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ABSTRACT Accurate spatio-temporal traffic flow prediction is a significant research direction in the intelli-
gent transport system. Current prediction methods have limitations in spatio-temporal feature extraction, and
the prediction results have poor performance. In this paper, a short-term traffic flow prediction model based
on a Spatio-Temporal Residual Graph Convolutional Network (STRGCN) is proposed to solve the problem
of poor accuracy in extracting the spatial and temporal correlation in the short-term traffic flow prediction
task. Firstly, a Deep Full Residual Graph Convolutional Network (DFRGCN) module is used to learn the
spatial correlation. Secondly, a Bidirectional Gated Recurrent Unit based on the Attention mechanism (ABi-
GRU) is used to accurately obtain the temporal dependence of traffic flow data. Finally, the experimental
results show that the STRGCN model achieves better prediction performance and stability on three publicly
available datasets compared to the baseline methods.

INDEX TERMS Attention mechanism, bidirectional gated recurrent unit, graph convolutional networks,
short-term traffic flow prediction, spatio-temporal traffic flow prediction.

I. INTRODUCTION
As people’s living standards improve and the pace of urban
modernization accelerates, the burden on traffic systems
becomes increasingly severe. Intelligent Transport System
(ITS) was proposed to alleviate the tremendous pressure on
traffic system management by using traffic flow informa-
tion to formulate appropriate traffic control strategies. The
spatio-temporal traffic flow prediction provides ITS with
more accurate future traffic flows so that it canmake real-time
or long-term traffic management strategies, and it can also be
used for navigation apps onmobile phones, in-car navigation,
Advanced Driver Assistance Systems (ADAS) and so on.

The rational modelling of complex spatio-temporal rela-
tionships in urban traffic data has been a challenging problem
in the task of predicting urban traffic flow. As shown in
Fig.1, spatio-temporal relationship in traffic network, we can
see that the traffic flow is affected not only by its historical
traffic flow, but also by the traffic flow of its neighbors from
Fig.1(a), traffic network topology diagram. Fig.1(b) is the
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FIGURE 1. Spatio-temporal relationship in traffic network. (a) Traffic
network topology diagram. (b) Visualisation of traffic flow at the same
moment at 7 different nodes.

visualisation of traffic flow at the same moment at 7 different
nodes. It can be seen that although the 7 nodes have different
traffic flows, the overall trend is similar. At the same time,
from the two marker points p and q in Fig.1(b), it can be seen
that when there is a sudden change in traffic flow at point p,
q will also be affected by the sudden change. And this paper
specifically describes these two challenges from spatial and
temporal aspects as follows.
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(1) Spatial aspect. The intricate spatial topological struc-
ture of urban roads leads to the traffic flows’ spatial inter-
dependence. In the traffic network, the traffic state at an
upstream road node affects the traffic flow at a downstream
road node which also gives feedback to the traffic flow at the
upstream road node. The dynamic performance of traffic flow
on a road node is influenced by that node’s spatial topological
structure, which means the change at the current road node is
influenced by the traffic state of its neighboring nodes [1].
To address the spatial features in the traffic flows, traditional
methods grid the urban space and extract the spatial depen-
dencies using Convolutional Neural Networks (CNNs) [2].
However, as the number of neighbors of each node in the
traffic network is not the same, the traffic network does not
belong to the Euclidean structure, there are limitations in the
way CNNs perform feature extraction.

(2) Temporal aspect. In urban traffic, traffic flow is stochas-
tic and non-linear since the traffic state can be disturbed by
vehicles, pedestrians and other factors [3], which brings chal-
lenges to the prediction model. When performing short-term
traffic flow prediction tasks, the Recurrent Neural Network
(RNN) model with memory capacity and its variants, Long
Short-TermMemory (LSTM)model and Gate Recurrent Unit
(GRU) model [4] can all play the role of temporal feature
learning. And these models are relatively simple, easy to
train and respond quickly, but the prediction performance still
needs to be improved.

Many researchers have made a great deal of contributions
to solving the traffic flow prediction problem. In the early
time, most of the traffic flow prediction methods used sta-
tistical analysis [5], such as Historical Average (HA), Expo-
nential Smoothing (ES), Auto Regressive Integrated Moving
Average (ARIMA), and Kalman Filtering (KF). However,
traffic flow is non-linear, stochastic, and chaotic, while statis-
tical analysis methods are suitable for solving linear problems
and insensitive to traffic flow data trends. With the devel-
opment of machine learning and neural networks, many
machine learning methods suitable for solving non-linear
data prediction have been proposed, such as Support Vector
Regression (SVR); and neural network methods [6], such as
Back Propagation Neural Network (BPNN), RNN, LSTM,
CNN, and Graph Convolutional Network (GCN). For the
improvement of the prediction accuracy of individual neu-
ral networks, plenty of combinatorial models of a swarm
intelligence optimization algorithm to optimize the hyperpa-
rameters of a neural network have been created, including
an improved particle swarm optimization algorithm to opti-
mize BP [7], an improved whale optimization algorithm to
optimize wavelet neural network [8]. In addition, there are
some combinatorial neural network models such as CNN-
BiLSTM [9], and T-GCN [10] with spatio-temporal feature
extraction.

