
Received 10 July 2023, accepted 23 July 2023, date of publication 1 August 2023, date of current version 7 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3300379

Real-Time Multi-Task ADAS Implementation on
Reconfigurable Heterogeneous MPSoC
Architecture
GUNER TATAR 1,2, (Member, IEEE), AND SALIH BAYAR 2, (Member, IEEE)
1Department of Electrical Electronic Engineering, Fatih Sultan Mehmet Vakif University, 34445 Istanbul, Turkey
2Department of Electrical and Electronic Engineering, Marmara University, 34840 Istanbul, Turkey

Corresponding author: Salih Bayar (salih.bayar@marmara.edu.tr)

ABSTRACT The rapid adoption of Advanced Driver Assistance Systems (ADAS) in modern vehicles,
aiming to elevate driving safety and experience, necessitates the real-time processing of high-definition
video data. This requirement brings about considerable computational complexity and memory demands,
highlighting a critical research void for a design integrating high FPS throughput with optimalMean Average
Precision (mAP) and Mean Intersection over Union (mIoU). Performance improvement at lower costs,
multi-tasking ability on a single hardware platform, and flawless incorporation into memory-constrained
devices are also essential for boosting ADAS performance. Addressing these challenges, this study proposes
an ADAS multi-task learning hardware-software co-design approach underpinned by the Kria KV260
Multi-Processor System-on-Chip Field Programmable Gate Array (MPSoC-FPGA) platform. The approach
facilitates efficient real-time execution of deep learning algorithms specific to ADAS applications. Utilizing
the BDD100K+Waymo, KITTI, and CityScapes datasets, our ADAS multi-task learning system endeavours
to provide accurate and efficient multi-object detection, segmentation, and lane and drivable area detection
in road images. The system deploys a segmentation-based object detection strategy, using a ResNet-18
backbone encoder and a Single Shot Detector architecture, coupled with quantization-aware training to
augment inference performance without compromising accuracy. The ADAS multi-task learning offers
customization options for various ADAS applications and can be further optimized for increased precision
and reduced memory usage. Experimental results showcase the system’s capability to perform real-time
multi-class object detection, segmentation, line detection, and drivable area detection on road images at
approximately 25.4 FPS using a 1920 × 1080p Full HD camera. Impressively, the quantized model has
demonstrated a 51% mAP for object detection, 56.62% mIoU for image segmentation, 43.86% mIoU for
line detection, and 81.56% IoU for drivable area identification, reinforcing its high efficacy and precision.
The findings underscore that the proposed ADAS multi-task learning system is a practical, reliable, and
effective solution for real-world applications.

INDEX TERMS ADAS, deep learning, deep processing unit, memory allocation, multi-task learning,
MPSoC-FPGA architecture, Vitis-AI, quantization aware training.

I. INTRODUCTION
The emergence of deep learning (DL) and vision-based
technology has significantly impacted the discourse sur-
rounding autonomous driving. In this new era, autonomous
driving systems are complicated constructs with multiple

The associate editor coordinating the review of this manuscript and

approving it for publication was Ludovico Minati .

sensors and modules designed for specific functions. A cru-
cial aspect of a robust autonomous driving system is its
ability to perceive and respond to various environmental ele-
ments, such as surrounding vehicles, pedestrians, and traffic
signs. DL has played a transformative role in advancing
these processes beyond the capabilities of conventional algo-
rithms. By applying DL methods to a wide range of machine
vision tasks, autonomous driving systems have experienced

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 80741

https://orcid.org/0000-0002-3664-1366
https://orcid.org/0000-0002-4600-1880
https://orcid.org/0000-0002-2532-1674


G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

improvements in accuracy, speed, and reliability. The inte-
gration of DL into this domain has opened up exciting
possibilities for the future of autonomous vehicles. Although
DL finds applicability across multiple domains, including
healthcare, finance, and entertainment, its prominence is
particularly evident in Advanced Driver Assistance Systems
(ADAS) tasks. For instance, architectures such as VGG-
Net [1], GoogleNet [2], DenseNet and ResNet [3] have been
proposed for image classification and have successfully exe-
cuted all tasks. In object recognition, multi-stage detectors,
such as R-CNN [4] and Faster R-CNN [4], and single-stage
object detection approaches, such as SSD [5] and YOLO [6],
have been effectively deployed in contemporary applications.
Similarly, models such as DeconvNet [7] and SegNet [8] are
recognized for their proficiency in semantic segmentation,
while LaneNet [9] and VPGNet [10] have demonstrated suc-
cess in lane detection tasks.

An in-depth examination of each model reveals that their
complexities can be attributed to the abundance of layers and
parameters. This complexity stems from designers’ ambi-
tion to enhance the performance of Deep Neural Networks
(DNNs) by creating more extensive architectures. How-
ever, this increased complexity poses challenges in training,
extracting insights, and implementing deeper architectures,
which escalate alongside the growing requirements. Fur-
thermore, using each specified DL model for a specific
task makes employing them simultaneously in multi-tasking
applications more feasible. This allows for more efficient
utilization of the models across different tasks. Two dis-
tinct strategies emerge as potential solutions to address
this complexity. The first strategy involves operating each
task-specific model on separate hardware platforms, even
though this method unavoidably has financial implications.

In contrast, the second strategy focuses on cultivating
and expanding multi-task learning models. As the name
suggests, multi-task learning operates on the premise that
running numerous interconnected tasks on a single hard-
ware platform using the same infrastructure can increase
efficiency. While this approach may slightly increase the
model’s complexity for the designer, it simultaneously allevi-
ates the financial duty of running distinct learning models on
separate platforms. As a result, the execution of multi-task
learning on constrained hardware through multi-tasking is
rapidly emerging as a promising and practical strategy within
ADAS.

This emerging sub-field within artificial intelligence is
characterized by a groundbreaking approach: running mul-
tiple learning tasks simultaneously using a single model
while leveraging the differences and similarities across these
tasks. This novel paradigm holds immense promise and
potential across various domains. The overall computational
complexity can be significantly reduced by sharing back-
bone encoder computations. Moreover, multi-task learning
takes advantage of various tasks’ inherent and interconnected
relationships, improving learning efficiency and predictive
accuracy.

It becomes crucial to optimize both software and hardware
architectures to optimize the processing speed and minimize
inference time. Therefore, hardware-software co-design is
vital for enhancing ADAS within a Multiprocessor System-
on-Chip Field Programmable Gate Array (MPSoC-FPGA).
This comprehensive approach spans both software and hard-
ware dimensions, facilitating the maximum utilization of
embedded resources and ultimately achieving high energy
efficiency. By synergistically integrating hardware and soft-
ware design, ADAS systems can unlock their full potential in
various real-world applications.

In light of the discussed complexities, this paper proposes
an innovative architecture tailored to address financial con-
straints while enabling the execution of multiple tasks simul-
taneously on a designated hardware platform. The novelty of
this study lies in the simultaneous improvements made to the
hardware accelerator platform and software enhancements.
In the forthcoming chapters, we will thoroughly elucidate the
unique software enhancements, the collaborative methodol-
ogy involving hardware-software co-design, and the special-
ized memory allocation and pipeline structures implemented
on the hardware accelerator side. This comprehensive exami-
nation aims to understand better the various components and
innovative approaches employed in the proposed architecture.

A. MOTIVATION AND BACKGROUND
DL plays a crucial role in ADAS by enhancing autonomous
driving capabilities and mitigating potential risks to life and
property. The adoption of DL in ADAS is motivated by
its exceptional proficiency in computer vision tasks, which
are vital for the proper ADAS functionalities. DL mod-
els, including Convolutional Neural Networks (CNNs) and
DNNs, demonstrate remarkable effectiveness in processing
and extracting information from image and video data cap-
tured by sensors. These models can autonomously learn
meaningful features, eliminating the need for manual fea-
ture engineering. Moreover, DL excels in complex pattern
recognition, enabling end-to-end learning and simplifying the
overall system architecture.

The scalability and adaptability of DL models allow them
to generalize well across diverse driving scenarios. While
other learning algorithms may find utility in specific com-
ponents of ADAS, the unique strengths of DL in computer
vision render it highly applicable in various ADAS applica-
tions. Consequently, our research efforts have been focused
on the development and acceleration of DL-based ADAS
algorithms, aiming to capitalize on the transformative poten-
tial of DL in advancing autonomous driving systems.

Selecting appropriate hardware is crucial to ensure that
ADAS tasks using specified DL models run at desired per-
formance levels without encountering resource consumption
problems. Achieving this goal necessitates software opti-
mizations on hardware accelerator platforms. Custom circuit
blocks and chip architectures are leveraged to design hard-
ware accelerators effectively. Similarly, operational cores are
employed to balance performance and functional flexibility.

80742 VOLUME 11, 2023



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

In embedded systems and applications, constraints such as
speed, image size, power consumption, flexibility, accuracy,
and memory play significant roles. Understanding the bene-
fits of employing these sophisticated products requires a com-
prehensive grasp of DL models and hardware acceleration
structures. DL algorithms are fundamentally based on neural
networks, so a profound understanding of their architecture
and configuration is critical for successful implementation in
ADAS and other related domains.

At their core, DL algorithms rely on neural networks,
emphasizing the importance of a profound understanding of
their architecture and configuration for successful implemen-
tation in ADAS and related domains. Cloud-based DL appli-
cations are prevalent, utilizing open-source public clouds
from companies like Google, Microsoft, and Amazon [14].
These companies’ DL networks analyze vast amounts of
data using the CPUs of thousands of servers. However,
in scenarios where CPUs are insufficient for processing large
datasets, they are combined with other hardware, such as
FPGA, GPU, or ASIC-based accelerators, to utilize DL net-
works more efficiently. For example, while many companies
employ computers with multi-core GPUs, Google utilizes
its Tensor processor unit, and Microsoft relies on an FPGA
system [14], [15].

Recent literature and research indicate a growing popu-
larity of application-specific platforms, such as FPGAs and
ASICs, due to their inherent parallelism capabilities [16].
The inherent parallelism of these platforms benefits DL
model training by reducing execution time and enhanc-
ing program accuracy. Consequently, designers can focus
on the DL model’s core aspects by alleviating the paral-
lelization workload. Effective hardware-software co-design
is imperative to execute DL models on MPSoC archi-
tectures involving ARM and FPGA components together.
Designers must allocate computationally intensive portions
to be executed on the Deep Processing Unit (DPU) side
while the ARM processor side handles the remaining
tasks. This coordinated approach ensures efficient resource
utilization and maximizes DL-based ADAS applications’
performance.

Considering the specific requirements of the ADAS appli-
cation under study, the KRIA KV260 MPSoC FPGA selec-
tion was carefully considered. The KRIA KV260 is a suitable
choice, mainly due to its alignment with the computational
demands, flexibility, and power efficiency needed for our
ADAS application. Notably, it offers specific features, such
as high-speed interfaces and dedicated hardware accelera-
tors, which are well-aligned with the needs of our ADAS
system. Moreover, the KRIA KV260 boasts robust support
and a mature ecosystem for deep learning development,
simplifying the implementation and optimization of our DL
algorithms.

