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ABSTRACT Mutation takes a vital part in assisting differential evolution (DE) to achieve satisfactory
performance. The most crucial factor for a good mutation scheme is to mutate individuals dispersedly but
with fast convergence to optimal regions. With this purpose, this paper designs a novel mutation approach,
termed as ‘‘DE/current-to-gselite/1’’, by utilizing the Gaussian distribution to sample guiding exemplars
around elites in the population to evolve individuals. Accordingly, a Gaussian sampling guided differential
evolution (GSGDE) is devised to hopefully tackle optimization problems effectively. With the assistance
of the Gaussian distribution, GSGDE mutates distinct individuals with very different guiding exemplars.
Hence, high mutation diversity is expectedly maintained, which leads to that individuals could traverse the
problem space in diverse directions. Thanks to the narrow sampling range of the Gaussian distribution,
the generated guiding exemplars are likely better and thus individuals in the population are anticipated to
move towards optimal regions fast. This is of great profit for fast convergence to high-quality solutions.
Further, a dynamic parameter adjustment strategy is proposed to dynamically regulate the number of elites.
Hereafter, GSGDE gradually shifts from concentrating on exploring problem space to focusing on exploiting
found optimal areas. Cooperated with an existing adaptive parameter strategy, GSGDE is anticipated to
strike a good balance between exploitation and exploration to traverse the problem space and hence likely
obtain satisfactory performance. Experiments have been extensively carried out on the latest CEC2014 and
CEC2017 problem suites with three settings of the dimensionality. Experimental results substantiate that
GSGDE has a good scalability and attains highly competitive performance with or even significantly superior
performance to 11 latest and representative DEmethods. Particularly, its superiority becomes more and more
significant as the dimensionality increases.

INDEX TERMS Global optimization, differential evolution, Gaussian sampling guided mutation, Gaussian
distribution, elite learning.

I. INTRODUCTION
As a kind of evolutionary algorithms, differential evolution
(DE) originally devised by Storn and Price [1], has received
plenty of attention in the community of evolutionary com-
putation thanks to its fast convergence to optimal solutions
and easy implementation [2], [3], [4]. Consequently, DE has
been taken advantage of to solve various optimization prob-
lems, like unimodal problems [5], [6], [7], [8], multimodal
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problems [9], [10], [11], [12], and multi-objective prob-
lems [13], [14], [15]. Meanwhile, due to its strong global
search ability, DE has also been popularly applied to tackle
many practical optimization problems in the real world,
including ship-unloading scheduling [16], feature selec-
tion [15], [17], and face recognition [18].

In particular, DE evolves a number of individuals to tra-
verse the problem space with three major operators, namely
mutation, crossover, and selection [2], [19], [20]. To promote
the optimization performance of DE in handling complex
problems, abundant researchers have poured attention to
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devising effective techniques involved in the three operators
to aid DE to tackle optimization problems effectively and
efficiently. Consequently, hundreds and thousands of remark-
able DE algorithms [21], [22], [23] have emerged. From a
broad perspective, the research on DE principally concen-
trates on two main directions, proposing effective mutation
strategies [24], [25], [26], [27] and devising effective param-
eter adaptation strategies [22], [23], [28], [29].
Mutation is the most critical operator in DE, because it

introduces new values into the population [27], [30], [31].
Therefore, in the literature on DE, the research on muta-
tion has drawn the most attention from researchers. Con-
sequently, many remarkable mutation strategies have been
developed [21], [24], [26], [32], [33]. At first, researchers
mainly focused on developing a single mutation framework,
which is shared by all individuals [7], [27], [30], [34],
[35]. In this mutation framework, the key is usually the
selection of the parent individuals, especially the leading
exemplars, involved in the mutation strategy, which generally
determines the mutation diversity and the convergence of
individuals to optimal regions [27], [36], [37]. Then, since
distinct mutation methods usually own different properties
and advantages in tackling different kinds of optimization
problems, some research fellows have tried to employ mul-
tiple distinct mutation methods to mutate the population.
In this manner, the advantages of these mutation schemes
can be assembled to help DE better balance exploration
and exploitation to traverse the problem space [9], [14],
[26], [31], [32]. In this mutation framework, the key is how
to effectively utilize different mutation strategies to mutate
individuals [32], [38], [39].

