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ABSTRACT This paper investigates the performance of item response theory based on distance criteria
rather than likelihood criteria. For this purpose, the estimated item response matrix is introduced. This matrix
is a reconstruction of the item response matrix using maximum likelihood estimates of the parameters in item
response theory. Then the distance between the observed and estimated matrices can be determined using the
Frobenius matrix norm. An approximated low-rank matrix can be generated from the observed item response
matrix by singular value decomposition, and the distance between the observed and low-rank matrices
can be obtained in the same way. By comparing these two distances, we can evaluate the performance of
the estimated item response matrix comparable to the performance of an approximated low-rank matrix.
Applying this comparison to actual examination data, it is found that the rank of the approximated low-rank
matrix that is equivalent to the estimated item response matrix is very low when using matrices as training
data. However, using test data, the predictive ability of item response theory seems high enough since the
minimum distance between the approximated low-rank matrix and the observed item response matrix is
approximately equal to or slightly less than the distance between the estimated item response matrix and the
observed item response matrix. This fact has been first discovered by utilizing the estimated item response
matrix defined here.

INDEX TERMS Computer based testing, estimated item response matrix, Frobenius matrix norm, item
response theory, low-rank matrix, matrix completion, maximum likelihood estimation, observed item
response matrix, singular value decomposition.

I. INTRODUCTION
Item response theory (IRT) (see [1], [2], [3], [4]) is a theory
based on a statistical parametric model that simultaneously
assesses abilities of examinees and difficulties of problems.
Because of its versatility and reliability, IRT has been
regarded as one of the standard methods for assessing
examinee performance. For this reason, IRT is used in various
official examinations, including the TOFLE. Configuring a
matrix of examinee user rows and problem item columns with
0/1 valued responses (1 is success, 0 is failure), the maximum
likelihood estimation method can obtain the estimates for
IRT parameters and their confidence intervals. This matrix is
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called the ‘‘observed item response matrix’’ in this paper. In a
word, IRT takes this matrix as input and outputs estimates.

The maximum likelihood estimators are known to be
consistent and asymptotically efficient under certain condi-
tions (see [5]); that is, no consistent estimators have lower
asymptotic mean squared errors other than the maximum
likelihood estimators. This means that the estimators perform
best under the assumed mathematical model. Even though
IRT is an ideal mathematical model defined on a certain
support, IRT cannot strictly realize the real world. There
could be a discrepancy between the model and the real.
However, the likelihood criterion itself cannot be used to
assess such a discrepancy. Other criteria may be used for such
evaluation. In this paper, the distance criterion is used.

For this purpose, we propose to use the ‘‘estimated item
response matrix’’ which is defined by the reconstructed item
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response matrix using the maximum likelihood estimates for
IRT parameters. As will be shown later, the performance in
the maximum likelihood estimates using the observed item
response matrix and the performance in the estimated item
response matrix are considered to be approximately equiv-
alent to each other. Then, we can measure the discrepancy
between the real observed data and the IRT estimation result
through the distance criterion. In this way the performance of
IRT can be evaluated out of the specified mathematical model
and its defined space.

Singular value decomposition (SVD) can generate approx-
imated low-rank matrices from an observed item response
matrix. To each approximated low-rank matrix, we can
compute the distance between the approximated low-rank
matrix and the observed item response matrix using the
root mean squared error (RMSE). By comparing the RMSE
between the estimated item response matrix and the observed
item response matrix with the RMSE between the approx-
imated low-rank item response matrix generated by SVD
and the observed item response matrix, we can identify an
approximately equivalent low-rank item response matrix to
the estimated item response matrix. Using this rank and the
RMSE, we can assess how far the estimated item response
matrix locates from the real data; that is, we can know the
position of the maximum likelihood estimates of IRT.

