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ABSTRACT Stability is an important indicator for evaluating complex dynamic systems’ performance.
Many problems in practice are abstracted into the stability of networks. This study examines stochastic
fuzzy Cohen-Grossberg neural networks(CGNNs) with delayed pth moment exponential stability and almost
sure exponential stability. It is an improvement and supplement to existing work. Our method is based on
integral inequality, differential inequality, stochastic analysis theory and Itô’s formula, which discusses the
system’s stability, we have obtained sufficient conditions for system stability, which avoided the construction
of complex Lyapunov functions. Moreover, our method does not require that the activation function be
bounded, differentiable and monotone, and provides sufficient con· editions decreased conservative. At the
same time, it is verified that fuzzy and stochastic terms have positive effects on system stability. Finally, the
effectiveness of the results is verified by a simulation example.

INDEX TERMS Cohen–Grossberg neural network, exponential stability, fuzzy neural network, inequality.

I. INTRODUCTION
The neural network provides a new idea for solving control
problems and modeling complex systems. Especially when
there are uncertainties in the system, neural networks have a
strong association and fault tolerance properties with adapt-
ability the advantages of the neural network method can be
better reflected. Research on neural networks is crucial to
the field of artificial intelligence, and it has attracted signif-
icant attention in the fields of brain science, neuroscience,
computer science, mathematics, physical science and others.
Nonlinear differential equations were applied for the first
time to simulate brain dynamics and characterize neural net-
works, Cohen andGrossberg originally suggested amodel for
CGNNs [1], and since then the subject has been extensively
studied. CGNNs models are more realistic and universal than
cellular neural networks, with more prominent advantages,
greater potential, and strong self-learning ability. Therefore,
a lot of research achievements have beenmade inmany fields,
such as smart home, pattern recognition, medical care and
old-age care, among which the stability of neural networks
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is of great significance and has been widely researched by
scholars [2], [3], [4], [5].

Much research shows that Fuzzy cellular neural networks
(FCNN) maintain local connectivity between cells, effec-
tively solving the contradiction between system complexity
and the required accuracy. The establishment of a fuzzy
cellular neural network model is a process of simplifying,
abstracting and simulating the basic functions of the human
brain, so as to create a machine with complete human intel-
ligence and apply it to various fields of production and
life, assisting or replacing human beings to complete some
difficult and dangerous tasks. The dynamic behavior of an
FCNN plays a key role in these applications, especially
when stability is a concern. A lot of thoughts have given
robust FCNN in recent years [6], [7], [8], [9], [10], [11],
[12], [13], [14]. In references [8], the stability of networks
with distributed and mixed delays is discussed. FCNN with
proportional delay exhibit periodicity, which is highlighted in
reference [11]. In 1996, Yang and Yang [12] introduced fuzzy
operators into the CGNNs model. There is a growing number
of work related to results on fuzzy neural networks (FNNs)
in the literature [13], [14]. Fuzzy CGNNs have recently
gained popularity in recent years due to their benefits in
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processing images and recognizing patterns [15], [16]. So far,
researchers have published results on the dynamic behavior
of FCGNNs, including the presence of periodic solutions,
and their stability, etc. For example, Sevgen [17] created a
new, readily tractable adequate condition to ensure asymp-
totic stability in the CGNNs model, which is represented
by combining nonsingular M-matrix matrices with nonlinear
Lipschitz activation functions. The type of stochastic nonlin-
ear FCGNNs unidentified exogenous disturbance was studied
byXie and Zhu [18], and the Lyapunov function andDynkin’s
formula were all used to demonstrate that the constructed
event-triggered mechanism makes the system under consid-
eration input-to-state stable. According to new findings by
Zhu and Li [14], stochastic fuzzy delayed CGNNs exhibit
exponential and almost exponential stability. Meng et al. [19]
investigated the periodicity of FCGNNs with time delays and
impulses to find a solution for the system under consideration.
To do this, he used the Lyapunov method, fuzzy theory,
and several standards to guarantee period and exponential
stability.

Furthermore, stability analysis is an essential and critical
part of the field of network synchronization control [20],
[21], [22], [23]. In the actual synchronization control prob-
lem of a Complex network, due to the inconsistency of the
clocks of each node, the change of the network topology and
other problems, the network oscillates in the synchronization
process, which is very unfavorable to the system. Therefore,
determining sufficient conditions for the stability of neural
networks is also extremely important in the field of network
synchronization control. For example, Kong et al. [20] inves-
tigated the synchronization of delayed FCGNNs with param-
eter uncertainties. To complete the synchronization, they
additionally established algebraic criteria, Kong et al. [21]
investigated fixed-time synchronization and deduced sta-
ble time using Lyapunov-Krasovskii functional approach.
Currently, the Lyapunov functional method is widely used
and emphasized in network stability research. However,
which makes it necessary to detect higher dimensional linear
matrix inequalities and increase the computational burden.
Construction of Lyapunov- Krasovskii functional approaches
require more mature experience and logic. At the same time,
if a differential equation under consideration has unbounded
terms or unbounded attenuation properties, it is difficult to
use the Lyapunov functional method. Therefore, some schol-
ars in the study of stability moved away from Lyapunov’s
method and used fixed point theory and inequality for sta-
bility and reduce conservatism. In 2001, Burton et al. [24]
originally tested the stability of neural networks using the
fixed-point theory approach. This method was highly praised
and developed rapidly. Luo [25] employed fixed-point the-
ory and presented the requirements for the stability in the
pth mean as well as in the simple route of mild solutions.
Later, this approach was utilized to explore exponential
stability [26]. Luo [27] applied linear matrix inequality to
show the existence of some oscillatory solutions of CGNNs.
Abdelaziz and Chérif [28] proposed impulsive FCGNNs with