Besides the mutation operation, the parameter settings in
DE also make significant influence on its optimization per-
formance [22], [23], [29]. In particular, the crossover rate
CR associated with the crossover operator and the scaling
factor F accompanied with the mutation operator heavily
impact the optimization effectiveness of DE. Specifically,
in the mutation operator, F controls the effect of the differ-
ence vectors on the base individual, while in the crossover
operator, CR significantly influences the difference between
the parents and their offspring [7], [23], [40]. As a conse-
quence, the optimal values of the two parameters are not
just distinct for the same crossover and mutation operators
to solve different optimization problems, but also distinct for
different crossover and mutation operators to solve the same
problem [10], [22], [28]. In other words, the optimization
effectiveness of DE heavily relies on the settings of the two
parameters. To circumvent this predicament, researchers have
paid a good deal of devotion to devising adaptive parameter
regulation techniques to relieve DE from the sensitivity to the
two key parameters. Therefore, in the literature on DE, a lot
of outstanding parameter adaption methods [22], [28], [29],
[40] have been proposed to help DE achieve good perfor-
mance. As far as we are concerned, the most commonly used
parameter adaptation mechanisms can be summarized into
two main types: population-level adaptation strategies [23],

[33], [34], [36], [40] and individual-level adaptation meth-
ods [7], [28], [38], [41], [42]. In the first type of methods, all
individuals share identical parameter settings and the settings
are dynamically regulated during the evolution on the basis of
historical evolutionary information of the population or the
individuals [23], [36], [40]. By contrast, in the second type
of methods, each individual has its own parameter settings
and different individuals usually have different settings [6],
[41], [43]. Besides, the settings of each individual are dynam-
ically regulated based on the evolution state of the individual.
Both types of parameter adaption methods have been widely
employed to help newly developed DE variants to achieve
satisfactory performance [37], [44], [45], [46], [47].

The above research on DE has largely promoted its opti-
mization ability in seeking global optima of optimization
problems. However, most existing advanced mutation strate-
gies utilize a small number of elite individuals in the pop-
ulation to direct the mutation of the whole population [27],
[32]. On the one hand, the mutation diversity is limited on
account of the small selection range of candidate guiding
exemplars. On the other hand, these already seen information
usually provides limited assistance in mutating individuals
diversely. As a result, individuals in most existing DE vari-
ants are in great danger of trapping into local regions once
the elite individuals stagnate. Consequently, most existing
advanced DE variants still encounter challenges in coping
with complicated problems that are increasingly ubiquitous
in the world of Internet of Things [20], [48], [49], [50].
In particular, due to the increasingly complex correlations
among variables, the landscape of complicated optimization
problems is usually very intricate and considerably difficult
for the population to traverse [51], [52], [53], [54]. In this
situation, high search diversity is usually required for DE to
gain satisfactory performance.

To let individuals be mutated with high diversity and then
improve the optimization effectiveness of DE, we devise a
novel mutation strategy, named ‘‘DE/current-to-gselite/1’’,
by utilizing the Gaussian distribution to sample guiding
exemplars to mutate individuals. Incorporating it into the
DE framework along with one widely utilized parameter
adaption scheme for CR and F , a novel DE, called Gaussian
sampling guided differential evolution (GSGDE) is devel-
oped to cope with optimization problems effectively and
efficiently.

Specifically, the main novelty of this paper and the major
components of GSGDE are summarized in the following:

1) A Gaussian sampling guided mutation mechanism,
named ‘‘DE/current-to-gselite/1’’, is designed. Unlike
most existing studies [27], [32], which directly uti-
lize the elites in the population to mutate individu-
als, ‘‘DE/current-to-gselite/1’’ randomly generates one
guiding exemplar around the elites in the current pop-
ulation according to the Gaussian distribution for each
individual. In this way, on the one hand, the leading
exemplars of distinct individuals are very different,
which contributes largely to the promotion of mutation
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diversity; on the other hand, better exemplars are likely
generated around the elites by the Gaussian distribution
model with a small standard deviation thanks to the
narrow sampling range of the Gaussian distribution,
which is of great benefit for individuals to move toward
optimal regions fast. Therefore, with this mutation
strategy, GSGDE is anticipated to explore the problem
space dispersedly and subtly exploit the located optimal
zones.