In this paper, a short-term traffic flow prediction model,
Spatio-Temporal Residual Graph Convolution Network
(STRGCN) is proposed. The STRGCN first uses a Deep Full
Residual Graph Convolutional Network (DFRGCN) module

to learn the spatial feature, and then uses a Bidirectional
Gated Recurrent Unit based on the Attention mechanism
(ABi-GRU) to accurately obtain the temporal dependence of
traffic flow data. The main contributions of this paper are as
follows.

(1) Data preprocessing. This paper processes traffic fea-
tures which include traffic flow and the topological structure
of the traffic network to obtain the normalized traffic flow and
the traffic feature matrix.

(2) Traffic flow spatial feature learning. The processed
feature matrix is input into the STRGCN model and we
use the Deep Full Residual Graph Convolutional Network
(DFRGCN)module to capture the spatial correlation between
the nodes in the traffic network.

(3) Traffic flow temporal dependence capturing.We use the
Bidirectional Gated Recurrent Unit based on the Attention
mechanism (ABi-GRU) to learn the temporal dependency
of the traffic flow, thus completing the task of accurately
predicting the traffic flow at the next time step.

(4) Model evaluation. The STRGCN model is applied
to real traffic flow data and compared with other baseline
models. At the same time, the experiments on the effect of
hyperparameters and ablation study are designed to verify the
superiority of the model.

II. RELATED WORK
In the field of traffic flow prediction, many researchers have
contributed different research methods, which can be gener-
ally divided into methods based on time series, and methods
based on machine learning and neural networks in order of
development.

With the help of the CiteSpace visualisation tool, we visu-
alised the current state of research on the keyword ‘‘traffic
flow prediction’’, using theWeb of Science as the data source,
and obtained the keyword burst map shown in Fig.2.

It can be seen from the keyword burst map in Fig.2
that from 2008 to 2014, the ‘‘time series’’ method was
mainly used, among which ‘‘extended Kalman filter’’ and
‘‘cell transmission model’’ were the dominant methods.
In the time series method, Jeffery et al. [11], [12] first applied
the HA method to traffic flow prediction. Okutani and
Stephanedes [13] proposed the application of KF to traffic
flow prediction. Wu et al. [14] combined MA and KF to traf-
fic flow prediction. Lin [15] adopted K-nearest neighbor non-
parametric regression prediction to the taxi passenger flow
prediction of the capital airport. Yuan and Zhou [16] intro-
duced new parameters to make up for the loss of information
caused by difference in traditional models, and constructed a
short-term traffic flow prediction model based on ARIMAX.
However, with the development of big data and neural net-
works, prediction methods based on time series often perform
poorly when dealingwith large amounts of data. The develop-
ment of machine learning and neural networks has led traffic
flow prediction to a new level [6], which is favoured by many
researchers.
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FIGURE 2. Keyword burst map of traffic flow prediction state.

From Fig.2, We can also see that ‘‘deep learning’’, ‘‘neural
networks’’, and ‘‘machine learning’’ have gradually become
the dominant methods in recent years. For temporal correla-
tion extraction, Chao et al. [17] used BP network to predict
vehicle passage times, which was the first application of BP
network in traffic flowprediction, and since then, BP network
has been widely used in the prediction of various types of
traffic flows [18], [19], [20], [21]. Han and Huang [22] used
a deep belief network and a kernel extreme learning machine
classifier as a prediction model. Ma et al. [23] first applied a
LSTM neural network to traffic speed prediction; Chen et al.
[24] used a data denoising scheme to suppress potential data
outliers and then introduced a LSTM neural network to meet
the traffic flow prediction task.

For spatial correlation extraction, Pu et al. [25] designed
a model based on a new attentional convolutional neural
network with an encoder-decoder framework. Li et al. [26]
proposed a diffusion convolutional recurrent neural network
applied to traffic flow prediction using a bidirectional random
flow on the graph to capture spatial dependencies. Since
the traffic network can be seen as a graph structure, traffic
flow prediction methods based on GCN were explored, and
Yu et al. [27] used a spatio-temporal graph convolutional
network to solve the prediction problem. Subsequently, many
researchers proposed traffic flow prediction methods such as
T-GCN [10] andASTGCN [1], which are derivedmethods for
GCN. Besides, methods such as attention mechanism [28],
[29] and transformer [30] are also commonly used in the field
of traffic flow prediction. And taking day of week, weather,
and holiday as an entry point for traffic flow prediction is also
a way worth exploring [31], [32].

