aircraft
to fly safely. There have been some relevant research and
application results in the aviation industry [21], [22]. Pallot-
tino [23] used a mixed integer linear programming approach
to solve the two-dimensional conflict resolution problem.
AlonsoAyuso [24] performed a linear approximation solution
to minimize the velocity variation of the aircraft. Durand [25]
combined a neural network algorithm to solve the conflict
resolution method between two aircraft. Hao [26] proposed
a four-dimensional trajectory-based multi-machine conflict
detection and deconfliction method.

In this paper, the urban air traffic environment is simulated,
and vertical takeoff and landing airports are set up [27].
The aircraft path planning algorithm suitable for urban air
traffic environments is obtained by improving the Rapidly
Exploring Random Tree Star (RRT∗) algorithm, including
node expansion angle constraint, dynamic collision detection,
adaptive stratified airspace, and adding virtual obstacles. The
information of all aircraft flying in the specified range of
low-altitude airspace is recorded, including takeoff and land-
ing times, locations, flight trajectories, and corresponding
moments, and four-dimensional trajectory planning is per-
formed for an aircraft. Path planning takes place before the
aircraft takes off, allowing the aircraft to reduce the number
of path adjustments caused by temporary avoidance during
flight and ensure the safe and efficient simultaneous oper-
ation of multiple vehicles. Finally, the effectiveness of the
proposed method is verified by simulation and comparison
experiments.

II. SIMULATION OF PHYSICAL ENVIRONMENT
MODELING
A. FLIGHT SPACE MODELING
The current urban air traffic is in the development stage,
while the airspace division is still immature and mostly based
on the existing airspace division for further refinement. The
National Aeronautics and Space Administration (NASA) [4]
proposed a development framework for urban air traffic
airspace. It is believed that the future airspace involved in
urban air traffic will include a portion of Class E airspace,
i.e., a transition between Class A airspace and other airspace
classes, in addition to the currently defined airspace in which
light and small UAVs can fly below 120 m. The Dutch
National Laboratory for Aeronautics (NLR) [28] provided
a view of the application of free airspace, layers airspace,
zones airspace, and tube airspace. The layered model of
Metropolis [29] can reduce the relative speeds of aircraft at
the same altitude level, improve the efficiency of direct flight
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FIGURE 1. Schematic flight space model.

FIGURE 2. Obstacle model with a height of more than 70 m.

FIGURE 3. Vertical lift airport aircraft operation concept.

routes, and reduce plane flight conflicts. Hoekstra [30] further
discussed the influence of different parameters on airspace
capacity and safety degree in the highly stratified approach
combined with the simulation method.

In this paper, a layered airspace structure is adopted, divid-
ing every 50 m into a layer. Considering there are more tall
buildings in the city, the flight activities of the aircraft will
mainly be carried out at 50-200 m. The main flight altitudes
for each level of airspace are plotted in Figure 1.

B. OBSTACLE MODELING
The fixed obstacles in this experiment are mainly buildings,
and no airspace is set up in the experimental space that is
not allowed to be occupied due to large aircraft takeoffs and
landings. Wu [17] simplified the calculation by enclosing
the building with cubes. Most of the buildings in the city

FIGURE 4. Vertical takeoff and landing airports distribution map.

are below 15 stories, but there are tall new buildings and
a few ultra-high urban landmarks. In urban space, it is far
more economical to have a fraction of the aircraft make short
detours between buildings than to have all of them fly above
the height of the tallest buildings in the city.

Forty groups of buildings over 70 m tall were set up in the
model (including 26 over 80 m), and protected areas were
set up for the buildings along their outer contours. The flight
altitude is controlled near 75 m since the minimum flight
altitude layer of the vehicle is 50-100 m. Moreover, buildings
below 70 m do not affect vehicle path planning. Hence, they
are not plotted. A three-dimensional view and a top view of
the obstacle model are shown in Figure 2.

C. AIRPORT MODELING
With the continuous breakthroughs in UAVs and related
supporting technologies, the takeoff and landing methods
available for urban air traffic can also differ from the tradi-
tional takeoff and landing methods. Bertram [27] proposed
a vertical takeoff and landing airport terminal area opera-
tion concept for e-VTOL aircraft, as shown in Figure 3.
Furthermore, a Markov decision process based on urban air
traffic self-organized terminal aircraft sequencing algorithm
is constructed, which can handle the high-density terminal
aircraft sequencing problem.

The e-VTOL aircraft can reduce the size of space that
airports need to occupy, leaving more urban airspace for an
aircraft to fly. In this paper, this type of vertical takeoff and
landing airport is referred to during airport modeling, and
a certain space for aircraft that need more landing space is
reserved. A total of 12 vertical takeoff and landing airports
are established by considering the top of some buildings
as landing points. The distribution of airports is shown in
Figure 4.

