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ABSTRACT The unfavorable factors of underground coal such as dark light, uneven illumination, band
shadowing greatly make it difficult to recognize the coal rock at the mining workface accurately. To solve
this problem, this paper proposes the fuse attentionmechanism’s coal rock full-scale network (FAM-CRFSN)
model. The deep extraction of coal rock semantic features is achieved by a multi-channel residual attention
mechanism and a full-scale connection structure.Meanwhile, the balance between ‘‘deep’’ stacking and error
back propagation is achieved by structures such as dilated convolution and Res2Block. Besides, a multi-
dimensional loss function consisting of the cross-entropy loss, intersection over union, and multiscale
structure similarity loss with pixel-level, area-level, and image-level expressions is established. Finally,
the performance of the FAM-CRFSN network is tested with RGB coal rock images collected from an
underground coal mining workface and superimposed with different proportions of gaussian noise and salt
& pepper noise. The experimental results show that the FAM-CRFSN model can segment the coal rock
regions accurately; at a noise intensity of 0.09, it achieves an MIOU of 85.77% and an MPA of 92.12%.
Also, it achieves better accuracy and generalization performance than the mainstream semantic segmentation
models. This study provides an important theoretical basis for promotes the unmanned and intelligent mining
workface.

INDEX TERMS Intelligent mining, automatic recognition of coal rock, semantic segmentation, low-
illuminance image segmentation.

I. INTRODUCTION
Intelligent, unmanned mining is a trend in underground coal
mining [1]. Automatic recognition of coal rock is the key
to achieving intelligent and unmanned mining and exca-
vation, and great efforts have been made based on image
processing technologies. Zhang et al [2] studied coal/rock
interface recognition by using infrared detection technology.
Junli et al [3] investigated coal/rock interface detec-
tion and height measurement based on machine vision.

The associate editor coordinating the review of this manuscript and

approving it for publication was Amin Zehtabian .

Wu and Tian [4] developed coal rock classification and
recognition methods based on K-SVD dictionary learning
and curvelet domain compressive sensing. Sun et al [5], [6],
[7], [8] proposed the coal rock images feature extraction
and recognition method that combines wavelet transform
and GLCM, GLCM significant clustering features, sparse
representation, and BCDTM statistical features. Since coal
rock images are generally characterized by weak edges, inho-
mogeneity, noise pollution, and low contrast, segmentation
methods have been proposed by introducing image process-
ing technology based on partial differential equations. The
methods include the improved C-Vmodel and improved LBF
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model, as well as microscopic damage description methods
based on texture features of image gray level co-occurrence
matrix [9], [10], [11], [12].

Recently, deep learning techniques have achieved great
progress and have shown excellent performance in computer
vision applications. Coal rock recognition technologies based
on deep learning have been emphasized. Hua et al [13]
conducted a preliminary study on the recognition of
coal rock using the convolutional neural network (CNN).
Tongxing et al [14] investigated the recognition and position-
ing of coal seam and rock by using the Faster R-CNNmethod.
Bin et al [15] combined the target detection algorithm
YOLOv2 with a linear imaging model to recognize and
position coal rocks, and the method achieved a recognition
success rate of 78%. Lei et al [16], [17], [18] proposed a coal
rock image recognition method based on CNN and improved
U-Net. Xin et al [19] established a sample generation and
feature migration framework based on the Var-Con Sin GAN
model. Feng et al [20] proposed an improved lightweight
coal gangue recognition method based on the MobileNetV3-
largemodule structure. Gao et al [21] improved the coal rock
segmentation method based on the tower pooling structure
with mixed dilated convolution. Rukundo [22], [23] shows
the influence of different sizes of images on the final seg-
mentation accuracy by inputting images of different sizes into
the deep learning network model. Considering the continu-
ous and penetrating characteristics of the coal/rock interface,
novel indicators were established for the recognition accuracy
of the coal/rock interface, and a coal/rock interface recogni-
tion method integrating improved YOLOv3 and cubic spline
interpolation was proposed to obtain a near-realistic coal/rock
interface curve [24]. In the previous study, an intelligent coal
rock recognition model was developed by integrating the
improved CLBP and receptive field theory [25].
However, the practical mining workface environment is

complex due to dark and reflective light, uneven illumination,
shading, and shadow conditions, coal dust, mechanical vibra-
tions, and other combined unfavorable factors. This results in
low-quality mining workface coal rock images, thus making
automatic recognition of coal rocks at the workface highly
difficult. By taking encoder-decoder as the basic architec-
ture, this study establishes a model called the fuse attention