delays adequate criteria for the global exponential stability
of the under-consideration model were derived utilizing an
appropriate fixed point theorem. Lu et al. [29] application
of generalized Halanay inequality led to the establishment
of several innovative delay-dependent adequate conditions.
The author used fixed point theory and did not rely on any
Lyapunov function or Lyapunov functional approach. The
activation function’s boundedness and differentiability were
not necessary for the outcomes. Based on previous work,
by creating inequality structures and employing stochastic
analysis methods. Ruan et al. [30] investigated the stability
of Hopfield neural networks. The results did not require
the construction of complex Lyapunov functions. Recently,
Chen et al. [31] dealt with the stability of delayed Hopfield
neural networks (SHNNs) employing the fixed-point method
with discontinuous and distributed delay, and they produced
some innovative findings. However, the fixed-point method
had shortcomings due to the use of Hölder inequality at an
inappropriate time. Additionally, Sun and Cao [32] investi-
gated the exponential stability of the pth moment of SHNN
by using variational parameters and integral inequalities.Wan
and Sun [33] introduced this method. They do not require to
build of Lyapunov functions. However, they needed to delay
functions to be differentiable. Later, Liu et al. [34] adopted
two θ methods and discussed the square stability of SHNN
stochastic numerical calculations with constant delay. Liu
and Zhu [35] and Rathinasamya and Narayanasamy [36]
discussed the semimartingale convergence theorem-based
discontinuous delay SHNNs with deterministic exponential
stability.

In the view of neurophysiology, the response of neural
networks to repeat receipt of the same stimulus is not the
same, and its essence is random. This paper describes this
Stochastic process through Brownian motion. At the same
time, in the actual electronic circuit, the delay is an inevitable
response. Inspired by the existing research results. This arti-
cle explores the pth exponential stability and almost sure
exponential stability of a class of stochastic fuzzy delayed
CGNNs. The following are this paper’s main contributions:
(1) The discussion results of integral inequality and delay

differential inequality in reference [33] are applied to
the stochastic fuzzy delayed CGNNs, which can also be
seen as a further generalization of the Halanay inequal-
ity, and sufficient conditions for the p-order exponen-
tial stability and almost sure exponential stability of
the system is obtained. Compared to reference [14],
our conclusions are less conservative, and we can see
that the method for stochastic fuzzy delayed CGNNs
inequality is easier to operate than the design of the
Lyapunov function and hasmore advantages for higher-
order stability.

(2) Sufficient conditions of the pth exponential stabil-
ity and almost sure exponential stability are verified
through simulation experiments, and the influence of
time delay changes on system stability is observed,
which provides a degree of insight for subsequent
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research on more complex systems. At the same time,
the simulation finds that the system becomes unstable
after we remove the fuzzy and stochastic items, proving
the advantages of fuzzy systems. Therefore, subsequent
research should design improved fuzzy operators to
provide increased stability in the system.

The remainder of this essay is structured as follows: we
introduce the stochastic FCGNNs model in Section II and
provide some essential premises and lemmas. Section III,
we provide sufficient criteria for the system’s stability using
integral inequality and differential inequality. We simulated
Section IV to demonstrate the value of our findings, and
Section V presents our conclusion. Data Center Infrastructure
and Power Consumption.

II. DESCRIPTION OF THE MODEL
In this study, we take into account the class of stochastic
FCGNNs that includes:

dxi (t) = −ai (xi (t))
[
bi (xi (t))− ∧

n
j=1cijfj

(
t, xj (t)

)
− ∨

n
j=1dijfj

(
t, xj (t)

)
− ∧

n
j=1 αijgj

(
t, xj (t − τ (t))

)
− ∨

n
j=1βijgj

(
t, xj (t − τ (t))

)]
dt

+

∑n

j=1
σij
(
t, xj (t) , xj (t, t − τ (t))

)
dwj (t)

xi (s) = φi (s) , s ∈ [−τ, 0]
(1)

The structural diagram is shown in Figure 1:

FIGURE 1. Fuzzy cohen grossberg neural network structure diagram.

For all i, j = 1, 2, · · · , n, t ≥ 0, where xi (t) represents
the ith neuron’s state at time t , ai (·) is a representation
of the ith unit’s amplification function at time t . and bi (·)
is the behaved function. The connection weight strengths of
the jth unit on the ith unit at time t are represented by the
constants cij, dij, αij and βij. fj (·) and gj (·) represent the jth
unit’s neuron activation processes at time t. σij : R × R → R
Borel-measurable function describes the noise perturbation.
∧ and ∨ denote the fuzzy AND and fuzzy OR operations,
respectively. wj (t) is a complete probability space (�,F ,P)

as the scalar standard Brownian motions with a natural fil-
tration {Ft }t≥0. The filtration is right continuous and F0
contains all P-null sets. The time delay τ > 0. Let C ≜
C ([−τ, 0] ; Rn) be the family of all continuous Rn

−valued
functions and φ is a Banach space with P-norm defined

on [−τ, 0]. Define:∥φ∥ =

(
sup

s∈[−τ,0]

n∑
i=1

|φi (s)|p
) 1

p

, and

let C B
F0
([−τ, 0] ; Rn) be the family of all {F0}-measurable

C-value stochastic process ξ = {ξ (θ) : θ ∈ [−τ, 0]}.
Definition 1 ([37]): The trivial solution of FCGNNs (1) is

pth moment exponentially stable, if there exist γ > 0 and
ξ > 0 such that E |xi (t, φ)|p ≤ ξ max

j∈Jn

{
E
∥∥φj∥∥p} e−γ t , t ≥ 0,

holds for any φi ∈ C B
F0
([−τi, 0] ; R), i ∈ Jn.

Definition 2 ([37]): The trivial solution of FCGNNs (1)
is almost surely exponentially stable, If there exist γ > 0
such that lim sup

t→+∞

1
t ln |xi (t, φ)| ≤ −γ , holds for any φi ∈

C B
F0
([−τi, 0] ; R), i ∈ Jn.