Furthermore, the versatility of the KRIA KV260 is evident
in its frequent utilization across various domains, including
ADAS, robotics, and industrial automation. These applica-
tions often necessitate striking a balance between processing

power and FPGA flexibility, making the KRIA KV260 a
compelling choice for our work in ADAS.

B. RELATED WORK
This section provides a concise overview of advanced
previous works on multi-object detection, semantic seg-
mentation, and multi-tasking ADAS. The literature on
ADAS is vast, making it challenging to compare all stud-
ies directly. Therefore, we have focused on studies con-
ducted in recent years that are closely related to our pro-
posed research. We have identified common aspects regard-
ing tasks, datasets, software-hardware co-design, hardware
platforms used, FPS values, and inference accuracy. Our
approach begins with concise summaries of state-of-the-art
studies, categorized from single-task to multi-task studies.
Subsequently, we present an encapsulating Table 1 that pro-
vides a comprehensive and accessible comparison between
various studies.

Table 1 highlights a notable trend in the latest state-of-the-
art studies, where GPU-based hardware architectures are pre-
dominantly utilized. The primary reason for this preference
is the exceptional acceleration potential of GPUs, with hun-
dreds of cores capable of processing thousands of threads in
parallel, leading to significant performance gains compared
to other architectures. As modern computational problems
often exhibit parallel structures, GPUs are well-suited for
tasks like video processing, image analysis, signal process-
ing, and DL essential for running self-driving vehicles in
real-time. Moreover, GPUs are programmable with advanced
software packages like CUDA, TensorFlow, and PyTorch,
enhancing their usability.

However, the energy consumption and high cost associated
with GPUs pose constraints, particularly for battery-powered
devices. As a result, designers seek architectures that offer
GPU-like features while being more energy-efficient and
cost-effective. In this regard, application-specific platforms,
such as FPGAs and ASICs, are gaining popularity due to their
inherent parallelism capability, offering advantages in pro-
gram execution time and accuracy [16], [17], [18], [19], [20].
To conclude, GPU-based hardware architectures remain

prevalent in state-of-the-art ADAS studies due to their pow-
erful acceleration capabilities and user-friendly programming
interfaces. Nonetheless, the adoption of application-specific
platforms, especially FPGAs, is on the rise, driven by their
inherent parallelism, low energy consumption, and cost-
effectiveness. Developing high-level software frameworks
for FPGA programming has further contributed to their
increased use in DL applications.

Based on the given information, we highlighted the
strengths and weaknesses of the studies that showed the clos-
est similarity to our research from the references in Table 1.

For example, in their insightful work, Ghorbel et al., [27],
proposed a method that utilizes GPU acceleration to par-
allelize the eyes detection algorithm based on Viola and
Jones, a development aimed at designing an innovative smart

VOLUME 11, 2023 80743



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

TABLE 1. ADAS multi-tasks implementation in the literature.

wheelchair. The authors subsequently apply this research
to craft a human-machine interface to govern intelligent
wheelchair control. Notably, their work incorporates a sig-
nificant element of software-hardware co-design. However,
their study appears to lack comprehensive coverage of multi-
task learning, which warrants further exploration to augment
the design and performance of intelligent wheelchairs. In the
concluding remarks of their study, Ghorbel et al. explicitly
acknowledge the persistent challenge posed by GPUs in the
context of energy consumption and efficiency. This issue is
particularly pronounced in electronic systems powered by
batteries, potentially limiting the viability and practical appli-
cability of their research in real-world settings.

Moreover, the study employs the Omap4 4460 platform,
which may be prohibitive considering the price-performance
ratio. It is crucial to examine whether more cost-effective
alternatives could achieve comparable, if not superior, results
in designing intelligent wheelchairs and their respective
human-machine interfaces. This would improve the accessi-

bility and affordability of the technology for a broader user
base.

In their study, the authors [28] undertook a comparative
analysis of three disparate deep convolutional neural net-
work hardware accelerator implementation methods. These
encompassed coarse-grained, fine-grained, and sequential
Vitis-AI strategies. Two bespoke DNN architectures were
developed within the System Verilog and FINN frameworks,
displaying the flexibility and applicability of these models.
Notably, despite achieving high performance in terms of FPS
rate, the authors did not explore multi-task implementation
in their work, which leaves room for further investigation
into improving computational efficiency. Another critical
observation to be made about the study is their choice of
the high-performance MPSoC ZCU3EG for the exclusive
task of object detection. Given the processing capabilities of
this particular system, it could potentially be better lever-
aged by distributing the computational load across multi-
ple tasks, thereby optimizing resource use. This single-task

80744 VOLUME 11, 2023



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

focus leaves the potential for more comprehensive, multi-task
approaches largely unexplored. Such methodologies could
prove beneficial for enhancing processing efficiency and per-
formance in future research endeavours.

An additional noteworthy study is the one conducted by
Cho et al., [33], titled ‘‘Multi-task Self-supervised Visual
Representation Learning for Monocular Road Segmenta-
tion,’’ which attained a commendable 94.23% Average Pre-
cision (AP) performance. Within their research, the authors
employed a multi-task framework for segmentation-based
roadway identification. Their study utilized the KITTI dataset
and relied on the considerably costly NVIDIA TITAN GPU
as their hardware. In a distinctive shift from traditional lit-
erature, the authors examined the utility of unsupervised
stereo-based indicators to acquire high-level semantic knowl-
edge for monocular route detection. Their experimental out-
comes indicated an above-average performance, albeit not
significantly superior compared to our research. Our study
boasts several advantages over Cho et al.’s research, such as a
broader array of utilized datasets (KITTI, BDD100K,Waymo
and CityScapes), the adopted methodology, the concurrent
execution of four distinct tasks, and the incorporation of a
backbone encoder.

In the seminal work by Krishnan et al., [34], an in-
depth exploration was conducted on the automation of
domain-specific SoC design intended for autonomous vehi-
cles, with particular emphasis on Unmanned Aerial Vehi-
cles (UAVs). The scope of their research primarily encom-
passed nano, micro, and mini-UAVs, for which they utilized
the capabilities of Xavier NX and Jetson TX2 to fashion
domain-specific SoCs accelerators. Their research findings
confirmed an acceleration factor of approximately 2.25x,
1.62x, and 1.43x, respectively, across the range of UAVs
studied.

It is crucial to note that the approach employed by the
authors, though commendable in its results, diverges from
ours in a significant aspect, namely the software-hardware
co-design, which is the cardinal characteristic differentiat-
ing our study. In addition to this distinguishing factor, our
research incorporates semantic segmentation, which remark-
ably enhances the FPS value. This constitutes a considerable
advantage when the two studies are juxtaposed.

Furthermore, the original study conducted by Krishnan et
al. exhibits a preference for GPU-based accelerator platforms.
Despite their numerous benefits, it is widely recognized that
such platforms are mainly inefficient in energy consumption,
owing to their reliance on hundreds or even thousands of
CUDA cores. This aspect further underscores our research’s
distinctiveness and potential advantages, which circumvents
this significant energy inefficiency challenge.

In their substantive research, Lai et al. [35] introduced a
Multi-Task Semantic Attention Network (MTSAN) designed
to amalgamate segmentation and object detection function-
alities for real-time applications in ADAS. Although their
approach substantially reduced false alarm frequency, it did
so at the cost of increased computational resources. The

researchers reported an FPS rate of 10 at a resolution of
512 × 256 on NVIDIA’s Jetson Xavier and a slightly
improved 15 FPS at the exact resolution on Texas Instru-
ments’ TDA2x platform. However, given the considerable
investment associated with NVIDIA’s Jetson platforms, these
FPS rates could bemore impressivewhen juxtaposedwith our
model’s superior performance.

Moreover, the authors characterized their hardware as low-
power, a claim inconsistent with the commonly recognized
high energy consumption intrinsic to GPU-based architec-
tures. Their study further reveals a subtle under emphasis on
the multi-task functionality of their model, creating an oppor-
tunity for a more thorough model evaluation and comparison.
Contrasting the performance metrics of our model with those
of the authors provides a clearer picture of our superiority.
Enhancements on numerous fronts, including FPS, power
consumption, and memory resource utilization, are observed
in the presented model. It showcases superior real-time per-
formance, exhibiting an improved FPS rate compared to [34]
and [35]. Furthermore, our model’s mAP and mIoU results
exceed those of the MTSAN model, which underscores our
superior performance in object detection and segmentation
tasks.

Regarding power consumption, our model operates on
an MPSoC architecture, renowned for delivering robust
computational performance while consuming significantly
less power than GPU-based architectures. This issue sum-
marises our model being more energy-efficient while provid-
ing full ADAS functionalities. Regarding memory resources,
we leverage the Xilinx Kria KV260 platform, renowned for
optimal memory resource utilization, which results in a more
memory-efficient solution.

In summary, our model presents a more balanced solu-
tion for ADAS applications by providing robust performance
coupled with energy efficiency and cost-effectiveness. This
situation culminates in our model outperforming those pro-
posed by [34] and [35] across multiple evaluation parameters,
asserting its superiority in this field.

As Table 1 shows, there are many methods and stud-
ies for ADAS development. Here, we have tried to present
famous state-of-the-art outcomes closest to our work. In addi-
tion, studies involving software optimization and the use of
hardware accelerators in designing ADAS applications have
become popular. Hardware accelerators can take the form of
CPUs, ASICs, GPUs, and FPGAs. In such event, CPUs are
combined with other hardware for utilizing the DL networks.
When hardware accelerators are inadequate, one or more of
the platforms noted above, like CPUs, GPUs, FPGAs, and
ASICs, are used together for the training inference of DL
algorithms [15], [36].

Recently, application-specific platforms (e.g. FPGAs,
ASICs) are becoming more popular [37] due to their struc-
tural parallelism capability, favouring DL algorithm training
in program execution time and accuracy. It is to be highlighted
that there is a gap in the literature on the need for a design
encompassing high FPS throughput and mAP-mIoU value,

VOLUME 11, 2023 80745



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

better performance at a lower cost, multi-tasking on a single
hardware, and integration into memory-constrained devices
to enhance the performance ofADAS tasks. Therefore, under-
taking an integrated hardware-software design incorporat-
ing the above-mentioned features is crucial to enable the
widespread adoption of autonomous vehicle technologies.

In light of this information, we preferred the FPGA-based
MPSoC architecture because of its ability to perform parallel
processing, its price/performance compatibility and its more
flexible structure. We have realized an efficient hardware-
software co-design on the MPSoC structure. We created our
own DPU architecture on the programmable logic (PL) side
so that the ADAS multi-task learning yields better results
than the existing studies. We arranged the computationally
demanding parts of the DL model to be on the DPU and
the video pre-processing, task allocations and inference parts
on the ARM. For DPU-ARM data interaction, we used the
advanced extensible interface - direct memory access (AXI-
DMA) and pipeline architecture.