D. PHYSICAL ENVIRONMENT MODEL
The aircraft flight environment model has been constructed,
including layered airspace, inaccessible space, and landing
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FIGURE 5. Physical environment model.

and takeoff airports. In subsequent experiments, the param-
eters of the protected area will be set based on obstacles
and the flying machine. The constructed model is shown in
Figure 5. The green diagram shows fixed obstacles such as
buildings, and the red diagram shows vertical takeoff and
landing airports and their restricted airspace.

III. PATH PLANNING BASED ON IMPROVED RRT∗

ALGORITHM
A. RRT∗ ALGORITHM
The principle of the RRT∗ algorithm is starting from a given
starting point, randomly sampling in space, and building a
path tree according to the given rules until it reaches the
endpoint and finds the shortest path in the sampled path tree.
After sampling, the nearest point on the path tree to the ran-
domly sampled point is found, and it is determined whether
it can expand the given step size without any obstacle. If the
expansion is possible, the new points on the path tree are
obtained according to the specified step length, and the near-
est point is used as its initial parent node. The RRT∗ algorithm
re-selects the parent nodes to improve the paths. Other parent
nodes that make the distance from the starting point to the
new node closer are re-found in a certain range around the
new node. If they exist, the parent node corresponding to the
nearest path is updated as the parent node of the new node,
the nodes are again expanded according to the step size, and
the path tree is updated.

B. NODE SAMPLING RULES AND EXPANSION RULES
OPTIMIZATION
In urban air traffic, more than a single aircraft simultaneously
fly, i.e., there is the possibility of aircraft intersection in the
air. Therefore, it is necessary to carry out four-dimensional
trajectory planning for aircraft to maximize the effectiveness
and safety of the planned trajectory in the trajectory planning
before takeoff and achieve higher operational efficiency.

A static map is often given in traditional RRT∗ algorithms,
and path planning is performed in a fixed obstacle environ-
ment. Such a path planning method will generate many cases
of re-routing due to detecting conflicts between aircraft in

high-density aircraft operations, negatively impacting urban
air traffic regarding flight safety, operational efficiency, and
timeliness.

In this paper, the RRT∗ algorithm is improved by expand-
ing the information of the path tree into points containing
temporal and spatial information, which is expressed as
Tm,n(x, y, z, t). Here, Tm,n is the point numbered n and the
parent node numbered m in this path planning, x is the posi-
tion of point Tm,n in the x coordinate direction, y is the
position of point Tm,n in the y coordinate direction, z is the
position of point Tm,n in the z coordinate direction, and t is
the time to arrive at point Tm,n in this path planning. Only
information T (x, y, z, t) is reserved for the planned path, and
information about the parent node is included in the path.
Each point on the tree contains (x, y, z, t) provides more
detailed and accurate information for the subsequent dynamic
collision detection. This ensures the validity of dynamic
collision detection results and enhances the feasibility of
trajectory planning before departure.

C. FOUR-DIMENSIONAL PATH INFORMATION
OPTIMIZATION
1) NODE SAMPLING OPTIMIZATION
One of the major differences between urban air traffic and tra-
ditional high altitude-controlled airspace is its complex geo-
graphic environment with many obstacles. Among various
airspace structures, such as free airspace, regional airspace,
stratified airspace, and pipeline airspace, many research
results from the Delft University of Technology and the
National Aerospace Laboratory of the Netherlands concluded
that stratified airspace is currently the most suitable airspace
structure for urban air traffic operations [28]. Chen [13]
proposed an improved algorithm for the fast exploration of
random trees. Balachandran [31] proposed a dynamic flight
path planning algorithm for UAV over-the-horizon flight
based on a fast exploration of a random tree.

In the proposed model, a hierarchical airspace concept
structure is used to preferentially assign all aircraft in the
initial determination layer to reduce the consumption of air-
craft takeoff and landing when the aircraft density in the
first space layer does not exceed a limited threshold. Priority
is given to the pre-acquired reference trajectory, which is
the shortest path between the start and arrival points. If no
conflict arises, this path is used as the result of this path
planning when the node sampling range is at the same altitude
level. The path length is compared with the product of the
shortest path multiplied by a factor of 1.25 after completing
single path planning. The corresponding cross-layer naviga-
tion permission is opened if the planned path length exceeds
the threshold. In this case, the node sampling range is not
restricted to the same altitude level, and the aircraft will
re-route for it in the multi-layer airspace range. The airplane
density is controlled by limiting airplane takeoff when the
airplane density is too high. Substantial detours and air safety
accidents are avoided by waiting a short period.
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FIGURE 6. Angle constraint for node expansion.