Amazingly, the rank of the equivalent approximate low-
rank item response matrix relative to the estimated item
response matrix turned out to be very low. Furthermore, the
predictive accuracy of the estimated item response matrices
is sufficient even for more complex matrices generated using
the approximated higher-ranked item response matrices.

This fact is seen in not only one case, but in many CBT
cases in undergraduatemathematics tests. Here, CBT refers to
a computer based testing in which the response is 0 or 1. The
purpose of this paper is to demonstrate this surprising fact.
In this paper, as in recommender systems, the terms ‘‘item’’
and ‘‘user’’ are also referred to in the same way as the terms
‘‘problem’’ (or ‘‘question’’) and ‘‘examinee’’.

II. ESTIMATED ITEM RESPONSE MATRIX
A. MATHEMATICAL MODEL FOR ITEM RESPONSE THEORY
The standard IRT estimates proficiency parameters θi (i =

1, . . . , n) and problem parameters aj, bj, cj (j = 1, . . . ,m)
simultaneously by using the observed item response matrix.
Usually, this n×m size matrix consists of 0/1 valued elements
δij, with value 1 for (i, j) element corresponding to the case
where examinee i solved question j correctly and with value 0
to the case where he/she did not solve it correctly. The
observed item response matrix is expressed as 1 = (δij).
Assuming that a logistic probability function pij of

examinee i correctly answering question j is expressed such
that

pij(θi; aj, bj, cj) = cj +
1 − cj

1 + exp{−1.7aj(θi − bj)}
,

= 1 − qij(θi; aj, bj, cj), (1)

where θi is called the ability for examinee i and aj, bj, cj are
called the discrimination parameter, difficulty parameter, and
pseudo-guessing parameter, respectively; qij is the probability
that examinee i answers question j incorrectly.

B. MAXIMUM LIKELIHOOD PARAMETER ESTIMATION
Using the maximum likelihood estimation (MLE) method,
the maximum likelihood estimates θ̂i, âj, b̂j, ĉj for parameters
θi, aj, bj, cj can be obtained by maximizing the likelihood
function,

L1 =

n∏
i=1

m∏
j=1

(
p
δij
ij × q

1−δij
ij

)
. (2)

When only difficulty parameter bj, in addition to parameter
θi, is considered, such the model is called the Rasch model.
Usually, the two-parameter model (cj = 0) is the standard
when there are many choices in multiple-choice tests, and we
will deal with this case in the following.

If we denote parameters θi, aj, bj together by 2, then the
estimation procedure is simply expressed as follows.

1⇝ 2̂. (3)

C. ESTIMATED ITEM RESPONSE MATRIX AND ESTIMATES
Substituting 2̂ into pij in (1), we can obtain p̂ij which is a
continuous value in [0, 1]. The value p̂ij is corresponding to
the probability of answering the question correctly. It should
be noted that p̂ij can be regarded as δ̂ij. Then, using 2̂, a matrix
can be constructed such that

2̂⇝ 1̂. (4)

We call 1̂ = (δ̂ij) the estimated item response matrix.
Consider the following likelihood function defined by

L
1̂

=

n∏
i=1

m∏
j=1

(
p
δ̂ij
ij × q

1−δ̂ij
ij

)
. (5)

Using the MLE method again, the maximum likelihood
estimates θ̌i, ǎj, b̌j for parameters θi, aj, bj can be obtained
by maximizing the likelihood function L

1̂
. Since each δ̂ij is

composed from 2̂, the parameter space for the likelihood
function L

1̂
and that for L1 are considered to be almost the

same. Then, the estimates by using L1 and those by using
L

1̂
may become very close to each other. Using such an

interesting phenomenon, the estimated item response matrix
1̂ can be identified to an approximated low-rank matrix
generated from SVD, as shown later.