Meanwhile, we can also see from Fig.2 that in recent
years, the current methods used for traffic flow prediction are
still dominated by ‘‘deep learning’’ and ‘‘neural networks’’.
And ‘‘feature extraction’’, ‘‘spatiotemporal phenomena’’, and
‘‘task analysis’’ are still the key objects of current traffic
flow prediction. In this paper, we propose a model based on
a spatio-temporal residual graph convolutional network for
short-term traffic flow prediction.

III. PROBLEM DESCRIPTION
A. PROBLEM STATEMENT
In traffic flow theory, the three main parameters that reflect
traffic flow are traffic flow, speed, and road occupancy [33],
where traffic flow usually indicates the flow of vehicles run-
ning on the road [34].

B. PROBLEM DEFINITION
Traffic network: The traffic network can be defined as
an undirected graph G = {V ,E,A} [35], where V (G)
means the set of vertices of G, which is the node set in
the traffic network; E(G) means the set of edges of G,
which is the road set in the traffic network; and A ∈

RN×N represents the set of arcs of G, which is the adja-
cency matrix in the traffic network, indicating the connection
between any two nodes, and N represents the number of
nodes.

Mapping function: The task of spatio-temporal short-term
traffic flow prediction is to use the historical traffic flow data
of length TR to predict the traffic flow data of the next period.
It means that the traffic flowYt−TR+1,Yt−TR+2, . . . ,Yt is used
to predict the traffic flow Yt+1 at the next period, and the
mapping function can be expressed as shown in

Yt+1 = f
({
Yt−TR+1,Yt−TR+2, . . . ,Yt

}
;G

)
. (1)

IV. METHODOLOGY
In the short-term traffic flow prediction tasks, temporal pre-
diction models such as RNN, LSTM, and GRU are usu-
ally conducive to temporal dependence learning, however,
the global temporal features are weakly captured. The spa-
tial feature in the traffic network, as a Granger cause of
spatio-temporal traffic flow prediction [36], [37], is equally
important for prediction accuracy. For the problem of cap-
turing the spatial feature of traffic flow, GCN has received
more and more attention from researchers since the traffic
flow data does not belong to Euclidean data. Therefore,
we propose a short-term traffic flow prediction model based
on a Spatio-Temporal Residual Graph Convolution Network
(STRGCN) to accurately predict the traffic flow at the next
moment in the future. the overall model framework of the
STRGCN model is described in Fig.3.
As we can see from Fig.3, the traffic data in the traffic

network is generally divided into traffic flow, speed, and
road occupancy, the object of this paper is the traffic flow
among them, which is collected by sensors distributed on the
road. Firstly, we need to preprocess the traffic flow data, i.e.,
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FIGURE 3. STRGCN model framework.

we normalize the traffic flow data to generalize the statistical
distributivity of the sample and solved to obtain the feature
matrix between the nodes. After that, the STRGCN traffic
flow prediction model is constructed, in which the Deep Full
Residual Graph Convolutional Network (DRFGCN) module
is used to obtain the spatial dependence, and the Bidirec-
tional Gated Recurrent Unit based on the Attention mecha-
nism (ABi-GRU) is used to learn the historical information
between traffic flow, and the traffic flow prediction value is
obtained through the fully connected layer to calculate the
loss function value.

A. SPATIAL CORRELATION MODELLING
It is a core problem that effective extraction of the spatial
feature of traffic network in the spatio-temporal traffic flow
prediction. Generally, as the layers of the network (GCN)
deepen, the noise information may become more obvious.
In order to avoid this situation, the DFRGCN introduces a
full residual structure that optimizes the serial GCN into a
DFRGCN capable of parallel computation to improve the
prediction accuracy of the model while enhancing the model
training efficiency. The DFRGCN’s framework module is
shown in Fig.4.

The DFRGCN module is composed of a Deep Resid-
ual Graph Convolution Network (DRGCN) module and a
residual layer. And the DRGCN module captures the spa-
tial correlation through three Residual Graph Convolution
Network (RGCN) modules. The RGCN module is the core
submodule of the DFRGCN, which reduces the error spread
and accumulation problems by adding a residual network.
After the residual layer, the traffic flow features are activated
by the ELU activation function to increase the nonlinear
fitting capability of the model, and the final output of the
RGCN module is obtained.

FIGURE 4. DFRGCN model framework.

1) RESIDUAL GRAPH CONVOLUTION NETWORK MODULE
Graph Convolutional Network (GCN) is a neural network
based on graph structure that can effectively handle data in
non-Euclidean spaces like traffic flow [38]. The core idea
of GCN is to use the Laplacian matrix of a graph to define
convolutional operations on the graph, which enables aggre-
gation and propagation of node features [39].

