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ABSTRACT As the performance of computing devices such as graphics processing units (GPUs) has
improved dramatically, many deep neural network models, especially convolutional neural networks
(CNNs), have been widely applied to various applications such as image classification, semantic segmenta-
tion, and object recognition. However, effective first-order optimization methods for CNNs have rarely been
studied, although many CNNmodels have been successfully developed. Accordingly, this paper investigates
various advanced adaptive solution searchmethods and proposes a new first-order optimization algorithm for
CNNs called Adam-ASC. Our approach uses four sophisticated adaptive solution search methods to adjust
its search strength in the complicated large-dimensional weight solution space spanned by a loss function.
At the same time, we explain how they can be combined compensatively to form a complete optimizer with a
detailed implementation. From the experiments, we found that our Adam-ASC can significantly improve the
image recognition performance of practical CNNs in both the image classification and segmentation tasks.
These experimental results show that the four fundamental methods of Adam-ASC and their compensative
combination strategy play a crucial role in training CNNs by effectively finding their optimal weights.

INDEX TERMS Machine learning, deep learning, convolutional neural networks, optimization methods,
gradient methods, image classification, image segmentation.

I. INTRODUCTION
Since the convolutional neural network (CNN)was developed
in 1998 [1], it has shown remarkable performance in many
image processing tasks, such as image classification [2], [3],
image segmentation [4], [5], and object tracking & detection
[6], [7], [8]. Accordingly, CNNs have been widely used as
a basic model to handle complex image data in the real
world [9], [10], [11], [12]. Such excellent ability in image
processing tasks is caused by the distinctive properties of
the CNN, which are different from the traditional multi-
layer perceptron-based feedforward neural networks, such as
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convolutional filters and subsampling operations. In addi-
tion, modern CNNs are much more complicated and have
extensive architectures to improve their performance when
compared to the original CNNs.

Accordingly, many recent studies have focused on design-
ing optimal CNN models for specific tasks to enhance their
performance [13], [14], [15], [16]. Such research paradigms
are mainly divided into two approaches: one is to increase
the size of the model by stacking more layer blocks. The
other is to densely connect each layer block using skip con-
nections (or residual connections) [17], [18]. As a result, the
latest CNNs have become more massive than the traditional
ones and require more computation and memory, making
it extremely difficult to use them on devices with limited
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computational resources and memory. Therefore, it is essen-
tial to study the fundamental training and optimization mech-
anisms for CNNs to prevent the model size from increasing
drastically and to improve its performance.

In general, most CNNs are trained using classical
first-order optimization algorithms such as stochastic gradi-
ent descent (SGD) [19], RMSProp [20], and adaptive momen-
tum (Adam) [21]. One of these common properties is that
they require relatively less computation than second-order
optimization algorithms, such as the Newton method [22],
BFGS [23], and L-BFGS [24], by using gradient information
when searching for an optimal weight in a solution space
which is composed of many weights spanned by a loss func-
tion. As explained earlier, since a CNN consists of many
weight tensors, the first-order optimization methods have
been widely used to train most CNNs.

Among these first-order optimization algorithms, the
Adam optimizer is one of the most popular methods for
training CNNs. Unlike the existing SGD algorithm, the Adam
optimizer controls an exponential moving average of histor-
ical gradients called momentum. By applying such adaptive
momentum mechanisms, the Adam optimizer could effec-
tively alleviate the slow convergence suffered by the SGD.
Accordingly, many recent first-order optimization algorithms
for training CNNs have been developed based on the Adam
optimizer [25]. For example, AdaBelief [26], diffGrad [27],
and SAdam [28] are typical Adam-based optimizers that have
been successfully used to train many practical CNNs. How-
ever, as the structure of CNNs becomes more extensive and
complicated than the previous ones, the existing Adam-based
optimizers have also shown some critical weaknesses, such as
insufficient convergence and unstable solution search ability,
which often cause the trained CNNs to have unexpectedly low
accuracy or insufficient learning ability [29].
To overcome the weaknesses of Adam-based optimizers,

it is necessary to uncover various components that affect the
search for optimal weights and study sophisticated meth-
ods with detailed solution search and control mechanisms
for training CNNs. Accordingly, in this paper, we aim to
improve the learning performance of CNNs by developing
a new first-order optimization algorithm designed for CNNs,
called Adam-ASC(Adam-based first-order optimization with
Advanced Search Control). We mainly focus on effectively
searching the complicated solution space spanned by a loss
function of CNNs by proposing four sophisticated adap-
tive solution search methods and combining these strategies.
In addition, we experimentally verify howmuch our proposed
method improves the learning performance of practical CNNs
in image classification and segmentation tasks. From the
experiments, we found that our Adam-ASC achieves better
optimization performance and convergence ability than the
existing first-order optimization algorithms when our pro-
posed method is used to train practical CNNs such as ResNet
[17], DenseNet [18], and FC-DenseNet [30].

Meanwhile, our study proposes a new research paradigm
for CNNs, which is distinguished from the existing ones

for the following reasons: First, our proposed method can
effectively improve the learning ability of CNNs without
oversizing the model or changing its architecture. Second,
our approach can be used as a general optimizer to train
any CNNs regardless of the target applications by simply
replacing the existing optimizers. Third, our study is signif-
icantly challenging and worthwhile because it proposes the
fundamental core techniques to effectively improve CNNs
without excessive computation.

Furthermore, our proposed method has several novelties
and significance when compared to the classical studies
on first-order optimization algorithms used to train CNNs,
as follows:

• First, we have developed several optimal solution search
mechanisms that can significantly contribute to a stable
solution search by preventing the excessive oscillation
of the search trajectories around any local or global
minima. In particular, our new search mechanisms are
helpful in effectively analyzing the large-scale solu-
tion space by comprehensively utilizing much of the
information observed from the current and historical
gradients.

• Second, based on these new solution search mecha-
nisms, we developed a new first-order optimization
algorithm that further improves the performance of prac-
tical CNNs by exhaustively searching for the optimal
weights in a large-dimensional weight solution space.

• Third, from the comprehensive experiments with practi-
cal CNNmodels, we found that the CNNmodels trained
by our new optimization algorithm showed better per-
formance than traditional optimizers in terms of training
and testing accuracies. Thus, our study has remarkable
significance in that Adam-ASC can be widely used as
one of the fundamental methods for many studies to fur-
ther improve the training performance of various CNN
models.

This paper is organized as follows. Section II introduces
several fundamental concepts of CNNs and their traditional
optimization algorithms. In Section III, we present our pro-
posed optimization method, called Adam-ASC, with their
detailed principles. Then, we show a theoretical analysis to
prove its convergence. In Section IV, we present the experi-
mental results that validate the optimization performance of
our proposed method for CNNs. In Section V, we provide
a detailed discussion of the experimental results and various
concerns related to Adam-ASC in detail. Finally, we discuss
the advantages and disadvantages of our study and conclude
this paper in Section VI.

II. RELATED WORKS
A. CONVOLUTIONAL NEURAL NETWORKS
A CNN is one of the neural network models proposed by
Yann LeCun in 1998 [1]. The first CNN was designed under
the influence of Neocognitron [31], which was developed by
Kunihiko Fukushima in 1977 to improve the perceptive abil-
ity of any image data in computer vision applications. Unlike
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FIGURE 1. General architecture of the CNNs for image classification.

classical neural networks such as perceptron [32], CNNs
have two critical properties, i.e., invariance and equivariance
[33]. In this section, we briefly discuss the core properties of
typical CNN models.

One of the most outstanding properties of the CNNs is
‘‘invariance,’’ which means that the CNNs can preserve the
positional information while extracting latent features from
any given input data. This property is beneficial to process
image data because each pixel contains its position and color
information. A flattened neural network without the position
invariance property has a relatively worse image perception
ability than CNNs because it does not preserve the position
information of each pixel involved in the input image data.

Meanwhile, another critical property of the CNNs is
‘‘equivariance,’’ which means that the CNN can accurately
recognize each feature information regardless of its positions.
This property enables the CNN to extract various feature
information from any image data accurately. Because of these
properties, CNNs have been widely used as one of the stan-
dard models to handle complex data with arbitrary position
information, such as image and video data.

Fig. 1 shows the general structure of a CNN, which
includes many convolution layers, subsampling layers, and
a fully connected layer. In the convolution layer, the feature
information of an input image is extracted by a convolution
filter [34]. Then, in the sub-sampling layer, the sub-sampling
operation compresses the feature information extracted by
the convolution filters. Such a series of convolution and
sub-sampling operations make the CNNs accurately extract
the core features of the input image, which are composed of
multi-channels and various position information. The feature
information extracted in the convolution and sub-sampling
layers is passed to the fully-connected layer to produce its
final output. Thus, the CNNs can effectively handle com-
plex image data with multi-channel and position information,
which is the essential property of the CNNs that distinguishes
it from the existing multi-layer perceptron.

B. GRADIENT DESCENT AND ITS VARIATIONS TO TRAIN
CNNS
Before explaining our proposed method, we need to consider
what it means to train CNNs. As shown in Fig. 1, the CNN

consists of many convolution and subsampling operations.
Such operations compute linear combinations between the
image data and the convolution & subsampling filters, which
are modeled as weight tensors. Then, we can understand that
the goal of training the CNN is to find the optimal convolution
and subsampling filters to extract latent relationships between
the input and output data as accurately as possible. As a result,
this problem is an optimization problem to find the optimal
weight tensors that constitute the optimal convolution and
subsampling filters in the weight solution space spanned by
the loss function.

Accordingly, many optimization methods have been
actively studied to train CNNs effectively. Among them, the
most popular optimization methods may be gradient descent
and its variation algorithms [35], [36]. Let f be a CNN,w be a
weight tensor of f , < x, y > be a train and label sample pair,
and L (f (x;w) , y) be a loss function for f with a parameter
w. Then, we can derive a core formula of the gradient descent
algorithm as

w(t+1)
= w(t)

− α gt (1)

where α is a learning rate that adjusts a degree of learning,
and gt is a gradient operator with respect to w(t) of the loss
function L evaluated at the step t , which is given by

gt ≜ ∇w(t)

∑
<x,y>∈D

L
(
f
(
x;w(t)

)
, y

)
. (2)

In other words, the gradient descent method searches an
optimal weight tensor w∗ step by step in the direction of the
gradient of the loss function gt in the solution space spanned
by the loss function L. It implies that the quality of the found
optimal weight w∗ strongly depends on both the solution
search direction and the search strength with the gradients
observed at each training step t . In this case, searching the
optimal weight by only depending on the direction of the
gradient often leads to a wrong search direction, such as a
local minimum or saddle points.

Fig. 2 shows an example surface of the loss function
in the weight solution space. The x-axis and y-axis indicate
the weight and loss function values, respectively. In Fig. 2,
the following search direction is determined depending on the
direction of the gradient gt at the current weight w

(t). In this
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FIGURE 2. The local & global minima and the saddle point on the surface
of the loss function.

FIGURE 3. An example diagram of how the excessive movement of the
search trajectory can cause slow convergence.

case, if gt is in an unpromising direction, not an optimal
weight w∗, the following weight w(t+1) will also be far from
the optimal weight w∗.