In addition, the node sampling of the original algorithm is
random, whereas a completely random sampling has some
blindness in finding the path. Therefore, a certain probability
of bootstrapping the sampling direction can find a better path
in a shorter time. The model in this paper sets a probability
of 0.6 to expand in the target direction and generates random
numbers to determine whether the new node expands in the
target direction or other directions, which is shown in Eq. (2).

r = rand(0, 1) (1)

Tmi+1,i+1(x, y) =

{
Tend (xend , yend ), r ≤ 0.6
(rand(0, 1), rand(0, 1)) × 1000, r > 0.6

(2)

where r is the randomly generated number between 0 and 1,
Tmi+1,i+1 is the R is the (i+1)th generated point on the path
tree, and it’s parent point is nodemi+1, Tend is the end of path
planning.

2) NODE EXPANSION RULE OPTIMIZATION
Different aircraft may have various speed interval constraints,
steering angle constraints, and hovering capacity constraints
when flying in urban air. In this paper, the highest possible
operational efficiency is considered. Therefore, the hover-
ing capability of some aircraft is not considered in non-
exceptional cases. An angle constraint is added to the node
expansion, ensuring the smoothness of the planned trajectory
and resampling if the angle between the sampled node direc-
tion and its parent node direction is greater than a threshold
value.

The angle constraint added for the node extension is shown
in Figure 6. The node is resampled if the angle difference
between the sampled node direction and its parent node direc-
tion exceeds a threshold value of 60◦. Node 6 in Figure 6 is
taken as an example. Node 6 is new, and its parent is 5. The
angle calculation is in Eq. (3), as shown at the bottom of the
next page.

Node 6 in Fig. 6 is a new node whose parent node is 5. Still,
it does not satisfy the requirement that the angle ̸ 1 between
the sampled node’s direction and the direction of its parent
node is greater than a threshold value of 60◦. Hence, it cannot
grow and needs to be redefined as a new node.

FIGURE 7. Virtual barrier design.

When the aircraft can cross the altitude layer and obtain a
shorter flight path, the node expansion process faces a flight
process with altitude changes. The calculation of the hori-
zontal node angle is consistent with Eq. (2), and the vertical
speed limit is increased, which is elaborated in the following
‘‘Experimental Simulation and Analysis’’.

Dynamic collision detection is performed during planning
to improve the feasibility of planning trajectories and reduce
path re-planning due to conflicts during the flight. In this
paper, the information record of the trajectory includes the
spatial displacement and the corresponding moment. When
a new trajectory planning expansion node is carried out, the
positions of other aircraft are detected within a specified
radius of 100 meters, with the current position of the planning
aircraft as the center of the circle. If other aircraft are in
range, the collision probability is high, and this node does not
grow.

D. VIRTUAL BARRIER DESIGN
The flight space in urban airspace is narrow, the environment
is complex, and the major fixed obstacles (such as build-
ings) have different geometries. If the path planning is done
according to the actual shape of the building, it will increase
the computation significantly. Primatesta [32] proposed a
method to map the risks of drones flying over cities. Some
methods simplify the calculation by enclosing the building
with cubes [17].

Therefore, according to an error of two meters or less,
most buildings are simplified into combinations of basic
three-dimensional figures such as columns, cones, and
spheres. Moreover, virtual obstacles are added to the periph-
ery of three-dimensional figures to preserve a safe distance
for aircraft emergencies.

The method of filling virtual barriers is directly used for
some dense complexes that are difficult for aircraft to pen-
etrate. These narrow and complicated passages are set as
inaccessible areas for aircraft. Furthermore, virtual barriers
are placed in parts with no other exits to prevent the path
planning from entering the dense complexes and causing
planning failure.
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FIGURE 8. Flowchart of four-dimensional trajectory planning based on an
improved RRT∗ algorithm.

Virtual barriers are set up as shown in Figure 7. The light
gray part represents the real obstacle or forbidden space, the
dark gray part is the virtual obstacle, and the white part is the
area without obstacles. On the left side of Figure 7 is a cluster
of dense buildings filled with barriers between the spaces
between the buildings. In the right part of Figure 7, a virtual
barrier is added to the specially-shaped building to ensure the
aircraft is not flying inside. Such virtual obstacles can speed
up path planning and reduce unnecessary computing costs.

E. PATH PLANNING PROCESS
The specific flow of the improved RRT∗ algorithm is shown
in Figure 8, and the path-planning steps are as follows:
Step 1: Initialize the map environment, and set the airport

and obstacle location.
Step 2: Set parameters such as safety distance, travel speed,

and angle limit.
Step 3: Set 66 groups of starting point information and

carry out path planning individually to obtain a reference
track without the influence of other aircraft.

Step 4: Set the starting point information for this trajectory
planning.