III. SINGULAR VALUE DECOMPOSITION
A. SINGULAR VALUE DECOMPOSITION PROCEDURE
Assuming that A = (aij) is an n × m matrix. Then,
ATA becomes a symmetric m× m matrix, and AAT becomes
a symmetric n× nmatrix, where AT denotes the transpose of
A. The eigen values and eigen vectors to these two matrices
ATA and AAT are the same if they exist. We denote the eigen
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values and eigen vectors to matrix ATA as {ξ1, ξ2, · · · , ξm}

and {v1, v2, · · · , vm}. That is,

ATAvi = ξivi. (6)

Eigen values can be reordered such that ξ1 ≥ ξ2 ≥ · · · ≥

ξr > 0, ξr+1 = · · · = ξm = 0, where r is the rank of
ATA. Since ATA is symmetric, eigen vectors can be made
as orthonormal system. That is, vi · vj = Iij, where Iij is
the indicator function; i.e., Iii = 1, and Iij = 0 (i ̸= j).
We make vector ui by ui = Avi/σi, (i ≤ r), where σi =

√
ξi.

In addition, if we produce matrices U = (ui) and V = (vi),
then A can be expressed as A = U6V T, or equivalently,
A =

∑r
i=1 σiuivT

i . Here,6 is a diagonal matrix using σi. This
is the typical singular value decomposition (SVD) (see [6],
[7], [8]).

B. GENERATING THE LOW-RANK MATRIX
We define Ak such that

Ak =

k∑
i=1

σiuivT
i , (7)

using the first k columns in the matrices of U and V . This
procedure generates the ‘‘approximated low-rank matrix’’ Ak
for A as shown below.
Theorem 1 (Eckart-Young [9]): 1) rank(Ak ) = k

2) For any n× m matrix B, (rank(B) ≤ k),

||A− Ak ||F = min
B,rank(B)≤k

||A−B||F = (
m∑

i=k+1

σ 2
i )

1/2,

where || · ||F expresses the Frobenius matrix norm, i.e.,
||(aij)||F = (

∑
i,j |aij|

2)1/2.
The theorem claims that Ak is best approximated to A

among all the matrices with rank of less than k + 1 in the
sense of matrix norm.

C. CONSTRUCTION OF THE LOW-RANK ITEM RESPONSE
MATRIX
Applying the above method to the observed item response
matrix 1, the approximated low-rank item response matrix
1k can be constructed from 1.

IV. DISTANCE CRITERION BETWEEN TWO MATRICES
The distance criterion of two equal-sized matrices A = (aij)
and B = (bij) can be expressed by the RMSE(A,B) such that

RMSE(A,B) =

√√√√ 1
nm

n∑
i=1

m∑
j=1

(aij − bij)2

=

√
1
nm

(||A−B||F )2. (8)

This is the case when all elements of A,B are occupied.
In other words, matrices are complete. In such a situation,
treating A as a prediction matrix for B may induce an
overfitting phenomenon. This means that the prediction is
made only for training data using the full matrix.

In order to measure accurate distance, test data must also
be used. The matrix is then divided into two parts, one for
training data and one for test data. In this situation, we have
to deal with incomplete matrices.

A. RMSE FOR TEST DATA USING INCOMPLETE MATRIX
TREATMENT
First, create two matrices S and T for training and test data,
respectively. Here, S and T behave as if they were incomplete
matrices. In the case of IRT and SVD, the RMSE of an
incomplete matrix cannot be computed straightforwardly.
However, in both cases, the algorithm for finding the RMSE
of an incompletematrix can be realized by an iterativemethod
via the algorithm for the case of a complete matrix.

To define S and T , let � = (ωij) be a matrix and assume
ωij = 0 when δij is used for training data and ωij = 1 when δij
is used for test data. Then, S = (sij) and T = (tij) are defined
such that

1 = S + T ,

sij =

{
δij (ωij = 0)
0 (ωij = 1),

tij =

{
0 (ωij = 0)
δij (ωij = 1)

. (9)

S and T are actually complete matrices, but by incorporating
this matrix �, they behave as if they were incomplete
matrices.