In addition, the strength of the search can also affect the
performance of the solution search. For example, as shown
in Fig. 3, if the learning rate α in (1) is set to an enor-
mous value, the search trajectory will oscillate excessively
around the optimal weight w∗, eventually slowing down con-
vergence. In fact, such phenomena are often observed in
the classical gradient descent-based methods because their
search direction is determined only by the gradient. Due
to these characteristics, the gradient descent-based methods
have several serious risks, such as falling into the local min-
ima or suffering from unstable convergence near the local
or global minima. Therefore, more sophisticated and stable
solution search methods are needed to train large-scale CNNs
effectively.

Accordingly, many optimization methods have been suc-
cessfully proposed to overcome such weaknesses of the

existing gradient descent-based methods. Significantly, the
Adam optimizer [21] is one of the pioneering methods
that solves many difficulties from which the traditional
gradient-based methods had suffered by introducing adap-
tive first and second-order momentums. Algorithm 1 shows
the pseudocode of the Adam optimizer. Unlike traditional
gradient descent, the Adam optimizer uses the exponential
moving average of historical gradients, called momentum,
to determine the next search direction and adaptively controls
the strength of the search. The Adam optimizer reduces the
excessive oscillation of the search trajectory by using the
historical gradient information to improve the optimization
performance. The Adam optimizer showed better optimiza-
tion ability for training various deep neural network models
using CNNs than the existing optimization methods [21].

Algorithm 1 Adam Optimizer
Input: Initial weight tensor w0
Parameter: α, β1, β2
Output: Optimal weight tensor w∗

1. Initialize m0, s0, randomly;
2. t = 0;
3. while(isConverged(wt ,wt−1) == False){
4. t = t + 1;
5. gt = ∇wL (f (x;wt) , y) ;

6. mt+1 = β1mt + (1 − β1) gt ;
7. st+1 = β2st + (1 − β2) g2t ;
8. m̂t+1 = mt+1/(1 − β t1);

9. ŝt+1 = st+1/

√
1 − β t2;

10. wt+1 = wt − αm̂t+1/ŝt+1;

11. };
12. w∗

= wt+1;

13. return w∗;

Thus, many recent optimization methods for training
CNNs have been developed by further focusing on improving
the Adam optimizer [25]. For example, AdaBelief [26], dif-
fGrad [27], SAdam [28], and TAdam [37] are representative
Adam-based optimizers. Algorithm 2 shows the pseudocode
of AdaBelief, one of the most recent Adam-based advanced
first-order optimizers. The general structure of AdaBelief
is similar to that of the Adam optimizer. However, unlike
the Adam optimizer, AdaBelief generates the second-order
momentum by computing a difference between the current
gradient and the updated first-order momentum. Such a
method helps prevent the search strength from becoming
excessively sensitive according to the values of the current
gradient. As a result, AdaBelief could adjust the strength of
the solution search further elaborately. Actually, AdaBelief
showed better optimization performance with faster conver-
gence than the existing methods, such as the Adam and
RMSProp.

Nevertheless, the existing Adam-based optimizers still suf-
fer from the problem of finding an approximate optimal
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Algorithm 2 AdaBelief Optimizer
Input: Initial weight tensor w0
Parameter: α, β1, β2
Output: Optimal weight tensor w∗

1. Initialize m0, s0, randomly;
2. t = 0;
3. while(isConverged(wt ,wt−1) == False){
4. t = t + 1;
5. gt = ∇wL (f (x;wt) , y) ;

6. mt+1 = β1mt + (1 − β1) gt ;
7. st+1 = β2st + (1 − β2)

(
mt+1 − gt

)2
;

8. m̂t+1 = mt+1/1 − β t1;

9. ŝt+1 = st+1/

√
1 − β t2;

10. wt+1 = wt − αm̂t+1/ŝt+1;

11. };
12. w∗

= wt+1;

13. return w∗;

weight in the large-dimensional solution space. The represen-
tative reasons can be summarized as follows.

• First, the observed gradient is not necessarily guar-
anteed to lead every promising search direction to
an optimal weight. Several gradients can sometimes
lead to an unpromising direction, such as the saddle
points or local minima, which are far from the optimal
weights [38], [39].

• Second, the solution space spanned by a loss (or objec-
tive) function usually has a considerably complicated
surface because its dimension is enormous [40]. Thus,
we need more sophisticated and stable adaptive solution
search methods than the classical ones.

• Third, when the gradient norm becomes extremely large,
its solution search strength also increases excessively,
slowing its convergence.

Such critical issues often cause severe problems for
large-scale complicated CNNs because they involve compli-
cated structures withmanyweights and complex connections.
Therefore, our study aims to develop more sophisticated and
stable optimization methods than the existing ones to effec-
tively search for the approximate global optimal weight in the
large-dimensional solution space.

III. SOPHISTICATED ADAPTIVE SOLUTION SEARCH
CONTROL
In general, many conventional first-order optimization algo-
rithms used to train DNNs have suffered from insufficient
solution search abilities and slow convergence, making the
solution search difficult. Several typical reasons for this
are (i) unpromising search directions, (ii) large-dimensional
complicated weight solution spaces spanned by a loss func-
tion, and (iii) unsophisticated search strength control meth-
ods. To address such issues effectively, we propose four
sophisticated search control methods and show how they

FIGURE 4. An overall architecture of Adam-ASC.

are coupled into an optimization algorithm with a detailed
implementation.

Fig. 4 presents the overall architecture of our proposed
optimization method. Our new approach consists of four
core modules, which control the strength and direction of
solution search adaptively and sophisticatedly in the solution
space spanned by the loss function. Moreover, by compen-
satively combining them into one algorithm, we can quickly
implement an improved Adam-based optimization algorithm
to train CNNs effectively. The four core modules are listed
below:

• First-order momentum generator (FSMG)
• Second-order momentum generator (SEMG)
• Adaptive gradient clipping module (AGCM)
• Adaptive search strength control module (AS2C)

In this section, we show how each module can improve the
solution search ability with detailed explanations and for-
mulas. Then, we propose our new first-order optimization
algorithm for CNNs, i.e., Adam-ASC, with careful imple-
mentation and verify its convergence theoretically.

A. FIRST-ORDER MOMENTUM GENERATOR (FSMG)
Our first module aims to improve the computation of the
first-order momentum to determine the subsequent search
direction. Accordingly, we propose a robust first-order
momentum generation method that minimizes unpromising
gradients and adaptively controls their strength. As discussed
in Section II, the gradient does not always indicate the
promising search direction, i.e., an approximate global mini-
mum. In particular, a gradient is significantly distinguished
from the historical ones; it may head in any unpromising
direction, called an outlier gradient [37], [41].
Fig. 5 shows the current first-order momentum mt and

two gradients (gA and gB) in the two-dimensional solution
space. gA points to the global minimum. In this case, gA
makes the solution search direction to which the first-order
momentum points more promising, which ultimately speeds
up its convergence. On the other hand, gB, called the outlier
gradient, leads to an unpromising direction far from the global
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FIGURE 5. An influence of the promising and unpromising gradients
when calculating the following first momentum at step t .

optimum. Such an outlier gradient often brings on an impre-
cise and slow convergence because it continuously leads the
first-order momentum to the unpromising direction. In other
words, m(A)

t+1 and m(B)
t+1 present that the subsequent solution

search direction mt+1 is strongly influenced by the current
gradient gt .

From the examples described in Fig. 5, we can see that
it is necessary to accurately detect the outlier gradients
and minimize their influence when updating the first-order
momentum. For this purpose, we introduce a new coefficient
β1,t as

β1,t = Qt−1/
(
Qt−1 + qt

)
. (3)

Meanwhile,Qt−1 and qt−1 in (3) are incrementally updated
by

Qt =

(
2 − β−1

1

)
Qt−1 + qt−1 (4)

and

qt = 2n
(
n+

∑n

j=1

(
gt,j −mt,j

)
/
(
vt,j + ϵ

))−1
(5)

where gt,j and mt,j indicate the jth entries in gt and mt ,
respectively, and vt is a variance of gt [41].

Thus, the first-order momentummt+1 is computed with the
new coefficient shown in (3) by

mt+1 = β1,tmt +
(
1 − β1,t

)
gt . (6)

Equation (5) shows that a difference between gt and mt is
scaled by vt + ϵ. In other words, if gt is unpromising (i.e.,
it is an outlier gradient), β1,t is further increased to minimize
the influence of gt in the following first-order momentum.
As a result, the unpromising gradient gt is minimized in the
new first-order momentum shown in (6), which makes the
following search direction more promising and robust.

By combining (4) – (6), we can implement the first-order
momentum generator (FSMG) module, which is provided by
Algorithm 3. The FSMG module takes the previous momen-
tum m and two tensors Q and q, the current gradient gt , and
the current step t as its inputs. β1 and ϵ are control parameters
set by any user in advance. As outputs, the FSMG returns the

Algorithm 3 FSMG
Input: m, gt , Q, q, t
Parameter: β1, ϵ
Output: m̂(new), m(new), Q(new), q(new)

1. β1,t = Q/(Q+ q)

2. Q(new)
=

(
2 − β−1

1

)
Q+ q

3. v = var(gt) /∗ variance of gt ∗/

4. q(new) = 2n
(
n+

∑n
j=1

(
gt,j−mj

)
vj+ϵ

)−1

5. m(new)
= β1,tm+

(
1 − β1,t

)
gt

6. m̂(new)
= m(new)/(1 − β t1)

7. return m̂(new), m(new), Q(new), q(new)

new first-order momentum m̂(new) and three updated tensors
m(new), Q(new), and q(new) to be used in the next step.
The FSMG is used as a base module to generate the

first-order momentum in our new optimization algorithm,
which will be shown in Section III-E.

B. SECOND-ORDER MOMENTUM GENERATOR (SEMG)
In Adam and its variants, the second-order momentum is used
to adaptively adjust the strength of the first-order momen-
tum. As shown in Algorithm 2, the typical second-order
momentum is an exponential moving average of the squared
gradients observed from the first step to the current step.
However, such an ordinary second-order momentum often
fails to accurately adjust the strength of the solution search
because it strongly depends on the relative strength of each
element in the gradient. To alleviate this weakness, AdaBelief
[26], one of the state-of-the-art (SOTA) first-order optimizers,
introduced a new second-order momentum using a squared
error between the current gradient and the first-order momen-
tum, which is formulated as

st+1 = β2st + (1 − β2)
(
mt+1 − gt

)2 (7)

where st and st+1 are the second-order momentums at the cur-
rent step t and the following step t+1, and β2 is a coefficient
parameter for calculating the exponentially weighted average
of

(
mt+1 − gt

)2.
The new second-order momentum described in (7) is an

exponential moving average of a squared error between the
updated first-order momentum mt+1 and the current gradi-
ent gt . Accordingly, the dependence of the gradient gt in
the new second-order momentum st+1 is further reduced
when compared to the existing second-order momentum used
in Adam. Nevertheless, the second-order momentum shown
in (7) can be further improved by applying an adaptive noise
term 0.01t−1, which is formulated as

s∗t+1 = st+1 + 0.01t−1. (8)

Equation (8) shows that the second-order momentum con-
tains the adaptive noise term depending on the step variable t .
We consider simple examples to analyze the effectiveness of
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the noise term described in (8). In the first step (t = 1),
the adaptive noise term 0.01 is added to st+1. However, the
magnitude of the adaptive noise term decreases monotoni-
cally as the training phase progresses, i.e., as t increases.
In the initial training phases, the second-order momentum
contains relativelymore noise in its elements, which enhances
the diversity of the solution searches. On the other hand,
as the training progresses step by step, the influence of the
noise in the second-order momentum is gradually reduced to
zero. From (8), we can obtain a final second-order momen-
tum by applying the bias correction method commonly used
in Adam-based optimizers. Equation (9) represents the new
second-order momentum with the adaptive noise and bias
correction.