Assumption 1: There exist ⌢ai, ăi and θi such that 0 <
⌢ai ≤ ai (vi) ≤ ᾰi and vibi (vi) ≥ θiv2i , for any vi ∈ R,
i = 1, 2, · · · , n.
Assumption 2: f and g are bounded functions, there exist

constants Mi > 0 and Ni > 0 satisfying the Lipschitz
condition |f (u)−f (v)|

|u−v| ≤ Mi,
|g(u)−g(v)|

|u−v| ≤ Ni, hold for any
u, v ∈ R, i = 1, 2, · · · , n.
Assumption 3: There are constants µij ≥ 0 and vij ≥ 0

such that

σ 2
ij
(
t, xj (t) , xj (t − τ (t))

)
≤ µijx2j (t)+ υijx2j (t − τ (t))

(2)

for each xj (t) , xj (t − τ (t)) ∈ R, σij (t, 0, 0) = 0, σij
(0, 0, 0) ≡ 0, i, j ∈ Jn, t ≥ 0.
Assumption 4: aj (0) ≡ 0, or bj (0) = fj (0, 0) = gj

(0, 0) ≡ 0.
Assumption 5:

5 p−1

⌢a
2−p
i

 n∑
j=1

cijMj

P

+
⌢a
2−p
i

 n∑
j=1

αijNj

P

+
⌢a
2−p
i

 n∑
j=1

dijMj

P

+
⌢a
2−p
i

 n∑
j=1

βijNj

P

+

(
2⌢ai
)−( p2−1)

np−1
n∑
j=1

(
µij + υij

) p
2

 < 1 (3)

Lemma 1: Assuming that u and vare two state variables in
the system (1), the following inequality holds:∣∣∣∣ n∧j=1

cijfj (u)−
n
∧
j=1

cijfj (v)

∣∣∣∣ ≤

n∑
j=1

∣∣cij∣∣ ∣∣fj (u)− fj (v)
∣∣ ,

∣∣∣∣ n∧j=1
αijgj (u)−

n
∧
j=1
αijgj (v)

∣∣∣∣ ≤

n∑
j=1

∣∣αij∣∣ ∣∣gj (u)− gj (v)
∣∣ ,
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∣∣∣∣∣∣
n∨
j=1

dijfj (u)−
n
∨
j=1

dijfj (v)

∣∣∣∣∣∣ ≤

n∑
j=1

∣∣dij∣∣ ∣∣fj (u)− fj (v)
∣∣ ,∣∣∣∣∣∣

n∨
j=1

βijgj (u)−

n∨
j=1

βijgj (v)

∣∣∣∣∣∣ ≤

n∑
j=1

∣∣βij∣∣ ∣∣gj (u)− gj (v)
∣∣

Lemma 2: [30]. For system

xi (t) ≤ Kψi (0) e−ρit +

n∑
j=1

pij

∫ t

0
e−ρi(t−τ)

× sup
s−ζij(τ )≤v≤τ

xj (v) dτ

+

n∑
j=1

qij

∫ t

0
xj (τ ) e−ρi(t−τ)dτ

xi (t) = ψi (t) ∈ C ([−ζi, 0] ; R)

(4)

For every i, j ∈ Jn, xi (t) ≥ 0, ζij (τ ) ∈
[
0, ζij

]
and τ ≥ 0,

ζij ≤ ζj, and pij ≥ 0, qij ≥ 0, ρi > 0. We complementarily

define ζ ≜ maxi,j∈Jn
{
ζij
}
. Suppose, −ρi+

n∑
j=1

pij+
n∑
j=1

qij<0,

then there exist a constant λ∗ > 0 such that max
i∈Jn

{|xi (t)|} ≤

max
j∈Jn

{∥∥ψj∥∥} e−λ∗t , t ∈ [−ζ,+∞).

Lemma 3: [30]. For system
D+xi (t) ≤

n∑
j=1

pijxj (t)+

n∑
j=1

qij sup
t−ζij(t)≤s≤t

xj (s)

− ρixi (t) , t ≥ 0
xi (t) = ψi (t) ∈ C ([−ζi, 0] ; R) ,−ζi ≤ t ≤ 0

(5)

where D+ is the Dini derivative. We complimentary define
xi (t) ≜ ψi (−ζi) for −ζ ≤ t ≤ −ζi, where ζ ≜

maxi,j∈Jn
{
ζij
}
. Suppose −ρi+

n∑
j=1

pij+
n∑
j=1

qij < 0, then there

exist λ∗ > 0 such that max
i∈Jn

{|xi (t)|} ≤ max
j∈Jn

{∥∥ψj∥∥} e−λ∗t , t ∈

[−ζ,+∞).
Remark 1: In [14] and [38], complex Lyapunov func-

tions were constructed and complex matrix norms were
defined, respectively, and the results were not easy to verify.
We quoted the inequality conclusion given in reference [37]
and tried to apply this conclusion to the stability analysis of
fuzzy delayed CGNNs, avoiding the construction of complex
Lyapunov functions and the definition of complex matrix
norms. Sufficient conditions for stability with lower conser-
vatism are obtained.

III. INEQUALITIES AND STABILITY
Be sure that the symbols in your equation have been defined
before the equation appears or immediately following. Ital-
icize symbols (T might refer to temperature, but T is the
unit tesla). Refer to ‘‘(1),’’ not ‘‘Eq. (1)’’ or ‘‘equation (1),’’
except at the beginning of a sentence: ‘‘Equation (1)
is . . . .’’

Theorem 1: Then FCGNNs (1) is exponentially stable at
the pth (p ≥ 2) moment, assuming assumptions 1-4 hold.