C. CONTRIBUTIONS
We have given the study’s main contributions to the literature
in a list as follows;

1) We developed ADAS multi-task learning system,
which can perform several tasks, including semantic
segmentation, multi-object detection, line detection,
and derivable area detection, on a single piece of hard-
ware. This approach can lead to efficient and effective
development of embedded systems, particularly for
ADAS applications.

2) We enhanced the efficiency of our model for
resource-limited embedded devices by examining its
backbone. To reduce its memory footprint on con-
strained platforms, we quantized the model using int-
8 bits.

3) We constructed effective optimizations to the proposed
model to improve its performance without affecting the
accuracy of the inference.

4) We assembled the programmable DPU reserved for the
convolutional neural network.

5) Through hardware-software co-design, our proposed
approach offers high performance and low energy
consumption when compared to other hardware archi-
tectures for similar tasks. We conducted a feasibility
study by deploying the proposed model on low-power
embedded devices and demonstrated real-time process-
ing using a prototype design. Specifically, we investi-
gated the ability to program traditional programming
languages, such as Python and C++, in heteroge-
neous MPSoC architecture with hardware-software co-
design.

The remaining paper scenario is as follows. Section II con-
tains a discussion on the design methodology of the proposed
model. Initially, an overlay is designed utilizing AMD-Xilinx
Vivado 2022.1, which is then imported to theMPSoC-FPGA-

based development board. The performance of software
design and enhancements within the Python environment
follows this. Notably, the focus here is also on the model’s
training, quantization, and compilation. Lastly, the experi-
mental setup and execution of the .xmodel file quantized and
compiled using vai_q_pytorch are deliberated. In Section III,
a rigorous comparative analysis of our findings with analo-
gous studies from the existing literature is undertaken, with
primary emphasis on parameters such as power consump-
tion, reliability, longevity, accuracy, and overall efficiency in
order to optimize the quality of the design. Concluding the
paper, Section IV encapsulates the summative observations
drawn from the entirety of the article and clarifies prospective
avenues for future research.

II. METHODOLOGY
This section raises a broad methodological strategy adopted
for our research. It commences with a discussion on the
structure of the multi-task learning network and its pertinent
subtopics. Following this, an exploration of the hardware
design section and its associated subtopics is presented,
developed utilizing the Vitis unified software platform and
the Vivado 2022.1 integrated development environment. Ulti-
mately, the QAT for the model incorporating a ResNet-18
shared backbone encoder with SSD is addressed in this work.

A. INTRODUCTION
DNNs have become a fundamental tool extensively employed
in ADAS, prompting an increasing focus on enhancing and
accelerating DL-based ADAS algorithms. Achieving such
improvements and accelerations has relied mainly on soft-
ware optimizations. These optimizations typically involve
techniques to speed up the algorithm’s execution, parallelise
it, or integrate libraries like PThreads, OpenCL, andMPI into
the algorithms. The ultimate goal of software optimizations is
to address potential algorithm bottlenecks using the specified
methods. However, the growing complexity of DNN models,
which may comprise millions or even billions of parameters,
has sometimes rendered software-based optimizations inade-
quate.

The advancements in semiconductor process technology
have opened up new possibilities for using hardware as an
accelerator and synergising it with software optimizations.
This hardware and software integration has emerged as a
prominent trend in recent state-of-the-art studies. In line with
these developments, our research incorporates a DPU-based
hardware accelerator complemented by software optimi-
sation utilising high-level languages such as C/C++ and
Python.

The contributions of this study to the existing scholarly
discourse are elucidated in Section I-C, where a comprehen-
sive overview of our research’s key findings is presented.
Subsequently, this section delves into the specifics of our
contributions. The discussion sequence commences with a
detailed exploration of the system’s infrastructure, an in-
depth analysis of the hardware design, and an investigation

80746 VOLUME 11, 2023



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

into the software design and the associated optimisation
methodologies. This study enhances DL-based ADAS algo-
rithms by combining hardware acceleration with software
optimizations. The synergistic integration of hardware and
software offers the potential to address the challenges posed
by increasingly complex DNN models and optimise the
performance of ADAS systems effectively. The subsequent
sections will delve into the technical aspects of this integra-
tion and its implications for ADAS applications.

B. MULTI-TASK LEARNING NETWORK
In the current landscape of deep learning networks, the pre-
vailing approach often involves addressing a specific task.
However, practical applications frequently demand higher
efficiency achieved through integrating multiple individual
algorithms into a single comprehensive learning framework.
This integration is made possible by multi-task learning net-
works, which consolidate various tasks into a cohesive unit.
The efficacy of this approach hinges on exploiting the rela-
tionships between these diverse tasks and optimizing them
for real-time applications.

Multi-task learning networks combine different functions
into a well-suited task, capitalizing on the interrelationships
between these tasks. This study proposes a unified learn-
ing network that combines four distinct learning algorithms
for ADAS. We enhance efficiency in real-time applications
by integrating algorithms that perform multiple individual
tasks into a single framework. Consequently, the network
gains a more accurate representation of functions by shar-
ing features among tasks, leading to improved learning
efficiency and enhanced prediction accuracy. Additionally,
by sharing backbone layers, multi-task learning can reduce
the overall network size (memory footprint) and computa-
tional complexity. This advantage is particularly beneficial
for resource-constrained platforms and fulfils quick inference
requirements.

Our proposed ADAS multi-task learning approach com-
prises a shared backbone encoder, a segmentation subnet,
and a detection subnet, as depicted in Fig. 1. The specific
details of these subnet models have been thoroughly dis-
cussed to provide a comprehensive understanding of our
proposed methodology. The shared backbone encoder is a
typical feature extractor, efficiently utilizing extracted fea-
tures across different tasks. The segmentation subnet focuses
on semantic segmentation, while the detection subnet concen-
trates on object detection.

1) SHARED BACKBONE ENCODER
Various computer vision tasks, including object detection, are
addressed using complex CNN architectures. The construc-
tion of object detection or segmentation architectures is based
on CNN models initially trained for image classification,
thanks to the principle of transfer learning. In this context,
CNN serves as the feature extractor and forms the backbone
of the object detection model. This backbone processes input

data, focusing on specific features to extract detailed concep-
tual elements.

The study’s model is rooted in the ResNet18 archi-
tecture rather than using deeper structures such as
DenseNet, ResNet101, or GoogleNet. These have numerous
hyper-parameters and high computational densities. This
choice enables the operation of the model on open-source
and resource-limited embedded devices. The model is con-
structed through transfer learning, with initial training target-
ing object detection, segmentation, and classification. Per-
formance optimization of the model is achieved by employ-
ing a shared backbone. This approach facilitates efficient
multi-task learning for ADAS and reduces the computational
load, positioning it as an effective solution for real-world
applications. The strategic design of the model was under-
taken with these considerations in mind.

2) DETECTION SUBNET
Our research adopted a single-stage SSD [5] as a detection
decoder to fulfil real-time application needs and enable quick
inference. The SSD employs a multi-scale feature map for
swift object detection. However, as the CNN structure pro-
gressively downsizes the spatial dimensions, it also lowers
the resolution of the feature map. Hence, the SSD uses
lower-resolution layers for detecting and positioning larger-
scale objects. As such, our research opted for a 4 × 4 feature
map for identifying large objects. After VGG16, SSD intro-
duces six extra convolution layers, with five dedicated to
object detection. This layer configuration prompted us to
generate six predictions on three rather than the conventional
four, leading to approximately 8732 predictions across these
layers. This strategic choice contributed to our model’s effi-
ciency and robustness, enhancing its ability to make precise
object detection under various conditions.

3) SEGMENTATION SUBNET
The segmentation subnet’s architectural design incorporates
several learnable up-sampling layers. This subnet comprises
a 3 × 3 convolution layer, layers of batch normalization, and
multiple layers with activation functions. The output tensor
size of one convolution block layer and the input tensor size
of another layer remain consistent, with only up-sampling
altering the tensor size.

A convolution block is initially applied at the subnet’s
bottom, facilitating the extraction of meaningful semantic
features. Instead of using pooling to extract low-resolution
features, three convolution blocks incorporating a dilated
layer are employed. Given that the pooling process can result
in a loss of detail, applying dilated convolution provides more
relevant results for extracting deep features than standard
convolution and subsequent pooling processes. After the deep
feature extraction, up-sampling is performed to restore the
spatial resolution. In the processing methodology, hints about
objects provided by the encoder properties are integrated
into the decoder side to delineate the boundaries with more

VOLUME 11, 2023 80747



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

FIGURE 1. General overview of the ADAS multi-task learning.

precision. Feature summation is used in place of element
accumulation to enhance inference accuracy.

4) SOFTWARE OPTIMIZATION
FPGAs and SoCs implement domain-specific architectures
to optimize CNN in applications, including inference rate,
latency, and hardware utilization. Our ADAS multi-task
learning model runs on ZYNQ Ultrascale+ MPSoC archi-
tecture as a co-design where DPU and ARM are used
together. The DPU accelerates the computing workloads of
DL inference algorithms commonly used in various computer
vision applications. Therefore, the DPU performs the CNN
computations here, while the ARM performs the pre-and
post-processing of the input signal. Furthermore, depth-wise
separable convolution (DWSC) is adapted to the on-chip
pipeline method to process efficiently in parallel, thereby
reducing off-chip memory access. Thus, the DPU core sig-
nificantly improves run-time scheduling efficiency during
the computation of layers. DWSC decreases computational

intensity [38] approximated to normal convolution opera-
tions. DWSC has the fundamental principle of separating
two procedures dept-wise convolution (dwc) and point-wise
convolution (pwc). Pwc has a 1 × 1 standard structure that
follows deep convolution (see Fig. 2). It collects feature infor-
mation from different channels in the exact spatial location,
thus reducing the computational cost and memory footprint
of separable convolutional networks. In an effort to optimize
memory utilization on the ARM (Quad-Core Cortex A-53)
processing engines (PEs), careful data allocation was enacted
to prevent unnecessary re-reading. This facilitated the cre-
ation of an adaptable infrastructure for diverse neural network
models. Similarly, multi-threading and a pipeline architec-
ture were implemented to leverage the DPU and Quad-Core
PEs’ full potential on the Kria KV260 development board.
As a result, high efficiency was attained by mitigating delays
during data communication between the PL and the PS.
The processing duration of the PL, observable during data
transactions via AXI-DMA, underscores this improvement.

80748 VOLUME 11, 2023



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

FIGURE 2. Separable dept-wise convolution architecture.

FIGURE 3. An overview of quantization and compilation of FP32 bits NN model.

A significant software-side enhancement was the quantiza-
tion of the model, as depicted in Fig. 3. This modification
resulted in a model with a memory footprint well-suited to
resource-constrained devices, thereby considerably reducing
computational density. Although model quantization may
slightly impair inference accuracy, the benefits are suffi-
ciently significant to overlook this minor setback. A detailed
account of the improvements and inference results obtained
are comprehensively discussed in Section III.