B. IN THE CASE OF IRT
Usually, the element δij takes a value such that when the
question is answered, δij = 1 for success and δij = 0 for
failure. However, we extended the value of δij from a discrete
value of 0/1 to a continuous value in [0, 1] corresponding
to the response level. We have also added a kind of matrix
completion for cases where the value of element (i, j) is blank.
Such a case corresponds to the case where examinee iwas not
working on question j, or where the value of response δij was
unknown. In the following, the algorithm for this procedure
will be presented for training and test data sets. This algorithm
is similar to [10], [11], and [12].
Algorithm (IRT):

1) set z = 0
2) set {

s(z)ij = sij (ωij = 0)

s(z)ij = 0 (ωij = 1),{
t (z)ij = 0 (ωij = 0)

t (z)ij ∈ [0, 1] (ωij = 1),

W (z)
= S(z) + T (z)

3) obtain Ŵ (z)
= Ŝ(z) + T̂ (z) from W (z) using IRT
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4) {
s(z+1)
ij = sij (ωij = 0)

s(z+1)
ij = 0 (ωij = 1),{
t (z+1)
ij = 0 (ωij = 0)

t (z+1)
ij = t̂ (z)ij (ωij = 1),

W (z+1)
= S(z+1)

+ T (z+1)

5) repeat 3) and 4) until Ŝ(z) and T̂ (z) become stable
6) denote optimal ŝij as s̃ij and t̂ij as t̃ij
The RMSE for the training data case and the test data case

are obtained such that

RMSE(S̃, S) =

√√√√∑n
i=1

∑m
j=1(1 − ωij)(s̃ij − sij)2∑n
i=1

∑m
j=1(1 − ωij)

,

RMSE(T̃ ,T ) =

√√√√∑n
i=1

∑m
j=1 ωij(t̃ij − tij)2∑n

i=1
∑m

j=1 ωij
. (10)

C. IN THE CASE OF SVD
The RMSE for the test data of incomplete matrices in SVD
can be obtained by modifying the algorithm of IRT. Let1k =

Sk + Tk be each low-rank matrix induced from 1.
Algorithm (SVD):
1) for k = 1, . . . , kmax , do 2) - 8) to each k; usually,

kmax = rank(1)
2) set z = 0
3) set {

s(z)ij = sij (ωij = 0)

s(z)ij = 0 (ωij = 1),{
t (z)ij = 0 (ωij = 0)

t (z)ij ∈ [0, 1] (ωij = 1),

W (z)
= S(z) + T (z)

4) perform SVD toW (z) and obtain U (z), V (z), and 6(z)

5) setW (z)
k =

∑k
i=1 σ

(z)
i u(z)i v

(z)
i

T
and rewritew(z)

k as ŵ(z)
=

ŝ(z)ij + t̂ (z)ij
6) {

s(z+1)
ij = sij (ωij = 0)

s(z+1)
ij = 0 (ωij = 1),{
t (z+1)
ij = 0 (ωij = 0)

t (z+1)
ij = t̂ (z)ij (ωij = 1),

W (z+1)
= S(z+1)

+ T (z+1)

7) repeat 4) - 6) until Ŝ(z) and T̂ (z) become stable
8) denote stable ŝij as s̃ij,k and stable t̂ (z)ij as t̃ij,k
The RMSE for the training and test data cases for each k

are obtained such that

RMSE(S̃k , S) =

√√√√∑n
i=1

∑m
j=1(1 − ωij)(s̃ij,k − sij)2∑n
i=1

∑m
j=1(1 − ωij)

,

FIGURE 1. Observed item response matrix (case A).

RMSE(T̃k ,T ) =

√√√√∑n
i=1

∑m
j=1 ωij(t̃ij,k − tij)2∑n
i=1

∑m
j=1 ωij

, (11)

where 1 = S + T , 1̃k = S̃k + T̃k .