Each graph structure can be represented by an adjacency
matrix A, and each hidden layer in the network can be repre-
sented as a nonlinear function as shown in

H (l+1)
= f

(
H (l),A

)
(2)

where A is the adjacency matrix in the traffic network; when
l = 0, H (l)

= H (0) denotes the input layer; when l = L − 1,
H (l+1)

= H (L) denotes the output layer, and L is the number
of layers. f

(
H (l),A

)
is shown in

f
(
H (l),A

)
= σ

(
D̂−

1
2 ÂD̂−

1
2H (l)W(l)

)
(3)

where σ (•) is the nonlinear activation function, W(l) is the
weight matrix, D̂−

1
2 ÂD̂−

1
2 is a symmetric normalization of

A, and Â = A+ I, D̂ is the degree matrix of Â.
The computational process of GCN can be understood as

follows. Firstly, the adjacency matrix is normalized so that
each node’s neighbor information has the same weight. Then
the normalized adjacency matrix is multiplied by the node
feature matrix of the current layer to obtain the weighted sum
of each node and its neighbor features. Finally, the weighted
sum is multiplied by the weight matrix and the node feature
matrix of the next layer is obtained by the activation function.
In this way, each node can fuse the information of itself and
its neighbors to learn the feature representation at a higher
level.

As the number of GCN layers increases, the noise informa-
tion will also accumulate. Therefore, this paper introduces a
residual structure to solve this problem, thus forming a Resid-
ual Graph Convolution Network (RGCN) module, whose
output features are shown in

h⃗i,res = Wresh⃗i (4)

h⃗′i = σ
(
h⃗i,res + D̂−

1
2 ÂD̂−

1
2H (l)W(l)

)
(5)
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FIGURE 5. The diffusion model of DRGCN.

where h⃗i ∈ RF is the current node input features, F is the
number of features in each node; Wres ∈ RF×F is the linear
transformation matrix, meaning that the input data undergoes
a linear transformation; h⃗i,res ∈ RF is the feature matrix
combined with the residual layer, and h⃗′i is the output of the
RGCN network after activation function.

2) DEEP RESIDUAL GRAPH CONVOLUTION NETWORK
MODULE
The Deep Full Residual Graph Convolution Network
(DFRGCN) module is composed of the Deep Residual Graph
Convolution Network (DRGCN) module and a residual layer,
which can avoid the loss of local features and the diffusion of
errors through the parallel computation of the residual layer.
As Fig.5 shows the diffusion model of DRGCN, the module
contains three layers of input, hidden, and output RGCN
modules.

From Fig.5, we can see that the central node of the DRGCN
module is capable of learning third-order neighborhood
nodes’ information. The central node of the ‘‘Input RGCN’’
in Fig.5 already contains information about first-order neigh-
borhood nodes. And similarly, we can see that the central
node of the ‘‘Hidden RGCN’’ contains information about
second-order neighborhood nodes, and the central node of
the ‘‘Output RGCN’’ contains information about third-order
neighborhood nodes. It helps to better learn spatial correla-
tion by learning information about third-order neighborhood
nodes. The calculation formula of the multilayer RGCNmod-
ule in the DRGCN module is shown in

h⃗l+1i = σ

(
W l

resh⃗
l
i + D̂−

1
2 ÂD̂−

1
2H (l)W(l)

)
(6)

where h⃗li is the input feature of the layer l of the DRGCN
module.

In this paper, we use DRGCN (A,Xt ) to represent the
DRGCN module, where A is the topological structure of
the traffic network; Xt ∈ RN×F is the input features of the
traffic flow. Therefore, the formula of the DFRGCN module
is shown in

DFRGCN (A,Xt ) = σ (DRGCN (A,Xt )+WresXt ) (7)

B. TEMPORAL CORRELATION MODELLING
Although the DFRGCN module has the spatial feature
extraction capability, it is slightly less capable of learn-
ing temporal correlation. Therefore, this section proposes

FIGURE 6. STRGCN short-term traffic flow prediction framework.

a Spatio-Temporal Residual Graph Convolutional Network
(STRGCN) traffic flow prediction model based on the
DFRGCN module to improve the temporal correlation learn-
ing capability. The STRGCN short-term traffic flow pre-
diction framework is shown in Fig.6. In temporal correla-
tion learning, it includes the following two core aspects: 1)
extracting and capturing temporal correlations in traffic flow
data by the bidirectional gated recurrent unit, and 2) dynami-
cally aggregating the hidden layer state of the bidirectional
gated recurrent unit by attention mechanism. In this way,
we obtain the traffic flow prediction value at the next time
step to achieve accurate short-term prediction.

1) GATED RECURRENT UNIT
The Gated Recurrent Unit (GRU) is a variant of the recurrent
neural network proposed in 2014 and it is easy to compute.
The mathematical model of GRU is shown in

rt = σ (Wr (x||ht−1)) (8)

ut = σ (Wu (x||ht−1)) (9)

h′t = tanh(Wh′ (x|| (rt∗ht−1))) (10)

ht = (1− ut )∗ht−1 + ut∗h′t (11)

where x is the input vector of the GRU, Wr , Wu, and Wh′ are
the weight matrices, rt and ut represent the reset gate and the
update gate respectively. ht−1 is the hidden layer state at time
t − 1, h′t is the candidate hidden layer state at time t , ht is the
hidden layer state at current time t , and tanh(•) is an activation
function [40].