Step 5: Determine whether the reference trajectory is fea-
sible or not. If feasible, go to step 9; otherwise, go to step 6.

Step 6: Perform trajectory planning in the current layer
and obtain the available trajectory to step 9; otherwise, go to
step 7.

Step 7: Open other altitude layers, perform route planning,
and obtain a usable route or a route within 25% of the distance
exceeded to enter step 9; otherwise, enter step 8.

Step 8: Delay the takeoff time, go to Step 5, and repeat the
above operation until the maximum delay time is reached.
If the path planning fails, record the cancellation flight infor-
mation and go to step 4.

Step 9: Record the path planning information, go to step 4,
and repeat the above operation until the maximum number of
iterations is reached.

IV. EXPERIMENTAL SIMULATION AND ANALYSIS
A. SIMULATION DESCRIPTION
The experimental space is an urban space of 10 km x 10 km
x 200 m, divided vertically into four main height layers of
0-50 m, 50-100 m, 100-150 m, and 150-200 m. There are
three main spaces 50 meters in height for aircraft to pass. The
priority is to fly in the 50-100 m layer, and the flight height
is 75 meters due to the aircraft safety distance guarantee.
There are 40 buildings in the city with heights over 70 meters
(including 26 over 80 meters) defined in the experiment by
combinations of rectangular, cylindrical, and spherical forms
and different sizes. Twelve airports were established in the
experimental area, one of which relied on high-rise buildings
for takeoff and landing.

Moreover, restricted airspace was set up for each airport
to prevent urban air traffic flights from entering restricted
airspace. The total operating time of the aircraft is the sum
of its takeoff, landing, and flight times. Since the terminal
airport capacity is sufficient, the takeoff and landing times
after each entry into the airport range are taken as the same
mean value in this paper. The climb and descent speeds are
set to 4 m/s, and the horizontal flight speed is set to 20 m/s.

Once a flight demand is generated, the reference path
information is retrieved, and the feasibility of the reference
path is evaluated. If feasible, the reference path is directly
executed. If not, the path is planned according to the cur-
rent flight plan being executed. The initial flight altitude
is determined based on the airport information at the start-
ing and ending points of the flight. The trajectory planning
considering fixed obstacles such as buildings, airport no-go
areas, and aircraft in flight is carried out without changing
the altitude layer. The results of the trajectory planning are
compared with the reference trajectory information obtained
by calculation. The trajectory planning is executed if the
consumption time and navigation distance exceed 1.25 times
the reference trajectory. If the results of trajectory planning do

̸ 1 = arccos
(xT5,6 − xT3,5)(xT3,5 − xT1,3) + (yT5,6 − yT3,5 )(yT3,5 − yT1,3)√

(xT5,6 − xT3,5)
2
+(yT5,6 − yT3,5)

2
+

√
(xT3,5 − xT1,3 )

2
+(yT3,5 − yT1,3)

2
(3)
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FIGURE 9. Aircraft path map corresponding to low-density flight demand.

FIGURE 10. Statistical chart of the number of aircraft corresponding to
low-density flight demand.

not meet the execution requirements, avoidance is considered
by changing the altitude layer, re-planning is conducted to
obtain a better trajectory, and the trajectory qualification test
is re-performed. If the condition-satisfying trajectory plan is
still not obtained, avoidance by delaying the takeoff time is
considered. The delay time will be counted in the total time,
and the trajectory check will be performed again. If path
planning cannot achieve the requirement by changing the
altitude level and/or delaying the departure time, the aircraft
density in the area of this path route is high at that period. The
factor should be increased in such instances to reduce the path
length requirement.

B. REFERENCE PATH INFORMATION ACQUISITION
Under the experimental conditions described in
Section IV-A, let the paths from airport A to airport B and
from airport B to airport A be the same. The best paths are
solved in the first level of airspace for 66 combinations of
takeoff and landing points at 12 takeoff and landing points in
the environment. The obtained result is a nearly straight path
after avoiding obstacles, which is used as a reference path
whose starting point, time, distance, and path information are
recorded.

FIGURE 11. Trajectory map corresponding to medium-density flight
demand.

FIGURE 12. Statistical chart of the number of aircraft corresponding to
medium-density flight demand.

C. EXPERIMENTAL RESULTS AND ANALYSIS
1) LOW-DENSITY FLIGHT DEMAND
Under the experimental conditions described in Section IV-
A, the probability of generating a flight demand per second
is set to 0.01, i.e., a new flight demand is generated in the
region for an average of 100 seconds. In the simulationmodel,
60 sets of trajectory planning information were obtained in
6000 seconds, and 43 sets were directly used for the reference
trajectory, as shown in Figure 9.