Proof: From Assumption 1, we have

dxi (t) ≤ −
⌢ai
[
θxi (t)− ∧

n
j=1cijfj

(
t, xj (t)

)
− ∨

n
j=1dijfj

×
(
t, xj (t)

)
− ∧

n
j=1αijgj

(
t, xj (t − τ)

)
− ∨

n
j=1 βijgj

(
t, xj (t − τ)

)]
dt

+

∑n

j=1
σij
(
t, xj (t, t − τ (t))

)
dwj (t) (6)

Multiply both system (6) sides by e
⌢a it , and integrate

between 0 and t , which gives

xi (t) ≤ e−
⌢a itφi (0)+

⌢ai

∫ t

0
e−

⌢a i(t−s) ∧
n
j=1 cijfj

(
s, xj (s)

)
ds

+
⌢ai

∫ t

0
e−

⌢a i(t−s) ∧
n
j=1 αijgj

(
s, xj (s− τ)

)
ds

+
⌢ai

∫ t

0
e−

⌢a i(t−s) ∨
n
j=1 dijfj

(
s, xj (s)

)
ds

+
⌢ai

∫ t

0
e−

⌢a i(t−s) ∨
n
j=1 βijgj

(
s, xj (s− τ)

)
ds

+

∫ t

0
e−

⌢a i(t−s)
∑n

j=1
σij
(
s, xj (s, s− τ)

)
dwj (s)

≜ Si1 (t)+ Si2 (t)+Si3 (t)+ Si4 (t)+ Si5 (t)+Si6 (t)

(7)

There exists 0 < k < 1 such that

5p−1

(1 − k)p−1

⌢a
2−p
i

 n∑
j=1

cijMj

p

+
⌢a
2−p
i

 n∑
j=1

αijNj

p

+
⌢a
2−p
i

 n∑
j=1

dijMj

p

+
⌢a
2−p
i

 n∑
j=1

βijNj

p

+

(
2⌢ai
)−( p2−1)

np−1
n∑
j=1

(
µij + vij

) p
2

 < 1

(8)

Apply Hölder inequality

E |xi (t)|p

≤
E |Si1 (t)|p

kp−1 +
E |Si2 (t)+Si3 (t)+Si4 (t)+Si5 (t)+Si6 (t)|p

(1 − k)p−1

≤
E |Si1 (t)|p

kp−1 + 5p−1E |Si2 (t)|p

kp−1 + 5p−1E |Si3 (t)|p

kp−1

+ 5p−1 E |Si1 (t)|p

kp−1 + 5p−1E |Si4 (t)|p

kp−1 + 5p−1E |Si5 (t)|p

kp−1

+ 5p−1E |Si6 (t)|p

kp−1 (9)

Assumption 2 and lemma 1

E |Si1 (t)|p = e−p
⌢a itE |φi (0)|p ≤ e−

⌢a itE |φi (0)|p , t ≥ 0

(10)
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E |Si2 (t)|p

= E
∣∣∣∣⌢ai ∫ t

0
e−

⌢a i(t−s)∧n
j=1cijfj

(
t, xj (s)

)
ds

∣∣∣∣p
≤ E

[
⌢ai

∫ t

0
e−

⌢a i(t−s) ∧
n
j=1

∣∣cij∣∣ ∣∣fj (t, xj (s))− fj (t, 0)
∣∣ ds]p

≤ E

⌢ai

∫ t

0
e−

⌢a i(t−s)
n∑
j=1

∣∣cij∣∣Mj
∣∣xj (s)∣∣ ds

p

= E

⌢ai
n∑
j=1

∣∣cij∣∣Mj

∫ t

0
e−

⌢a i(t−s)
∣∣xj (s)∣∣ ds

p

=
⌢ai

 n∑
j=1

(∣∣cij∣∣Mj
)p−1

×

 n∑
j=1

(∣∣cij∣∣Mj
)
E
[∫ t

0
e−

⌢a i(t−s)
∣∣xj (s)∣∣ ds]p


=

⌢ai

 n∑
j=1

(∣∣cij∣∣Mj
)p−1

×

 n∑
j=1

(∣∣cij∣∣Mj
)
E

[∫ t

0
e
(1−p)⌢a i(t−s)

p e
−
⌢a i(t−s)
p

∣∣xj (s)∣∣ ds]p


=
⌢ai

 n∑
j=1

(∣∣cij∣∣Mj
)p−1 (∫ t

0
e−

⌢a i(t−s)ds
)p−1

×

 n∑
j=1

∣∣cij∣∣Mj

∫ t

0
E
∣∣xj (s)∣∣p e−⌢a i(t−s)ds


=

⌢a
2−p
i

 n∑
j=1

(∣∣cij∣∣Mj
)p ∫ t

0
E
∣∣xj (s)∣∣p e−⌢a i(t−s)ds

(11)

Similarly, we get

E |Si3 (t)|p ≤
⌢a
2−p
i

 n∑
j=1

(∣∣dij∣∣Nj)
p ∫ t

0
e−

⌢a (t−s)

× sup
s−τ (1)ij ≤v≤s

E
∣∣xj (s)∣∣p ds (12)

E |Si4 (t)|p ≤
⌢a
2−p

 n∑
j=1

(∣∣αij∣∣Mj
)p ∫ t

0
e−

⌢a (t−s)

× E
∣∣xj (s)∣∣p ds (13)

E |Si5 (t)|p ≤
⌢a
2−p

 n∑
j=1

(∣∣βij∣∣Nj)
p ∫ t

0
e−

⌢a (t−s)

× sup
s−τ (1)ij ≤v≤s

E
∣∣xj (s)∣∣p ds (14)

For p ≥ 2, assumption 3 and Holder inequality lead to the
following conclusion:

E |Ii6 (t)|p

= E

∣∣∣∣∣∣
n∑
j=1

∫ t

0
e−

⌢a i(t−s)σij
(
xj (t, t − τ (t))

)
dwj (s)

∣∣∣∣∣∣
p

≤ np−1
n∑
j=1

E
∣∣∣∣∫ t

0
e−

⌢a i(t−s)σij
(
xj (t, t − τ (t))