ŝt+1 = s∗t+1/(1 − β t2). (9)

By using the new second-order momentum formulated
in (9), we can expect to perform a more detailed and sophisti-
cated search in the complicated solution space by introducing
the additional noise term in the second-order momentum.
Algorithm 4 shows how our second-order momentum gen-
erator (SEMG) is implemented. The SEMG takes four inputs
s, gt , m

(new), and t , with the parameter β2. It then computes
the new second-order momentum s(new) with the adaptive
noise 0.01t−1 and its bias correction ŝ(new) based on (7) – (9).
Finally, the SEMG module returns s(new) and ŝ(new), where
s(new) is used for its incremental update in the next step.

Algorithm 4 SEMG

Input: s, gt , m
(new), t

Parameter: β2
Output: ŝ(new), s(new)

1. s(new) = β2s+ (1 − β2)
(
m(new) − gt

)2
2. s∗ = s(new) + 0.01t−1

3. ŝ(new)
= s∗/(1 − β t2)

4. return ŝ(new) and s(new)

C. ADAPTIVE GRADIENT CLIPPING MODULE (AGCM)
As explained in Section II, the first-order optimization meth-
ods search the approximate global optimum in the direction of
the gradient. As shown in Fig. 6, a gradient with a large norm
often makes its solution search strength extremely excessive.
Such massive search strength causes its entire search trajec-
tories to be longer, which slows down its convergence.

Accordingly, we introduce a new auxiliary momentum
called the clipping momentum to effectively control such
extreme search strength caused by gradients with large
norms. Like the first-order momentum, the clipping momen-
tum is an exponential moving average of the historical gradi-
ents. However, unlike the first- or second-order momentum,
the clipping momentum accumulates the absolute value of
each entry in the gradient. In other words, the clipping
momentum is calculated as

ct+1 = β3ct + (1 − β3)
∣∣gt ∣∣ . (10)

FIGURE 6. An example diagram illustrating the need for the gradient
clipping mechanism.

where β3 is a coefficient parameter to calculate the exponen-
tially weighted average of

∣∣gt ∣∣. Then, a bias correction of (10)
is computed by

ĉt+1 = ct+1/
(
1 − β t+1

3

)
. (11)

Thus, the clipping momentum maintains the average abso-
lute strength of historical gradients by taking their exponen-
tially moving average. Then, we compute an element-wise
clipping rate tensor from (11) as

CRt+1 = min
(
ĉt+1/ (|mt+1| + ϕ) ,1

)
(12)

where 1 is a one tensor, min (x, y) is an element-wise min-
imum function, and ϕ is a smoothing factor to prevent zero
denominators.

In our proposed method, the clipping rate tensor CRt+1
adaptively adjust the search strength by multiplying it
with the first-order momentum in an element-wise manner.
If every entry in ĉt+1 is more than one in mt+1, its search
strength is maintained because CRt+1 = 1. Otherwise, its
search strength is reduced as the ratio between ĉt+1 and
|mt+1|, i.e., ĉt+1/(|mt+1| + ϕ). That is, when the magni-
tude of the clipping momentum is relatively larger than the
absolute values of the first-order momentum, the clipping
rate is set to one to prevent unreasonable search, such as
the example cases (B) and (C) in Fig. 6. On the other hand,
when the magnitude of the clipping momentum is relatively
smaller than that of the first-order momentum, the clipping
rate is set to a value less than one for more precise solution
search.

Thus, we can derive the adaptive gradient clipping module
(AGCM) as shown in Algorithm 5 from (10) – (12). In our
proposed optimization method, the AGCM adaptively con-
trols the strength of the solution search in each dimension.
The detailed way to combine it with other modules is shown
in the following sections.
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Algorithm 5 AGCM

Input: c, gt , m
(new), t

Parameter:β3, ϕ
Output: CR, c(new)

1. c(new) = β3c+ (1 − β3)
∣∣gt ∣∣

2. ĉ = c(new)/
(
1 − β t+1

3

)
3. CR(temp)

= ĉ/
(∣∣m(new)

∣∣ + ϕ
)

4. CR = min
(
CR(temp),1

)
5. return CR and c(new)

FIGURE 7. A method of measuring a degree of variation from the
previous gradient to the current gradient at step t.

D. ADAPTIVE SEARCH STRENGTH CONTROL MODULE
(AS2C)
In addition to the three methods described above, we can
control the power of the solution search more elaborately
by a detailed analysis of the observed gradients. In detail,
we can adjust by considering a degree of gap between the
previous and current gradients, i.e.,

∣∣gt − gt−1
∣∣. Fig. 7 shows

how our method sophisticatedly controls the strength of the
solution search based on two successive gradients gt and gt−1.
As shown in case (A) of Fig. 7, suppose a degree of variation
from gt−1 to gt is small. In this case, it is reasonable to reduce
the search strength to avoid passing the promising local (or
global) optimum, which may be a global minimum. On the
other hand, if its variation is large, as described in the case (B)
of Fig. 7, a more active solution search can further accelerate
its convergence. However, since the unrestricted enhance-
ment of its convergencemay cause the excessive oscillation of
the search trajectory shown in Fig. 3, the strength of the solu-
tion search is maintainedwithout reducing its strength. Such a
search strength control mechanism can be implemented using
a sigmoid function as follows.

01 =
(
1 + exp

(
−

∣∣gt − gt−1
∣∣))−1

. (13)

As shown in (13), each entry in01 has a real value between
0.5 and 1. If any variation between two successive gradients is
close to zero, each of the entries in01 converges to 0.5. In this
case, the strength of the solution search is reduced to half for
further precise solution search around the current position.
However, if the variation between two gradients is large, the
entries in 01 become close to one to maintain the current
search strength. Then, 01 is also multiplied by the first-order
momentum on an element-by-element basis. Accordingly, the
strength of each dimension is adaptively controlled according
to the variations between the current and previous gradients.

Meanwhile, we introduce the warm-up strategy [42] as one
of our search control mechanisms to increase the solution
search strength as the training progresses gradually [41]. The
warm-up strategy is formulated as

γ2 =

√
ρ∞ (1 − β2)

t (ρ2
t − 6ρt + 8

)
ρt

(
ρ2

∞ − 6ρ∞ + 8
) 1−

∑4
i=1 δρt ,i

(14)

where ρ∞ = 2/(1 − β2) − 1, ρt = ρ∞ − 2tβ t2
(
1 − β t2

)−1,
and δρt ,i is a Kroneker delta.

Now, we can derive the adaptive search strength control
(AS2C) module by coupling (13) and (14) into a function
as described in Algorithm 6. In line 6, γ2 is multiplied by
all entries in 01 because 01 is a tensor and γ2 is a scalar
value. Accordingly, the output of AS2C, i.e., 0, is a ten-
sor. In addition, AS2C has three control modes by setting
two Boolean parameters, isCG and isWS, as follows: if
isCG=1 and isWS=0, the solution search control is per-
formed only by (13). On the other hand, if isCG=0 and
isWS=1, the search strength is controlled by (14). Similarly,
if isCG=1 and isWS=1, both (13) and (14) control the
solution search strength. Finally, ‘‘isCG=0 and isWS=0’’
is not considered in our method because it indicates that
AS2C is not working at all.

Algorithm 6 AS2C
Input: gt , gt−1, t
Parameter: β2, isCG, isWS
Output: 0

1. 01 = 1/
(
1 + exp

(
−

∣∣gt − gt−1
∣∣))

2. ρ∞ = 2/(1 − β2) − 1
3. ρt = ρ∞ − 2tβ t2

(
1 − β t2

)−1

4. V = 1 −
∑4

i=1 δρt ,i

5. γ2 =

(
ρ∞(1−β2)

t (ρ2
t −6ρt+8

)
ρt(ρ2

∞−6ρ∞+8)

)V/2

6. 0 = 0isCG
1 × γ isWS

2
7. return 0

E. IMPLEMENTATION OF ADAM-ASC
Algorithm 7 shows a complete implementation of our new
first-order optimizer, i.e., Adam-ASC. The overall architec-
ture of Adam-ASC is similar to the Adam optimizer, as shown
in Algorithm 1. However, our Adam-ASC incorporates more
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Algorithm 7 Adam-ASC Optimizer
Input: An initial weight tensor w0
Parameter: α, β1, β2, β3, ϵ, ϕ, isCG, isWS
Output: An optimal weight tensor w∗

1. Initialize m0, s0, c0, Q0, q0
2. t = 0
3. while(isConverged(wt ,wt−1) == False){
4. t = t + 1
5. gt = ∇wL (f (x;wt) , y)
6. m̂t+1,mt+1,Qt+1, qt+1 =

FSMG
(
mt , gt ,Qt , qt , t; β1, ϵ

)
7. ŝt+1, st+1 = SEMG(st , gt ,mt+1, t; β2)
8. CR, ct+1 = AGCM

(
ct , gt ,mt+1, t; β3, ϕ

)
9. 0 = AS2C(gt , gt−1, t; β2, isCG, isWS)

10. 9 t+1 = 0 × CR× m̂t+1√
ŝt+1+ϵ

11. wt+1 = wt − α × 9 t+1
12. }
13. w∗

= wt+1
14. return w∗

powerful and sophisticated solution search control methods
described in Sections III-B– III-D.

In detail, our proposed algorithm consists of four control
modules, i.e., FSMG, SEMG, AGCM, and AS2C, which are
described in Algorithms 3 – 6, respectively. First, in line 6, the
FSMG computes the first-order momentum by minimizing
the outlier gradient. Second, in line 7, the SEMG calculates
the second-order momentum. Third, in line 8, the gradient
clipping tensor is generated by the AGCM. Fourth, the AS2C
function computes the detailed strength of the solution search
in all the dimensions according to the control modes deter-
mined by the two parameters, ‘‘Courier New,’’ in line 9. Fifth,
our Adam-ASC determines the following solution search
direction 9 t+1 by compensatively combining m̂t+1, ŝt+1, 0,
andCR into one term, at line 10. Finally, the following weight
tensorw(t+1) is computed by the gradient descent mechanism
explained in (1).

As described in Algorithm 7, Adam-ASC is modularized
into four core functions. It shows that we can quickly intro-
duce additional functions to Adam-ASC or exclude some
unnecessary functions depending on the applications or tasks.
Therefore, our Adam-ASC can be conveniently used as a base
optimizer to train CNNs in various applications.

F. THEORETICAL ANALYSIS
In order to prove the convergence of Adam-ASC, it is neces-
sary to derive its upper regret bound R (T ). For this, we define
several notations as follows [27], [37], [41], [43]. First,
let w1, . . .,wT be the weight sequences found by Adam-
ASC, v̂1, . . ., v̂T be the bias-corrected second-order momen-
tums. Second, for the learning rate and coefficient values
of the momentums, let αt = α/t , β1,t = β̄w, βmin =

min{β1,1, . . . , β1,T }, and γ = β̄w/β
1/2
2 . Third, for convenient

proofs, we use a notation D∞ as a bound diameter of f .