C. HARDWARE (OVERLAY) DESIGN
The ZYNQ architecture comprises a customizable MPSoC
incorporating a quad-core ARMCortex-A53, dual-core ARM
Cortex RF53, ARM Mali 400MP and a conventional PL
integrated circuit (IC). In addition, MPSoC is equipped with

fast and efficient connections and supports the AXI standard.
The system’s design phase requires tasks to be allocated
between the processor and the FPGA sections, known as PS
and PL, based on the system requirements. This allocation
is a critical step as the overall speed and functionality of the
program depend on how tasks are distributed between PS and
PL sections. The entire system’s performance is influenced
by the tasks assigned to each team. Our research proposal
allocated the high-speed and computationally intensive parts
to PL while assigning the remaining roles to PS.

Identifying the functional blocks in the hardware design,
we integrated them as IPs to establish the necessary
AXI-DMA interfaces between PL and PS, as depicted in
Fig. 4. Digital hardware development was carried out using
the Vivado 2022.1 integrated development environment,

VOLUME 11, 2023 80749



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

FIGURE 4. Overlay design of ADAS multi-task learning hardware.

while high-level synthesis integrated system design was con-
ducted in PL. The hardware accelerator design was prepared
in the PL environment and comprised the overlay comprising
IP blocks.

The ARM is utilized for pre-processing and post-
processing tasks in this study, exploiting the capabilities
of high-level languages such as Python and C++ and the
OpenCV library. As part of the methodology, the decode
thread is programmed to carry out resize functions on images
of 1920 × 1080 and 320 × 512 resolutions. During the ML
inference phase, scale and mean value subtraction operations
are performed on the ARM, leveraging the capabilities of
the Vitis-AI library. The remainder of the task is executed
within the PL, specifically in the DPU. Due to the convolution
process’s intricate nature and heavy processing demands,
the high-performance computational abilities of the DPU are
employed to carry out this process successfully.

The execution of tasks in this study specifically involved
the use of the AXI4 stream interface, a decision influenced
by the superior functionalities of the Direct Memory Access
(DMA) feature, which facilitated a notably rapid transfer of
image pixel values. Strategic adjustments to the primary port
were carried out to facilitate seamless interaction between the
PS and the PL. These modifications included setting the bit
width for the AXI HPM0 FPD at 32, the AXI HPM1 FPD at

128, and the AXI HPM0 LPD at 32. Further configurations
were made to the data width of the secondary interface,
with the AXI HPC0 and HPC1 explicitly set at 128 and
the AXI LPD at 32. These configurations proved essential
in maintaining the AXI4 protocol for the DPU architecture,
a B4096 model. Such adaptations, aimed at enhancing the
system’s design, improved the interaction between hardware
and software components while optimizing task execution
within the system.

1) HARDWARE OPTIMIZATION
DL models exist in various types, and within resource-
constrained environments, it is unlikely to create a single
hardware parameter that caters to all models. Typically,
designs with fewer hardware resources lead to improved
FPGA timing, higher clock frequency, increased throughput,
and reduced power consumption. For applications similar to
ADAS, the presented design provides a viable compromise
with the opportunity for customization through fine-tuned
parameters. The DPU retrieves instructions from off-chip
memory to guide the computing engine’s procedure, with
the Vitis-AI compiler generating these instructions, which
include layer-fusion and optimizations.

This setup uses on-chip memory for input activation,
feature maps, and output metadata buffering to maximize

80750 VOLUME 11, 2023



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

efficiency. Further, software optimization is employed to
reuse data as much as possible, minimizing external memory
bandwidth requirements. The DPU architecture’s computing
engine leverages a deep pipeline, and the PEs fully utilize
fine-grained building blocks such as multipliers, adders, and
accumulators. This methodology maximizes the benefits of
the hardware accelerator structure.

It is possible to configure the convolution architec-
tures available within the DPU IP architecture to align
with the parallelism of the convolution unit. Architectures
vary in PL resource consumption. Larger architectures con-
sume more resources and thus show higher performance.
On the other hand, we prefer smaller architectures for our
resource-constrained device. When we use minor architec-
ture, we experience a decrease in our device performance.
To avoid dropping the performance, we used a Double Data
Rate (DDR) approach to improve the performance we get
with the DPU. In this formatting, we have specified 1x clock
input for general logic and 2x for Digital Signal Processing
(DSP) slices.

The cascade length’s usage presents a crucial aspect of
leveraging DSP. A trade-off between resource usage and
timing performance always exists when determining the DSP
cascade’s size. For instance, deploying amore significant cas-
cade length reduces resource consumption but delivers subpar
timing performance. Conversely, opting for a shorter cascade
length reduces resource usage and significantly improves tim-
ing performance. Hence, in smaller devices with limited logic
resources, it is advisable to employ more extensive cascade
lengths.

In light of resource usage and timing performance, the
study deduced that the DSP’s ideal maximum cascade length
is four. The DPU IP core’s use of DSP elements forms the
basis for whether DSP usage is high or low. In instances
where DSP element usage is low, multiplication only is
performed, whereas high DSP element usage involves both
multiplication and accumulation. By setting DSP usage as
high in the hardware design, a reduction in the computa-
tional density of the quantized DWSC model led to increased
timing performance. Moreover, enabling UltraRAMmemory
in the hardware design allowed for the use of the more
significant DPU architecture, given the device’s lack of suf-
ficient BRAM, effectively reducing the resource constraint
of the development board. Fine-tuning performed on DSP,
BRAM, and UltraRAM culminated in a more optimized
PL process, yielding timing requirement values at an opti-
mal level. As a consequence, the timing summary revealed
values of 1.135ns for Worst Negative Slack , 0.001ns for
Worst Hold Slack , 2.000ns for Worst Pulse Width Slack and
finally, 0.009ns for Total Negative Slack .

D. QUANTIZATION AWARE TRAINING (QAT)
Designers have been tailoring more comprehensive architec-
tures to enhance the performance of CNNmodels. Such adap-
tations, including broader and more profound CNN architec-
ture, have successfully reduced the classification error rate

for specific problems. Authors of a particular study [39],
utilizing various CNN models, exemplified the relationship
between computational density and memory requirements
in ImageNet classification. They observed a decrease in the
ImageNet classification error rate from 17% to 2.9%. Conse-
quently, expanding the network model incurs an increase in
computational complexity. This escalation, in turn, leads to
a considerable surge in memory requirements. Additionally,
bandwidth concerns arise due to the millions of parameters
found in CNN models.

Techniques such as model pruning, weight quantization,
and activation function quantization [19], [40] aid in reduc-
ing computational complexity. Misuse of the quantization
method can diminish inference accuracy, while the prun-
ing method can prevent network over-fitting during training.
Aiming for a goal-oriented model, the designer needs to
balance these trade-offs. A potential pitfall of quantizing
CNN model weights and activation functions is data loss,
attributed to the inability to restore the floating point after
quantization and de-quantization fully. To articulate this issue
in mathematical terms;

x = fd (fq(x, sx , zx), sx , zx) + 1x (1)

where;
fd and fq are de-quantization and quantization functions,

respectively. 1x is an undetermined small value. Suppose
1x = 0, the quantized integer models’ inference accuracies
are the same as those of the floating point models. Unfor-
tunately, this is not the case. The model performs well after
training when the model parameters are in FP32 (32 bits
floating-point arithmetic). However, setting the precision to
int-8 (8 bits integer) or lower can lead to standard inference
even if the network is well-trained. In contrast, the quantized
network has a much lower memory requirement than the
floating point counterpart, resulting in less energy consump-
tion by the system. As a result, the quantized model is more
suitable for battery-powered embedded devices.

This study delves into the implementation of real-time
ADAS for an FPGA-based MPSoC hardware accelerator
by quantizing the ResNet18 model with SSD assets. The
weights and activation functions of the model were quanti-
fied as int-8 bit low precision integers and a performance
comparison of the network was carried out. The PyTorch
framework was utilized to construct the model, and the
vai_q_pytorch library was used to quantize the weights and
activation functions. It is noteworthy that vai_q_pytorch is
a Vitis AI quantizer-supported library that operates on the
PyTorch framework.

The Vitis AI [21] quantizer takes in the floating point
model, conducts pre-processing, and then quantizes the
weights and activation/biases at the specified bit-width. The
pre-processing performed by Vitis AI folds the batch nor-
malization and eliminates nodes from the model that are
not necessary for inference. Thanks to batch normalization,
simultaneous learning is possible across layers in the net-
work. Without batch normalization, the use of a high learning

VOLUME 11, 2023 80751



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

rate could lead to the issue of disappearing gradients. How-
ever, with batch norms, a higher learning rate can be used
since alterations in one layer do not impact the others.

Only the initial value is set as QAT is employed since the
learning rate value will undergo automatic updates during
training. The authors’ extensive investigation and explanation
of QAT are presented in their work [42], examining its various
components and mechanisms. This article is recommended
for those desiring a more complete and in-depth understand-
ing of QAT. The detailed information in this work can provide
further illumination and enrichment to the reader’s compre-
hension of this specific area of study.

The QAT technique in neural networks strives to minimize
the effect of data loss during training, with the inference
accuracy of the model experiencing only minimal impact.
Given that the weight and activation tensors change during
neural network training, a quantization and de-quantization
layer can be added for each varying tensor in QAT [41].
Differing from (1), (2) and (3) can be defined in the following
manner;

x̂ = fd (fq(x, sx , zx), sx , zx) (2)

x̂ = sx(clip(round(
1
sx
x + zx), αq, βq) − zx) (3)

Data types for quantized tensors are still floating-point ten-
sors. Therefore, we need to train as if there were no quan-
tization layers. In addition, the main problem with QAT is
that such quantization layers cannot be differentiated [41].
On the other hand, the straight-through estimation (STE) [43]
derivative strategy excels when used for QAT. The identity
function in the clipping range [α, β] and the constant function
outside of the clipping range [α, β] are how STE handles the
quantization and de-quantization functions. Thus, the result-
ing derivatives are 1 if [α, β] is in the clipping range and 0 if
outside of the field. We can define symmetric quantization
mathematically as in 4.