FIGURE 1. FAM-CRFSN road map.

mechanism’s coal rock full-scale network (FAM-CRFSN).
The core elements of the proposed model include the
full-scale connection structure, multi-channel residual atten-
tion module with fused dilated convolution, Res2Block,
and multi-dimensional loss function, which help to achieve
pixel-level segmentation of low-quality coal rock images of
underground coal mines. The model roadmap is shown in
the Figure 1.

II. THEORY
A. COAL ROCK IMAGES FEATURE ANALYSIS
The practical mining workface environment is complex, with
unfavorable lighting conditions such as darkness, reflection,
uneven lighting, shading, and shadowing. Meanwhile, coal
dust and mechanical vibrations cause image blurring and
noise interference, and water dripping changes the char-
acteristics of coal rock areas in the images. Due to these
unfavorable factors, mining workface coal rock images often
show low-quality features such as low illuminance, weak
edges, uneven illumination, low contrast, and severe noise
interference [9], [10], [11], which poses a great challenge
to the automatic recognition of coal rocks at the mining
workface. Fig. 2 shows the image of a typical coal rock.
Faced with the above unfavorable factors in underground coal
mines, the existing technical solutions often misjudge the
coal seam and perform poorly in complex scenarios such as
blurred coal rock edge contours and dirt bands, which restricts
the intelligent construction of coal mines.

B. STRUCTURE OF THE FAM-CRFSN MODEL
The conventional image processing methods and the current
popular deep learning methods usually use some type of
‘‘feature representation’’ [26] to distinguish between coal
and rock. The difference between these methods is whether
the feature is designed by humans (conventional image pro-
cessing), or learned automatically by a model (deep learning
method).

For coal rock images of underground coal mines, the
semantic features of coal and rock are stable, no matter how
complex the collecting environment is. This indicates that
there must be a deep learning network that can automatically
learn semantic features of ‘‘coal’’ and ‘‘rock’’ by gradually
abstracting and conceptualizing coal rock features from the
bottom-up, thus realizing automatic recognition of coal rock.
However, the existing technical solutions cannot effectively
handle the unfavorable factors of underground coal mines
because their feature representations are either shallow and
not semantic features (for conventional image processing
measures), or the automatically learned semantic features of
‘‘coal’’ and ‘‘rock’’ are not accurate enough (for deep learning
method).

To overcome the difficulty of automatic recognition of coal
rock at the mining workface, it is crucial to building a deep
learning model that can effectively characterize semantic
features of ‘‘coal’’ and ‘‘rock’’ and achieve a balance between
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FIGURE 2. Typical coal rock images of underground coal mines.

FIGURE 3. The main structure of the FAM-CRFSN mode.

‘‘deep’’ stacking and error back-propagation. It should be
noted that the location features are shallow features, and the
stacking ‘‘depth’’ often causes the loss of location feature
information although it is beneficial to the learning of coal
rock semantic features. How to balance the ‘‘deep’’ stacking
with the learning of location features is a problem thatmust be
considered for pixel-level coal rock semantic segmentation.
Therefore, Based on Unet3+ [27] model, the FAM-CRFSN
model is proposed in this study. The deep extraction of
coal rock semantic features is achieved by a multi-channel
residual attention mechanism and a full-scale connection
structure. Meanwhile, the balance between ‘‘deep’’ stacking
and error back-propagation is achieved by structures such
as dilated convolution and residual convolution. Besides,
automatic learning of deep semantic feature representation
and pixel-level segmentation of low-illuminance coal rocks
of underground coal mines are achieved through supervised
training of deep supervised patterns. As shown in Fig. 3, the
FAM-CRFSN model comprises the encoder and the decoder:

(1) The encoder implements deep semantic feature extrac-
tion by the convolutional pooling module, the Res2 module,
and the multi-channel residual attention module fused with
dilated convolution. The Res2 module performs parameter
computation and feature extraction at different scales by split-
ting the feature map channels and dividing them into new
dimensions, which effectively increases the feature expres-
sion and extraction capability of the network and increases
the receptive field range. Meanwhile, the attention module
increases the weight of the extracted features at different

scales by using multi-channel dilated convolution with dif-
ferent dilation rates, thus better retaining effective features.
By encoder, the network obtains a feature map whose size
is 1/16 of that of the original image at the highest level.