Intercepting the stable middle part of the acquired trajec-
tory planning information shows that the number of aircraft
in the experimental area is stable at 4.11 above and below,
as shown in Figure 10. Hence, the probability of aircraft
collision is low since the demand for urban air traffic is lower
than its capacity under this flight demand.

2) MEDIUM-DENSITY FLIGHT DEMAND
The probability of generating flight demand per second is set
to 0.02, i.e., an average of 50 seconds is required for a new
flight demand to be generated in the region. The simulation
model is run, and 120 sets of path planning information
are obtained in 6000 seconds, of which 78 sets are refer-
ence paths. The number of aircraft flying into 100-150 m
airspace has increased, as shown in Figure 11. According to
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FIGURE 13. Trajectory maps corresponding to high density flight
requirements.

FIGURE 14. Statistical chart of the number of aircraft corresponding to
the demand for high density flights.

the acquired trajectory planning information, the number of
aircraft in the experimental area is stable above and below
7.05, with obvious fluctuations, as shown in Figure 12. Under
this flight demand, the demand for urban air traffic is still
lower than its capacity. However, the probability of aircraft
collision increases, and the role of conducting integrated
four-dimensional trajectory planning is gradually emerging.

3) HIGH-DENSITY FLIGHT DEMAND
The probability of generating flight demand per second is set
to 0.04, i.e., an average of 25 seconds is required for a new
flight demand to be generated in the region. The simulation
model was run for 6000 seconds, and eight planning failures
and 232 sets of path planning information were obtained.
Of these, 101 groups used the reference path directly, six
planning trips exceeded the path length threshold within 25%,
and six delayed takeoffs. The number of aircraft flying into
the 100-150 m airspace increased significantly, and there
were cases of aircraft crossing layers to avoid other aircraft
on the way to flight, as shown in Figure 13. According to
the acquired trajectory planning information and by taking
the middle section steady state, the number of aircraft in the
experimental area is above and below 14.33 with obvious
regular fluctuations, as shown in Figure 14.

FIGURE 15. Path diagram corresponding to ultra-high density flight
demand.

FIGURE 16. Statistical chart of the number of aircraft corresponding to
ultra-high density flight demand.

4) ULTRA-HIGH-DENSITY FLIGHT DEMAND
The probability of generating flight demand per second is
set to 0.1, i.e., an average of 10 seconds is required for
a new flight demand to be generated in the region. In the
simulation model, 600 sets of trajectory planning information
were obtained in 6000 seconds, with 29 path lengths 1.25-
1.5 times the reference trajectory and 112 delayed takeoffs,
as shown in Figure 15. According to the obtained trajectory
planning information and by taking the steady state of the
middle section, the number of aircraft in the experimental
area rises rapidly, with an average of 26.25 aircraft in the
steady phase accompanied by large fluctuations, as shown
in Figure 16. This indicates that the experimental airspace
cannot sustain such a high density of flight demand. Hence,
the capacity reaches saturation, with an airspace capacity of
approximately 26 aircraft. At this time, the probability of
aircraft collision is high, and aircraft queuing is common.
Therefore, the need for coordinated 4-dimensional trajectory
planning is high.

Based on the above experimental results, a comparison of
the number of aircraft at the four flight demand densities
shows that the fluctuation of the aircraft in the airspace
increases with the flight demand density, which is the most
obvious in the ultra-high-density flight demand scenario. The
statistics are shown in Figure 17. In particular, the airspace
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FIGURE 17. Analysis of the number of aircraft for the four densities of
flight demand.

FIGURE 18. Analysis of the number of aircraft for the four densities of
flight demand.

is already saturated during ultra-high-density flight demand.
The number of aircraft in space is relatively large when
dispersed and relatively small when gathered. The data in the
figure are taken from the stable period of the above exper-
imental results in units of the number of aircraft. The data
above the box are the maximum number of aircraft, the data
below are the minimum number of aircraft, the left side is the
average value, and the right side is the difference between the
two quartile values and the maximum and minimum values.

D. VERIFICATION OF ALGORITHM VALIDITY
According to the results of the four-dimensional trajectory
planning simulations under the above four flight demand
densities, when the density is small, the number of airspace
layers can be distinguished without differentiation because
the loss of airspace occupation is smaller than the resource
consumption of aircraft path planning and control. With an
increased density of flight demand, airspace stratification
will increase the number of aircraft accommodated in urban
airspace and allow for more accurate space occupancy plan-
ning when performing cross-level obstacle avoidance.

Next, the effectiveness and advantages of the algorithm
are verified from two perspectives. The free-flight strategy
based on static maps is simulated in the experimental section
and compared with the proposed algorithm. The path plan-

TABLE 1. Comparison of actual and reference trajectory lengths for two
path planning strategies at four flight demand densities.

ning based on the free flight policy of static map is carried
out based on the low-density flight demand trajectory infor-
mation obtained by the proposed algorithm. In Figure 18,
the blue trajectory is the current path trajectory, and the
red path is the aircraft path that may conflict with this
planning.