)
dwj (s)

∣∣∣∣p

= np−1
n∑
j=1

E

[∣∣∣∣∫ t

0
e−

⌢a i(t−s)σij
(
xj (t, t − τ (t))

)
dwj (s)

∣∣∣∣2
] p

2

≤ np−1
n∑
j=1

E
[∫ t

0
e−2⌢a i(t−s)

∣∣σij (xj (t, t − τ (t))
)∣∣2 ds] p

2

≤ np−1
n∑
j=1

E

∫ t

0
e−2⌢a i(t−s)

n∑
j=1

(
µijx2j (s)+υijx

2
j (s−τ)

)
ds


p
2

= np−1
n∑
j=1

E

∫ t

0
e−

2p−4
p

⌢a i(t−s)e−
4
p
⌢a i(t−s)

n∑
j=1

×

(
µijx2j (s)+ υijx2j (s− τ)

)
ds


p
2

≤ np−1
(
2⌢ai
)−( p2−1)

×

∫ t

0
e−2⌢a i(t−s)

n∑
j=1

E
(
µijx2j (s)+ υijx2j (s− τ)

) p
2
ds


≤ np−1

(
2⌢ai
)−( p2−1)

n∑
j=1

(
µij + υij

) p
2

∫ t

0

× sup
s−τ≤v≤s

E
∣∣xj (s)∣∣p e−⌢a i(t−s)ds (15)

Thus, from Assumption 4, we have

E |xi (t)|p

≤
E |Si1 (t)|p

kp−1

+
5p−1E |Si2 (t)+ Si3 (t)+ Si4 (t)+ Si5 (t)+ Si6 (t)|p

(1 − k)p−1

≤
e−

⌢a itE |φi (0)|p

kp−1 +
5p−1

(1 − k)p−1
⌢a
2−p
i

×

 n∑
j=1

(∣∣cij∣∣Mj
)p ∫ t

0
E
∣∣xj (s)∣∣p e−⌢a i(t−s)ds

+

 n∑
j=1

(∣∣dij∣∣Nj)
p ∫ t

0
sup

s−τ (1)ij ≤v≤s

E
∣∣xj (s)∣∣p
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× e−
⌢a i(t−s)ds+

 n∑
j=1

(∣∣αij∣∣Mj
)p−1 ∫ t

0
E
∣∣xj (s)∣∣p

× e−
⌢a i(t−s)ds+

 n∑
j=1

(∣∣βij∣∣Nj)
p

×

∫ t

0
sup

s−τ (1)ij ≤v≤s

E
∣∣xj (s)∣∣p e−⌢a i(t−s)ds

]

+
5p−1

(1 − k)p−1 n
p−1

(
2⌢ai
)−( p2−1)

n∑
j=1

(
µij + υij

) p
2

×

∫ t

0
e−

⌢a i(t−s) sup
s−τ≤v≤s

E
∣∣xj (s)∣∣p ds (16)

We are aware that Lemma2’s prerequisites have all been met.
Next, there are ξ > 0 and γ > 0 such that

max
i∈Jn

{
E |xi (t)|p

}
≤ ξe−γ t max

j∈Jn

{
E
∥∥φj∥∥p} , t ≥ −τ (17)

Remark 2: By constructing Lyapunov Krasovskii func-
tions, references [14] and [38] proved that fuzzy delayed
CGNNs are exponentially stable in different cases, that is,
they are only applicable to the case of p = 2. Higher-
order exponential stability requires higher requirements for
the design of Lyapunov Krasovskii functions. We also apply
the inequality method to p > 2, so we can see the ease of use
of the method in this paper.
Remark 3: Zhu and Li [14] considering the special case of

equation (1), degenerate fj
(
t, xj (t)

)
to fj

(
xj (t)

)
, degenerate

gj
(
t, xj (t − τ (t))

)
to gj

(
xj (t − τ (t))

)
, sufficient conditions

for the stability of the mean square index are given:

2mi
⌢aiθi − λmi − ni − miăi

n∑
j=1

∣∣cij∣∣Mj −

n∑
j=1

mjăj
∣∣cji∣∣Mi

− miăi
n∑
j=1

∣∣dij∣∣Nj − miăi
n∑
j=1

∣∣dij∣∣Mj −

n∑
j=1

mjăj
∣∣dji∣∣Mi

− miăi
n∑
j=1

∣∣βij∣∣Nj − n∑
j=1

mjµji > 0

and

e−ρτni −
n∑
j=1

mi
∣∣dji∣∣Ni − n∑

j=1

mj
∣∣βji∣∣Ni − n∑

j=1

miυji > 0,

It can be seen that our results are easier to achieve. Mao [37]
considered the special case where ai (xi (t)) = 1, Our results
are equivalent to generalizing literature [30].
Theorem 2: Under assumptions 1–3 and

−
⌢ai+

n∑
j=1

(
cijMj+αijNj+dijMj+βijNj+

p− 1
2

(
µij+vij

))
< 0, i ∈ Jn,

thenmax
i∈Jn

{E |xi (t)|p} ≤ max
j∈Jn

{
E
∥∥φj∥∥p} e−λ∗t , where λ∗ is the

following equations’ minimal solution

λ− p⌢ai +
n∑
j=1

(
(p− 1)

(
αij + βij

)
Nj + p

(
cij + dij

)
Mj

+
µij

2
p (p− 1) +

υij

2
(p− 1) (p− 2)

)
+

n∑
j=1

(
αijNj + βijNj + (p− 1) υij

)
eλτij = 0, i ∈ Jn

(18)

Proof: Using Itô’s formula, we obtain

E |xi (t)|p =

∫ t

0
EL |xi (s)|p ds+ E |φi (0)|p (19)

For sufficiently small 1t and any t ≥ 0, we get

D+E |xi (t)|p = EL |xi (t)|p (20)