2) A dynamic adjustment scheme for the number of elites
is proposed. As the evolution continues, the number
of elites becomes smaller and smaller. As a result, the
sampling range of the Gaussian distribution becomes
narrower and narrower. This indicates that in the early
period, the sampled guiding exemplars by the Gaussian
distribution for individuals are expectedly scattered
dispersedly and thus individuals concentrate more on
exploring the search space. By contrast, in the late
period, the generated leading exemplars by the Gaus-
sian distribution are hopefully around the increasingly
better elites and therefore individuals focus more on
exploiting the optimal regions where the elites locate.
Hence, with this dynamic strategy, GSGDE is antic-
ipated to first explore the problem space dispersedly
and then gradually tend to exploit the located optimal
regions.

With the close collaboration between the above two meth-
ods along with the widely used parameter adaption scheme
forCR andF in SHADE [41], GSGDE is anticipated to evolve
the population with a promising balance between search
convergence and search diversity to appropriately explore
and exploit the problem space. To substantiate its effective-
ness and efficiency, we carry out comparative experiments
on the latest CEC2014 [55] and CEC2017 [56] benchmark
problem suites with three settings of the dimensionality,
which have been widely used to test the performance of
various evolutionary algorithms [57], [58], [59]. For com-
parisons, we compare GSGDE with totally 11 latest and
well-performed DE methods. At last, we also carry out
experiments on the CEC2017 set to observe the effect of
the devised two techniques on the optimization performance
of GSGDE.

The remainder of this paper is structured as follows. Brief
review of the classical DE and its representative advanced
variants are elucidated in Section II. Subsequently, Section III
elaborates the proposed GSGDE in detail. Then, Section IV
verifies the effectiveness and efficiency of GSGDE by exten-
sive experiments. At last, Section V affords the conclusion of
this paper.

II. RELATED WORK
For better understanding of the development of DE, this
section first reviews the working principle of the basic DE
in Section II-A. Then, the main research on DE is briefly
reviewed in two major directions by introducing latest and
representative methods in Section II-B.

A. CLASSICAL DIFFERENTIAL EVOLUTION
DE [1] continuously updates a number of individuals to
search the problem space via the difference vectors between
them. Specifically, a classical DE has the following four
steps:

1) INITIALIZATION
In the literature [7], [9], [16], the most commonly used ini-
tialization strategy is to randomly generate individuals with
the uniform distribution in the search domain [60], [61], [62].
To be concrete, each individual is generated randomly in the
following way:

xi,j = LBj + rand(0, 1) ∗ (UBj − LBj) (1)

where xi,j is the jth (j= 1, 2, . . . ,D) dimension value of the ith
individual (i= 1, 2, . . . , NP),D denotes the dimensionality of
the optimized problem, and NP is the population size. rand(0,
1) uniformly generates a real random value within [0,1]. UBj
and LBj represent the upper limit and the lower limit of the
jth variable, respectively.

After all individuals are initialized, their fitness values are
computed, and then the global best individual is identified.
After that, DE enters the main evolution which involves three
crucial operations: mutation, crossover, and selection.

2) MUTATION
The mutation operation is to create a mutation vector vi =

[vi,1, vi,2, . . . ,vi,D] for each parent xi by using the difference
vectors between individuals [6], [7], [24]. Lots of mutation
schemes have been proposed from different perspectives.
Some typical and representative mutation schemes are listed
in the following:

DE/rand/1 [1]:

vi = xr1 + F × (xr2 − xr3) (2)

DE/best/1 [63]:

vi = xbest + F × (xr1 − xr2) (3)

DE/current-to-best/1 [64]:

vi = xi + F × (xbest − xi) + F × (xr1 − xr2) (4)

DE/current-to-pbest/1 [21]:

vi = xi + F × (xpbest − xi) + F × (xr1 − xr2) (5)

where xr1, xr2, and xr3 are three distinct individuals chosen
randomly from the population and they are also distinct from
xi, namely i̸=r1̸=r2̸=r3.F is a real parameter in [0,1], which
controls the effect of the difference vectors. xbest is the best
solution found so far; xpbest is an elite selected randomly from
the best p ones in the population.
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3) CROSSOVER
The crossover operation aims to create a trial vector ui =

[ui,1, ui,2, . . . ,ui,D] for each individual xi by recombining
the dimensions of xi and vi [10], [23], [31]. Whether each
component of ui is inherited from xi or vi is regulated by
the crossover rate (CR), which is another critical parameter
in DE. In the literature [7], [23], [33], [36], [37], the most
popular crossover is the binomial crossover, which works as
follows:

ui,j =

{
vi,j, if rand(0, 1) ⩽ CR or j = jrand
xi,j, otherwise

(6)

where rand(0, 1) returns a real random value uniformly from
[0,1]. CR denotes the crossover rate belonging to [0,1], and
jrand is the index of a random dimension uniformly sampled
from [1, D], and is utilized to guarantee that ui inherits more
than one dimension from vi.