Experiments are conducted for the static map-based free
flight strategy according to the proposedmethod at each flight
demand density to verify the effectiveness of the proposed
algorithm. The number of planning times equal to the number
of valid trajectories in 1000-5000 seconds of the proposed
algorithm is obtained. The length of the actual track is com-
pared with the length of the reference track as follows:

LK =
1
n

×

∑n

i=1

IReal
IReference

× 100%, (4)

where n is the number of calculated trajectories, IReal is the
trajectory length of the simulation run, and IReference is the cor-
responding reference trajectory length. When the trajectory
is shorter than the reference trajectory length, the elevation is
taken as LK = 1. The results are shown in Table 1.

Data analysis in the above table shows that regardless of the
flight demand, the algorithm in this paper has an advantage
over the traditional free flight strategy based on static maps in
terms of the flight path length of the vehicle. The experimen-
tal results of low-density and medium-density flight demands
are similar, related to the aircraft’s airspace capacity and flight
altitude. The experimental results of high-density and ultra-
high-density flight demand show a trend where the advantage
is more obvious when the flight demand is higher. Simul-
taneously, more frequent emergency avoidance may lead to
more safety accidents. The trajectory planning proposed in
this paper minimizes the occurrence of emergency avoidance
by trajectory planning before the departure of the aircraft,
which also has advantages in improving the safe flight of
high-density aircraft.

Other aircraft were taken as obstacles to carry out path
planning and further verify the superiority of the proposed
method while providing four-dimensional flight path infor-
mation for the RRT∗ algorithm andBi-RRT.When comparing
these several path planning algorithms, the same simulation
environment with the same simulation process is provided.
The difference between the experiments is the use of different
algorithms for path planning.

It should be noted that several experiments were repeated
in this paper. There is not only one path length comparison
between the actual path length and reference path length for
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TABLE 2. Comparison of actual track length and reference track length of
three strategies with four-dimensional information under four densities.

the three strategies. In addition, the reference paths are given
in advance and are consistent. There are no different reference
paths obtained by different algorithms.

The lengths of the actual flight path and a reference flight
path were compared, and the results are shown in Table 2.

According to the data analysis, the aircraft path length
obtained by the algorithm in this paper has certain advan-
tages and provides four-dimensional information conducive
to efficient path planning. The presented method can increase
the maximum aircraft density in an area by carrying out
four-dimensional path planning before takeoff.

V. CONCLUSION
This paper provides a four-dimensional trajectory planning
method for high-density flights in urban multi-building envi-
ronments. The proposed improved Rapidly Exploring Ran-
dom Tree Star (RRT∗) algorithm for urban air traffic consid-
ers dynamic obstacle avoidance between aircraft and overall
aircraft management in the region based on the traditional
static map path planning application. Different flight demand
densities were set up in simulation experiments to per-
form four-dimensional trajectory planning simulations in an
urban environment. Simulation experiments were conducted
to obtain the airspace capacity of the experimental area and
the number of aircraft at different flight demand densities.
The effectiveness of the proposed algorithm and the necessity
of real-time unified management of high-density flights were
proved. Since the algorithm provided in this paper is used
for aircraft pre-departure trajectory planning and does not
consider sudden dynamic obstacle situations such as flocks
of birds in the urban environment, the strategy and overall
scheduling of the aircraft to deal with sudden moving obsta-
cles in the urban environment still need to be investigated.

REFERENCES
[1] H. H. Zhang, Y. Y. Zou, and Q. C. Zhang, ‘‘A review of future urban air

trafficmanagement research,’’ J. Aviation, vol. 42, no. 7, pp. 82–106, 2021.
[2] E. Mueller, ‘‘Enabling airspace integration for high density urban air

mobility,’’ Nat. Aeronaut. Space Admin., Ames, IA, USA, Tech. Rep.,
2017.

[3] C. Bosson and T. A. Lauderdale, ‘‘Simulation evaluations of an
autonomous urban air mobility network management and separation ser-
vice,’’ in Proc. Aviation Technol., Integr., Oper. Conf., Reston, VA, USA,
Jun. 2018, pp. 1–14.

[4] D. P. Thipphavong, R. Apaza, B. Barmore, V. Battiste, B. Burian, Q. Dao,
M. Feary, S. Go, K. H. Goodrich, J. Homola, H. R. Idris, P. H. Kopardekar,
J. B. Lachter, N. A. Neogi, H. K. Ng, R. M. Oseguera-Lohr,
M. D. Patterson, and S. A. Verma, ‘‘Urban air nobility airspace integration
concepts and considerations,’’ in Proc. Aviation Technol., Integr., Oper.
Conf. AIAA, 2018, pp. 3676–3681.