Itô’s formula, Young’s inequality and Assumptions 1–3
yield

D+E |xi (t)|p

≤ E
[
−p⌢ai |xi (t)|p

+ ∧
n
j=1cijfj

(
t, xj (t)

)
sgn {xi (t)} p (xi (t))p−1

+ ∧
n
j=1αijgj

(
t, xj (t − τ)

)
p (xi (t))p−1 sgn {xi (t)}

+ ∨
n
j=1dijfj

(
t, xj (t)

)
sgn {xi (t)} p (xi (t))p−1

+ ∨
n
j=1βijgj

(
t, xj (t − τ)

)
p (xi (t))p−1 sgn {xi (t)}

+

n∑
j=1

p (p− 1)
2

∣∣σij (s, x (s, s− τ))
∣∣2 |xi (t)|p−2

]
≤ −p⌢aiE |xi (t)|p +

n∑
j=1

cijMjE
[∣∣xj (s)∣∣ p |xi (t)|p−1

]
+

n∑
j=1

αijNjE
[∣∣xj (t − τ)

∣∣ p |xi (t)|p−1
]

+

n∑
j=1

dijMjE
[∣∣xj (s)∣∣ p |xi (t)|p−1

]
+

n∑
j=1

βijNjE
[∣∣xj (t − τ)

∣∣ p |xi (t)|p−1
]

+

n∑
j=1

E
[(∣∣xj (t)∣∣2 µij + p (p− 1)

2
|xi (t)|p−2

×
∣∣xj (t − τ)

∣∣2 υij)]

≤

−p⌢ai +
n∑
j=1

(p− 1)
[
cijMj + αijNj + dijMj + βijNj

+
(p− 2)

(
µij + υij

)
2

]}
E |xi (t)|p
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+

n∑
j=1

(
cijMj + dijMj + E

∣∣xj (t)∣∣p µij (p− 1)
)

+

n∑
j=1

(
(p− 1) υij +

(
αij + βij

)
Nj
)

sup
t−τ≤s≤t

E
∣∣xj (s)∣∣p

(21)

As a result, Lemma 2’s presumptions are all met. Thus,
we have

max
i∈Jn

{
E |xi (t)|p

}
≤ max

j∈Jn

{
E ∥φJ∥

p} e−λ∗t , t ∈ [−τ,+∞)

(22)

This suggests that FCGNNs (1) is pth instant exponentially
stable. The evidence is finished.
Remark 4: The condition of Theorem 2 is weaker than that

of Theorem 1, and the result is sharper than that of Theorem 1.
Remark 5: Theorems 1 and 2 reveal that stochastic fuzzy

delayed CGNNs are exponentially stable at the p-order level.
The criteria given in [39], [40], and [41] are invalid in our
results because the part of fuzzy logic is not considered,
and [28], [42], and [43] ignores the Brownianmot ion existing
in the system. The criteria obtained in [18] are not valid
in Theorem 1 and Theorem 2 because exponential stability
has not been studied.

In the proof of Theorem 2, we used Lemma 1, however,
we replace the inequalities with if∣∣∣∣ n∧j=1

ηfj (u)−
n
∧
j=1
ηfj (v)

∣∣∣∣ ≤ min
1≤j≤n

|η|
∣∣fj (u)− fj (v)

∣∣ (23)∣∣∣∣ n∨j=1
ηfj (u)−

n
∨
j=1
ηfj (v)

∣∣∣∣ ≤ max
1≤j≤n

|η|
∣∣fj (u)− fj (v)

∣∣ (24)

is used in place of the aforementioned disparities.
Corollary 1: Suppose Assumptions 1–3 and

−
⌢ai + max

1≤j≤n

(
cijMj + αijNj

)
+ min

1≤j≤n

(
dijMj + βijNj

)
+
p− 1
2

n∑
j=1

(
µij + υij

)
< 0, i ∈ Jn,

then max
i∈Jn

{E |xi (t)|p} ≤ max
j∈Jn

{
E
∥∥φj∥∥p} e−λ∗t , where λ∗ is

the following equations’ minimal solution.

λ− p⌢ai + min
1≤j≤n

(
pcijMj + (p− 1) αijNj

)
+ min

1≤j≤n
αijNj

+ max
1≤j≤n

βijNj
n∑
j=1

(
(p− 1) υij

)
eλτ

+ max
1≤j≤n

(
(p− 1) βijNj + pdijMj

)
×

p (p− 1)
2

n∑
j=1

µij +
(p− 1) (p− 2)

2

n∑
j=1

υij

 = 0

(25)

Remark 6: Replacing Lemma 1 with Equations (23) –
(24), the result is obvious, and the proof process is the same
as Theorem 2.

Theorem 3: Assume that assumptions 1-3 and

−
⌢ai +

n∑
j=1

(
cijMj + αijNj + bijMj + βijNj +

1
2

(
µij + υij

))
< 0, i ∈ Jn

are true., then it is almost surely exponentially stable for
system(2. 1).

Proof: Where t ∈ [N ,N + 1], assuming N is a big
enough number, then

xi (t) ≤ e−
⌢a itxi (N )+

⌢ai

∫ t

N
e−

⌢a i(t−s) ∧
n
j=1 cijfj

(
s, xj (s)

)
ds

+
⌢ai

∫ t

N
e−

⌢a i(t−s) ∧
n
j=1 αijgj

(
s, xj (s− τ)

)
ds

+
⌢ai

∫ t

N
e−

⌢a i(t−s) ∨
n
j=1 dijfj

(
s, xj (s)

)
ds

+
⌢ai

∫ t

N
e−

⌢a i(t−s) ∨
n
j=1 βijgj

(
s, xj (s− τ)

)
ds

+

∫ t

N
e−

⌢a i(t−s)
∑n

j=1
σij
(
s, xj (s, s− τ)

)
dwj (s)

≜ Ki1 (t)+ Ki2 (t)+ Ki3 (t)+ Ki4 (t)+ Ki5 (t)