∂ x̂
∂x

=

{
1 if α ≤ x ≤ β

0 else
(4)

Scaling factors can be discovered during QAT thanks to STE.
For instance, the Learned Step-Size Quantization (LSQ) [44]
is obtained from the scaling elements’ gradient quantization
function. Starting from 1, we can get 5 to 8 as follows;

∂ x̂
∂sx

=
∂sx
∂sx

(
clip(round

(
1
sx
x, αq, βq

))

+ sx
∂

(
clip

(
round

(
1
sx
x
)

, αq, βq

))
∂sx

(5)

= clip
(
round

(
1
sx
x
)

, αq, βq

)

+ sx
∂

(
clip

(
round

(
1
sx
x
)

, αq, βq

))
∂sx

(6)

If we define the numerator part of (5) as any vari-
able (θ) in order not to rewrite it at length; θ =

clip
(
round

(
1
sx
x
)

, αq, βq

)

∼=



θ + sx
∂

(
1
sx

)
x

∂sx
if α ≤ x ≤ β

aq + sx
∂

(
bq

)
∂sx

if x < α

bq + sx
∂

(
bq

)
∂sx

ifx > β

(7)

=


round

(
x
sx

)
−

x
sx

if α ≤ x ≤ β

aq if x < α

bq if x > β

(8)

Here, it is possible to learn or adaptively select different bit
widths for each layer in a model or a uniform bit width for
the entire model in this case. The vai_q_pytorch library may
quantize the activation functions of the model according to
the following equations.

QuantReLU(x,zx ,yx ,k) =

{
zy if x < zx
zy + k(x − zx) if x ≥ zx

(9)

When zx = 0, zy = 0 and k = 1, the generally utilised ReLU
in DL models is a particular case of the above description.

ReLU(x,0,0,1) =

{
0 if x < zx
1 if x ≥ zx

(10)

Here, we have given the Mathematically analysis steps of the
QuantReLU function.

y = ReLU (x, 0, 0, 1) (11)

=

{
0 if x < zx
1 if x ≥ zx

(12)

= sy(yq − zy) (13)

= ReLU (sx(xq − zx), 0, 0, 1)

=

{
0 if sx(xq − zx) < 0
(sx(xq − zx) if sx(xq − zx) ≥ 0

=

{
0 if xq < zx
sx(xq − zx) if xq ≥ zx

(14)

Consequently;

yq =

 zy if (xq < zx
zy +

sx
sy
(xq − zx) if xq ≥ zx

= ReLU (xq, zx , zy,
sx
sy
) (15)

Hereby, to achieve the QuantReLU corresponding to the
floating-point yq = ReLU (x, 0, 0, 1), we require to serve;

yq = ReLU (xq, zx , zy,
sx
sy
) (16)

where; zx and zy are zero points, s is a positive floating-point
scale element and xq is quantized matrices,

80752 VOLUME 11, 2023



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

TABLE 2. Use of datasets.

E. EXPERIMENTAL SETUP
This section details the experimental setup required for the
real-time execution of ADASmulti-task learning. The discus-
sion initiates with an explanation of the fundamental oper-
ation of the model and the significance of pipeline design.
Following this, insights about the datasets used for this study
will be shared. The next segment will dive into the process
of model training. Concluding the section, an overview of the
hardware-software co-design involved in this study will pro-
vide a comprehensive understanding of the overall process.

1) SYSTEM SETUP
Our research leverages the capabilities of the AMD Xilinx
ZynqUltraScale+MPSoCs, uniting an FPGAwith PL and an
ARM processor inside a PS into a cohesive entity. The chosen
experimental setup utilizes the Zynq UltraScale+ MPSoC
KriaKV260VisionAI development board fromAMDXilinx,
offering 4GB DDR memory due to its compatibility and
efficiency in executing the investigated algorithm.

The focus is primarily on the ARM Cortex A53 (PS)
and PL. The PS coordinates multiple operations, encompass-
ing monitor connections, pre-processing and post-processing
task management, the interface functions oversight, USB
interface regulation, and operating system activity control.
Simultaneously, PL develops optimized on-chip and off-chip
memory access techniques, formulates pipeline strategies,
and supports hardware acceleration functions. As depicted in
Figure 5, multiple threads are established as pipelines and
operated in parallel to maximize efficiency. This pipeline
design strategy yields considerable benefits, contributing to
a roughly 50% throughput increase, and diminishing design
complexity and resource usage, as illustrated in Fig. 6.
With each implemented FPGA kernel embodying a single
thread, the inherent parallelism within this thread can be fully
exploited.

2) DATASETS
We are concentrating our research on improving autonomous
driving in driver-operated and driverless vehicles by combin-
ing object detection and segmentation in a multi-task learning
approach. We trained our model on four publicly avail-
able datasets: BDD100K, Waymo, KITTI, and CityScapes.
We mostly used the BDD100K+Waymo dataset, known for
its various autonomous driving scenes, and KITTI, offering
object detection in three separate classes for both object
detection and segmentation tasks. For semantic segmentation
across 19 categories, we turned to the CityScapes dataset.

Table 2 outlines the dataset distribution we used for train-
ing and inference. We merged datasets into common cate-
gories to further enhance inference accuracy and efficiency.

In particular, we merged the CityScapes and BDD100K
datasets for segmentation tasks, while the BDD100K and
Waymo datasets were utilized for object detection. The data
was portioned for model training, testing, and validation,
resulting in highly promising outcomes for multi-task learn-
ing. The resulting data subsets have demonstrated highly
favourable outcomes for multi-task learning. Evaluating the
performance of our model, we employed standard mAP (17)
and mIoU (18) criteria. The mAP was used to measure
object recognition, while the mIoU was used to evaluate
segmentation. The results suggest that consolidating datasets
into shared categories significantly improved the inference’s
accuracy and efficiency in multi-task learning.

mAP =
1
n

k=n∑
k=1

APk (17)

here, APk is the AP of class k , n is the number of classes,

mIoU =

(
1
ncl

) ∑
i nii(

ti +
∑

j nji − nii
) (18)

where ncl represents the number of classes, ti is the total
number of pixel in class i, nii represents true positives, nji false
negatives.

3) MODEL TRAINING
The construction of the sophisticated multi-task model neces-
sitated a meticulous selection of loss functions. Furthermore,
the extensive capacity of the model and the management of
sizable datasets required the use of a high-performance GPU.
The model was segmented into several subnets subjected to
independent training to alleviate the computational burdens
associated with end-to-end training.

The initialization of the shared backbone subnet was car-
ried out during the pre-training phase, which capitalized on
the extensive versatility of the ImageNet dataset, recognized
for its proficiency in large-scale image classification assign-
ments. This crucial step provided the backbone with mean-
ingful representations for both tasks. The training protocol
encompassed several stages. Initially, the semantic segmen-
tation and backbone encoder subnets were rendered passive,
followed by the training of the multi-object detection subnet.
Afterwards, training was initiated for the semantic segmenta-
tion and backbone encoder subnets, achieved by temporarily
turning off the object detection subnet. Each subnet was
subjected to 100,000 training iterations to ensure thorough
learning.

The commencement of the training phase was centred
on setting up the general contextual information within the
images, designated as weights. This stage was sustained until
the loss function could indicate convergence towards a global
minimum value. During the training phase, the quantization
of weight and activation functions was expedited by apply-
ing QAT, aiming to curtail unnecessary quantization tasks.
Additional steps included pre-processing measures, such as

VOLUME 11, 2023 80753



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

FIGURE 5. Fundamental execution of the ADAS multi-task learning.

FIGURE 6. Kernel pipeline design.

adapting the size of the input image, required explicitly for
multi-object detection, to align directly with the mesh input
size.

The accomplishment of the pre-training phase led to
the fine-tuning of the entire multi-tasking model, with
task-relevant labelled data incorporated into the process. The
parameters of the shared backbone network were updated
in parallel with those of the task-specific subnets. The opti-
mization algorithms previously described were utilized to
minimize the weighted sum of the loss functions. A series
of tests on various hyperparameters, encompassing learning
rate, weight decay, and batch size, were conducted to achieve
themodel’s most effective configuration. A validation set was
employed to monitor the model’s performance.

The objective classification function for the object detec-
tion subnet was defined as focalloss2d and a soft L1 loss
was employed for bounding box regression, thereby tai-
loring the model specifically for object detection tasks.
Notably, focalloss2d effectively countered the influence of
class imbalance during the training phase, whereas the soft
L1 loss function played a role in diminishing the effect of out-
liers in bounding box regression. Stochastic gradient descent
(SGD) was subsequently applied to refine the model, setting
a learning rate 1e-5 and a momentum value of 0.9.

In the SSD multi-box configuration, a batch-size ratio of
16 was set, and binary cross-entropy (BCELoss) was uti-
lized as the loss function, guaranteeing a proficient training
process. Encoder weights were initialized via a pre-trained
ImageNet model for the segmentation subnet. The choice of
LovaszSoftmaxLoss [45] facilitated pixel-level classification

TABLE 3. Specifications of the computer used in evaluation.

and semantic segmentation tasks. The model’s optimization
relied on the SGD optimizer, assigning a learning rate of 1-e2.
Notably, during training, the batch size for the segmentation
subnet was designated as 2.

After training and fine-tuning procedures, the ADAS
multi-task learning network was evaluated on the test set,
employing relevant metrics for each task. Specifically, mAP
was used for object detection, while IoU served the seg-
mentation task. Such assessments aided in approximating the
model’s effectiveness and efficiency, subsequently offering
critical insights for potential enhancements and refinements.

SGD and LovaszSoftmaxLoss can be specified mathemat-
ically as in 19, 20 and 21, respectively.

θ = θ − η.∇θJ (θ; x(i); y(i)) (19)

∇ =
∂

∂x
ı̂ +

∂

∂y
ȷ̂ +

∂

∂k
ẑ (20)

here, ∇ is the gradient operator, η is the learning rate, x(i) is
the training sample, and y(i) denotes the label, respectively.

loss(f ) =
1

|C|

∑
c∈C

1Jc (m(c)) (21)

where 1Jc is Jaccard loss extension, m(c) is the vector of
errors and C represents class.
You can find the features of the workstation we use for
training in Table 3.

4) HARDWARE - SOFTWARE CO-DESIGN
This research emphasizes the creation of a versatile system
input compatible with data from camera or sensor fusion.

80754 VOLUME 11, 2023



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

Such flexibility supports modifications in input modes via
adjustments to the kernel or root file format of the real-time
operating system. This requirement is crucial given the piv-
otal role that machine vision systems serve in the automotive
industry, particularly in object detection and semantic seg-
mentation. Consequently, optimizing hardware and software
co-designs is critical to meet the demands of throughput and
power consumption.

The adopted approach in this study entails a meticulous
evaluation of the algorithm, arranging its components based
on the time consumption profiles for each process. The
formation of this hierarchy was directed by the criteria estab-
lished within this research. This process facilitated the iden-
tification of specific segments of the algorithm where single-
instruction multiple-data (SIMD) operations were prevalent.
An observed increase in power consumption in certain algo-
rithmic sections was attributed to an escalation in algorithmic
latency and the frequency of memory access. Given that,
each memory access operation requires energy, an escalation
in these operations’ frequency directly affects the system’s
energy consumption. Consequently, power consumption ele-
vates with an increase in the frequency of these accesses,
as demonstrated in certain parts of our algorithm. This insight
proved vital in identifying the algorithm’s energy-intensive
areas, optimising our overall system design for enhanced
energy efficiency.