4) SELECTION
The selection operator aims to make comparison between
each parent individual xi and its offspring ui and then choose
the better one to go into the next iteration [22], [28], [33].
It works as follows:

xi =

{
ui, if f (ui) < f (xi)
xi, otherwise

(7)

where f (xi) is the fitness value of parent xi, while f (ui) is
that of offspring ui. f (ui) < f (xi) implies that the lower the
fitness value of one individual is, the better that individual
is. As a result, this selection strategy is fit for dealing with
minimization optimization problems.

The above three operators are sequentially executed repeat-
edly to update the population until the predefined termination
criterion is met, which is usually that the given number of
fitness evaluations runs out [10], [33], [35], [40], [42]. After
the termination, the best solution found by DE is output.

B. MAIN RESEARCH ON DE
To promote the optimization ability of DE, lots of researchers
have devoted extensive effort to devising novel DE variants.
As far as we know, the research on DE proceeds in two
major directions, namely developing novel effective mutation
schemes [24], [26], [33], [35], [36] and devising effective
parameter adaption methods [7], [10], [19], [23], [29].

1) RESEARCH ON MUTATION STRATEGIES
In the literature, a large number of researchers have been
committed to devising effective mutation schemes to create
high-quality offspring [21], [41], [65]. As a result, a lot of
remarkable mutation mechanisms have sprung up [24], [27],
[30], [31], [43]. In a broad sense, the research on mutation
strategies is roughly divided into two types: adopting only one
single mutation strategy to mutate all individuals [7], [21],
[23], [30], [38] and assembling multiple mutation strategies
to evolve individuals [28], [31], [32], [43], [66].

In the early research on mutation, researchers mainly
focused on developing a single mutation framework for DE
to evolve all individuals [7], [21], [23], [27], [38]. In general,
the key to this mutation framework is to choose benefiting
parent individuals to take part in the mutation operation.
In this direction, numerous mutation strategies have been
designed [7], [23], [24], [27], [30]. Since it is hardly possible
to review them all, this paper only introduces some latest and
representative mutation schemes in the following.

To augment the mutation diversity of individuals,
Yang et al. [27] designed a neighbor elite directed mutation
scheme, termed as ‘‘DE/current-to-rnbest/1’’. In such a muta-
tion scheme, a number of distinct individuals are randomly
chosen from the population to build a neighbor area for
each individual. Subsequently, the best individual in the area
is used as the leading exemplar to guide the evolution of
this individual. In [30], a fitness and diversity ranking-based
mutation mechanism was designed. In particular, instead of
only using the fitness as the measurement to select par-
ent individuals, this strategy defines a new measurement
by integrating the fitness and the diversity contribution of
individuals and then chooses parent individuals according to
the rankings of all individuals after they are ranked from the
best to the worst regarding the new measurement. In [23],
Zou et al. proposed a consecutive unsuccessful updates-based
mutation strategy. Specifically, this mutation scheme first
records the times that an individual remains unchanged, and
then it computes the choosing probability of each individual
according to this number. After that, the base individual
along with the guiding exemplar involved in the mutation
is randomly chosen based on the calculated probabilities.
In [38], Qiao et al. designed a level-based learning scheme
for individuals to mutate. Particularly, this mutation scheme
first divides individuals into several levels concerning their
fitness, and subsequently chooses individuals in higher levels
randomly to direct the mutation of those in lower levels.
In [35], Stanovov et al. proposed a novel individual selection
mechanism by introducing the selection pressure. Specifi-
cally, individuals are first ranked according to their fitness,
and next, the parents taking part in the mutation are chosen
by using the tournament selection scheme together with the
roulette wheel selection scheme with the selection probabili-
ties calculated according to the ranks of individuals. In [37],
Xia et al. designed a novelty and fitness driving mutation
strategy. Specifically, they first defined a new measure called
novelty to assess the contribution of each individual to
diversity maintenance. Then, the devised mutation scheme
randomly chooses the parental individuals on the basis of
the combination of the fitness value and the novelty value
of each individual. In [67], Mohamed et al. developed an
order-based mutation mechanism, termed as ‘‘DE/current-
to-ord_best/1’’. Specifically, three distinct individuals are
first stochastically selected from the population and then
they are compared in terms of their fitness. Subsequently,
the best individual is utilized as the leading exemplar and
the other two are employed to create the random difference
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vector. In [68], an adaptive mutation strategy was devised.
In particular, it first divides all individuals into three clus-
ters denoted as the best cluster, the better cluster, and the
worst cluster respectively. Then, it randomly selects two
individuals from the better and worst clusters respectively
to construct the random difference vector and another one
from the best cluster to serve as the leading exemplar to
mutate each individual. In [69], a mutation scheme termed
as ‘‘DE/current-to-ci_mbest/1’’ was designed. In this muta-
tion strategy, a collective vector is first built with a linear
combination of m individuals with the top ranks in the
population. Then, this collective vector is employed to mutate
each individual. In [52], Deng et al. designed a dynamic
combination based mutation operator where the base vector
of each individual is constructed by the dynamic combination
of the best individual in the population and the best one
among three randomly chosen individuals. In [53], Deng et
al. designed a new neighborhood mutation scheme termed
as ‘‘DE/neighbor-to-neighbor/1’’. In particular, this mutation
strategy uses an individual chosen stochastically from the
neighborhood as the base vector and then adopts another
high-quality individual in the neighborhood as the leading
exemplar to mutate each individual.