[5] P. D. Vascik, H. Balakrishnan, and R. J. Hansman, ‘‘Assessment of air
traffic control for urban air mobility and unmanned systems,’’ in Proc. 8th
Int. Conf. Res. Air Transp., 2018, pp. 1–9.

[6] E. R. Mueller, P. H. Kopardekar, and K. H. Goodrich, ‘‘Enabling airspace
integration for high-density on-demand mobility operations,’’ in Proc.
Amer. Inst. Aeronaut. Astronaut., doi: 10.2514/6.2017-3086.

[7] SESAR.U-Space Blueprint, Single Eur. Sky Air Traffic Manag. Res., Joint
Undertaking SESAR 3 Joint Undertaking, Brussels, Belgium, Apr. 2019.

[8] U. Hiroyuki, ‘‘UTM project in Japan,’’ Japan UTM, New Energy Ind.
Technol. Develop. Org., Japan, Tech. Rep., Apr. 2019.

[9] M. F. B. M. Salleh and K. H. Low, ‘‘Concept of operations (ConOps)
for traffic management of unmanned aircraft systems (TM-UAS) in urban
environment,’’ in Proc. AIAA Inf. Syst.-AIAA Infotech@ Aerosp., 2017,
p. 0223.

[10] S. Tang and R. V. Kuma, ‘‘Autonomous flight,’’ Annu. Rev. Control, Robot.
Auton. Syst., vol. 1, pp. 29–52, May 2018.

[11] H. Chen, Y. Li, and J. D. Luo, ‘‘Research on path planning of mobile robot
based on improved A∗ algorithm optimization,’’ Automat. Instrum., no. 12,
pp. 1–4, 2018, doi: 10.14016/j.cnki.1001-9227.2018.12.001.

[12] J. Liu, J. Yang, H. Liu, X. Tian, and M. Gao, ‘‘An improved ant
colony algorithm for robot path planning,’’ Soft Comput., vol. 21, no. 19,
pp. 5829–5839, Oct. 2017, doi: 10.1007/s00500-016-2161-7.

[13] Y. J. Chen, Y. N. Wang, J. H. Tan, and J. X. Mao, ‘‘Service robot path plan-
ning for local environment incremental sampling,’’ Chin. J. Sci. Instrum.,
vol. 38, no. 5, pp. 1093–1100, 2017.

[14] Y. Xue, J. Jiang, B. Zhao, and T. Ma, ‘‘A self-adaptive artificial bee colony
algorithm based on global best for global optimization,’’ Soft Comput.,
vol. 22, no. 9, pp. 2935–2952, May 2018.

[15] J. Tang, G. Liu, andQ. Pan, ‘‘A review on representative swarm intelligence
algorithms for solving optimization problems: Applications and trends,’’
IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1627–1643, Oct. 2021.

[16] X. Li, X. Sun, D. Wang, S. Li, and Y. Liu, ‘‘Research on UCAV dynamic
task allocation model based on genetic algorithm,’’ J. Syst. Simul., vol. 173,
no. 16, pp. 4387–4389 and 4403, 2008.

[17] Y. Wu and K. H. Low, ‘‘An adaptive path replanning method for coordi-
nated operations of drone in dynamic urban environments,’’ IEEE Syst. J.,
vol. 15, no. 3, pp. 4600–4611, Sep. 2021.

[18] H. L. N. N. Thanh and S. K. Hong, ‘‘Completion of collision avoidance
control algorithm formulticopters based on geometrical constraints,’’ IEEE
Access, vol. 6, pp. 27111–27126, 2018.

[19] X.-F. Liu, Z.-W. Guan, Y.-Q. Song, and D.-S. Chen, ‘‘An optimization
model of UAV route planning for road segment surveillance,’’ J. Central
South Univ., vol. 21, no. 6, pp. 2501–2510, Jun. 2014.

[20] J. Tan, X. Ma, and X. Li, ‘‘Research on UAV 3D flight track planning and
dynamic obstacle avoidance algorithm,’’ Chin. J. Sci. Instrum., vol. 40,
no. 12, pp. 224–233, 2019.

[21] G. P. Reich, ‘‘Analysis of long-range air traffic system: Separation stan-
dards I II III,’’ J. Inst. Navigat., vol. 19, no. 1, pp. 88–98, 1966.

[22] R. A. Paielli and H. Erzberger, ‘‘Conflict probability estimation general-
ized to non-level flight,’’ Air Traffic Control Quart., vol. 7, no. 3, pp. 1–12,
1999.