Modifications were made to several settings to circumvent
potential resource constraints and amplify overall perfor-
mance. ALU parallelism was set to 8, RAM usage to High,
channel augmentation was enabled, and the DSP cascade
length was extended to 4. Channel augmentation is optional
to boost DPU efficiency, especially when the number of
input channels is considerably less than the available channel
parallelism. This scenario is frequently seen in numerous
CNNs where the input channel of the first layer typically
comprises three, failing to utilize the hardware channels opti-
mally. However, even when the number of input channels
surpasses channel parallelism, channel augmentation can be
advantageous, albeit requiring more logic resources. Despite
the related costs, this feature could enhance the efficiency of
most CNNs. These optimizations’ importance lies in achiev-
ing a highly efficient system design.

Table 4 outlines two unique DPU configurations and
their respective utilization methods. Both configurations pose
credible options for inference tasks, with this research choos-
ing the configuration presented in case 1. Each variable
emphasized in the table affects inference and memory con-
sumption in distinctive ways. For instance, activating channel
augmentation can improve the overall efficiency for numer-
ous CNNs, although it may result in elevated LUTs consump-
tion, thereby creating obstacles for devices with restricted
memory. Moreover, it is critical to acknowledge that LUTs
consumption may also vary among different DPU architec-
tures, such as B1152, B3136, and B4096. Performance and
memory prerequisites are further influenced by the types of
ReLU used in convolution and ALU. A suggested setting

TABLE 4. Performance comparison of two distinct DPU configurations for
hardware-software co-design.

FIGURE 7. A Comprehensive examination of the real-time
implementation of ADAS multi-task learning.

TABLE 5. Performance comparison of the studies in terms of specified
metrics.

for ALU parallelism is 4 for devices with memory restric-
tions. Nevertheless, this study chose a setting of 8 to cater to
performance requirements. This modification, while leading
to extra consumption of LUTs, FFs BlockRAMs, and DSPs
resources, is often considered negligible when prioritizing
performance.

III. RESULTS AND DISCUSSION
This research involves the Kria KV260 development board
and the Logitech c930e camera, as illustrated in Fig. 7. The
development board obtains a real-time video stream via USB
for processing on ARM. DPU enables the PL environment
to conduct complex computation and convolution operations,

VOLUME 11, 2023 80755



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

FIGURE 8. Real-time implementation of ADAS multi-task learning.

which are conveyed to the monitor through an HDMI con-
nection. Performance evaluation was conducted via various
ADAS use cases, including object detection, segmentation,
line detection, and detection in drivable areas. The real-time
results of these specified ADAS tasks are demonstrated in
Fig. 8, showing proficient input video data processing.

The platform’s accuracy was gauged through the mAP
value for object detection and the mIoU value for segmenta-
tion and line detection. In contrast, the platform’s throughput
was evaluated using the FPS value. Analogous investiga-
tions employing mAP and mIoUmetrics have been presented
for reader comprehension. A literature review identified a
demand for multi-task ADAS research deploying MPSoC
FPGA. The methodologies discussed presently might appear
designated for diverse applications; however, their future

TABLE 6. Performance comparison of the study in INT8 and FP32 model
types.

incorporation in numerous sectors, notably those involv-
ing autonomous vehicle technology and ADAS, is virtually
inevitable. Notably, within the MPSoC-FPGA environment,
employing hardware-software co-design is poised to yield
enhanced outcomes, especially when software-accelerated
techniques are reinforced by hardware. Integrating hardware
and software in such a harmonized approach can significantly
leverage system performance, fostering advancements in the
forthcoming era of autonomous and assisted driving tech-
nologies.

In Table 5, we have reviewed the literature encompassing
our specified criteria. As discernible from the Table 5, the
power consumption, the number of tasks, and the perfor-
mance (GOPs) we recommend surpass those of the other
studies. Notably, although operation at [28] appears opti-
mal regarding power consumption, it only carries out the
multi-object detection task. The study closest to ours was
conducted at [47], where the researchers undertook multiple
object detection and segmentation tasks. Our investigation
indicates that their study’s mAP and mIoU values are satis-
factory. However, their power consumption exceeds ours, and
they perform fewer tasks. Thus, as demonstrated in the table,
our ADAS multi-task learning stands out in terms of both the
number of functions and the evaluation outcomes.

The performance evaluation results for object detection
using the specified dataset showed 51% mAP, indicating that
the Kria KV260 Vision AI platform can accurately detect
objects in real time. For segmentation, the platform achieved
56.62% mIoU, demonstrating its ability to segment objects
accurately in complex scenarios. In line detection, the plat-
form reached 43.86% IoU, indicating its ability to detect lines
in the environment accurately. In seeing the derivable area,
the platform also achieved 81.56% mIoU, demonstrating its
ability to detect the derivable location accurately. Further-
more, the platform reached a throughput of 25.4 FPS at the
optimized + pipeline design, indicating its real-time ability
to process multiple ADAS use cases.

To assess the performance of ADAS multi-task learning
on the Kria KV260 Vision AI Starter Kit Board, we con-
ducted a comparative study between two precision, FP32
and QAT-INT8, as illustrated in Table 6. This comparison
aimed to gauge how precision influences model performance
concerning computational metrics (FLOPs) and task-specific
outcomes.

80756 VOLUME 11, 2023



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

TABLE 7. Performance comparison of DPU with and without optimized.

TABLE 8. Resource consumption of hardware architectures used in similar studies.

FIGURE 9. Performance evaluation of DDR ports read/write in Vitis AI analyzer.

The FP32 model delivered 6.36 GFLOPs for the
computational metrics, while the INT8 model attained
nearly 25 GFLOPs. This boost in computational speed for
the INT8 model is anticipated due to the reduced numerical
precision, which leads to a lesser computational complexity
and memory usage. Consequently, it enables more operations
to be performed every second, resulting in a higher FLOPs
value for the INT8 model. Alongside this, a minor trade-off
between precision and task-specific performance outcomes
is noticed, with the FP32 model showing slightly improved
performance in segmentation and derivable area detection
tasks, owing to its higher numerical precision.

Conversely, the INT8 model showed comparable or
slightly superior performance in object and line detection

tasks. Thus, the selection between FP32 and INT8 hinges
on the application’s specific requirements. FP32 may be
preferable when the highest accuracy is a priority and compu-
tational resources are not a limiting factor. However, the INT8
model is a viable alternative for scenarios prioritizing com-
putational efficiency and speed, still delivering competitive
performance. The optimal balance depends on the specific
constraints and requirements of the application.

As can be seen from Table 6, we preferred QAT-INT8
and FP32 for comparison. There are methods for quantiza-
tion, including post-training quantization (PTQ) (also called
direct-quantization) and QAT. The memory footprint after
quantization is similar in both methods. The main difference
lies in the performance of the model after quantization. Our

VOLUME 11, 2023 80757



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

model that we trained with QAT was typically more resilient
to the effects of quantization and outperformed a model we
quantized with PTQ (i.e., it produced more accurate predic-
tions) given the same amount of memory. QAT aims to reduce
the accuracy disruption caused by the quantization process,
but the process is more time-consuming and computationally
expensive than PTQ.

We utilized multi-threading to improve the study’s
throughput and observed a significant performance improve-
ment as in Table 7. We followed the performance variation
of the DPU across varying thread sizes. It is well-known that
the DPU we utilized has a maximum thread limit of 4. While
employing a vast number of threads enhances the perfor-
mance, it also significantly increases the DPU run-time value.
Thus, we can elaborate on a trade-off between the thread size
and run time.We also incorporated aDPU pipeline to enhance
the performance of CNNs processing on the FPGA fabric,
resulting in further progress in the platform’s throughput.
We use the Vitis AI analyzer tool to measure the platform’s
performance inference for all allocation threads and tasks,
as shown in Fig. 9. In this context, every color denotes the
speeds of read and write operations in megabytes per second
(MB/s) for five distinct DDR ports.

Additionally, the platform had a low memory footprint,
indicating its efficiency in memory utilization. As a result,
the Kria KV260 Vision AI platform delivers high accuracy
and throughput while maintaining low power consumption
andmemory footprint. Furthermore, the platform’smulti-task
implementation and multi-class object detection capabilities
allow it to process complex ADAS use cases. Our ADAS
multi-task learning successfully integrated a complex and
large model into a development board thanks to the hard-
ware and software optimizations. Table 8 depicts the resource
usage of similar analyses. We offered a glimmer of hope
for resource-constrained devices by multi-tasking on a single
development board. Our study incorporated the B4096 DPU
architecture provided by AMDXilinx, resulting in maximum
efficiency at low frequencies and with limited resource usage.
Our inference success and resource usage are commendable
compared to the other two studies. Our hardware and software
optimizations allowed for optimal utilization of the devel-
opment board, creating sufficient resource space to include
various ADAS tasks. Overall, our study is a cost-effective
and efficient ADAS research solution that can be deployed
in real-world applications with minimal modifications.

It is imperative to note that future investigations will not
remain restricted to CNNs and DNNs. Despite the extensive
applicability of these networks, there is an evolving trajectory
towards more simplified structures in artificial intelligence,
which could yield superior results compared to the highly
effective structures comprising convolutional layers, such as
DNNs and CNNs.

Indeed, relentless technological advancement has enabled
current models to offer plausible solutions to contemporary
problems. However, the escalating complexity of these prob-
lems necessitates formulating novel, diverse structures. This

concept is well-exemplified in the research indicated in [50].
Contrary to the traditional CNN methodology, this study
introduces the Physics Informed DL model. This paradigm
can be characterized as a physics-knowledge-informed deep
learning framework, wherein physics-based domain knowl-
edge is assimilated into the data-driven model as soft con-
straints. These constraints serve to guide and adjust the data-
driven model.

In parallel, the research in [51] elucidates Extreme Learn-
ing Machines (ELMs) as an alternative to traditional deep
learning methodologies, which typically encompass Deep
Belief Networks and Constrained Boltzmann Machines. This
approach streamlines the training process, a phase typically
protracted by the intricate fine-tuning of numerous parame-
ters and the complexity of the hierarchical structure. ELMs
achieve this through a non-iterative, rapid training process
facilitated by a random feature-matching mechanism.

IV. CONCLUSION AND FUTURE WORK
This research proposes a highly effective and efficient
approach for executing multi-task ADAS on an MPSoC-
FPGA. The solution focuses on detecting multiple objects,
lane identification, drivable area detection, and semantic seg-
mentation while maintaining minimal power consumption.
The method encompasses a range of software and hardware
enhancements, including integrating multiple models and a
unified learning algorithm, resulting in a remarkable 9%
reduction in memory usage. Hardware optimizations like
parallelization and pipeline architecture were leveraged to
enhance efficiency, compatibility, and speed. The holistic
optimizations improved accuracy, superior performance, and
reduced energy consumption, offering a promising pathway
for developing embedded systems.