(2) The decoder fuses and analyzes features of different
scales by performing bilinear interpolation upsampling with
the convolution module and the full-scale connection struc-
ture. The full-scale connection structure fuses features at
various scales and acquires semantic information at different
depths, thus effectively preventing feature loss in the encod-
ing process. The feature map output by the decoder is finally
classified by Softmax and reassociated with each pixel of the
original image to achieve pixel-level segmentation on low-
illuminance coal rock images.

The core technologies of the proposed FAM-CRFSN
model are: (1) adopting a full-scale connection architecture
to enhance the extraction of underlying features; (2) adopting
a multi-channel residual attention module fused with dilated
convolution to reduce noise interference in different receptive
fields; (3) adopting the Res2 structure to enhance the extrac-
tion of effective features; (4) adopting a multi-dimensional
loss function to enhance the accuracy of network training.
The above four core technologies will be explained in detail
below.

C. FULL-SCALE CONNECTION STRUCTURE
To avoid the loss of shallow features such as location fea-
tures caused by the increase of network depth, Unet [28]
splices the encoder’s output feature map of each scale to
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FIGURE 4. Full-scale connection structure.

the corresponding structure of the decoder. This helps to
obtain effective high-level features by stacking the depth and
preserve the shallow features that would be lost, thus increas-
ing the semantic segmentation accuracy. Since this design
spans more network structures, it is called a skip connection
structure.

However, the simple skip connection structure cannot real-
ize a full-scale collection of shallow information by the
network, which is not conducive to obtaining the precise loca-
tion and boundary of the coal rock area. For this reason, the
proposed FAM-CRFSN model uses a full-scale connection
structure, as shown in Fig. 4. In this structure, each module
layer of the decoder incorporates the full-scale feature map
extracted by the encoder, as well as the feature map from
the lower layers of the decoder. In this approach, the decoder
can capture full-scale shallow feature information and deep
information during decoding operations.

The encoder has five levels of output, which are denoted
as XINi, i ∈ [1, 5]. The corresponding five levels of the
decoder output are denoted as XOUTi, i ∈ [1, 5]. XOUTi can
be calculated by:

XOUTi

=



XINi, i = 5

H


C(D(XINk ))i−1K=1,C(XINi),︸ ︷︷ ︸

Scales:1th∼ith

C(U (XOUTi))NK=i+1︸ ︷︷ ︸
Scales:i+1th∼N th


 ,

i = 1, . . . , 4
(1)

whereC(·) refers to regular convolution operation;H (·) refers
to feature aggregation achieved by convolution and splicing;
D(·) and U (·) denote upsampling and downsampling opera-
tions, respectively.

For XOUTi, the feature maps of each layer are stitched
together after the following operations are performed by the
skip connection structure:

(1) The feature maps XIN1 ∼ XIN (i−1) with a size larger
than XINi are reduced to the same size as XOUTi by pooling
operations;

(2) The feature maps XIN (i+1) ∼ XIN5 with a size less than
XINi are up-dimensioned to the same size as XOUTi by bilinear
interpolation upsampling;

(3) The features XINi are further extracted by a 64-channel
3× 3 convolution operation.

Due to a large number of feature map channels after splic-
ing, there will be much redundant information. To address
this issue, a 3 × 3 convolution operation with 64 channels
is performed on the stitched feature map to achieve feature
aggregation, reduce redundancy and make the output feature
map size consistent with the number of channels.