As the research on mutation progresses, it is well recog-
nized that distinct mutation schemes usually have different
advantages in tackling different kinds of optimization prob-
lems [24]. Hence, a natural way is to assemble multiple
different mutation schemes to update individuals. In this
direction, there are also a lot of ensemble strategies in the
literature [22], [28], [31], [32], [36]. Likewise, it is also hardly
possible to review them all and thus we only introduce some
representative and state-of-the-art ensemble methods below.

Wang et al. [22] proposed an adaptive parameter strat-
egy DE (APSDE). In this DE variant, six different mutation
schemes are maintained and an accompanying population is
kept to cooperate with the main population to traverse the
problem space. In addition, the evolution is further sepa-
rated into three stages, and then in different stages, the two
populations adaptively select different mutation strategies to
evolve individuals to appropriately explore and exploit the
problem space. In [10], Meng and Yang proposed a two-stage
DE (TDE). In this DE variant, they developed two muta-
tion strategies, namely the historical-solution based muta-
tion and the inferior-solution based mutation. Subsequently,
to ensemble these two strategies, they first partitioned the
evolution of the population into two stages. Then, in the first
evolution period, the historical-information based mutation
is employed to evolve individuals to find optimal regions.
Then, in the second evolution period, the inferior-individual
based mutation is utilized to update individuals to exploit
the located optimal zones with a good compromise between
diversity and convergence. In [28], Sun et al. designed a
Gaussian mutation and dynamic parameter adjustment based
DE (GPDE). In this DE method, a new Gaussian distri-
bution based mutation and an improved classical mutation