+ Ki6 (t) i ∈ Jn (26)

Therefore, for a fixed εN > 0, we get

P {sup |xi (t)| > εN }

≤ P

{
sup

N≤t≤N+1

∣∣∣e−⌢a itxi (N )
∣∣∣ > εN

6

}

+ P
{
sup

∣∣∣∣⌢ai ∫ t

N
e−

⌢a i(t−s) ∧
n
j=1 cijfj

(
s, xj (s)

)
ds

∣∣∣∣ > εN

6

}
+ P

{
sup

∣∣∣∣⌢ai ∫ t

N
e−

⌢a i(t−s) ∧
n
j=1 αijgj

(
s, xj (s− τ)

)
ds

∣∣∣∣
>
εN

6

}
+ P

{
sup

∣∣∣∣⌢ai ∫ t

N
e−

⌢a i(t−s) ∨
n
j=1 dijfj

(
s, xj (s)

)
ds

∣∣∣∣ > εN

6

}
+ P

{
sup

∣∣∣∣⌢ai ∫ t

N
e−

⌢a i(t−s) ∨
n
j=1 βijgj

(
s, xj (s− τ)

)
ds

∣∣∣∣
>
εN

6

}
+ P

{
sup

∣∣∣∣∫ t

N
e−

⌢a i(t−s)
∑n

j=1
σij
(
s, xj (s, s− τ)

)
dwj (s)

∣∣∣∣
>
εN

6

}
(27)

From Theorem 2, there exist constants ρ > 0 and λ > 0
such that

max
j∈Jn

{
E
∣∣xj (t)∣∣2} ≤ ρe−λt , t ∈ [0,+∞) (28)
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So we have

Ki1 ≤

(
6
εN

)2

E
[
sup e−2⌢a it |xi (N )|2

]
≤

(
6
εN

)2

E |x (N )|2 ≤

(
6
εN

)2

ρe−λN (29)

Ki2 ≤

(
6
εN

)2

E

[
sup

∣∣∣∣⌢ai ∫ t

N
e−

⌢a it ∧
n
j=1 cijfj

(
s, xj (s)

)
ds

∣∣∣∣2
]

≤

(
6
εN

)2
⌢a
2
i

∫ N+1

N
e−

⌢a itds
∫ N+1

N
e−

⌢a itE

×

∣∣∣∣∣∣
n∑
j=1

cijfj
(
s, xj (s)

)∣∣∣∣∣∣
2

ds

≤

(
6
εN

)2
⌢a
2
i

∫ N+1

N
e−

⌢a itE

∣∣∣∣∣∣
n∑
j=1

cijMj
∣∣xj (s)∣∣

∣∣∣∣∣∣
2

ds

≤

(
6
εN

)2
⌢a
2
i

 n∑
j=1

cijMj

 n∑
j=1

cijMj

∫ N+1

N
E
∣∣xj (s)∣∣2ds


≤

(
6
εN

)2
⌢ai

n∑
j=1

cijMj

2

ρe−λN (30)

Similarly, we have

Ki3 ≤

(
6
εN

)2 (
⌢ai
)2 n∑

j=1

αijNj

 n∑
j=1

αijNj

∫ N+1

N

× sup
s−τ≤v≤s

E
∣∣xj (v)∣∣2ds) ≤

(
6
εN

)2
⌢ai

n∑
j=1

αijNj

2

× eλτρe−λN (31)

Ki4 ≤

(
6
εN

)2 (
⌢ai
)2 n∑

j=1

dijMj


×

 n∑
j=1

dijMj

∫ N+1

N
E
∣∣xj (s)∣∣2ds

 (32)

≤

(
6
εN

)2
⌢ai

n∑
j=1

dijMj

2

ρe−λN

Ki5 ≤

(
6
εN

)2 (
⌢ai
)2 n∑

j=1

βijNj


×

 n∑
j=1

βijNj

∫ N+1

N
sup

s−τ≤v≤s
E
∣∣xj (v)∣∣2ds


≤

(
6
εN

)2
⌢ai

n∑
j=1

βijNj

2

eλτρe−λN (33)

From the independence of
{
wj (t)

}
j∈Jn

and Itô’s formula,
we get

Ki6

≤

(
6
εN

)2

E
[
sup

∣∣∣∣∫ t

N
e−
⌢a it
∑n

j=1
σij
(
xj (s, s− τ)

)
dwj (s)

∣∣∣∣]

≤

(
6
εN

)2

E

∫ N+1

N
e−2⌢a it

n∑
j=1

∣∣σij (xj (s, s− τ)
)∣∣ds


≤

(
6
εN

)2 n∑
j=1

E
[∫ N+1

N
µijE

∣∣xj (s)∣∣2+υijE ∣∣xj (s− τ)
∣∣2 ds]

≤

(
6
εN

)2
 n∑
j=1

(
µij + vij

) ∫ N+1

N
sup

s−τ≤v≤s
E
∣∣xj (v)∣∣2 ds


≤

(
6
εN

)2 n∑
j=1

(
µij + vij

)
eλτρe−λN (34)

Thus, from Equations (29)–(34), we have

P {sup |xi (t)| > εN }

≤

(
6
εN

)2

ρe−λN +

(
6
εN

)2
⌢ai

n∑
j=1

cijMj

2

ρe−λN

+

(
6
εN

)2
⌢ai

n∑
j=1

αijNj

2

eλτρe−λN

+

(
6
εN

)2
⌢ai

n∑
j=1

dijMj

2

ρe−λN

+

(
6
εN

)2
⌢ai

n∑
j=1

βijNj

2

eλτρe−λN

+

(
6
εN

)2 n∑
j=1

(
µij + vij

)
eλτρe−λN

≤
Di
ε2N
e−λN ≤

max
j∈Jn

{
Dj
}

ε2N
e−λN (35)