2) BIDIRECTIONAL GATED RECURRENT UNIT
In the GRU network, feature extraction is always performed
in a unidirectional temporal order from front to back. It means
that the state of the hidden layer at the current t moment
contains only the past and present traffic information. In order
to enable the model to focus on future time information,
we use Bidirectional GRU (Bi-GRU) to model the temporal
correlation.

The structure of Bi-GRU is composed of two unidirectional
GRUmodels with opposite directions, as shown in Fig.7. The
forward unidirectional GRU model performs feature extrac-
tion in temporal order, specifically from time step t − TR +
1 to time step t . In contrast, the reverse unidirectional GRU
model performs feature extraction in the opposite order of
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FIGURE 7. The model structure of Bi-GRU.

the temporal order, specifically from time step t to time step
t − TR + 1 [41].

The traffic flow of each historical time step will be input to
the forward and reverse unidirectional GRU models, respec-
tively. And the hidden layer state obtained from the traffic
flow of each time step through the two directions of the
unidirectional GRU model will be integrated in a fixed way,
and finally obtain the hidden layer state incorporating the
past, present, and future traffic flow information. The mathe-
matical model of the Bi-GRU is shown in

ht = WBiGRU

(
→

h t ∥
←

h t

)
(12)

→

h t = GRU
(
xt ,
→

h t−1

)
(13)

←

h t = GRU
(
xt ,
←

h t+1

)
(14)

where WBiGRU is the linear transformation of the state of the
hidden layer of Bi-GRU; || denotes the connection operation

of the matrices. And we use
→

h t and
←

h t to denote the hidden
layer state of the unidirectional GRU model in the forward
and reverse direction at time step t respectively. Thus, the
hidden layer state value of Bi-GRU at the current time step t
can be calculated from the three components, the input matrix
xt of the traffic flow at the time step t , the hidden layer state

value
→

h t−1 of the forward unidirectional GRU model at the

time step t − 1, and the hidden layer state value
←

h t+1 of the
reverse unidirectional GRU model at the time step t + 1.

3) BIDIRECTIONAL GATED RECURRENT UNIT BASED ON
THE ATTENTION MECHANISM
The bidirectional gated recurrent unit enables each hidden
layer state to contain past, present, and future traffic infor-
mation. In order to accurately predict the traffic flow at time
step t + 1 using the historical traffic flow information from
time steps t − TR + 1 to t , all the hidden layer states need to
be efficiently integrated to obtain the predicted traffic flow at
time step t + 1.

In the TR time steps of the hidden layer states, it is not
all state values are of the same importance. At a certain
moment, only some of the data are important, and the degree
of importance varies. In this case, the attention mechanism
can play its advantage to help the model focus on some
important state values, and thus the model can achieve better

training results. Therefore, we use the attention mechanism
to integrate the hidden layer states over TR time steps.
The ABi-GRU is divided into the following three parts: 1)

the bidirectional gated recurrent unit, through which the hid-
den layer states are obtained incorporating past, present, and
future traffic flow information; 2) the attention mechanism,
through which the hidden layer states are integrated over TR
time steps; 3) the fully connected layer, through which the
integrated information is converted to the final traffic flow
prediction value. In summary, the computational idea of the
ABi-GRU is shown as follows.
Step 1: The hidden layer state h is calculated for TR time

steps using a bidirectional gated recurrent unit

ht = BiGRU
(
xt ,
→

h t−1,
←

h t+1

)
(15)

Step 2: The attention mechanism is applied to integrate the
hidden layer state of TR time steps to obtain the integrated
hidden layer state s

ei = LeakyReLU (wihi + bi) (16)

αi = softmaxi(ei) =
exp(ei)∑TR
i=1 exp(ei)

(17)

s =
TR∑
i=1

αihi (18)

where hi is the hidden layer state in TR time steps, wi is
the weight coefficient, bi denotes the bias, ei denotes the
attention coefficient of the weight of the hidden layer state at
the time step i among all hidden layer states, and αi denotes
the normalized ei by the softmax function.
Step 3: The fully connected layer is used to obtain the inte-

grated hidden layer state s, and the final accurate prediction
value is shown in

ŷ = wos+ bo (19)

where wo denotes the weight coefficient of the fully con-
nected layer, bo denotes the bias of the fully connected layer,
and ŷ denotes the predicted value of the model.

V. EXPERIMENTAL RESULTS
A. DATASETS
To evaluate the predictive effectiveness of the STRGCN
model proposed in this paper, the performance of the
STRGCN is evaluated using real freeway datasets: PeMS04,
PeMS07, and PeMS08 [42]. These datasets are freeway
datasets collected by the California Department of Trans-
portation Performance Measurement System, and the time
interval is 5 minutes. In this paper, traffic flow is used as
the object of study. All datasets are divided into training,
validation, and test sets by the ratio of 6:2:2. The detailed
division of these datasets is shown in Table 1.