Finally, we assume that a bounded gradient of ft satisfies
∥gt,w∥2≤G, and ∥gt,w∥∞ ≤ G∞ for w1, . . . ,wT . Then,
we can derive the regret upper bound of Adam-ASC as fol-
lows.
Theorem 1: The upper regret bound of Adam-ASC is

given by

RT

≤
D2

∞

αT
(
1 − β̄w

) n∑
i=1

√
v̂T ,i

+
D2

∞(
1 − β̄w

)2 T∑
t=1

n∑
i=1

β1,t
√
v̂t,i

αtηt,i

+
α
√
1 + logT(

1 − β̄w
)2

|βmin| (1 − γ )
√

(1 − β2)

n∑
i=1

∣∣∣∣g1:T ,i2

∣∣∣∣
2

(15)

where ηt = 0 × CR which is shown in Algorithm 7.
Proof. The detailed proofs of Theorem 1 are provided in

our supplementary material, available on the web. □
From Theorem 1, we can prove that the weights

w1, . . . ,wT , found byAdam-ASC over all training steps, con-
verge to an optimal weightw∗ as the training phase progresses
by verifying R (T ) /T = 0. Theorem 2 shows its detailed
results as follows.
Theorem 2: The sequence of weights found by Adam-

ASC, i.e., w1, . . .,wT , converge to an optimal weight w∗ as
T → ∞.
Proof.To prove thatw1, . . .,wT converge tow∗, we assume

thatw1, . . .,wT satisfy ∥wn−wm ∥2 ≤D and ∥ wn−wm∥∞ ≤

D∞, ∀n,m ∈ {1, . . .,T }. Then, Adam-ASC satisfies

∀T > 1,R (T ) /T = O
(
1/

√
T

)
. (16)

From (16), we can prove that w1, . . .,wT converge to zero
when T→ ∞ by taking its limitation as follows.

lim
T→∞

R (T ) /T = 0. (17)

Thus, we can prove thatw1, . . .,wT converge to the optimal
weight w∗ as the training steps progresses. □

IV. EXPERIMENTS
To verify the performance and effectiveness of our pro-
posed methods, we evaluated the practical CNNs trained by
each of the ten first-order optimization algorithms involv-
ing Adam-ASC in the image classification and segmentation
tasks. In this section, we explain the detailed configurations,
experimental measures, and benchmark datasets used in our
experiments. Then, we analyze all the experimental results in
both image classification and segmentation tasks.

A. EXPERIMENTAL CONFIGURATIONS
First, to evaluate the optimization performance ofAdam-ASC
on practical CNNs, we adopted two typical application tasks
in which CNNs have been most widely used, namely, the
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FIGURE 8. Example sample images in the CIFAR-100 and CamVid
benchmark datasets.

image classification and segmentation tasks. In addition,
we adopted the Canadian Institute for Advanced Research
(CIFAR)-100 [44] and the Cambridge-driving Labeled Video
Database (CamVid) [45], [46] datasets as the benchmark
datasets for the tasks, respectively. The CIFAR-100 dataset
is one of the most famous benchmark datasets, which is
widely used to evaluate the performance of CNNs in com-
puter vision applications, particularly the image classification
task. In detail, the CIFAR-100 dataset contains 60000 sample
images in 100 classes, each containing 600 images. The
CamVid dataset is one of the benchmark datasets for the
image segmentation task and involves 700 images and 32 seg-
ment labels. Fig. 8 illustrates several example sample images
in the CIFAR-100 and CamVid datasets.

Second, we adopted nine popular first-order optimization
algorithms that have been widely used to train CNNs, namely,
SGD [19], RMSProp [20], Adam [21], Yogi [47], Fromage
[48], AdaBelief [26], diffGrad [27], AngularGrad [49], and
SAdam [28], as the comparison models. In addition, we used
ResNet [17] and DenseNet [18] in the image classification
task and FC-DenseNet [30] in the image segmentation task
as the basic CNN models to evaluate the optimization ability
of Adam-ASC.

Third, we evaluated three versions of Adam-ASC, which
were determined by adjusting the mode parameters ‘‘isCG’’
and ‘‘isWS’’. In the experiments, we refer to each of
them as Adam-ASC1 (isCG=0 AND isWS=1), Adam-ASC2
(isCG=1 AND isWS=0), and Adam-ASC3 (isCG=1 AND
isWS=1), respectively. In addition, all the parameters of the
optimizers evaluated in our experiments were set according to
the guidelines suggested in their original papers. Table 1 lists
the detailed parameter settings of our Adam-ASC and other
compared optimizers.

Finally, based on the above configurations, we trained the
base CNN models using Adam-ASC and other comparative
optimizers. In the training phase, we used the cross-entropy
function [35] to evaluate the degree of error between the
ground truth (GT) values and the output values predicted
by the trained CNN models. In addition, we evaluated the
training/testing accuracies of the trained CNNmodels at each
epoch. For this, the following accuracy measures were used
as follows:

Accuracytrain =
1

|Dtrain|

∑
<x,y>∈Dtrain

δ
(
ŷ, y

)
(18)

TABLE 1. Parameter settings of the optimizers evaluated in our
experiments.

and

Accuracytest =
1

|Dtest |

∑
<x,y>∈Dtest

δ
(
ŷ, y

)
(19)

where Dtrain and Dtest are the training and test benchmark
datasets, and < x, y > is sample data with an input image
x and its GT value y. In addition, δ

(
ŷ, y

)
is a Kronecker

delta function that returns one if ŷ is equal to y and zero
otherwise. Using these performance metrics, we analyzed
the convergence curves of the training and test accuracies of
the CNNs trained by each optimizer across all epochs. The
detailed experimental results are presented in the following
sections.

B. PARAMETER SENSITIVITY ANALYSIS
1) PARAMETER SENSITIVITY ANALYSIS FOR β3 AND ϕ

Before comparing the optimization performance between our
proposed method and traditional ones, we first analyzed how
a variation of the control parameters sensitively affects our
method. As shown in Algorithm 7, Adam-ASC has a total
of six control parameters, α, β1, β2, β3, ϵ, and ϕ. Among
them, α, β1, β2, and ϵ are standard control parameters used
in most Adam-based optimizers. However, the parameters β3
and ϕ are used only in Adam-ASC. In particular, they play a
critical role in controlling the adaptive clipping momentum,
which is essential in our proposed method. Accordingly,
we first conducted the parameter sensitivity test for two
control parameters, β3 and ϕ, to evaluate how the train per-
formance of our approach is affected when their values are
varied.

Fig. 9 shows all the parameter sensitivity test results of
our Adam-ASC according to variations of the settings of
β3 and ϕ. In Fig. 9, (a)-(c) present the results for Adam-
ASC1, 2, and 3, respectively, and (d) describes their average
test accuracies under each parameter setting. As shown in
Fig. 9-(a), Adam-ASC1 showed the best test accuracies under
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FIGURE 9. The parameter sensitivity test results of Adam-ASC for two control parameters β3 and ϕ.

both β3 = 0.1 and ϕ = 1e−8, i.e., 0.7384. Similarly, Adam-
ASC1 achieved the second-best result, i.e., 0.7379, when both
β3 = 0.999 and ϕ = 1e − 8. Meanwhile, as described
in Fig. 9-(b), Adam-ASC2 presented the best results, i.e.,
0.7349 test accuracy, when two parameters were set as (β3 =

0.5, ϕ = 1e− 5) or (β3 = 0.5, ϕ = 1e− 8).
Moreover, Adam-ASC2 with the parameter configuration

(β3 = 0.1, ϕ = 1e− 8) also showed the most equivalent test
accuracy to the best ones, i.e., 0.7348. Adam-ASC3 achieved
the first and second-best test accuracies when its parameters
were set to (β3 = 0.5, ϕ = 1e−5) and (β3 = 0.5, ϕ = 1e−8),
respectively.

Meanwhile, we found an interesting fact from Fig. 9 that
the test accuracies of Adam-ASC are worst when the param-
eter ϕ is set to 1e–1, regardless of the setting of β3. The
results imply that setting ϕ to a large value close to one could
worsen the optimization performance of our Adam-ASC.
As explained in Section III-C, ϕ is a Laplacian smoothing
factor in the denominator to prevent zero denominators in
(12). In this case, if ϕ is set to any significant value, its value
can strongly affect the clipping rate. That is, the clipping rate
can be lowered unnecessarily by a value of ϕ in the denom-
inator. Such a low clipping rate can slow the solution search
and convergence, resulting in low optimization performance.
Accordingly, when ϕ is set to 0.1, the test accuracies were the
worst, regardless of other parameter settings or the versions
of Adam-ASC.

On the other hand, we also found that β3 has little influ-
ence on the overall optimization performance of Adam-ASC
regardless of its version. As described in (9), β3 is used
as a coefficient value to generate the clipping momentum.
As β3 is set to a larger value, the degree of accumulation

of the current gradient
∣∣gt ∣∣ becomes smaller. Nevertheless,

no significant differences between the results were found
when the parameter was set to four values, i.e., 0.1, 0.5, 0.7,
and 0.999. From the results, we can conclude that ϕ is more
sensitive to its setting value than β3, especially when its value
is close to 1, such as ϕ = 1e − 1. This indicates that it is
reasonable to set the smoothing factor ϕ as small as possible.
In addition, we can also see that the coefficient parameter in
the gradient clipping momentum does not significantly affect
the overall optimization performance of Adam-ASC.

Meanwhile, Fig. 9-(a) – (c) present the most appropri-
ate parameter settings of Adam-ASC. Accordingly, we cal-
culated the average test accuracies of three versions of
Adam-ASC at each parameter set to find the most suitable
for all versions of Adam-ASC as shown in Fig. 9-(d). As a
result, we found that both β3 = 0.1 and ϕ = 1e − 8 are
the most suitable for Adam-ASC because they achieved the
best or good optimization results under the parameter settings
without significant performance loss. Therefore, we adopted
both β3 = 0.1 and ϕ = 1e − 8 as the primary parameter
settings.

2) PARAMETER SENSITIVITY ANALYSIS FOR α, β1 AND β2
The learning rate α controls the strength of the solution
search in the typical first-order optimizers with Adam-ASC.
Accordingly, we analyzed the convergence performance of
the test accuracies according to the variation of α. For this
purpose, we set the other parameters except for α to be the
same as those described in Section IV-A.
Fig. 10 shows the test accuracy curves of

Adam-ASC1 – Adam-ASC3 when α is set to 0.1, 0.01,
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FIGURE 10. The test accuracy curves of Adam-ASC according to the values of the learning rate α.

TABLE 2. Parameter sensitivity test results of Adam-ASC for two control
parameters β1 and β2.

0.001, 0.0001, and 0.00001, respectively. When α was set
to 0.001, Adam-ASC showed the best test accuracy curves
regardless of its version. In detail, Adam-ASC1 with α =

0.001 achieved the best convergence among five test accuracy
curves. Similarly, Adam-ASC2 and Adam-ASC3 with α =

0.001 also showed better convergence curves among all the
experimental results. Meanwhile, when α was set to 0.00001,
Adam-ASC showed the worst convergence performance: the
slowest speed and the lowest test accuracy. In addition, when
α was set to 0.1, Adam-ASC showed relatively lower test
accuracies and convergence curves when compared to other
convergence results. Thus, the convergence results shown in
Fig. 10 indicate that setting α to too large or too small in
Adam-ASC can significantly degrade its optimization ability.