D. FUSION DILATED CONVOLUTION’S MULTI-CHANNEL
RESIDUAL ATTENTION MODULE
The human visual system tends to focus on the important part
of the image and ignore irrelevant information. The attention
mechanism help to extract key feature information and reduce
the interference of useless information in a way similar to
human vision. The Squeeze-and-Excitation Block (SEBlock)
[29] automatically obtains the importance of each channel
and modifies the weight of each channel during network
training, thus improving the extraction capability of valid
information and suppressing invalid features.

First, SEBlock uses the global pooling operation to com-
press each channel of the feature map into a real number
Xc ∈ RC that represents global feature information:

Xc =
1

W × H

W∑
i=1

H∑
j=1

x(i,j) (2)

where W and H denote the width and height of the feature
map; x(i,j) denotes the grayscale value of the corresponding
position in the feature map.

Then, the obtained global features are activated by the
ReLU activation function, and the weight SC ∈ [0, 1] of
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global features is adjusted by a gating mechanism in a sig-
moid form:

Sc = σ (W2δ(W1Xc)) (3)

where δ(·) denotes the ReLU activation function, as shown
in Eq. (4); σ (·) denotes the Sigmoid activation function
(see Eq. (5)); W1 and W2 denote the fully connected layers
added before the activation function. Especially, the two fully
connected layers adjust the number of global feature channels
to 1/16 of the original number of channels and then revert
to the original number of feature channels. The advantage of
this scaling approach is that it can reduce the computational
effort of network parameters while fusing features between
channels.

ReLU(x) = max(0, x) (4)

Sigmoid(x) =
1

1+ e−x
(5)

In the attention mechanism, the feature vector is multiplied
by the original feature map in the channel dimension to
obtain the feature map. Meanwhile, to prevent the attention
mechanism from losing part of the feature information of the
original map, a residual structure is adopted to summarize
the original feature map with the obtained result, as shown
in Eq. (6).

Fc = Xc(1+ Sc) (6)

In this way, a residual attention structure is established,
as shown in Fig. 5, GAP refers to global average pooling;
FC refers to the fully connected layer.

FIGURE 5. Residual attention structure.

SEBlock extracts globally valid features, but it does not
suppress local noise interferences well. Meanwhile, the
global noise suppression mechanism of SEBlock may lead to
the loss of some feature information that should be preserved.
To this end, this paper proposes a multi-channel residual

attention module fused with dilated convolution to suppress
local noise interferences and retain more scale key feature
information. The structure of the proposed multi-channel
residual attention module is shown in Fig. 6.

FIGURE 6. Multi-channel residual attention module fused with dilated
convolution.

The dilated convolution increases the range of the receptive
field without changing the feature map size and thus obtains
the semantic information of features on a larger scale. The
dilated convolution process with a dilation rate of 2 is shown
in Fig. 7.

FIGURE 7. Dilated convolution.

Using dilated convolution instead of the normal convolu-
tion kernel, the receptive field range of the feature map can
be represented as:

KA = K + (K − 1)× (r − 1) (7)

where KA denotes the receptive field range of the dilated
convolution,K denotes the size of the convolution kernel, and
r denotes the dilation rate of the dilated convolution.
In this study, 1× 1 convolution, 3× 3 dilated convolution

with a dilation rate of 2, and 3× 3 dilated convolution with a
dilation rate of 4 are employed to obtain three sets of attention
mechanismswith different observation scales in three parallel
channels. In this way, the multi-channel residual attention
module can suppress the interference of invalid information
at different scales and strengthen effective features by using
the dilated convolution with different dilation rates. Mean-
while, the residual structure enhances the validity of shallow
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features, prevents gradient disappearance of network training,
and improves the accuracy and robustness of the overall
network model.

E. Res2Block
The residual module [30] can effectively solve the problems
such as gradient disappearance and gradient explosion caused
by stacking convolution layers to enhance network depth. The
structure of the residual module is shown in Fig. 8. It consists
of three convolution layers: channel adjustment of the input
feature map by 1 × 1 convolution, feature extraction of the
feature map by 3× 3 convolution, and residual connection at
the output location and the input location, thus realizing deep
feature extraction and preserving shallow features.

FIGURE 8. The structure of the residual module.