called ‘‘DE/rand-worst/1’’ are collaboratively used to mutate
individuals based on their cumulative performance. In [32],
Li et al. designed a dual mutation schemes collaboration
DE (DMCDE). In this method, an elite direction scheme
was first proposed and then embedded into ‘‘DE/best/2’’
and ‘‘DE/rand/2’’ to develop two new mutation strategies.
Subsequently, a collaboration mechanism between the dual
mutation schemes was developed to mutate individuals, such
that a good compromise between local exploitation and global
exploration is attained. In [40], a self-adaptive ensemble-
based DE (SEDE) was devised by assembling three differ-
ent mutation schemes to collaboratively mutate individuals.
In particular, these three mutation schemes are adaptively
chosen to mutate individuals based on their optimization
performance. In [36], a fitness-based adaptive DE (FADE)
was designed. In this method, all individuals are separated
into three categories, namely the best individuals, the worst
individuals, and the medium individuals. Next, three classical
mutation strategies are adaptively chosen by these individ-
uals to mutate based on their fitness. In [31], Deng et al.
designed a tri-population DE (TPDE). To be concrete, this
method first separates the population into three subpopula-
tions based on a zonal-constraint stepped division strategy.
Then, it employs three different elite-guided mutation strate-
gies to evolve individuals in the three subpopulations. In [25],
Tan et al. designed an adaptive mutation selection mechanism
according to fitness landscape analysis. Specifically, a muta-
tion scheme selector based on random forest is first trained
on different optimization problems. Then, when confronted
with an optimization problem, the trained mutation selector
is first used to adaptively choose a mutation scheme for DE to
solve this problem.On the foundation of this idea, they further
developed a dynamic fitness landscape-based DE (DFLDE)
in [66] according to the dynamic fitness landscape charac-
teristics of the problem to be solved. In [65], a historical
and heuristic-based DE (HHDE) was designed. Particularly,
in this algorithm, three mutation strategies are maintained.
In each generation, each individual adaptively chooses one
mutation strategy according to the heuristic information of the
individual and the historical information of the population.
In [43], Cui et al. proposed to use two different mutation
mechanisms to create two mutation vectors for each parent
and accordingly generate two offspring to compete with the
parent. In [70], Guo et al. devised an improved triangular
Gaussian mutation based DE (ITGDE). Concretely, they first
designed a Gaussian distribution based mutation scheme by
using the positions and the fitness differences of three indi-
viduals organized in the triangular structure. Subsequently,
each individual adaptively chooses the devised Gaussian
mutation scheme and ‘‘DE/rand/1’’ to mutate with a proba-
bility. In [71], Chen and Shen designed a self-adaptive DE
with Gaussian–Cauchy mutation (SDEGCM). Particularly,
they alternatively employed the Cauchy distribution and the
Gaussian distribution to mutate individuals, so that the strong
local exploitation ability of the Gaussian distribution and the
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powerful global exploration ability of the Cauchy distribution
can be assembled to aid DE sustain a promising compromise
between exploration and exploitation. Further, they also com-
bined ‘‘DE/rand/1’’ and let each individual select a mutation
strategy randomly from the three mutation schemes with
equal probabilities to mutate. In [72], Chen et al. divided the
population into three subpopulations, namely the exploration
subpopulation, the exploitation subpopulation, and the bal-
anced subpopulation. Then, they designed a modified hunger
games search operator to evolve the exploration subpopula-
tion to enhance the global exploration, utilized ‘‘DE/current-
to-pbest/1’’ with a Gaussian tail to update the exploitation
subpopulation to promote the local exploitation, and devised a
distance-based multi-population algorithm to update the bal-
anced subpopulation tomake full use of feedback information
from the former two subpopulations. In [73], the authors pro-
posed a Gaussian bare-bones DE (GBDE). Specifically, they
first designed a Gaussian mutation scheme by using the linear
combination of each individual and the global best individual
as the mean and their Euclidean distance as the variance to
randomly sample a mutation vector for the individual. Then,
they alternatively took advantage of the Gaussian mutation
strategy and ‘‘DE/best/1’’ to mutate each individual.

Though the above developed mutation strategies have been
substantiated to help DE solve certain kinds of optimization
problems effectively, the performance of most existing DE
variants is still not as satisfactory as anticipated in solving
complicated optimization problems. Due to the increasingly
complex correlations among variables, the landscape of com-
plicated optimization problems is usually very intricate and
considerably difficult for the population to traverse [74],
[75], [76], [77]. In this situation, high search diversity is
usually required for DE to achieve satisfactory optimization
performance. However, in most existing mutation strategies,
it is found that individuals are guided by relatively superior
ones in the current population. This already seen information
usually provides limited assistance in mutating individuals
diversely. To further enhance the mutation diversity of indi-
viduals, this paper develops a Gaussian sampling guided
mutation scheme, termed as ‘‘DE/current-to-gselite/1’’ for
DE to mutate individuals, such that they can traverse the
problem space in various directions and at the same time
explore the complex landscape with slight intensification to
find optimal zones andmine the located promising zones with
slight diversification to escape from local basins.

2) RESEARCH ON CONTROL PARAMETER ADAPTION
In DE, two parameters, namely the crossover probability (CR)
in the crossover and the scaling parameter (F) in the muta-
tion, also play a crucial role in generating high-quality off-
spring, and thus significantly affect the optimization ability
of DE [29]. However, the best settings of the two parameters
are generally distinct for the same crossover and mutation
schemes in coping with different optimization problems and
they are also distinct for different mutation and crossover

schemes in solving the same problem. To circumvent this
predicament, researchers have been dedicated to proposing
parameter adaption schemes for F and CR, and consequently,
a lot of parameter adaption strategies have sprung up [7],
[22], [29], [40], [41], [78]. Comprehensively speaking, most
existing parameter adaption methods could be roughly sum-
marized into two categories, namely the population-level
parameter adaption strategies [23], [33], [34], [36], [40] and
the individual-level parameter adaption strategies [7], [10],
[22], [41], [42].