Table 2 lists the test accuracies of Adam-ASC1 – Adam-
ASC3 for the nine parameter settings of β1 and β2. Similar to
the sensitivity tests for α, the other parameters, except for β1
and β2, were equally set to those shown in Table 1. We found
that Adam-ASC1 and Adam-ASC3 showed relatively lower
test accuracies when β2 was set to 0.5, regardless of the values
of β1. On the other hand, Adam-ASC2 showed test accura-
cies similar to the results when β2 was set to 0.7 or 0.999.
As shown in (7), β2 is a coefficient value used to update the
second-order momentum. If β2 is set to a tiny value, the next

second-order momentum will contain almost no information
from the historical momentum. In this case, the second-order
momentum will be close to the current gradient, which may
interfere with a correct solution search. On the other hand,
if β2 is set to a large value close to 1, the second-order
momentum to be updated may be influenced more by the
historical momentum than by the current gradient. Thus, it is
recommended to set β2 to a large value, at least greater than
0.7, to ensure the optimization ability of Adam-ASC1 and
Adam-ASC3.

Meanwhile, Adam-ASC2 was relatively less sensitive than
Adam-ASC1 and Adam-ASC3. As shown in Table 2, Adam-
ASC2 showed almost similar test accuracies under all the
parameter settings, regardless of the settings of β1 and β2.
UnlikeAdam-ASC1 andAdam-ASC3, Adam-ASC2 does not
use the warm-up strategy in the AS2C function. In other
words, we can understand that the warm-up strategy affects
the parameter sensitivity for β2 in Adam-ASC. These results
indicate that it is necessary to sufficiently reduce the influence
of the current gradient in the second-order momentum if the
fast convergence is suppressed by the warm-up strategy in the
early steps.

C. EXPERIMENTAL RESULTS IN IMAGE CLASSIFICATION
TASKS WITH ResNet-18 AND ResNet-101
As explained in Section IV-A, we adopted ResNet as one of
the base CNN models to evaluate the optimization perfor-
mance of Adam-ASC for training the practical CNN models.
ResNet is one of themost widely used practical CNNs. Unlike
conventional CNNs, ResNet consists of many residual blocks
with skip connections in each layer. The skip connection
effectively prevents the reduction of the input signals as the
number of layers increases. In fact, ResNet has shown better
image recognition performance than traditional CNNs in vari-
ous computer vision tasks. However, as more residual blocks
and layers are involved in ResNet, its architecture becomes
massive and complicated. Therefore, it is necessary to study
more improved and stable optimization methods to handle
complex CNNs such as ResNet effectively.

Analyzing the convergence curves of training accuracy
helps to understand how fast the optimizer can reach the
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highest training accuracy as the training phase progresses.
Accordingly, we analyzed the training accuracy curves of
ResNet-18 and ResNet-101 trained by Adam-ASC and
other compared optimizers. These results are shown in
Fig. 11 and 12. We provide detailed curve plots, as shown
in Fig. 11, to compare the convergence results more clearly.
The top plots in Fig. 11 describe the training accuracy curves
generated by Adam-ASC and the traditional optimizers, i.e.,
SGD, RMSProp, and Adam. The bottom plots in Fig. 11
show the training accuracy curves for Adam-ASC and the
recent optimizers, such as AdaBelief, diffGrad, and SAdam.
In addition, the two plots on the right-hand side in Fig. 11 are
zoomed in on the two plots on the left-hand side to showmore
detail of the convergence curves within specific epochs and
accuracy ranges.

In detail, the left-hand side plots in Figs. 11 and 12 show
the training accuracy curves of ResNet-18 and ResNet-101
trained by Adam-ASC, SGD, RMSProp, and Adam. Simi-
larly, the right-hand side plots in Figs. 11 and 12 present the
training accuracy curves generated by Adam-ASC and the
recent optimizers, such as AdaBelief, diffGrad, and SAdam.
The convergence plots show that ResNet-18 and ResNet-101
trained by our Adam-ASC have better convergence perfor-
mance than the existing optimizers. Furthermore, we found
that AdaBelief and Yogi had good convergence performance
similar to that of Adam-ASC.Moreover, diffGrad and SAdam
showed worse convergence than Adam-ASC. Finally, SGD
had the worst training accuracy curves among all comparative
optimizers.

We also analyzed the test accuracy curves of the ResNet-18
and ResNet-101 trained by the 12 optimizers with Adam-
ASC. Their results are described in Figs. 13 and 14, respec-
tively. We found that the test accuracies of Adam-ASC had
the fastest convergence when compared to the other optimiz-
ers. In particular, the test accuracies of Adam-ASC increased
dramatically after about 70 epochs and maintained the best
performance until the last epoch. In detail, Fig. 13 shows
that the test accuracies of ResNet-18 trained by Adam-ASC
were stable between approximately 0.73 and 0.74 after
80 epochs. Similarly, we also found that the test accuracies of
ResNet-101 trained by Adam-ASC were maintained between
0.74 and 0.76 after about 100 epochs from the results shown
in Fig. 14. These results indicate that our Adam-ASC has
better and more stable convergence abilities regarding the
training and test accuracies than the existing optimizers.

Tables 3 and 4 describe the final test accuracies of
ResNet-18/101 trained by our Adam-ASC and other com-
parative optimizers. The final test accuracies were evaluated
at the final epoch, i.e., the 200th epoch. We found that our
Adam-ASC had the highest test accuracies when compared
to other optimizers. In detail, Adam-ASC1 achieved the
best test accuracy, i.e., 0.7384 and 0.754 in ResNet-18 and
ResNet-101, respectively. Similarly, Adam-ASC2 andAdam-
ASC3 also recorded 0.7348/0.7442 and 0.732/0.7433 test
accuracies in ResNet-18/101, the second and third-best
results. Meanwhile, AdaBelief showed the highest test

TABLE 3. Test accuracy results and their ranks evaluated in ResNet-18.

TABLE 4. Test accuracy results and their ranks evaluated in ResNet-101.

accuracies among the existing optimizers, i.e., 0.7114 and
0.7313, in ResNet-18 and ResNet-101, respectively. On the
other hand, the conventional optimizers such as SGD,
RMSProp, and Adam showed relatively lower test accuracies
than those of our Adam-ASC and the latest methods such
as AdaBelief, diffGrad, and SAdam. For example, Adam
achieved test accuracies of 0.6808 and 0.7085 test accuracies
in ResNet-18 and ResNet-101, respectively. Such experi-
mental results indicate that our Adam-ASC can effectively
train both ResNet-18 and ResNet-101 with significantly
improved optimization performance compared to the existing
optimizers.

As explained in Section III, Adam-ASC controls the solu-
tion search by compositely utilizing gradient clipping, the
warm-up strategy, and advanced momentum computation
methods. Accordingly, Adam-ASC showed a convergence
speed similar to that of the existing optimizers, even though
Adam-ASC achieves better test accuracies than them. One of
the reasons for this phenomenon is the sophisticated solution
search mechanisms of our Adam-ASC. Suppose the solution
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FIGURE 11. Training accuracy curves of ResNet-18 trained by Adam-ASC and the existing optimizers.

FIGURE 12. Training accuracy curves of ResNet-101 trained by Adam-ASC and the existing optimizers.

search speed becomes drastically fast. In this case, its search
trajectory may oscillate excessively, as shown in Fig. 3, or it
may converge prematurely to a local minimum [50]. This
phenomenon often degrades the performance of trained CNN
models by failing to find their approximate optimal weights

in the solution space. Therefore, it is necessary to elaborately
control its solution strength to prevent excessive oscillation
of the search trajectory or premature convergence.

Such solution search mechanisms have the remarkable
advantage that we can find better optimal weight solutions,
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FIGURE 13. Test accuracy curves of ResNet-18 trained by Adam-ASC and the existing optimizers.

FIGURE 14. Test accuracy curves of ResNet-101 trained by Adam-ASC and the existing optimizers.

i.e., more accurate weight values of the trained CNN model,
even though their convergence speed is relatively similar to
existing optimizers. Accordingly, our Adam-ASC also uses
exquisite solution search methods rather than an aggressive
solution search mechanism. In fact, the detailed solution

search and control mechanisms of Adam-ASC adaptively
limit the strength of the solution search around any local
minima to further improve the quality of the optimal weight
to be found, although its convergence speed was not signif-
icantly improved. As a result, Adam-ASC achieved better
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optimization capability in training the CNNswithout sacrific-
ing its convergence speed compared to the existing optimizers
such as Adam, AdaBelief, and diffGrad.

D. EXPERIMENTAL RESULTS IN IMAGE CLASSIFICATION
TASKS WITH DenseNet-121 AND DenseNet-169
As another base CNNmodel to evaluate the optimization abil-
ity of Adam-ASC in image classification tasks, we adopted
both DenseNet-121 and DenseNet-169. DenseNet is one of
the improved models of ResNet [18]. In detail, unlike the
residual connections of ResNet, DenseNet consists of more
complicated residual blocks, called dense block, which con-
nects all the dense blocks. Accordingly, DenseNet becomes
more complicated, which indicates that a more sophisticated
optimization method is required to find its optimal weights
in the complex solution space. In this experiment, we evalu-
ated how our proposed optimization method can significantly
contribute to improving the image classification ability of
DenseNet.

The training accuracy curves of DenseNet-121 and
DenseNet-169 are described in Figs. 15 and 16, respectively.
Similar to the convergence curves of ResNet, DenseNet
trained by Adam-ASC also showed the best training accuracy
and convergence among the comparative optimizers. These
results present that Adam-ASC has a robust training abil-
ity even though the size of DenseNet is larger than that of
ResNet. On the other hand, the convergence curves of the
other optimizers were also similar to the results shown in both
Figs. 11 and 12.
Meanwhile, Figs. 17 and 18 illustrate the test accu-

racy curves of DenseNet-121 and DenseNet-169 trained by
Adam-ASC and other optimizers, respectively. We found that
our Adam-ASC had better test accuracies than other existing
optimizers, similar to the results of ResNet-18/101. In partic-
ular, Adam-ASC still showed stable and robust test accuracy
and convergence ability, even though DenseNet had more
layers and complicated structures than ResNet. For example,
in DenseNet-121, Adam-ASC1 approached a test accuracy of
0.74 at about the 60th epoch. After that, Adam-ASC1 main-
tained a stable accuracy of about 0.76 until the last epoch.
Adam-ASC2 and Adam-ASC3 also showed good conver-
gence of the test accuracy curves, although they are inferior
to those of Adam-ASC1. In addition, Adam-ASC maintained
test accuracies between 0.74 and 0.76 from approximately the
80th to the final epoch. On the other hand, the convergence
of the test accuracies of the other optimizers was worse than
that measured in ResNet-18/101. These results indicate that
the solution search strategies of Adam-ASC are significantly
stable and robust to the size and complexity of the CNN
model.

Tables 5 and 6 describe the final test accuracies of
DenseNet-121/169 trained by Adam-ASC and the other
optimizers. Both tables present that the DenseNet mod-
els trained by Adam-ASC have the best test accura-
cies. In detail, from the results shown in Table 5,
we can see that the DenseNet-121 models trained by

TABLE 5. Test accuracy results and their ranks evaluated in
DenseNet-121.

TABLE 6. Test accuracy results and their ranks evaluated in
DenseNet-169.