V. A TYPICAL EXAMINATION DATA CASE
A. OBSERVED ITEM RESPONSE MATRIX
As a typical data case study, we will use an examination data
case derived from a mathematics midterm examination at a
university. The number of examinees n is 216 and the number
of questionsm is 31. There are no missing data in this matrix.
We name this example case A.

Fig. 1 shows the observed item response matrix of case A.
On the right of the figure, responses of examinees from id 1 to
id 28 are shown enlarged for clarity. This matrix consists of
binary elements with 1 for correct answers and 0 for incorrect
answers; this is denoted as 1 = (δij).

B. ESTIMATED ITEM RESPONSE MATRIX
Applying the MLE method to the observed item response
matrix 1 yields the maximum likelihood estimate 2̂ for
parameter 2. Using this estimated value 2̂, the estimated
item response matrix 1̂ can be constructed, as explained
earlier. It should be noted that each δ̂ij becomes the maximum
likelihood estimate for δij.
The figure on the left in Fig. 2 shows 1̂ for case A.

Comparing 1̂ with 1 in Fig. 1, we can roughly imagine the
original observed item response matrix 1 from 1̂. However,
at first glance, this approximation appears to be inaccurate.
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FIGURE 2. Two kinds of estimated item response matrices (case A).

To see if the distance between the observed item response
matrix 1 and the estimated item response matrix 1̂ is large
or small, we have computed the RMSE(1̂, 1). It was 0.3915,
and this indicates that the distance between an observed δij
and its estimated value δ̂ij lies on average around 0.3915.
Intuitively, this value does not seem small. This is consistent
with what we indicated above. One might think that IRT is
not working well. However, it will be understood that IRT
performs very well by comparing the RMSE of IRT and that
of SVD.

Before we do that, we need to see if it makes sense to
compare 2̂ performance with 1̂ performance. As mentioned
earlier, we can again obtain the maximum likelihood
estimates 2̌ using 1̂, and the corresponding estimated
item response matrix 1̌ can be obtained. This is shown in
Fig. 2 on the right. These two matrices 1̌ and 1̂ are very
similar to each other. Actually, the RMSE between the two
estimated item response matrices RMSE(1̌, 1̂) is 0.0275,
which is considered to be small. In addition, the value of
cos(2̌, 2̂) = 0.992 indicates a close similarity between these
two estimates. Therefore, the performance of the maximum
likelihood estimates 2̂ can be regarded as approximately
equivalent to the performance of the estimated item response
matrix 1̂.
Fig. 3 illustrates the diagram of procedure in comparing

the maximum likelihood estimates 2̂ and the estimated
item response matrix 1̂. We ultimately intend to compare
the performances between 2̂ and 1k derived from SVD.
However, this cannot be done straightforwardly. Instead,
we consider to use 1̂ as a substitute for 2̂. Since 2̌ and 2̂

are approximately equivalent, we can assume that 2̂ can be
mapped back to 1̂.

C. SINGULAR VALUE DECOMPOSITION
Singular value decomposition for the observed item response
matrix 1 of case A resulted in the singular values and the
RMSE(1k , 1) between the observed item response matrix1

FIGURE 3. Diagram of procedure in comparing the estimates and the
matrix.

and the approximated low-rank matrices 1k . These singular
values and RMSE are shown in Fig. 4 on the left and right,
respectively. The RMSE between the observed item response
matrix and the estimated item response matrix using IRT,
RMSE(1̂, 1), is superimposed in a straight line parallel to
the horizontal axis in Fig. 4 on the right.
Looking at the singular values, we see that only the

largest singular value is outstanding and other singular
values are rather small. In contrast to this, RMSE(1k , 1) is
approximately linearly decreasing as k increases, and finally
RMSE(131, 1) = 0, which means that 131 is exactly the
same as 1.
This fact indicates that σ1,u1, vT

1 play an important role in
determining the RMSE. Here, σ1 is the largest singular value,
u1 and v1 are the corresponding vectors.