Res2Block is a structure that replaces the 3 × 3 convo-
lution layer in the residual module with multiscale feature

FIGURE 9. Res2 module.

extraction, as shown in Fig. 9. It introduces a new dimension
called Scale that splits the original channel dimension, and
the new feature map after splitting is called 1 Scale. Then,
each set of feature maps except the first set of feature maps
is convolved, and each set of feature maps after the second
set is concatenated with the results after convolution of the
previous set of feature maps before convolution:

S∗i =


Si, i = 1
Ci(Si), i = 2
Ci(Si + S∗i−1), 2 < i ≤ s

(8)

where Si denotes the feature map after splitting; S∗i denotes
the feature map result after the convolution operation; C(·)
denotes the 3× 3 convolution layer.
The feature groups output by each scale dimension of

Res2Block are convoluted one more time than the output
feature groups of the previous scale dimension. Finally, these
feature maps with different numbers of convolution opera-
tions are spliced and fused to extract semantic information at
different scales, which helps the encoder structure to extract
coal rock feature information of different depths and signifi-
cantly increase the receptive field range of the network.

F. MULTI-DIMENSIONAL LOSS FUNCTION
The FAM-CRFSN model proposed in this paper aims to
achieve pixel-level segmentation of coal rock images through
a network model based on a decoder and encoder. In the
segmentation process, the classification of each pixel and the
regionality of the coal rock is considered. Due to the char-
acteristics of low illumination, weak edge, uneven illumina-
tion, low contrast and serious noise interference in coal-rock
images, it is difficult to accurately and effectively realize the
recognition of coal-rock images by the simple loss function
designed for them. Therefore, the design of loss function is to
consider the characteristics of coal-rock images from a multi-
dimensional perspective, and establish a multi-dimensional
loss function including pixel level, region level and image
level. Therefore, this paper uses the sum of the cross-entropy
loss (CE loss), intersection over union loss (IOU loss), and
multiscale structural similarity loss (MS-SSIM loss) as the
loss function of the FAM-CRFSN model.

The cross-entropy loss characterizes the overall error of the
image, and it can be expressed as:

lCE = −
N∑
i=1

p(xi) loga q(xi) (9)

where N is the number of categories; i is the category
sequence number; p(xi) is the classification target of the
actual real value. It equals to 1 if it corresponds to the target
classification, or 0 otherwise; q(xi) is the predicted probabil-
ity value; the logarithmic base a can be taken as e without
special assertion.

Since the segmentation target of coal rock images is
only ‘‘coal’’ and ‘‘rock’’, the cross-entropy loss can be
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simplified as:

lCE = −|p(xn) loga q(xn)

+ (1− p(xn)) ln(1− q(xn))| (10)

The IOU loss characterizes pixel-level image errors, and it
can be expressed as:

lIou = 1−
N∑
i=1

pii∑N
j=0 pij +

∑N
j=0 pji − pii

(11)

where pii denotes a correctly classified pixel; pij denotes
a pixel that belongs to class i but is classified in class j;
pji denotes a pixel that belongs to class j but is classified in
class i.

TheMS-SSIM loss characterizes the errors within different
regions, and it can be expressed as:

lMS−SSIM = 1−
M∏
m−1

(
2µpµg + C1

µ2
p + µ2

g + C1

)βm

×

(
2σpg + C2

σ 2
p + σ 2

g + C2

)γm

(12)

where M denotes the total number of scales of the network
model, and the FAM-CRFSN model proposed in this paper
contains five scales of feature representation; µp, µg and σp,
σg denote the mean and variance of the predicted and true
values, respectively; σpg denotes their covariance; βm and γm
denotes the importance of each scale; C1 and C2 are two
constant quantities to prevent division by zero in the equation,
and they are usually set to 0.01 and 0.03, respectively.