Adam-ASC1 – Adam-ASC3 have test accuracies of 0.7649,
0.7614, and 0.7518, respectively. Likewise, Table 6 provides
that the DenseNet-169 models trained by Adam-ASC1 –
Adam-ASC3 achieved test accuracies of 0.7641, 0.7571, and
0.7623, which are better results when compared to the results
of other optimizers. Meanwhile, AdaBelief and diffGrad
showed good test accuracies among the existing optimizers,
i.e., 0.7464/0.7486 and 0.7087/0.7111 in DenseNet-121/169,
respectively. In addition, the test accuracies of SAdam and
AngularGrad were also better than those of the conventional
methods, such as SGD and RMSProp.

Finally, we found that Adam-ASC1 achieved the best
test accuracies in both DenseNet-121 and DenseNet-169,
which were the same results as the experiments conducted
on ResNet-18 and ResNet-101. In detail, Tables 3 – 6
show that Adam-ASC1 achieved the best rank in both
four CNN models. Adam-ASC2 achieved the second-best
rank in the three CNN models, except for DenseNet-169.
Adam-ASC3 showed the second-best rank in DenseNet-169
and the third-best rank in the other models. These results
indicate that the combination of (13), except (14), with
FSMG, SEMG, andAGCMcan significantly contribute to the
search for an optimal weight in the large-dimensional solution
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FIGURE 15. Training accuracy curves of DenseNet-121 trained by Adam-ASC and the existing optimizers.

FIGURE 16. Training accuracy curves of DenseNet-169 trained by Adam-ASC and the existing optimizers.

space of DenseNet. On the other hand, using both (13) and
(14) showed worse test accuracies than Adam-ASC1. Thus,
Adam-ASC can achieve the best optimization performance in
the image classification task by using only (14) without (13)
in the AS2C function.

From the experimental results, we can conclude that our
Adam-ASC has a more stable and effective optimization
ability for CNNswith complex structures, such as ResNet and
DenseNet, than the existing optimizers in image classification
tasks.
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FIGURE 17. Test accuracy curves of DenseNet-121 trained by Adam-ASC and the existing optimizers.

FIGURE 18. Test accuracy curves of DenseNet-169 trained by Adam-ASC and the existing optimizers.

E. VALIDATION LOSS ANALYSIS OF ADAM-ASC IN ResNet
AND DenseNet
Fig. 19 shows the validation loss curves of ResNet-18 and
101 trained by Adam-ASC1 – Adam-ASC3, respectively.
We found that the validation loss curves of ResNet-18
and ResNet-101 drastically decreased in the early epochs
and then slightly increased from 1.5 to 2.0 loss values
between about 20 – 60 epochs. These growth patterns were

stably decelerated within 2.0 loss values. The validation
loss curves of DenseNet-121/169 are presented in Fig. 20,
respectively. The validation loss curves of DenseNet-121 and
DenseNet-169 also showed similar patterns to those shown
in Fig. 19.

Meanwhile, as explained in Sections IV-C and IV-D, the
test accuracies observed in about 20 – 60 epochs were worse
than those observed after 60 – 70 epochs in both ResNet and
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FIGURE 19. Validation curves of ResNet-18 and Resnet-101 trained by Adam-ASC1, Adam-ASC2, and Adam-ASC3.

FIGURE 20. Validation loss curves of DenseNet-121 and DenseNet-169 trained by Adam-ASC1, Adam-ASC2, and
Adam-ASC3.

DenseNet. A difference between the measures of the valida-
tion loss and test accuracy causes such a phenomenon. In our
experiments, the cross-entropy used to compute the validation
loss measures the degree of difference between the ground
truth and the predicted outputs. On the other hand, the test
accuracy of (19) measures a ratio of correctly classified sam-
ples among all samples. As a result, although the validation
loss is not minimal, the test accuracy can be further improved.
Thus, the CNN models trained by Adam-ASC can achieve
and maintain stable prediction performance after training for
several epochs.

F. EXPERIMENTAL RESULTS IN IMAGE SEGMENTATION
TASKS WITH FC-DenseNet
In the previous sections, we evaluate the optimization perfor-
mance of Adam-ASC in the image classification task. In addi-
tion, we conducted experiments to evaluate the optimization
performance of our Adam-ASC in the image segmentation
task. Unlike the image classification task, the image segmen-
tation task requires more complex and massive CNN models
because many computations are needed to segment each
image elaborately. Accordingly, as explained in Section IV-A,
we adopted the FC-DenseNet [30] as the basic CNN model

for image segmentation. The FC-DenseNet is an enhanced
DenseNet-based deep neural network for image segmentation
tasks. The FC-DenseNet has a more complex and massive
structure when compared to the ResNet and DenseNet used
in the image classification task.

Accordingly, we evaluated the optimization performance
of Adam-ASC and other compared optimizers in train-
ing the FC-DenseNet. We then analyzed their results in
terms of train & test accuracy and convergence perfor-
mance. These results are shown in Figs. 21 and 22. The
left-hand side plot in Fig. 21 shows the training accuracy
curves of the FC-DenseNet models trained by Adam-ASC
and other optimizers. We found that Adam-ASC had fast
and stable training convergence when compared to the
classical optimizers. In particular, Adam-ASC1 achieved
the best convergence with significant accuracies across all
epochs.

Meanwhile, the right-hand side plot in Fig. 21 describes
the validation loss curves of FC-DenseNet trained by Adam-
ASC and other compared optimizers. Considering the train-
ing accuracy and validation loss curves, we found that the
FC-DenseNet models trained by Adam-ASC can converge
stablywithout any significant anomaly. Thus, our Adam-ASC
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FIGURE 21. Training accuracy and validation loss curve plots of FC-DenseNet trained by Adam-ASC and the existing optimizers.

FIGURE 22. Test accuracy curves of DenseNet-121 trained by Adam-ASC and the existing optimizers.

can be effectively used as a basic optimizer for training CNNs
in image classification and segmentation tasks.

We also analyzed the convergence curves of the test accura-
cies of the FC-DenseNet models trained by Adam-ASC and
other existing optimizers. The results are shown in Fig. 22.
The right-hand side plot in Fig. 22 is the zoomed plot of the
left-hand side plot within the test accuracies between 0.8 and
0.87. The FC-DenseNet trained by Adam-ASC1 showed the
best test accuracy curve when compared to the results of
the other optimizers. In detail, Adam-ASC1 achieved a test
accuracy of about 0.86 after about 280 epochs. Then, the
test accuracy curve steadily maintained test accuracies of
0.86 – 0.87 until the last epoch. Meanwhile, the test accuracy
curves of other existing optimizers showed worse conver-
gence patterns than the curves of our Adam-ASC. However,
among the existing optimizers, SAdam and Adam showed
convergence curves almost similar to those of Adam-ASC1.
Also, their test accuracy curves were slightly better than those
of Adam-ASC2 and Adam-ASC3, even though they achieved
worse results than Adam-ASC2 and Adam-ASC3. We also
found that AdaBelief and diffGrad achieved worse conver-
gence performance than the curves of Adam-ASC and Adam,
even though they had the best test accuracy among the exist-
ing optimizers. These results indicate that our Adam-ASC
has a better convergence ability than the existing optimiz-
ers, especially the conventional ones, such as RMSProp and
Adam.

TABLE 7. Test accuracy results evaluated in FC-DenseNet.

Finally, Table 7 shows the final test accuracy results of
Adam-ASC and other optimizers. We found that the latest
optimization methods, except for SAdam, had lower test
accuracies than Adam. AdaBelief and diffGrad achieved rela-
tively poor performance compared to othermethods, although
they achieved promising results among the existing methods
except for Adam-ASC in the image classification task. Such
results show that a more aggressive solution search is needed
to train FC-DenseNet instead of the detailed search methods.
Nevertheless, Adam-ASC1 achieved promising optimization

VOLUME 11, 2023 80675



K. S. Kim, Y. S. Choi: Advanced First-Order Optimization Algorithm With Sophisticated Search Control for CNNs

performance with the best test accuracies, i.e., 0.8675 when
compared to other methods. Our new solution searchmethods
could significantly improve the optimization performance
of the trained CNNs regardless of their tasks. However,
Adam-ASC2 and Adam-ASC3 showed slightly worse accu-
racies than Adam and SAdam. As explained earlier, Adam-
ASC2 finely controls the search strength according to the
degree of variation of the gradients, and Adam-ASC3 per-
forms the most sophisticated search strength control using
(13) and (14). Nevertheless, Adam-ASC2 and Adam-ASC3
achieved better results than other existing optimizers is sig-
nificant and promising.

Thus, synthetically considering all the experimental results
in both tasks, we can conclude that an appropriate search
strength control is more beneficial than too strict or too lax
controls in complex real-world tasks.

V. DISCUSSION
A. COMPREHENSIVE DISCUSSION ABOUT THE
EXPERIMENTAL RESULTS OF ADAM-ASC
The experimental results in both tasks show that the sophis-
ticated solution search control methods of Adam-ASC could
significantly contribute to finding the approximate optimal
weights in the complicated solution spaces. In particular,
we found several noteworthy facts from the experiments as
follows. First, each task requires different search strategies,
such as aggressive or sophisticated methods. As shown in
Tables 3 – 6, the latest optimization methods involving our
Adam-ASC showed better performance than those of the
traditional methods, such as RMSProp and Adam, in the
image classification task.

Meanwhile, as shown in Fig. 11 and 12, the training
accuracy curves of Adam-ASC showed relatively slower
convergence than those of several existing optimizers up
to about 80 epochs. Such a phenomenon is caused by the
sophisticated search control method of Adam-ASC. Unlike
the existing optimization mechanism, Adam-ASC performs
a sophisticated and stable solution search rather than the fast
search. Accordingly, the convergence of Adam-ASC may be
slower than the other methods in the early epochs. However,
Adam-ASC showed better training accuracies as the training
progressed after about 80 epochs. Such experimental results
show that using the more sophisticated and stable solution
search methods is better than the conventional search meth-
ods to train the general CNNs for the image classification
task.

On the other hand, in the image segmentation task with
FC-DenseNet, the latest optimization methods showed lower
test accuracies than Adam. In particular, AdaBelief and dif-
fGrad achieved relatively unsatisfactory performance com-
pared to other methods, although they achieved promising
results among the existing methods except for Adam-ASC in
the image classification task. Such results indicate that a more
aggressive solution search is needed to train FC-DenseNet
instead of the detailed search methods. Nevertheless, Adam-
ASC1 achieved promising optimization performance with the

best test accuracies compared to other methods. These results
show that our new solution search methods could signifi-
cantly improve the optimization performance of the trained
CNNs, regardless of their tasks. However, Adam-ASC2 and
Adam-ASC3 showed slightly lower accuracies than the result
of Adam. As explained earlier, Adam-ASC2 finely controls
the search strength according to the degree of variation of the
gradients, and Adam-ASC3 performs the most sophisticated
search strength control using both (13) and (14).

Thus, considering all the experimental results in both tasks
synthetically, we can conclude that the appropriate search
strength control is more beneficial than any strictly detailed
control in various practical tasks.