In order to generalize the statistical distributivity of the
sample, we normalize the traffic flow by the ‘‘max-min’’
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TABLE 1. Dataset description.

normalization. And the calculation formula is shown in

y′i =
yi −min

(
yi

)
max

(
yi

)
−min

(
yi

) (20)

where yi denotes the ith traffic flow data, y′i denotes the
ith traffic flow data after normalization; max(•) and min(•)
denote the maximum and minimum traffic flow data values
respectively.

B. EVALUATION METRICS
The prediction effectiveness of a model can be accurately
measured by calculating the error between the true and pre-
dicted values of traffic flow. In the field of traffic flow
prediction, most papers prefer to use Mean Absolute Error
(MAE), Root Mean Square Error (RMSE) and Mean Abso-
lute Percentage Error (MAPE) as the evaluation metrics.
Because they can evaluate the model by scaling up the error,
and better reflect the accuracy and stability of the model.
In this paper, we use MAE, RMSE, and MAPE to assess the
performance of predictionmodels [43]. The formulas of these
three evaluation metrics are shown in

MAE = (
N∑
i=1

|yi − ŷi|)/N (21)

RMSE =

√√√√ N∑
i=1

(yi − ŷi)2/N (22)

MAPE =
100%
N

N∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ . (23)

where yi is the true traffic flow value, ŷi is the predicted value,
and N is the sample size. A lower value of the evaluation
metrics means that the model has higher accuracy and better
prediction capability.

C. PARAMETER DISCUSSION
We use the Huber loss function in this paper [44]. And the
parameters for the experiment are set as follows, 1) optimizer
is Adam, 2) batch size is 24, 3) learning rate is 0.002, 4)
maximum iterations is 200, 5) the number of layers of the
DFRGCN module is 3, 6) the number of Bi-GRU hidden
neuron is 64, and 7) the historical time length is 12.

D. COMPARED METHODS
To verify the prediction performance of the STRGCN
short-term traffic flow prediction model, we compare the
STRGCNmodel with the following baseline prediction mod-
els, which include 1) Historical Averaging (HA) model,

2) Long Short-Term Memory (LSTM) network, 3) Gated
Recurrent Unit (GRU) network, 4) Graph Convolutional Net-
work (GCN), 5) Graph WaveNet for deep spatial-temporal
graph modeling (Graph WaveNet) [45], 6) Spatio-Temporal
Graph Convolutional Networks: a deep learning framework
for traffic forecasting (STGCN) [27], and 7) Attention based
Spatial-Temporal Graph Convolutional Networks for traffic
flow forecasting (ASTGCN) [1].

E. EXPERIMENTAL RESULTS
1) EXPERIMENTAL RESULTS AND ANALYSIS
The prediction results of the STRGCN model at node 150 of
PeMS04, node 100 of PeMS07, and node 150 of PeMS08
are visualized in Fig.8 and Fig.9. Fig.8 shows the traffic flow
visualization results for a week, and Fig.9 shows the traffic
flow visualization results for a day. From Fig.8 and Fig.9,
it can be seen that the traffic flow prediction values of the
STRGCN model can follow the true values well, and it can
effectively capture the spatio-temporal features and dynamic
changes of traffic flow. From the local amplification of Fig.8
and Fig.9, it can also be seen that the STRGCN model is
effective in predicting traffic flow during sudden changes,
peaks, and troughs periods in traffic flow, and the predicted
values can follow these situations to a certain extent.

Table 2 is the average performance of different methods
on the PeMS04, PeMS07, and PeMS08 datasets. As we can
see that the STRGCN model has the lowest prediction error
among the comparedmethods for all three datasets, indicating
that the STRGCN model has better prediction performance.

Specifically from Table 2, the first three prediction meth-
ods (HA, LSTM, and GRU) are prediction methods for
temporal correlation only, and GCN is a prediction method
for spatial correlation only.

In terms of temporal correlation, HA is an early traffic
flow prediction method based on statistical analysis, and
LSTM and GRU are recent traffic flow prediction methods
based on neural networks. It can be seen that the prediction
performance of the neural networks prediction methods is
better than that of the statistical analysis predictionmethod on
all three datasets. On the PeMS04 dataset, the prediction error
of GRU is slightly smaller than that of LSTM, and compared
with HA, the prediction error of GRU is reduced by 30.66%,
24.85%, and 32.24% at MAE, RMSE, and MAPE, respec-
tively. On the PeMS07 dataset, the prediction error of GRU
is slightly smaller than that of LSTM, and comparedwith HA,
the prediction error of GRU is reduced by 39.03%, 34.31%,
and 43.05% at MAE, RMSE, and MAPE, respectively. And
on the PeMS08 dataset, the prediction error of LSTM is
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FIGURE 8. Visualisation of a week’s traffic flow prediction. (a) Node 150 of PeMS04. (b) Node 100 of PeMS07. (c) Node 150 of
PeMS08.