Notably, our research approach employed a single
B4096 DPU, a measure that substantially reduced resource
consumption compared to prior research endeavours. This
strategy culminated in our system achieving an energy con-
sumption rate of 7.19w, an FPS value of 25.4, a memory
footprint of nearly 62.86MB, a multi-object detection rate of
51% mAP, a segmentation rate of 56.62% mIoU, a drivable
area detection rate of 81.56% mIoU, and a line detection rate
of 43.86% IoU. Given the data and results, ADAS multi-task
learning offers an effective, efficient, sustainable, and precise
system design for real-time ADAS applications. Further-
more, with its low power consumption, cost-effectiveness,
and compact design, this system presents a compelling solu-
tion for real-world applications, as the experimental results
demonstrate the proposed method’s feasibility for conducting
real-time processing in low-power embedded devices for on-
road testing.

ADAS plays a vital role in modern automotive safety and
convenience by addressing imminent challenges by integrat-
ing sensors, complex algorithms, and advanced computing
resources. The research highlights the significant potential
of utilizing MPSoC FPGAs, with their parallel computing
and reconfigurable logic capabilities, in achieving successful

80758 VOLUME 11, 2023



G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

ADAS deployment. MPSoC FPGAs offer critical elements
like parallel computing and pipeline architectures that have
the potential to enhance the performance of ADAS appli-
cations significantly. By leveraging PL and PEs, custom
hardware accelerators such as DPUs can be created, enabling
fast and low-latency image and video data processing. Inte-
grating advanced software frameworks and libraries like
OpenCV, Python, and C++ further simplifies the deploy-
ment of complex algorithms required for successful ADAS
applications. Another avenue to improve ADAS efficacy is
through multi-task learning, where a single model is trained
to simultaneously perform various tasks, including object and
lane detection. However, this approach introduces challenges
related to memory allocation and resource management.
To addressmemory and resource constraints, quantized aware
training can be employed, producing compact and efficient
models with minimal performance degradation. Nonetheless,
optimizing quantized models requires careful consideration
of trade-offs between accuracy, performance, and memory
consumption.

Despite significant progress in developing ADAS sys-
tems with MPSoC FPGAs and other computing resources,
specific challenges still need to be addressed. Integrat-
ing ADAS with advanced methods like autonomous driv-
ing necessitates heightened reliability, safety, and security.
Moreover, ADAS systems operating in harsh environments
require specialized hardware and software architectures.
While MPSoC FPGAs, parallel computing architectures, and
software frameworks like OpenCV and Python promise effi-
cient and high-performance ADAS systems, addressing these
challenges is crucial for widespread adoption and successful
deployment across diverse applications.

Our future research aims to explore how innovative tech-
nologies, such as advanced LIDAR or RADAR systems, can
be integrated into the multi-task learning approach of ADAS.
We also plan to incorporate refined computer vision and ML
algorithms to enhance object detection and tracking accuracy.
Additionally, we envision advancing the decision-making
process in ADAS by leveraging Vehicle-to-Everything (V2X)
data to coordinate activities across multiple vehicles, thereby
enhancing road safety. Furthermore, we are exploring the
potential impact and integrative possibilities of emerging
technologies like quantum computing and neuromorphic
computing, which may revolutionize ADAS. These inno-
vative concepts form the basis of our future research plans
as we explore their potential and transformative effects in
ADAS systems.

REFERENCES
[1] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for

large-scale image recognition,’’ 2014, arXiv:1409.1556.
[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Boston, MA,
USA, Jun. 2015, pp. 1–9, doi: 10.1109/CVPR.2015.7298594.

[3] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778, doi:
10.1109/CVPR.2016.90.

[4] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017, doi:
10.1109/TPAMI.2016.2577031.

[5] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg, ‘‘SSD: Single shot MultiBox detector,’’ in Proc.
Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2016,
pp. 21–37.

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 779–788,
doi: 10.1109/CVPR.2016.91.

[7] H. Noh, S. Hong, and B. Han, ‘‘Learning deconvolution network
for semantic segmentation,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Santiago, Chile, Dec. 2015, pp. 1520–1528, doi: 10.1109/ICCV.
2015.178.

[8] V. Badrinarayanan, A. Kendall, and R. Cipolla, ‘‘SegNet: A deep convolu-
tional encoder–decoder architecture for image segmentation,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017, doi:
10.1109/TPAMI.2016.2644615.

[9] D. Neven, B. D. Brabandere, S. Georgoulis, M. Proesmans, and L. V. Gool,
‘‘Towards end-to-end lane detection: An instance segmentation approach,’’
in Proc. IEEE Intell. Vehicles Symp. (IV), Changshu, China, Jun. 2018,
pp. 286–291, doi: 10.1109/IVS.2018.8500547.

[10] S. Lee, J. Kim, J. S. Yoon, S. Shin, O. Bailo, N. Kim, T.-H. Lee, H. S. Hong,
S.-H. Han, and I. S. Kweon, ‘‘VPGNet: Vanishing point guided network
for lane and road marking detection and recognition,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Venice, Italy, Oct. 2017, pp. 1965–1973, doi:
10.1109/ICCV.2017.215.

[11] Ò. Lorente, I. Riera, and A. Rana, ‘‘Scene understanding for autonomous
driving,’’ 2021, arXiv:2105.04905.

[12] M. Teichmann, M. Weber, M. Zöllner, R. Cipolla, and R. Urtasun, ‘‘Multi-
Net: Real-time joint semantic reasoning for autonomous driving,’’ in
Proc. IEEE Intell. Vehicles Symp. (IV), Changshu, China, Jun. 2018,
pp. 1013–1020, doi: 10.1109/IVS.2018.8500504.

[13] J. Peng, L. Tian, X. Jia, H. Guo, Y. Xu, D. Xie, H. Luo, Y. Shan, and
Y. Wang, ‘‘Multi-task ADAS system on FPGA,’’ in Proc. IEEE Int.
Conf. Artif. Intell. Circuits Syst. (AICAS), Hsinchu, Taiwan, Mar. 2019,
pp. 171–174, doi: 10.1109/AICAS.2019.8771615.

[14] B. P. Sanjay. (2022). Deep Learning Part 3/4, Medium. Accessed:
Jul. 25, 2022. [Online]. Available: https://medium.com/my-aiml/deep-
learning-part-3-4-5c1392ecbc17

[15] P. Jawandhiya, ‘‘Hardware design for machine learning,’’
Int. J. Artif. Intell. Appl., vol. 9, no. 1, pp. 63–84, Jan. 2018, doi:
10.5121/ijaia.2018.9105.

[16] J. Borrego-Carazo, D. Castells-Rufas, E. Biempica, and J. Carrabina,
‘‘Resource-constrained machine learning for ADAS: A systematic
review,’’ IEEE Access, vol. 8, pp. 40573–40598, 2020, doi:
10.1109/ACCESS.2020.2976513.

[17] K. S. Zaman, M. B. I. Reaz, S. H. Md Ali, A. A. A. Bakar, and
M. E. H. Chowdhury, ‘‘Custom hardware architectures for deep
learning on portable devices: A review,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 33, no. 11, pp. 6068–6088, Nov. 2022, doi:
10.1109/TNNLS.2021.3082304.

[18] M. Lebedev and P. Belecky, ‘‘A survey of open-source tools for
FPGA-based inference of artificial neural networks,’’ in Proc. Ivan-
nikov Memorial Workshop (IVMEM), Sep. 2021, pp. 50–56, doi:
10.1109/IVMEM53963.2021.00015.

[19] G. Tatar, S. Bayar, and I. Cicek, ‘‘Hardware acceleration of FIR filter
implementation on Zynq SoC,’’ in Proc. IEEE 16th Int. Conf. Appl. Inf.
Commun. Technol. (AICT),Washington, DC,USA,Oct. 2022, pp. 1–6, doi:
10.1109/AICT55583.2022.10013522.

[20] G. Tatar, S. Bayar, and I. Cicek, ‘‘Performance evaluation of low-precision
quantized LeNet and ConvNet neural networks,’’ in Proc. Int. Conf. Innov.
Intell. Syst. Appl. (INISTA), Biarritz, France, Aug. 2022, pp. 1–6, doi:
10.1109/INISTA55318.2022.9894261.

[21] Vitis AI. Xilinx. Accessed: Jul. 15, 2022. [Online]. Available: https://
www.xilinx.com/products/design-tools/vitis/vitis-ai.html

[22] M. R. Rani, M. Z. C. Mustafar, N. H. F. Ismail, M. S. F. Mansor,
and Z. Zainuddin, ‘‘Road peculiarities detection using deep learning
for vehicle vision system,’’ IOP Conf., Mater. Sci. Eng., vol. 1068,
no. 1, 2021, Art. no. 012001, Accessed: Jul. 25, 2023. [Online]. Available:
https://www.academia.edu/50181633/Road_Peculiarities_Detection_using
_Deep_Learning_for_Vehicle_Vision_System

VOLUME 11, 2023 80759

http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/ICCV.2015.178
http://dx.doi.org/10.1109/ICCV.2015.178
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1109/IVS.2018.8500547
http://dx.doi.org/10.1109/ICCV.2017.215
http://dx.doi.org/10.1109/IVS.2018.8500504
http://dx.doi.org/10.1109/AICAS.2019.8771615
http://dx.doi.org/10.5121/ijaia.2018.9105
http://dx.doi.org/10.1109/ACCESS.2020.2976513
http://dx.doi.org/10.1109/TNNLS.2021.3082304
http://dx.doi.org/10.1109/IVMEM53963.2021.00015
http://dx.doi.org/10.1109/AICT55583.2022.10013522
http://dx.doi.org/10.1109/INISTA55318.2022.9894261


G. Tatar, S. Bayar: Real-Time Multi-Task ADAS Implementation

[23] T. Almeida, B. Lourenço, andV. Santos, ‘‘Road detection based on simulta-
neous deep learning approaches,’’ Robot. Auton. Syst., vol. 133, Nov. 2020,
Art. no. 103605.

[24] A. Hernández, S. Woo, H. Corrales, I. Parra, E. Kim, D. F. Llorca,
and M. A. Sotelo, ‘‘3D-DEEP: 3-dimensional deep-learning based on
elevation patterns for road scene interpretation,’’ in Proc. IEEE Intell.
Vehicles Symp. (IV), Las Vegas, NV, USA, Oct. 2020, pp. 892–898, doi:
10.1109/IV47402.2020.9304601.

[25] M.-A. Andrei, C.-A. Boiangiu, N. Tarbǎ, and M.-L. Voncilǎ, ‘‘Robust lane
detection and tracking algorithm for steering assist systems,’’ Machines,
vol. 10, no. 1, p. 10, Dec. 2021, doi: 10.3390/machines10010010.

[26] Y. Chen, Z. Xiang, and W. Du, ‘‘Improving lane detection with adap-
tive homography prediction,’’ Vis. Comput., vol. 39, no. 2, pp. 581–595,
Jan. 2022, doi: 10.1007/s00371-021-02358-1.