B. WHY ADAM-ASC CAN ACHIEVE BETTER OPTIMIZATION
PERFORMANCE THAN OTHER METHODS
From the experimental results, we found that the CNNmodels
trained by Adam-ASC showed the best test accuracies when
compared to the CNNs trained by other existing optimizers
in the image classification and segmentation tasks. Such
results indicate that the various solution search mechanisms
of Adam-ASC can significantly contribute to searching opti-
mal weight solutions in the large-scale weight solution space.
Especially, our Adam-ASC can achieve better optimiza-
tion performance than classical optimizers for the following
reasons:

First, Adam-ASCminimizes the influence of outlier gradi-
ents when computing the first-order momentum to determine
the next search direction. As explained in Section III-B, the
outlier gradient often distorts the overall search trajectory of
the historical gradients, allowing search in any unpromising
direction. However, our Adam-ASC evaluates how far the
current gradient is from the previous first-order momentum
and adjusts its weight value to be used to update the first-
order momentum. As a result, our Adam-ASC has a stable
search trajectory, which mainly prevents falling into any local
minima and contributes to finding an approximate optimal
solution in a stable manner.

Second, Adam-ASC applies an adaptive noise fac-
tor 0.001t−1 in its denominator when calculating the
second-order momentum at each step, as shown in (8). The
noise factor decreases from 0.001 to zero as the training
step progresses. In other words, in the early steps, Adam-
ASC slightly adjusts the second-order momentum by adding
a noise term to it. Then, as the step progresses, the noise term
becomes close to zero. This allows Adam-ASC to further
enhance the variety of solution searches in the early stages
of training.

Third, gradient clipping is helpful in preventing excessive
movement of the search trajectory [35]. Our Adam-ASC
uses the gradient clipping momentum to adaptively con-
trol the degree of movement of the solution search trajec-
tory. The gradient clipping momentum is multiplied by the
first-order momentum in an element-wise manner to con-
trol each dimension’s search strength sophisticatedly. For
example, suppose the first and third elements of the current
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gradient have magnitudes greater than a threshold. In this
case, the clipping mechanism may not encourage solution
search in the first and third dimensions at all. Thus, Adam-
ASC can maintain a stable solution search without being
sensitive to the magnitude of the gradient.

Fourth, the AS2C function described in Section III-D
mainly contributes to the sophisticated solution search in the
large solution space. In detail, the AS2C function adaptively
controls the strength of the solution search according to the
degree of variation between the current and previous gradi-
ents. This method is particularly useful for in-depth analysis
of the current gradient without any computational overhead.
In addition, thewarm-up strategy shown in theAS2C function
also contributes to further improvement of the trained CNN
models although it slightly slows down their convergence
by adjusting the solution strength elaborately in the early
training steps.

Finally, these mechanisms are compensatively combined
with each other as shown in Algorithm 7. Accordingly,
Adam-ASC can be equipped with a more sophisticated and
robust ability to control the solution search more effectively
in large-scale solution spaces. As a result, the CNN models
trained with Adam-ASC also have more powerful perfor-
mance with higher image classification and segmentation
accuracy than those trained with conventional optimization
methods.

C. CONDITIONS THAT WEAKEN OPTIMIZATION
PERFORMANCE OF ADAM-ASC
Meanwhile, Adam-ASC can have relatively worse optimiza-
tion performance than the existing optimizers under several
parameter setting conditions. As shown in Section IV-B, the
control parameters of Adam-ASC, i.e., β1, β2, β3, and ϕ,
affect its optimization performance. Among them, when β2
and ϕ, Adam-ASC showed worse test accuracies, i.e., the
CNNmodels trained byAdam-ASCwith these parameter set-
tings achieved the worst optimization performance. In other
words, the solution search ability of Adam-ASC is weakened
when the coefficient value of the second-order momentum
is too small or the noise factor parameter is too large. Such
weaknesses of Adam-ASC under some parameter settings
can be explained by analyzing the roles and characteristics
of the parameters.

The coefficient parameter β2 controls the degree of update
of the current second-order momentum st+1 as described
in (7). Accordingly, if β2 is set to any small value, the degree
of participation of st is exponentially reduced when com-
puting the new second-order momentum st+1. In the actual
experiments, we found that Adam-ASC has a relatively worse
optimization performance when β2 = 0.5. One of the most
important reasons for using the second-order momentum is
to sophisticatedly control the search strength by dividing the
first-order momentum by it in an element-wise manner. Thus,
if β2 is set to a small value, the second-order momentum st+1
can hardly include the previous second-order momentum st ,
which causes the next search direction to be biased toward

unpromising ones. Thus, we suggest setting β2 to any large
value such that 0.9 ≤ β2 < 1, e.g., β2 = 0.999.
Meanwhile, the parameter ϕ is used to prevent the denom-

inator in (12) from becoming zero by adding a small value to
the first-order momentum |mt+1| in the denominator. In this
case, if ϕ is set to any large value, the clipping momentum
CRt+1 may be inaccurately calculated by the denominator
with ϕ. In detail, CRt+1 approaches the one vector 1 as ϕ

increases excessively. Actually, the parameter sensitivity test
results for ϕ show that Adam-ASC with ϕ = 0.1 has the
worst optimization performance, regardless of the settings
of other parameters. On the other hand, when ϕ is less than
0.001, Adam-ASC showed stable test accuracies. Such results
indicate that ϕ should be set to a small value such that ϕ ≤

0.001 to improve the optimization ability of Adam-ASC.

D. COMPUTATIONAL COMPLEXITY AND OPTIMIZATION
ABILITY OF ADAM-ASC
The main factor affecting the computational complexity of
the optimizers is the process of computing the gradient or
Hessian matrix at each step to determine the direction of
the solution search and its strength in the large-dimensional
solution space. As explained in Section II, the second-order
optimizers have quadratic computational complexity in terms
of the dimension of the solution space due to the compu-
tation of the Hessian matrix. Accordingly, there are many
limitations to using it as a base optimization method to train
the optimal weight values of the large deep neural network
models. In contrast, the first-order optimizers compute the
gradients at each step and search for the optimal weights
based on the gradients. Compared to computing the Hessian
matrix in the second-order optimizers, the calculation of the
gradient requires linear computational complexity, which is
much less expensive. For these reasons, first-order optimiz-
ers are widely used to train practical deep neural network
models [35].

Our Adam-ASC is a typical first-order optimizer because it
also performs optimal solution searches based on the gradient
computed at each step. In fact, Adam-ASC computes the gra-
dient only once per step, just like the other first-order optimiz-
ers. In other words, Adam-ASC has the same computational
complexity as traditional first-order optimizers such as SGD,
Adam, and AdaBelief, i.e., linear complexity with respect to
the dimension of the solution space.

Meanwhile, the various operations used in Adam-ASC to
control the optimal solution search are performed by referring
only to the gradient information computed at each step, which
does not significantly affect its computational complexity.
Actually, Adam-ASC calculates the gradient only once at
each step and then does not compute any additional gradients.
Accordingly, Adam-ASC does not sacrifice its convergence
performance, despite having slightlymore operations than the
traditional optimizers such as SGD or Adam.

The results of the experiments in Section IV show that
these analyses are reasonable. For example, as described in
Algorithm 1, Adam performs an optimal solution search in
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fewer operations than Adam-ASC. However, the solution
search performance of Adam was inferior to that of Adam-
ASC, and the final test accuracies of the CNNs trained by
Adam were lower than the results of Adam-ASC. Further-
more, AdaBelief and diffGrad, which have slightly fewer
operations than Adam-ASC, also showed relatively low
optimization capabilities when compared to the results of
Adam-ASC.

In other words, although Adam-ASC performs slightly
more operations than the existing first-order optimizers such
as Adam andAdaBelief, it has amore stable and robust ability
to search for the optimal weights without significantly slow-
ing down its convergence speed. These results indicate that
various operations used in the core functions of Adam-ASC
can mainly contribute to improving the image perception per-
formance of the trained CNNs without incurring an excessive
computational overhead.

VI. CONCLUSION
In this paper, we studied various adaptive strategies to find
the optimal weight effectively in Adam-based first-order opti-
mization algorithms. Then, we proposed a new Adam-based
first-order optimization method based on these strategies,
called Adam-ASC. In detail, we first developed four sophis-
ticated and stable solution search control methods. Then,
we implemented a new first-order optimizer to train CNNs,
i.e., Adam-ASC, by compensatively coupling them into
one. As explained in Section III, Adam-ASC was designed
based on significantly intuitive and reasonable mathematical
mechanisms. Accordingly, Adam-ASC can be conveniently
applied as a fundamental optimizer to train the CNN mod-
els by replacing the existing optimizer. Moreover, we have
mathematically verified that Adam-ASC can converge after
the training phase is sufficiently progressed.

Our comprehensive experiments with practical CNNs
show that Adam-ASC has remarkable optimization perfor-
mance with the highest test accuracies in image classification
tasks using the CIFAR-100 benchmark dataset. Moreover,
Adam-ASC showed promising performance in training the
FC-DenseNet in the image segmentation task using the
CamVid dataset. Such experimental results indicate that our
Adam-ASC is significant because it proposes new optimiza-
tion methods for training CNNs and shows a promising
research paradigm.

Nevertheless, our study still has several areas for improve-
ment. As explained in Section IV, the optimization perfor-
mance of Adam-ASC was only evaluated on limited tasks
and applications, such as image classification and semantic
segmentation. Accordingly, in the future, we will conduct
more experiments on different tasks and applications, such
as deep language models [51], [52], and deep reinforcement
learning [53], [54]. By carefully conducting such additional
studies, we expect that our Adam-ASC will be used as a
fundamental optimizer to train various deep neural network
models involving CNNs.

APPENDIX
We provide supplementary materials to explain the detailed
proof of Theorem 1 shown in Section III-F. The supplemen-
tary file is accessible online.

REFERENCES
[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-

ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[2] G. Li, Q. Fang, L. Zha, X. Gao, and N. Zheng, ‘‘HAM: Hybrid attention
module in deep convolutional neural networks for image classification,’’
Pattern Recognit., vol. 129, Sep. 2022, Art. no. 108785.

[3] T. Kaur and T. K. Gandhi, ‘‘Deep convolutional neural networks with
transfer learning for automated brain image classification,’’ Mach. Vis.
Appl., vol. 31, no. 3, p. 20, Mar. 2020.

[4] H. Liu, W. Chu, and H. Wang, ‘‘Automatic segmentation algorithm of
ultrasound heart image based on convolutional neural network and image
saliency,’’ IEEE Access, vol. 8, pp. 104445–104457, 2020.

[5] S. Niyas, S. J. Pawan,M. A. Kumar, and J. Rajan, ‘‘Medical image segmen-
tationwith 3D convolutional neural networks: A survey,’’Neurocomputing,
vol. 493, pp. 397–413, Jul. 2022.

[6] S. Zou, C. Li, H. Sun, P. Xu, J. Zhang, P. Ma, Y. Yao, X. Huang, and
M. Grzegorzek, ‘‘TOD-CNN: An effective convolutional neural network
for tiny object detection in sperm videos,’’ Comput. Biol. Med., vol. 146,
Jul. 2022, Art. no. 105543.

[7] Q. Chen, Z. Zhang, Y. Lu, K. Fu, and Q. Zhao, ‘‘3-D convolutional
neural networks for RGB-D salient object detection and beyond,’’ IEEE
Trans. Neural Netw. Learn. Syst., early access, Sep. 13, 2022, doi:
10.1109/TNNLS.2022.3202241.

[8] D. P. Carrasco, H. A. Rashwan,M. Á. García, and D. Puig, ‘‘T-YOLO: Tiny
vehicle detection based on YOLO and multi-scale convolutional neural
networks,’’ IEEE Access, vol. 11, pp. 22430–22440, 2023.