TABLE 2. The average performance of different methods on the PeMS04, PeMS07, and PeMS08 datasets.

slightly smaller than that of GRU, and compared with HA,
the prediction error of LSTM is reduced by 34.72%, 32.95%,
and 33.11% at MAE, RMSE, and MAPE, respectively. From
the above comparison, it can be seen that the neural networks
based on the time series prediction method are able to learn

the temporal relationship between traffic flow data better than
the statistical analysis methods.

Since the prediction errors of LSTM and GRU in Table 2
are only slightly different on the three datasets, this paper uses
these two models on the PeMS08 for prediction comparison
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FIGURE 9. Visualisation of a day’s traffic flow prediction. (a) Node 150 of PeMS04. (b) Node 100 of PeMS07. (c) Node 150 of PeMS08.

and obtains the duration and the number of parameters when
training one generation, which is shown in Table 3.

It can be seen from Table 3 that the number of parameters
of the LSTM model is larger than that of the GRU model,
and the duration of training one generation is also larger than
that of GRU. Therefore, although both LSTM and GRU are
good at the task of extracting temporal correlations, LSTM
has more training parameters. With no significant difference
in the overall training results, more training parameters would
impose a greater training burden on the overall model. It fur-
ther proves that it is more practical and effective to use GRU
model for temporal correlation extraction in this paper.

Combined with Table 1, it can be analyzed that the
STRGCN model is 3.79%, 2.92%, and 5.49% lower than
those of the GRU model on the PeMS04 dataset at MAE,
RMSE, and MAPE, respectively. On the PeMS07 dataset,

the STRGCN model is 2.75%, 1.63%, and 3.36% lower than
those of the GRUmodel at MAE, RMSE, andMAPE, respec-
tively. And on the PeMS08 dataset, the STRGCN model is
4.90%, 3.78%, and 6.79% lower than those of the GRUmodel
at MAE, RMSE, and MAPE, respectively.

In terms of spatial correlation, the STRGCN model con-
siders temporal correlation compared to the GCN model,
which significantly improves the prediction results. On the
PeMS04 dataset, the STRGCN model is reduced by 45.69%,
40.95%, and 52.25% at MAE, RMSE, and MAPE respec-
tively, compared with the GCN model that only considers
spatial correlation. On the PeMS07 dataset, the STRGCN
model is reduced by 49.40%, 46.40%, and 53.51% at MAE,
RMSE, andMAPE respectively. And on the PeMS08 dataset,
the STRGCN model is reduced by 61.83%, 59.06%, and
69.99% at MAE, RMSE, and MAPE respectively.
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TABLE 3. The prediction results’ comparison of LSTM and GRU models on the PeMS08 dataset.

And we can see that, compared with the three classical
models of Graph WaveNet, STGCN, and ASTGCN, the
short-term traffic flow prediction effect of STRGCN is also
better than these threemodels, which proves the superiority of
the STRGCNmodel. In short, combining the results of Fig.8,
Fig.9, and Table 2, it can be concluded that the STRGCN
model with the integration of temporal correlation and spatial
correlation can better perform the task of short-term spatio-
temporal traffic prediction.

2) EFFECT OF HYPERPARAMETERS
In order to measure the effect of different parameters on the
prediction effect of the model, this paper designs a com-
parison experiment for two hyperparameters, the number of
DFRGCN layers (layer) and the number of Bi-GRU hidden
neurons (hid_size). And the layer in the STRGCN model is
set to 1, 2, 3 and 4, and the hid_size is set to 8, 16, 32, 64, and
128, respectively.

Fig.10 shows the effect of the number of DFRGCN layers
on the STRGCN model, where (a), (b), and (c) are the exper-
iments conducted on the PeMS04, PeMS07, and PeMS08
datasets, respectively. From Fig.10 (a), we can see that on the
PeMS04 dataset, the minimum values of MAE and RMSE
are obtained at layer = 3, and the minimum value of MAPE
is obtained at layer = 4. From Fig.10 (b), we can see that on
the PeMS07 dataset, the minimum values of MAE, RMSE,
and MAPE are all obtained at layer = 3; at the same time,
from Fig.10 (b), we can see that the three evaluation metrics
have the greatest rate of change from layer = 2 to layer =
3. As can be seen in Fig.10 (c), on the PeMS08 dataset, the
minimum values of MAE, RMSE, and MAPE are obtained
at layer = 4, followed by the corresponding MAE, RMSE,
and MAPE at layer = 3. In summary, the prediction errors
of the model at layer = 3 and layer = 4 are smaller in all
three datasets, while the training time of the model at layer=
3 is 0.28 min, 1.31 min, and 0.26 min for one generation on
the three datasets, respectively, and the training time of the
model at layer= 4 is 0.3 min, 1.44 min, and 0.26 min for one
generation on the three datasets, respectively. As the number
of the layers increases, the training parameters of the model
also increase, which also puts a greater burden on the training
of the model. Therefore, compared with layer= 4, the model
with layer = 3 can obtain better results with less cost, which
has a better application value.