In the population-level parameter adaption schemes, all
individuals usually adopt identical settings of F and CR,
but the settings are regulated dynamically during the evo-
lution [33], [34], [36]. To afford diverse population-level
parameter settings, some researchers even took advantage
of the type-2 fuzzy systems to design dynamic parameter
adaption methods for CR and F to aid DE to achieve good
performance [79], [80].

Different from the population-level parameter adaption
methods, the individual-level parameter adaption strategies
generally afford different settings of CR and F for distinct
individuals [10], [21], [41]. Besides, these settings of dis-
tinct individuals are dynamically adjusted according to their
optimization performance and evolutionary states. Compared
with the population-level parameter adaption methods, the
individual-level ones provide higher parameter diversity and
thus they usually offer more effective help for DE to achieve
better optimization performance [10], [21], [26], [32], [33].
As a result, we mainly introduce some state-of-the-art and
representative individual-level parameter adaption strategies
in the following.

The most representative and popular individual-level
parameter adaption method is the one in the success-history
based adaptive DE (SHADE) [41]. Specifically, in this
method, two archives, denoted asMF andMCR, respectively,
are maintained to store the mean values of the historically
successful F and CR. Then, during the evolution, for each
individual xi, a mean value of F denoted asMF,ri is randomly
chosen fromMF and a mean value of CR denoted asMCR,ri is
randomly chosen fromMCR. Subsequently, the settings of F
and CR for individual xi are randomly generated as follows:

Fi = randci(MF,ri , 0.1) (8)

CRi = randni(MCR,ri , 0.1) (9)

where randni(MCR,ri , 0.1) returns a real random value sam-
pled by the Gaussian distribution model, whose mean value
isMCR,ri and standard deviation is 0.1 and randci(MF,ri , 0.1)
returns a real random value sampled by the Cauchy distri-
bution model, whose position parameter is MF,ri and scaling
factor is 0.1. ri is a random index uniformly chosen from
[1, H ], where H is the archive size ofMF andMCR.

If the generated value ofCRi by Eq. (9) is outside the range
of [0,1], it is then regenerated until it is within [0,1]. If the
generated Fi ≤ 0, it is resampled by Eq. (8) until Fi > 0.
If Fi > 1, it is truncated to 1. As for the two archivesMF and
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MCR, in the beginning, all elementsMCR,i andMF,i (i= 1, 2,
3,. . . , H ) are set as 0.5 in [41]. Then, during the evolution,
those successful Fi and CRi values that help the mutation
and the crossover strategies generate better offspring to take
place of the associated parents are stored into SF and SCR,
respectively. Subsequently, at the end of each iteration, the
mean values of these successful F and CR are computed as
follows:

MCR =

|SCR|∑
k=1

wk · SCR,k (10)

MF =

|SF |∑
k=1

wk · S2F,k

|SF |∑
k=1

wk · SF,k

(11)

wk =
1fk

|SCR|∑
j=1

1fj

(12)

where1fj =
∣∣f (uj) − f (xj)

∣∣ is the fitness improvement of the
better offspring uj to the associated parent xj.
Then, the computed mean values of CR and F are used

to replace the oldest values in the two archives MCR and
MF, respectively. It should be noted that when all generated
offspring fail to replace the associated parents, SCR = SF =

∅. In this situation, the two archives MF and MCR are not
updated. With the above mechanism, this adaptive parameter
strategy provides high parameter setting diversity for indi-
viduals and thus effectively assists SHADE to attain good
performance in tackling optimization problems. By means
of such superiority, this adaptive scheme has been widely
utilized in many advanced DE variants to cooperate with
the devised mutation strategies to solve optimization prob-
lems [7], [26], [42].

Besides, inspired by such a good parameter adaption
scheme, researchers have designed other individual-level
adaptive schemes for the two parameters as well [10], [22],
[26], [33], [34]. To name a few, in [32], the settings of F
and CR for each individual are adjusted based on its evo-
lutionary state. Specifically, if the configurations of F and
CR for an individual help it generate a better offspring, they
remain unchanged; if such settings cannot generate a better
offspring for a given number of consecutive generations, they
are randomly initialized. In [31], three groups of parame-
ters were designed according to a triangular wave function,
the Cauchy distribution model and the Gaussian distribution
model, respectively. In [7], an adaptive parameter adjustment
scheme was devised by integrating the population informa-
tion with respect to the standard deviation of fitness values
and the sum of the standard deviations of each dimension
of the population. In [42], an improved adaptive parameter
strategy in terms of the one in SHADE [41] was designed.
Particularly, this adaptive method incorporates the informa-
tion of the problem landscape into the adaptation of F and
CR by constructing spatial-distance-based neighborhoods for

each individual and then only considering the values of CR
and F related to the successful neighborhoods to adjust the
parameter settings of this individual.