[9] M. Chicchon, H. Bedon, C. R. Del-Blanco, and I. Sipiran, ‘‘Semantic
segmentation of fish and underwater environments using deep convolu-
tional neural networks and learned active contours,’’ IEEE Access, vol. 11,
pp. 33652–33665, 2023.

[10] R. A. Hazarika, D. Kandar, and A. K. Maji, ‘‘A deep convolutional neu-
ral networks based approach for Alzheimer’s disease and mild cognitive
impairment classification using brain images,’’ IEEE Access, vol. 10,
pp. 99066–99076, 2022.

[11] S.-J. Hong, S. Park, C.-H. Lee, S. Kim, S.-W. Roh, N. I. Nurhisna, and
G. Kim, ‘‘Application of X-ray imaging and convolutional neural net-
works in the prediction of tomato seed viability,’’ IEEE Access, vol. 11,
pp. 38061–38071, 2023.

[12] S. M. Zainab, K. Khan, A. Fazil, and M. Zakwan, ‘‘Foreign object
debris (FOD) classification through material recognition using deep con-
volutional neural network with focus on metal,’’ IEEE Access, vol. 11,
pp. 10925–10934, 2023.

[13] D.-L. Nguyen, M. D. Putro, and K.-H. Jo, ‘‘Driver behaviors recognizer
based on light-weight convolutional neural network architecture and atten-
tion mechanism,’’ IEEE Access, vol. 10, pp. 71019–71029, 2022.

[14] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, ‘‘A survey of convolutional
neural networks: Analysis, applications, and prospects,’’ IEEE Trans. Neu-
ral Netw. Learn. Syst., vol. 33, no. 12, pp. 6999–7019, Dec. 2022.

[15] S. Albawi, T. A. Mohammed, and S. Al-Zawi, ‘‘Understanding of a
convolutional neural network,’’ in Proc. Int. Conf. Eng. Technol. (ICET),
Aug. 2017, pp. 1–6.

[16] I. D. Apostolopoulos and T. A. Mpesiana, ‘‘COVID-19: Automatic detec-
tion from X-ray images utilizing transfer learning with convolutional
neural networks,’’ Phys. Eng. Sci. Med., vol. 43, no. 2, pp. 635–640,
Jun. 2020.

[17] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[18] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2261–2269.

[19] L. Bottou, ‘‘Large-scale machine learning with stochastic gradient
descent,’’ in Proc. 19th Int. Conf. Comput. Statist., 2010, pp. 177–186.

[20] G. Hinton, N. Srivastava, and K. Swersky, ‘‘Neural networks for
machine learning—Lecture 6a: Overview of mini-batch gradient descent,’’
Dept. Comput. Sci., Toronto Univ., Toronto, ON, Canada, 2012.
Accessed: Jun. 30, 2023. [Online]. Available: https://www.cs.toronto.
edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

80678 VOLUME 11, 2023

http://dx.doi.org/10.1109/TNNLS.2022.3202241


K. S. Kim, Y. S. Choi: Advanced First-Order Optimization Algorithm With Sophisticated Search Control for CNNs

[21] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[22] Y. Nesterov, Lectures on Convex Optimization. Berlin, Germany: Springer,
2018.

[23] J. D. Head and M. C. Zerner, ‘‘A Broyden—Fletcher—Goldfarb—Shanno
optimization procedure for molecular geometries,’’ Chem. Phys. Lett.,
vol. 122, no. 3, pp. 264–270, Dec. 1985.

[24] D. C. Liu and J. Nocedal, ‘‘On the limited memory BFGS method for
large scale optimization,’’Math. Program., vol. 45, nos. 1–3, pp. 503–528,
Aug. 1989.

[25] S. H. Haji and A.M. Abdulazeez, ‘‘Comparison of optimization techniques
based on gradient descent algorithm: A review,’’ PalArch’s J. Archaeol.
Egypt/Egyptol., vol. 18, no. 4, pp. 2715–2743, 2021.

[26] J. T. Zhuang, T. Tang, Y. F. Ding, S. Tatikonda, N. Dvornek,
X. Papademetris, and J. S. Duncan, ‘‘AdaBelief optimizer: Adapting step-
sizes by the belief in observed gradients,’’ inProc. Adv. Neural Inf. Process.
Syst. (NIPS), vol. 33, 2020, pp. 18795–18806.

[27] S. R. Dubey, S. Chakraborty, S. K. Roy, S. Mukherjee, S. K. Singh, and
B. B. Chaudhuri, ‘‘DiffGrad: An optimization method for convolutional
neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 11,
pp. 4500–4511, Nov. 2020.

[28] G. Wang, S. Lu, W. Tu, and L. Zhang, ‘‘SAdam: A variant of Adam for
strongly convex functions,’’ 2019, arXiv:1905.02957.

[29] S. Sun, Z. Cao, H. Zhu, and J. Zhao, ‘‘A survey of optimization methods
from a machine learning perspective,’’ IEEE Trans. Cybern., vol. 50, no. 8,
pp. 3668–3681, Aug. 2020.

[30] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, ‘‘The one
hundred layers tiramisu: Fully convolutional DenseNets for semantic seg-
mentation,’’ inProc. IEEEConf. Comput. Vis. Pattern Recognit.Workshops
(CVPRW), Jul. 2017, pp. 1175–1183.

[31] K. Fukushima, ‘‘Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,’’
Biol. Cybern., vol. 36, no. 4, pp. 193–202, Apr. 1980.

[32] F. Rosenblatt, ‘‘The perceptron: A probabilistic model for information
storage and organization in the brain,’’ Psychol. Rev., vol. 65, no. 6,
pp. 386–408, 1958.

[33] O. S. Kayhan and J. C. van Gemert, ‘‘On translation invariance in
CNNs: Convolutional layers can exploit absolute spatial location,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 14262–14273.

[34] Y. Mao, Z. He, Z. Ma, X. Tang, and Z. Wang, ‘‘Efficient convolution
neural networks for object tracking using separable convolution and filter
pruning,’’ IEEE Access, vol. 7, pp. 106466–106474, 2019.

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[36] S. Ruder, ‘‘An overview of gradient descent optimization algorithms,’’
2016, arXiv:1609.04747.

[37] W. E. L. Ilboudo, T. Kobayashi, and K. Sugimoto, ‘‘Robust stochastic
gradient descent with student-t distribution based first-order momentum,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 3, pp. 1324–1337,
Mar. 2022.

[38] Y. Zhang, Y. Li, Z. Zhang, T. Luo, and Z.-Q. J. Xu, ‘‘Embedding principle:
A hierarchical structure of loss landscape of deep neural networks,’’ 2021,
arXiv:2111.15527.

[39] M. Wang, W. Fu, X. He, S. Hao, and X. Wu, ‘‘A survey on large-
scale machine learning,’’ IEEE Trans. Knowl. Data Eng., vol. 34, no. 6,
pp. 2574–2594, Jun. 2022.

[40] K. S. Kim and Y. S. Choi, ‘‘Cooperative coevolutionary algorithm with
resource allocation strategies to minimize unnecessary computations,’’
Appl. Soft Comput., vol. 113, Dec. 2021, Art. no. 108013.

[41] K. S. Kim and Y. S. Choi, ‘‘HyAdamC: A new Adam-based hybrid
optimization algorithm for convolution neural networks,’’ Sensors, vol. 21,
no. 12, p. 4054, Jun. 2021.

[42] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, ‘‘On the
variance of the adaptive learning rate and beyond,’’ in Proc. Int. Conf.
Learn. Represent. (ICLR), 2020, pp. 1–13.

[43] S. J. Reddi, S. Kale, and S. Kumar, ‘‘On the convergence of Adam and
beyond,’’ 2019, arXiv:1904.09237.

[44] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada,
Tech. Rep. TR-2009, Apr. 2009.

[45] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, ‘‘Segmentation and
recognition using structure from motion point clouds,’’ in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2008, pp. 44–57.

[46] G. J. Brostow, J. Fauqueur, and R. Cipolla, ‘‘Semantic object classes in
video: A high-definition ground truth database,’’ Pattern Recognit. Lett.,
vol. 30, no. 2, pp. 88–97, Jan. 2009.

[47] M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar, ‘‘Adaptivemethods
for nonconvex optimization,’’ in Proc. Adv. Neural Inf. Process. Syst.
(NIPS), vol. 31, 2018, pp. 9815–9825.

[48] J. Bernstein, A. Vahdat, Y. Yue, and M.-Y. Liu, ‘‘On the distance between
two neural networks and the stability of learning,’’ in Proc. Adv. Neural
Inf. Process. Syst. (NIPS), vol. 33, 2020, pp. 21370–21381.

[49] S. K. Roy, M. E. Paoletti, J. M. Haut, S. R. Dubey, P. Kar, A. Plaza,
and B. B. Chaudhuri, ‘‘AngularGrad: A new optimization technique
for angular convergence of convolutional neural networks,’’ 2021,
arXiv:2105.10190.

[50] D. Liu, W. Ding, Z. S. Dong, and W. Pedrycz, ‘‘Optimizing deep neural
networks to predict the effect of social distancing on COVID-19 spread,’’
Comput. Ind. Eng., vol. 166, Apr. 2022, Art. no. 107970.

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), vol. 30, 2017, pp. 6000–6010.

[52] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
North Amer. Chapter Assoc. Comput. Linguistics, Human Lang. Technol.
(NAACL-HLT), 2019, pp. 4171–4186.

[53] Y. Ansari, S. Yasmin, S. Naz, H. Zaffar, Z. Ali, J. Moon, and S. Rho,
‘‘A deep reinforcement learning-based decision support system for auto-
mated stock market trading,’’ IEEE Access, vol. 10, pp. 127469–127501,
2022.

[54] N. Le, V. S. Rathour, K. Yamazaki, K. Luu, and M. Savvides, ‘‘Deep
reinforcement learning in computer vision: A comprehensive survey,’’
Artif. Intell. Rev., vol. 55, no. 4, pp. 2733–2819, Apr. 2022.

KYUNG SOO KIM was born in Incheon,
South Korea, in 1988. He received the B.E. degree
in computer education from Mokpo National
University, Jeonnam, South Korea, in February
2011, and the Ph.D. degree in electronics and
computer engineering from Hanyang University,
Seoul, South Korea, in August 2020. He was a
Postdoctoral Researcher with the Center for Com-
putational Social Science, Hanyang University,
from September 2020 to February 2022. Since

March 2022, he has been an Assistant Professor with the Department of
Computer Engineering, Kumoh National Institute of Technology, Gumi,
Gyeongbuk, South Korea. His research interests include optimization algo-
rithms for machine learning, evolutionary computation, nonlinear optimiza-
tion algorithms, and computational intelligence theory.

YONG SUK CHOI was born in Busan,
South Korea, in 1969. He received the B.S., M.S.,
and Ph.D. degrees in computer science from Seoul
National University, Seoul, South Korea, in 1993,
1995, and 2000, respectively. He joined Hanyang
University, Seoul, in 2001, after working for the
Telecommunication Research Laboratory, Sam-
sung Electronics Company, from 1997 to 2001.
He is currently a Professor with the Department
of Computer Science and Engineering, Hanyang

University. He authorizes two books, more than 125 articles, and more than
25 inventions. His research interests include deep learning algorithms, text
understandings and summarization, large language models, image transac-
tion, visual question and answering, and multi-modal AI.

VOLUME 11, 2023 80679