Fig. 5 shows approximated low-rank matrices 11, 12,

13, 110 for case A. Comparing 1̂ in Fig. 2 with 11 or 12 in
Fig. 5, all three appear to be similar, as 11 or 12 is similar
to 1̂. This is consistent with the value of RMSE(1̂, 1) being
between the values of RMSE(11, 1) and RMSE(12, 1).
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FIGURE 4. Singular value and RMSE for the observed item response matrix (case A).

FIGURE 5. Approximated low-rank matrices for k=1, 2, 3, 10 (case A).

However, this is just an illusion because the matrix was
treated completely as training data. To avoid overfitting, the
RMSE should be evaluated using test data.

D. EVALUATION USING TEST DATA
Various methods have been proposed to overcome the effects
of overfitting, including holdout and 10-fold cross validation.

In this paper, we use a method similar to the latter, but with a
different selection of training and test data. First, 10% of the
elements from the original matrix are randomly selected and
used as test data T , and the remaining 90% of the elements
are used as training data S. Then, RMSE(S̃, S) for training
data and RMSE(T̃ ,T ) for test data are obtained in IRT, and
RMSE(S̃k , S) for training data and RMSE(T̃k ,T ) for test
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FIGURE 6. RMSE for the test data and the training data via SVD and IRT
(case A).

data are obtained in SVD. This is repeated (bootstrapped)
10 times, and mean and standard deviation for RMSE are
obtained.

Fig. 6 shows RMSE(S̃k , S) for training data and
RMSE(T̃k ,T ) for test data as a function of k used in SVD.
In the figure, 10 bootstrapped results are shown for SVD; at
the same time, 10 IRT bootstrapped results, RMSE(S̃, S) and
RMSE(T̃ ,T ), are superimposed in straight lines parallel to
the horizontal axis. The figure presents typical monotonically
decreasing curves for training data and U-shaped curves for
test data.

The figure tells us very interesting points as follows:

1) In general, RMSE(T̃k ,T ) in SVD shows a U-shaped
curve as a function of k . In this case, however, the
values of RMSE(T̃k ,T ) in SVD show rather flat curves
when k ≤ 4, and they increase when k ≥ 5.

2) In particular, RMSE(T̃ ,T ) of IRT appears to be
comparable to RMSE(T̃k ,T ) in SVD for 1 ≤ k ≤ 3.

According to this, the estimated item response matrix 1̂ can
be regarded as an approximated low-rank matrices 1k with a
small value of k in terms of RMSE distance criterion. In other
words, the performance of the maximum likelihood estimates
for IRT parameters is comparable to that in1k when the value
of k is small. However, this property is only obtained from one
example, and it is necessary to check whether this property
holds in other cases.

E. 42 EXAMINATION CASES
Tomake sure that the abovementioned property holds true for
other examination cases, we collected 42 test cases, includ-
ing [13]. Table 1 shows the subjects and matrix sizes of the
42 examination cases. All examinations were administered at
universities and the examinees were undergraduate students.
Subjects included probability, statistics, ordinary differential
equations, calculus, and linear algebra. In all examinations,
answers were given as discrete values of 0/1 (1 for correct
answers and 0 for incorrect answers).

TABLE 1. Subjects and matrix size in 42 examination cases.

FIGURE 7. RMSE using IRT and SVD with k = 1, 2, 3 for 42 complete
matrix using full element data.