In this way, the loss function of the FAM-CRFSN model
is a multi-dimensional loss with pixel-level, area-level, and
image-level expressions:

loss = lCE + lIou + lMS−SSIM (13)

III. EXPERIMENTAL RESULTS AND ANALYSIS
The validity and superiority of the proposed FAM-CRFSN
model are verified by using coal rock images with low illumi-
nance, weak edges, and other characteristics collected from
the underground coal mining workface. The models taken
for comparison are Deeplab [31], PSPNet [32], Unet, Seg-
Net [33], hrnet [34]and other major semantic segmentation
network models. To ensure that the test results of different
network models are not affected by factors other than model
differences, the following experiments are conducted for all
network models, and the parameter settings are consistent.

A. DATASETS OF COAL ROCK IMAGES OF UNDERGROUND
COAL MINES
The 500 coal rock original images used in this study were col-
lected from underground coal mines in Shanxi, Chongqing,
Sichuan, and Yunnan. To facilitate the training and testing of
the deep learning models, the original images were labeled by
the Labelme software, and labeled images of the same size as
the original images were obtained, as shown in Fig. 10.

FIGURE 10. Dataset label.

To prevent over-fitting during the training of the deep
learning model and improve the generalization performance
of the model, it can be expanded by expanding the dataset,
the above dataset was enhanced by adding salt-and-pepper
noise and Gaussian noise, rotating the image, mirroring and
flipping the image, and adjusting the contrast and brightness
of the image (see Fig. 11) [35], [36], [37]. The original
coal rock images are rotated by 60 degrees, 120 degrees,
180 degrees, 240 degrees and 300 degrees to obtain a total
of 2500 images. The raw coal rock images are added with
Gaussian noise and salt and pepper noise to obtain a total
of 1000 images. The raw coal rock images are mirrored to
obtain 500 images. The images are enhanced by brightness
and contrast to obtain a total of 1000 images. Finally, a total of
5500 images are obtained after adding 500 original images to
form the original image of the data set. The original coal and
rock image’s masks are rotated by 60 degrees, 120 degrees,
180 degrees, 240 degrees and 300 degrees respectively to
obtain a total of 2500 coal and rock images corresponding to
the rotated coal and rock images. The original coal and rock
image masks are mirrored to obtain 500 coal and rock images
masks corresponding to the mirrored coal and rock images.
Other modifications are marked for replication but do not add
modifications to obtain a total of 2000 annotations. Finally,
a total of 5500 masks are obtained after adding 500 original
image annotations to form a data set mask.

B. MODEL LEARNING AND TRAINING
1) TRAINING ENVIRONMENT
In the hardware equipment used in this paper, the CPU is
AMD Ryzen 7 4800H, the GPU is GeForce GTX 1650 Ti,
the computer memory size is 4GB, and the computer memory
size is 16GB. In the software environment, the Cuda version
number is 10.1, the Cudnn version number is 7.4.1, the deep
learning framework uses Tenserflow-GPU 2.2.0 version, the
programming language is Python 3.6 version, the compiler
environment is Pycharm, the related libraries also include
Numpy 1.92.2 and Pillow 8.2.0, etc.

2) OPTIMIZED ALGORITHM DESIGN
To increase the training accuracy without increasing the com-
putation time significantly, this study selected the adaptive
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FIGURE 11. Dataset expansion effect.

moment estimation algorithm Adam [38] as the optimization
algorithm. Adam assigns an adaptive learning rate to different
parameters by gradient first-order moment estimation mean
and second-order moment estimation mean.

3) DEEP SUPERVISION
The problem of gradient disappearance or gradient explosion
caused by too deep layers makes the model difficult to train
and converge. The avoid this problem, this paper adopts
the deep supervision method [39] to guide the training of
the deep learning network. Different from the conventional
methods that only supervise at the output location, the deep
supervision method direct supervises the middle layer and
performs error reversal. Meanwhile, the loss function can be
considered as a soft constraint added to the deep learning
process.

A 3 × 3 convolution layer is added to the output layer of
each decoder of the FAM-CRFSNmodel; then, a feature map
of the same size as the original input image can be obtained by
bilinear interpolation upsampling; finally, the segmentation
results are obtained by Softmax. Based on the above training
requirements, the loss function values of the FAM-CRFSN
model are trained 50 iterations with the Adam optimization
algorithm, and the results are shown in Fig. 12.