[23] L. Pallottino, E.M. Feron, andA. Bicchi, ‘‘Conflict resolution problems for
air traffic management systems solved with mixed integer programming,’’
IEEE Trans. Intell. Transp. Syst., vol. 3, no. 1, pp. 3–11, Mar. 2002.

[24] A. Alonso-Ayuso, L. F. Escudero, and F. J. Martín-Campo, ‘‘A mixed 0–1
nonlinear optimization model and algorithmic approach for the collision
avoidance in ATM: Velocity changes through a time horizon,’’ Comput.
Oper. Res., vol. 39, no. 12, pp. 3136–3146, Dec. 2012.

[25] N. Durand and J. M. Alliot, ‘‘Neural nets trained by genetic algorithms for
collision avoidance,’’ Appl. Intell., vol. 13, no. 3, pp. 205–213, 2000.

[26] S. Q. Hao, S. W. Cheng, and Y. P. Zhang, ‘‘A multi-aircraft conflict detec-
tion and resolution method for 4-dimensional trajectory-based operation,’’
Chin. J. Aeronaut., vol. 31, no. 7, pp. 1579–1593, 2018.

[27] J. Bertram, P. Wei, andW. Peng, ‘‘An efficient algorithm for self-organized
terminal arrival in urban air mobility,’’ 10.2514/6.2020-0660.

[28] E. Sunil, J. Hoekstra, and J. Ellerbroek, ‘‘Metropolis: Relating airspace
structure and capacity for extreme traffic densities,’’ inProc. 11thUSA/Eur.
Air Traffic Manag. Res. Develop. Seminar (ATM), 2015, pp. 1–11.

[29] E. Sunil, J. Ellerbroek, and J. Hoekstra, ‘‘An analysis of decentralized
airspace structure and capacity using fast-time simulations,’’ J. Guid.,
Control, Dyn., vol. 40, no. 1, pp. 38–51, 2017.

[30] J. Hoekstra, J. Maas, and E. Sunil, ‘‘How do layered airspace design
parameters affect airspace capacity and safety,’’ in Proc. 7th Int. Conf.
Res. Air Transp. (FAA&EUROCONTOL), Reston, VA, USA, 2016,
pp. 1–8.

81122 VOLUME 11, 2023

http://dx.doi.org/10.2514/6.2017-3086
http://dx.doi.org/10.14016/j.cnki.1001-9227.2018.12.001
http://dx.doi.org/10.1007/s00500-016-2161-7
http://dx.doi.org/10.2514/6.2020-0660


W. Pan et al.: Four-Dimensional Trajectory Planning for Urban Air Traffic Vehicles

[31] S. Balachandran, A. Narkawicz, and C. Munoz, ‘‘A path planning
algorithm to enable well-clear low altitude UAS operation beyond visual
line of sight,’’ in Proc. 12th USA/Eur. Air Traffic Manag. Res. Develop.
Seminar, 2017, pp. 101–113.

[32] S. Primatesta, A. Rizzo, and A. La Cour-Harbo, ‘‘Ground risk map for
unmanned aircraft in urban environments,’’ J. Intell. Robot. Syst., vol. 97,
nos. 3–4, pp. 489–509, Mar. 2020.

WEIJUN PAN received the Ph.D. degree in com-
puter application technology from Sichuan Uni-
versity, Chengdu, in 2013.

Since 1996, he has been with the Civil Avia-
tion Flight University of China, Guanghan, China,
where he is currently a Professor and the Dean of
the College of Air Traffic Management. He is also
leading in the field of air traffic management, air
traffic safety, and surveillance. He is the author of
more than 50 papers. His research interests include

aviation safety, air traffic management, and machine learning.
Dr. Pan acted as the Expert or a Consultant to various academic orga-

nizations, such as the Chinese Society of Aeronautics and Astronautics.
He hosted more than 30 research projects, such as the National Natural
Science Foundation, the CAAC Research Foundation, the Sichuan Province
Research Foundation, and international cooperation research.

QINYUE HE received the B.S. degree in trans-
portation from Southwest Jiaotong University,
Chengdu, China, in 2022. She is currently pur-
suing the master’s degree in transportation engi-
neering with the Civil Aviation Flight University
of China, Guanghan, China. Her research interests
include comprehensive transportation and air traf-
fic management.

YUANJING HUANG received the B.S. degree in
marketing from the Civil Aviation Flight Univer-
sity of China, in 2020, where she is currently
pursuing the M.S. degree in transportation engi-
neering. Her research interests include general avi-
ation emergency rescue and computer simulation
in air traffic management.

LIRU QIN received the B.S. degree in electronic
information engineering from Beihang University,
Beijing, in 2020. She is currently pursuing the
M.S. degree in transportation with the Civil Avi-
ation Flight University of China. Her research
interests include air traffic management and flight
conflict detection and resolution.

VOLUME 11, 2023 81123