[27] A. Ghorbel, N. B. Amor, and M. Abid, ‘‘GPGPU-based parallel comput-
ing of Viola and Jones eyes detection algorithm to drive an intelligent
wheelchair,’’ J. Signal Process. Syst., vol. 94, no. 12, pp. 1365–1379,
Jul. 2022, doi: 10.1007/s11265-022-01783-2.

[28] M. Machura, M. Danilowicz, and T. Kryjak, ‘‘Embedded object detec-
tion with custom LittleNet, FINN and vitis AI DCNN accelerators,’’
J. Low Power Electron. Appl., vol. 12, no. 2, p. 30, May 2022, doi:
10.3390/jlpea12020030.

[29] N. Sharma and R. D. Garg, ‘‘Cost reduction for advanced driver assistance
systems through hardware downscaling and deep learning,’’ Syst. Eng.,
vol. 25, no. 2, pp. 133–143, Nov. 2021, doi: 10.1002/sys.21606.

[30] E. Güney, C. Bayilmis, and B. Çakan, ‘‘An implementation of
real-time traffic signs and road objects detection based on mobile
GPU platforms,’’ IEEE Access, vol. 10, pp. 86191–86203, 2022, doi:
10.1109/ACCESS.2022.3198954.

[31] H.-Y. Han, Y.-C. Chen, P.-Y. Hsiao, and L.-C. Fu, ‘‘Using channel-wise
attention for deep CNN based real-time semantic segmentation with class-
aware edge information,’’ IEEE Trans. Intell. Transp. Syst., vol. 22, no. 2,
pp. 1041–1051, Feb. 2021, doi: 10.1109/TITS.2019.2962094.

[32] M. A. Farooq, P. Corcoran, C. Rotariu, and W. Shariff, ‘‘Object
detection in thermal spectrum for advanced driver-assistance sys-
tems (ADAS),’’ IEEE Access, vol. 9, pp. 156465–156481, 2021, doi:
10.1109/ACCESS.2021.3129150.

[33] J. Cho, Y. Kim, H. Jung, C. Oh, J. Youn, and K. Sohn, ‘‘Multi-task
self-supervised visual representation learning for monocular road segmen-
tation,’’ inProc. IEEE Int. Conf. Multimedia Expo (ICME), San Diego, CA,
USA, Jul. 2018, pp. 1–6, doi: 10.1109/ICME.2018.8486472.

[34] S. Krishnan, Z. Wan, K. Bhardwaj, P. Whatmough, A. Faust, S. Neu-
man, G.-Y. Wei, D. Brooks, and V. J. Reddi, ‘‘Automatic domain-specific
SoC design for autonomous unmanned aerial vehicles,’’ in Proc. 55th
IEEE/ACM Int. Symp. Microarchitecture (MICRO), Chicago, IL, USA,
Oct. 2022, pp. 300–317, doi: 10.1109/MICRO56248.2022.00033.

[35] C.-Y. Lai, B.-X. Wu, V. M. Shivanna, and J.-I. Guo, ‘‘MTSAN: Multi-task
semantic attention network for ADAS applications,’’ IEEE Access, vol. 9,
pp. 50700–50714, 2021, doi: 10.1109/ACCESS.2021.3068991.

[36] (2017). Hardware options for Machine/Deep Learning | MS&E 238 Blog.
Accessed: Jul. 25, 2023. [Online]. Available: https://mse238blog.stanford
.edu/2017/07/gnakhare/hardware-options-for-machinedeep-learning/

[37] R. Chen, T. Wu, Y. Zheng, and M. Ling, ‘‘MLoF: Machine learning
accelerators for the low-cost FPGA platforms,’’ Appl. Sci., vol. 12, no. 1,
p. 89, Dec. 2021, doi: 10.3390/app12010089.

[38] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convolu-
tions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Hon-
olulu, HI, USA, Jul. 2017, pp. 1800–1807, doi: 10.1109/CVPR.2017.195.

[39] C. Wu, M. Wang, X. Chu, K. Wang, and L. He, ‘‘Low-precision floating-
point arithmetic for high-performance FPGA-based CNN acceleration,’’
ACM Trans. Reconfigurable Technol. Syst., vol. 15, no. 1, pp. 1–21,
Mar. 2022, doi: 10.1145/3474597.

[40] M. P. Véstias, R. P. Duarte, J. T. de Sousa, and H. C. Neto, ‘‘A fast and
scalable architecture to run convolutional neural networks in low density
FPGAs,’’Microprocessors Microsyst., vol. 77, Sep. 2020, Art. no. 103136,
doi: 10.1016/j.micpro.2020.103136.

[41] L. Mao. Quantization for Neural Networks. Accessed: Jul. 25, 2023.
[Online]. Available: https://leimao.github.io/article/Neural-Networks-
Quantization/

[42] P.-E. Novac, G. B. Hacene, A. Pegatoquet, B. Miramond, and
V. Gripon, ‘‘Quantization and deployment of deep neural networks
on microcontrollers,’’ Sensors, vol. 21, no. 9, p. 2984, Apr. 2021, doi:
10.3390/s21092984.

[43] Y. Bengio, N. Léonard, and A. Courville, ‘‘Estimating or propagating
gradients through stochastic neurons for conditional computation,’’ 2013,
arXiv:1308.3432.

[44] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S. Modha,
‘‘Learned step size quantization,’’ 2019, arXiv:1902.08153.

[45] M. Berman, A. R. Triki, and M. B. Blaschko, ‘‘The Lovász-softmax loss:
A tractable surrogate for the optimization of the intersection-over-union
measure in neural networks,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Salt Lake City, UT, USA, Jun. 2018, pp. 4413–4421,
doi: 10.1109/CVPR.2018.00464.

[46] J. Wang and S. Gu, ‘‘FPGA implementation of object detection
accelerator based on vitis-AI,’’ in Proc. 11th Int. Conf. Inf. Sci.
Technol. (ICIST), Chengdu, China, May 2021, pp. 571–577, doi:
10.1109/ICIST52614.2021.9440554.

[47] S. Fang, L. Tian, J. Wang, S. Liang, D. Xie, Z. Chen, L. Sui, Q. Yu, X. Sun,
Y. Shan, and Y. Wang, ‘‘Real-time object detection and semantic segmen-
tation hardware system with deep learning networks,’’ in Proc. Int. Conf.
Field-Program. Technol. (FPT), Naha, Japan, Dec. 2018, pp. 389–392, doi:
10.1109/FPT.2018.00081.

[48] A. Kojima and Y. Osawa, ‘‘Design and implementation of autonomous
driving robot car using SoC FPGA,’’ in Proc. Int. Conf. Field-
Program. Technol. (ICFPT), Tianjin, China, Dec. 2019, pp. 441–444, doi:
10.1109/ICFPT47387.2019.00088.

[49] S. Kalapothas, G. Flamis, and P. Kitsos, ‘‘Efficient edge-AI application
deployment for FPGAs,’’ Information, vol. 13, no. 6, p. 279, May 2022,
doi: 10.3390/info13060279.

[50] J. Zhang, Y. Zhao, F. Shone, Z. Li, A. F. Frangi, S. Q. Xie, and
Z.-Q. Zhang, ‘‘Physics-informed deep learning for musculoskeletal mod-
eling: Predicting muscle forces and joint kinematics from surface EMG,’’
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 31, pp. 484–493, 2023, doi:
10.1109/TNSRE.2022.3226860.

[51] J. Zhang, Y. Li, W. Xiao, and Z. Zhang, ‘‘Non-iterative and fast deep learn-
ing: Multilayer extreme learning machines,’’ J. Franklin Inst., vol. 357,
no. 13, pp. 8925–8955, Sep. 2020, doi: 10.1016/j.jfranklin.2020.04.033.

GUNER TATAR (Member, IEEE) was born in
Kahramanmaras, Elbistan. He received the degree,
in 2007, the B.S. degree from the Electronics and
CommunicationDepartment,MarmaraUniversity,
in 2014, and the master’s degree from Marmara
University, in 2017, where he is currently pursu-
ing the Ph.D. degree in EEE (English). Following
graduation, he worked for a year as a scholar-
ship student in developing biomedical imaging and
diagnostic systems infrastructure, financially sup-

ported by the Ministry of Development, in 2017. Since then, he has been
a Research Assistant with the Department of EEE, Fatih Sultan Mehmet
Vakif University. His research interests include reconfigurable computing,
dynamic and partial reconfiguration of AMDXilinx FPGA, multiprocessors,
embeddedmulticore architecture, deep learning, and driver assistant systems.

SALIH BAYAR (Member, IEEE) received the
B.S. degree in electronics and communication
engineering from Yıldız Technical University,
Istanbul, Turkey, in 2003, the M.S. degree in
electrical engineering and information technol-
ogy specialization in systems engineering from
the Karlsruhe Institute of Technology, Karlsruhe,
Germany, in 2007, and the Ph.D. degree from the
Department of Computer Engineering, Boǧaziçi
University, Istanbul. He was a Research Assis-

tant with the Department of Computer Engineering, Boǧaziçi University,
between 2007 and 2013. He was a research and development engineer and
the manager, from 2013 to 2017, in a leading software company in Istanbul.
Since 2017, he has been an Assistant Professor with the Electrical and
Electronics Department, Marmara University, Istanbul. His main research
interests include parallel computing, machine learning, image processing,
FPGAs, multi-processor, and embedded multi-core architectures.

80760 VOLUME 11, 2023

http://dx.doi.org/10.1109/IV47402.2020.9304601
http://dx.doi.org/10.3390/machines10010010
http://dx.doi.org/10.1007/s00371-021-02358-1
http://dx.doi.org/10.1007/s11265-022-01783-2
http://dx.doi.org/10.3390/jlpea12020030
http://dx.doi.org/10.1002/sys.21606
http://dx.doi.org/10.1109/ACCESS.2022.3198954
http://dx.doi.org/10.1109/TITS.2019.2962094
http://dx.doi.org/10.1109/ACCESS.2021.3129150
http://dx.doi.org/10.1109/ICME.2018.8486472
http://dx.doi.org/10.1109/MICRO56248.2022.00033
http://dx.doi.org/10.1109/ACCESS.2021.3068991
http://dx.doi.org/10.3390/app12010089
http://dx.doi.org/10.1109/CVPR.2017.195
http://dx.doi.org/10.1145/3474597
http://dx.doi.org/10.1016/j.micpro.2020.103136
http://dx.doi.org/10.3390/s21092984
http://dx.doi.org/10.1109/CVPR.2018.00464
http://dx.doi.org/10.1109/ICIST52614.2021.9440554
http://dx.doi.org/10.1109/FPT.2018.00081
http://dx.doi.org/10.1109/ICFPT47387.2019.00088
http://dx.doi.org/10.3390/info13060279
http://dx.doi.org/10.1109/TNSRE.2022.3226860
http://dx.doi.org/10.1016/j.jfranklin.2020.04.033