Adam
Require: the learning rate η (Suggested default:10−4)
Require: the minuscule constant parameter ε (Suggested default:10−8)
Require: the first-order moments m̂t ; the second-order moments v̂t

(Suggested default:0 and 0)
Require: the decay rates β1 and β2 (Suggested default:0.9 and 0.999)
Require: network parameter θ ;

the time step t (Suggested default:0)
while stopping criterion not met do
Sampling m data {x(1), x(2), . . . , x(m)} from the training set and its
corresponding label {y(1), y(2), . . . , y(m)}.

Calculating gradient values: g(θ )←
δ( 1m

∑m
i=1 Lf ((x

(1)),y(1)))
δθ

.
t ← t + 1.
Update first-order moments: mt ← β1mt−1 + (1− β1)g(θ ).
Update second-order moments: vt ← β2vt−1 + (1− β2)g2(θ ).
Correct first-order moments: m̂t ←

mt
1−β t1

.

Correct second-order moments: v̂t ←
vt

1−β t2
.

Calculate parameter update amount: 1θ ←−
η

√
v̂t+ε
⊙ m̂t .

Update parameters: θt+1 ← θt +1θ .
end while

FIGURE 12. Training effect of network model.

From Figure 11, it can be seen that under the loss function
mentioned above, the FAM-CRFSN network model proposed
in this paper converges faster than other more common net-
work models, and the loss function value converges to a lower
range, indicating that the FAM-CRFSN network model pro-
posed in this paper under this loss function is more accurate
in segmenting coal and rock images.

C. ABLATION EXPERIMENT
In order to prove the improvement effect of the different
improvement schemes mentioned in this paper on the orig-
inal semantic segmentation model, this paper conducts an
ablation experiment, and the experimental results are shown
in Table 1.

It can be seen from Table 1 that compared with experi-
mental group 1, experimental group 2 replaces a structure in
the encoder with Res2Block, which improves the segmen-
tation accuracy of the network on the premise of a small
increase in the number of overall parameters. Compared
with the experimental group 2, on the basis of the improve-
ment of the experimental group 2, the convolution layer is
replaced with a multi-channel residual attention module that
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FIGURE 13. Comparison of the prediction effect of different network models.

TABLE 1. Ablation experimental results.

integrates the dilated convolution at the connection between
the encoder and the decoder. As a result, the segmentation
accuracy of the network is improved under the premise of
decreasing the number of overall parameters. Compared with
the experimental group 1, the skip structure in the Unet

network was replaced by a full-scale connection structure
in the experimental group 4, which improved the segmen-
tation accuracy of the network while slightly increasing the
number of parameters of the network model. The experi-
mental group 5 is combined with all the improved network
models mentioned above, that is, the FAM-CRFSN network
model proposed in this paper. This group has achieved the
optimal value in each evaluation index result, and has not
significantly increased the number of parameters. There is no
significant increase in network operation speed, and the task
of coal rock image recognition can be well completed in a
certain noise signal environment. In summary, the improved
scheme added in this paper effectively increases the seg-
mentation accuracy of coal-rock images under the premise
of slightly reducing the overall parameters of the network
model.
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D. EXPERIMENTAL RESULTS AND ANALYSIS
1) SUBJECTIVE ANALYSIS
900 low-illuminance coal rock images of underground coal
mines were used for testing in this study. The proposed FAM-
CRFSN model, Deeplab, PSPNet, Unet, and SegNet were
trained on the same training set, and then they were tested
on the testing set for the semantic segmentation task. Due to
the limitation of space, six representative images are selected
for presentation. As shown in Fig. 13, from the left to right
are original images, the recognition result by FAM-CRFSN,
Deeplab, PSPNet, Unet, and SegNet, respectively. For the
convenience of the display, the coal seam area in the image is
marked in red, and the rock and background areas are marked
in black.

As shown in Fig. 13, the proposed FAM-CRFSN network
model obtains excellent results for the segmenting coal rock
images of underground coal mines with low-quality fea-
tures such as low illumination, weak edges, inhomogeneity,
and severe noise interference. Also, it accurately fits the
interface between the coal seam and rock. Other network
models are not robust in the practical environment of under-
ground coal mines due to their failure, mis-segmentation,
over-segmentation, and large segmentation boundary errors
for low-quality coal rock images of underground coal mines.