Set D := maxj∈Jn
{
Dj
}
and εN = D

1
2 e−

λN
4 , then

P

{
sup

N≤t≤N+1
|xi (t)| > D

1
2 e−

λN
4

}
≤ e−

λN
2 , i ∈ Jn (36)

Consequently, it follows that FCGNNs (1) is probably
certainly exponentially stable.
Remark 7: Theorem 3 gives a sufficient condition for the

almost sure exponential stability of random FCGNNs (1).
As Remark 4 states, the theorem is not supported by the
analysis and techniques employed in [39], [40], and [41].
In addition, the criteria give in [40], [44], [45], and [46] do not
apply to our results because they do not consider the problem
of almost sure exponential stability. It should be emphasized
that although [40] does not design the Lyapunov Krasovskii
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function or auxiliary function. It is necessary to test the
nonsingularity of the matrix.
Remark 8: It’s important to remember that references [45]

and [46] also looked at the nearly certain exponential stability
of random variables, but their studies were based on fuzzy
cellular neural networks, which is a special case of this study,
namely ai (xi (t)) ≡ 1 and bi (xi (t)) = bxi (t). Other scholars
in recent literature [47], [48] have also researched almost sure
exponential stability. The authors of [44] studied the almost
inevitable exponential stability of Markov jump systems,
and the study found in [46] examined stochastic Hopfield
neural networks. Our research intends to complete the Cohen-
Grossberg neural network’s stochastic fuzzy delayed expo-
nential stability findings.
Corollary 2: Assume that assumptions 1–3 and

−
⌢ai + min

1≤j≤n

(
cijMj + αijNj

)
+ max

1≤j≤n

(
dijMj + βijNj

)
+

n∑
j=1

1
2

(
µij + υij

)
< 0, i ∈ Jn

holds, then system (1) is almost surely exponentially stable.
The same proof idea as corollary 1.

IV. EXAMPLE
Consider the second order CGNNs (1) with

fj
(
t, xj (t)

)
=

0.2t cos
(
xj (t)

)
1 + t

, g
(
xj (t)

)
= 0.2xj (t) sin t,

ai (xi (t))

= 1.3 + 0.8 sin (xi (t)) , bi (xi (t)) = 0.3 cos (xi (t))(
σijt,

(
xj (t, t − τ)

))
2×2

=

(
sin t + 0.4x1 (t) cos t + 0.3x1 (t − τ (t))
0.2tx2 (t − τ (t)) 0.2 sin t + x2 (t)

)
Obviously, ⌢a1 =

⌢a2 =
⌢

b1 = b2 = 1, ă1 = ă1 = b̆1 = b̆2 = 2,
Mj = Nj = 0.3. The following are additional network (1)
parameters:(
aij
)
2×2=

[
−3.1 0.4
0.6 −0.3

]
,

(
bij
)
2×2=

[
−3.1 0.5
−1.9 −1.1

]
,

(
cij
)
2×2=

[
0.6 0.5
0.4 0.4

]
,

(
dij
)
2×2=

[
0.2 0.1
0.2 0.1

]
Take τ = 0.8 sin t, k = 0.5, Using the inequality
(m+ n+ p+ q)2 ≤ 4m2

+ 4n2 + 4p2 + 4q2, we have
µ11 = µ12 = υ11 = υ12 = 1.7 and µ21 = µ22 = υ21 =

υ22 = 0.61. The validity of assumptions 1 through 5 can thus
be easily verified. Four sets of initial conditions are given for
each node.

Therefore, the conditions of Theorems 2 and 3 are satisfied.
From the simulation results, we can see that the network is
exponentially stable (see Figure. 1). Furthermore, we remove
the fuzzy term, demonstrating the instability of the network
without the fuzzy component (see Figure 2.).

FIGURE 2. Transient responses of the state variables in the example’s
responses x1

(
t
)

and x2
(
t
)

to the six groups.

FIGURE 3. After removing fuzzy and stochastic terms, transient responses
of the state variables in the example’s responses x1

(
t
)

and x2
(
t
)

of
example with six groups.

Furthermore, we change
(
aij
)
2×2 ,

(
bij
)
2×2 ,

(
cij
)
2×2,(

dij
)
2×2 under the condition that the theorem is satisfied,

proved the validity of our conclusion.

FIGURE 4. Transient responses of the state variables.

Remark 9: The above simulation shows the theorem
results in this paper. Through Fig. 2, we prove that
FCGNNs (1) is almost surely exponential stable and expo-
nential stable. In contrast to the findings in the literature [24],
it goes a step further and is generalized from p = 2 to the
sufficient conditions for almost necessarily exponential stable
when p > 2. The comparison in Fig. 2 shows that the fuzzy
network is stable, so the fuzzy system has more advantages
in practical applications.

V. CONCLUSION
The stability problem is a prerequisite in the actual system,
and is also one of the im-portant performance indicators in
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the control system. It is an essential part of the dynamic
analysis, and has an important position. In this paper, CGNNs
with random fuzzy delay are examined in this research.
To ensure the system’s exponential stability and virtually
certainly exponential stability, we gather enough criteria by
taking into account the fixed point theory, using integral
and differential inequalities, and using stochastic analysis
theory. Compared with the widely used method of designing
Lyapunov Krasovskii func-tionals, Our method is easier to
implement, especially in practical engineering applications,
reducing the conservatism of stability sufficient conditions.
In addition, during the simulation process, we removed the
fuzzy terms from the model and found that fuzzy systems
provided more benefits than non fuzzy systems. Finally, our
results can be further studied and extended to more complex
systems. For example, in the current challenging field of
dynamic control for soft robots, due to the need for more
sensing devices, they form a more complex network and have
high-dimensional nonlinear dynamic characteristics. Using
the method proposed in this paper to seek sufficient con-
ditions for their stability not only reduces the conservatism
of the conditions, but also makes it easier to implement in
engineering.
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