As explained above, it would be sufficient to focus
on RMSE(T̃k ,T ) for smaller k to compare RMSE(T̃k ,T )
with RMSE(1̂, 1). For the sake of brevity, we first
investigate RMSE(1̂k , 1) for lower rank of k and
RMSE(1̂, 1).
Fig. 7 shows the RMSE(1̂, 1) for the 42 examination

cases. In the figure, the cases id shown on the horizontal
axis are arranged in ascending order of magnitude of the
RMSE(1̂, 1) shown on the vertical axis for clarity. Also
shown are the RMSE(1k , 1) (k = 1, 2, 3) for each case id .
The figure shows that RMSE(12, 1) < RMSE(1̂, 1) holds
in all cases. Using the complete training data, we confirmed
that the properties described in the previous section hold for
all 42 test cases. For the sake of simplicity, we have chosen
four cases to see if this property holds true even with the test
data.
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FIGURE 8. RMSE for the test data and the training data via MD and SVD (4 cases).

F. FOUR EXAMINATION CASES AMONG 42 CASES
From the 42 data cases, we selected four cases, including
case A, to verify whether the RMSE of the test case in IRT
is close to the RMSE of the low-rank matrix in SVD. These
are cases 10, 20, 30, and 40 shown in Table 1. The values of
RMSE(1̃, 1) are ordered in ascending order.

Fig. 8 shows the RMSE for the test data using IRT and
SVD. Circles placed at each k indicate the lower 95%
confidence limit, mean, and upper 95% confidence limit of
the RMSE from 10 bootstrapped computations in SVD. The
IRT ones are also presented by straight lines parallel to the
horizontal axis.

Looking at the figure, we see the following:

1) In all cases, upper and lower 95% confidence limits for
the test data using IRT are almost the same as those
using SVD with k = 1, 2. This property is the same as
shown in using the training data when k = 1 or k = 2.

2) The smallest mean value of RMSE(T̃k ,T ) using SVD
are obtained when the rank of the corresponding
approximated low-rankmatrix is small compared to the
rank of matrix 1, as shown in Table 2. This rank is
called the optimum rank, and denoted by k_opt .

3) In all cases, 95% confidence limits for the test data
using IRT are not so different from those using SVD
for k_opt .

4) However, when the estimated item response matrix 1̂

is quite complex, as in case 30, there is still room

TABLE 2. Optimum rank in SVD and mean RMSE.

to develop a more accurate method of predicting
examinee proficiency.

In general, the predictive ability of IRT seems high enough
since the RMSE(T̃k_opt ,T ) using SVD is comparable to the
RMSE(T̂ ,T ) using IRT in moderate sized observed item
response data. However, there is still room to develop a
more accurate method of predicting examinee proficiency
when the estimated item response matrix 1 becomes more
complex. This fact has been first discovered by utilizing the
estimated item response matrix defined here, and indicates
the significance of the literature seen in [14], [15], [16], [17],
[18], [19], [20], and [21].

VI. CONCLUDING REMARKS
IRT outputs the maximum likelihood estimates for param-
eters of the IRT model from the observed item response
matrix. Using the estimates, the item response matrix can
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be reconstructed. This is called the estimated item response
matrix. Then the distance between the observed and estimated
matrices can be determined using the Frobenius matrix norm.
SVD generates an approximated low-rank matrix from the
observed item response matrix, and the distance between the
observed and low-rank matrices can be obtained in the same
way.

By comparing these two distances, we can evaluate
the performance of the estimated item response matrix
comparable to the performance of an approximated low-
rank matrix. In such a way, the performance of IRT can be
evaluated.

Applying this method to actual examination data, it is
found that the rank of the approximated low-rank matrix that
is equivalent to the estimated item response matrix is very
low when using matrices as training data. However, using
test data, the predictive ability of IRT seems high enough
since the minimum distance between the approximated
low-rank matrix and the observed item response matrix is
approximately equal to or slightly less than the distance
between the estimated item response matrix and the observed
item response matrix.

In general, the predictive ability of IRT seems high enough
in moderate sized observed item response data. However,
there is still room to develop a more accurate method of
predicting examinee proficiency when the observed item
response matrix becomes more complex. This fact has been
first discovered by utilizing the estimated item response
matrix defined here.
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