2) OBJECTIVE ANALYSIS
In this study, mean intersection over union (MIOU) and
category mean pixel accuracy (MPA) are selected to quan-
titatively analyze the performance of different models.

IOU is the ratio of the intersection and union of the real
value and the predicted value, which represents the overlap
between the predicted value and the real value. The MIOU is
the average value of IOU of each classification in the whole
situation, which represents the classification accuracy under
all classifications more effectively:

MIOU =
1

N + 1

N∑
i=1

pii∑N
j=0 pij +

∑N
j=0 pji − pii

(14)

where N is the number of categories; pii represents the cor-
rectly classified pixel; pij represents the pixel that belongs to
class i but is classified in class j; pji represents the pixel that
belongs to class j but is classified in class i.
PA indicates the number of correctly classified pixels in

each category as a percentage of the overall number of pixels,
and MPA indicates the global average of the classified PAs:

MPA =
1

N + 1

∑N
i=0 pii∑N
i=0 pi

(15)

where pi represents all pixels of the corresponding category.
To better verify that the FAM-CRFSN network model

has a strong ability to recognize the low illumination coal
rock images in the complex environment of coal mines, the
coal rock images from the real underground environment
are added with different proportions of Gaussian noise and
salt-and-pepper noise to simulate the effects of unfavorable

TABLE 2. MIOU.

TABLE 3. MPA.

TABLE 4. Parameters.

factors in underground coal mines. Then, the performance of
FAM-CRFSN, Deeplab, PSPNet, Unet, and SegNet network
models were evaluated on the test sets with different noise
intensities, and the MIOU and MPA results are presented in
Table 2 and Table 3. The parameters are shown in Table 4.
As shown in Table 2 and Table 3, at a low noise inten-

sity, the FAM-CRFSN model achieves higher segmentation
accuracy than other networks; as the noise signal increases,
the accuracy of the FAM-CRFSN model is much better than
that of other networks; when the noise intensity reaches 0.09,
the FAM-CRFSN model still achieves an MIOU of 85.77%
and an MPA of 92.12%. Thus, the proposed FAM-CRFSN
network model has strong feature extraction and recognition
capability for low-illuminance coal rock images in the com-
plex environment of underground coal mines.

IV. CONCLUSION
Aiming at the common characteristics of coal rock images
such as low illumination, low contrast, and serious noise
interference caused by the complex environment of under-
ground coal mines, this paper proposes a low illumination
coal rock image segmentation network model called FAM-
CRFSN. The deep extraction of coal rock semantic features
is achieved by a multi-channel residual attention mechanism
and a full-scale connection structure. Meanwhile, the bal-
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ance between ‘‘deep’’ stacking and error back-propagation
is achieved by structures such as dilated convolution and
Res2Block. Besides, a multi-dimensional loss function con-
sists of the cross-entropy loss, IOU loss, and MS-SSIM loss
with pixel-level, area-level, and image-level expressions is
established, and the network model is trained by deep super-
vision to achieve automatic learning of deep semantic feature
representations. In this approach, the pixel-level segmenta-
tion of low-illuminance coal rock images of underground coal
mines is achieved.

The performance of the FAM-CRFSN network is tested
by adding different proportions of noise signals to practi-
cal images to simulate the effects of unfavorable factors in
underground coal mines. The experimental results indicate
that FAM-CRFSN can accurately fit the interface between the
coal seam and rock; at a noise intensity of 0.09, it achieves
an MIOU of 85.77% and an MPA of 92.12%. Also, FAM-
CRFSN has much better accuracy and generalization per-
formance than mainstream semantic segmentation network
models. The results show that the proposed FAM-CRFSN
model can effectively segmentize coal rock images with
low-quality characteristics such as low illuminance and weak
edges caused by the complex environment of underground
coal mines.

However, the network model proposed in this paper is
completely based on CNN, which leads to a large number of
parameters and operation time. In the future, a certain pruning
scheme can be considered in practical application and the
Transformer structure can be used instead of CNN structure
to increase the operation efficiency.
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