Fig.11 shows the effect of the number of Bi-GRU hid-
den layer neurons (hid_size) on the STRGCN model. From
Fig.11, we can see that the model only obtains the minimum
MAPE on the PeMS08 dataset when hid_size= 128, and the
rest of the error values are all obtained when hid_size = 64.

Meanwhile, in terms of model time complexity analysis, the
rate of change of the duration when training one generation at
hid_size = 64 compared to hid_size = 32 is smaller than the
rate of change of the duration when training one generation
at hid_size = 128 compared to hid_size = 64 on all three
datasets. For example, on the PeMS04 dataset, the training
one generation time for hid_size = 64 is 0.28 min compared
to 0.27 min for hid_size = 32, which is an increase of 3.7%,
while the training one generation time for hid_size = 128 is
0.48 min compared to 0.28 min for hid_size = 64, which is
an increase of 71.43%.

3) ABLATION STUDY
The STRGCN model contains two main modules for tempo-
ral and spatial correlation extraction, and to verify the role
of each module, we design ablation study on the PeMS04,
PeMS07, and PeMS08 datasets. The details of the ablation
models are described as follows.

1) STRGCN-T model: Based on the STRGCN model, the
ABi-GRU for learning temporal correlation is removed, and
only the DFRGCN module incorporating the full residual
structure is retained.

2) STRGCN-S model: Based on the STRGCN model, the
DFRGCN module capturing spatial correlation is removed,
and only the ABi-GRU is retained.

Table 4 shows the experimental results of the STRGCN
models as well as the ablation models on the three datasets.
From Table 4, it can be seen that the STRGCN model is
reduced by 33.27%, 28.21%, and 34.95% at MAE, RMSE,
and MAPE, respectively, on the PeMS04 dataset compared
to the STRGCN-T model. On the PeMS07 dataset, the
STRGCNmodel is reduced by 40.53%, 35.41%, and 43.97%
at MAE, RMSE, and MAPE, respectively. And on the
PeMS08 dataset, the STRGCN model is reduced by 37.45%,
34.81%, and 35.52% at MAE, RMSE, and MAPE, respec-
tively. It shows that the ABi-GRU in the STRGCN model
plays an important role in temporal correlation extraction.

The STRGCN-S model removes the DFRGCN module
for extracting spatial correlations and uses ABi-GRU to cap-
ture temporal correlations. Compared with the GRU model,
the STRGCN-S model has an improvement in short-term
prediction capability to a certain extent. Compared with
the STRGCN-S model, the STRGCN model is reduced by
3.47%, 2.89%, and 4.63% at MAE, RMSE, and MAPE,
respectively, on the PeMS04 dataset. On the PeMS07 dataset,
the STRGCN model is reduced by 5.61%, 2.98%, and
5.67% at MAE, RMSE, and MAPE respectively. And on the
PeMS08 dataset, the STRGCN model is reduced by 2.72%,
3.73%, and 4.01% at MAE, RMSE, and MAPE, respectively.
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FIGURE 10. Model prediction error with different DFRGCN layers. (a) PeMS04. (b) PeMS07. (c) PeMS08.

FIGURE 11. Model prediction error with different numbers of Bi-GRU hidden layer neurons. (a) PeMS04. (b) PeMS07. (c) PeMS08.

TABLE 4. Results of the ablation study on the PeMS04, PeMS07, and PeMS08 datasets.

This indicates that the DFRGCN module plays a role in
extracting spatial correlation, which helps to improve the
prediction accuracy of the model.

In summary, we can infer that the STRGCN model learns
the spatial structure of the traffic network through the
DFRGCN model, and the temporal correlation of traffic flow
is obtained through the ABi-GRU, which is combined with
the spatio-temporal correlation extraction to improve the pre-
diction performance of the model.

VI. CONCLUSION AND PROSPECT
In this paper, a Spatio-Temporal Residual Graph Convolution
Network (STRGCN) is proposed for short-term traffic flow
prediction. To address the challenges of the spatio-temporal
short-term traffic flow prediction task and the problems of
existing networks. The model first uses a deep full residual
graph convolution network to capture the spatial structure
of the traffic network, and then uses a bidirectional gated

recurrent unit based on the attention mechanism to learn
the temporal correlation of traffic flow, and finally con-
ducts experimental analysis on the PeMS04, PeMS07, and
PeMS08 datasets. Meanwhile, the experiments on the effect
of hyperparameters and ablation study are conducted on the
STRGCN model on these three datasets to demonstrate the
role of hyperparameters and each module in the model. The
results show that the STRGCN model has better prediction
performance on these three datasets compared with the base-
line models and can efficiently capture the spatio-temporal
features of the traffic network and accomplish more accurate
short-term traffic flow prediction. The model provides a new
idea and technique in the field of traffic flow prediction, with
strong application potential and value.

In practice, traffic flow is usually affected by weather, spe-
cial holidays, etc. and thus shows different features. There-
fore, in future traffic flow prediction work, we can take
these factors into account to further validate our proposed
STRGCN model.
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