These adaptive methods have aided DE to gain promising
performance in solving optimization problems [10], [22],
[32], [42], [49]. As a result, they are frequently utilized by
many researchers to cooperate with their newly designed DE
variants to tackle optimization problems [14], [27], [37], [42],
[67]. Likewise, this paper also directly uses the parameter
adaption scheme in SHADE [41] to collaborate with the
devised GSGDE to solve optimization problems.

III. PROPOSED GAUSSIAN SAMPLING GUIDED DE
In most existing mutation strategies [24], [27], [31], [32],
[34], [35], individuals are usually evolved by the ones in
the population or historical positions. All these positions are
actually seen or visited by the population. Such information
may provide limited guidance for individuals to traverse the
problem space diversely once all individuals fall into local
regions. Such a phenomenon is particularly common in the
complex problem space with complicated landscape contain-
ing numerous saddle areas and local basins. To alleviate this
dilemma, high mutation diversity is highly required, such that
individuals can traverse the problem space in diverse direc-
tions and at the same time explore the complex landscape
with slight intensification to approach optimal regions and
exploit the found promising regionswith slight diversification
to escape from local basins.

With the above purpose, this paper designs a Gaussian
sampling guided mutation strategy, named ‘‘DE/current-to-
gselite/1’’, which utilizes the unseen information sampled
by the Gaussian distribution to guide the evolution of indi-
viduals. Cooperated with the binomial crossover scheme,
a Gaussian sampling guided DE (GSGDE) is developed in
this paper to solve optimization problems effectively.

A. DE/current-to-gselite/1
Specifically, themajor principle of ‘‘DE/current-to-gselite/1’’
is to utilize an unseen guiding exemplar, which does not
exist in the population, to update each individual. However,
on the one side, the mutation scheme should afford high
mutation diversity for the population, such that individuals
could traverse the complex solution space in diverse direc-
tions. On the other side, this mutation strategy should also
guide individuals to move towards promising regions with a
high probability, such that fast convergence could be ensured.
To achieve the above purpose, we randomly sample an unseen
guiding exemplar for each individual by the Gaussian distri-
bution model around the elites in the current population.

To be concrete, provided that NP individuals are kept,
we first sort individuals from the best to the worst according
to their fitness values. Next, we select the top best NEI indi-
viduals to constitute an elite group. Subsequently, for each
updated individual, we first select an elite individual (denoted
as xrandE) randomly from the elite group as the mean vector
of the Gaussian distribution model, and then calculate the
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standard deviation of the Gaussian distribution as follows:

σd =
ε

NEI − 1

NEI∑
i=1

∣∣xi,d − xrandE,d
∣∣ (13)

where NEI is the number of elite individuals chosen from the
population and d represents one of the dimensions; xrandE
is a randomly chosen elite individual from the elite group;
xi is the i th elite individual in the elite group, ε represents
a random value used to ensure that the calculated standard
deviation for the Gaussian distribution is small, so that it can
randomly generate a promising leading exemplar for each
individual around the selected elite. Therefore, we randomly
generate a value for ε from [1.0E-04, 1.0E-03] in this paper.
In addition, it should be noted that if the computed standard
deviation of one dimension is 0, we reset it as 1.0E-04.

Subsequently, we randomly sample a leading exemplar for
the ith individual (xi) in the population by using the Gaussian
distribution model with the mean vector configured as the
selected elite xrandE and the computed standard deviation in
the following manner:

xgselite = Gaussian(xrandE, σ ) (14)

where xgselite is the sampled guiding exemplar for the indi-
vidual to be updated. It should be noticed that the univariate
Gaussian distribution model is employed to generate a guid-
ing exemplar thanks to its low computational complexity.
Additionally, it also deserves mentioning that if the sampled
value of one dimension in xgselite is out of the search range
of the optimization problem, it is resampled by the Gaussian
distribution until it is within the search range.

With the sampled guiding exemplar xgselite, each individual
(xi) in the current population is mutated in the following way:

vi = xi + F∗
i (x

gs
elite − xi) + F∗

i (xr1 − x̂r2) (15)

where vi is the mutant vector, xgselite is the guiding exemplar
randomly sampled by the Gaussian distribution model, xi is
the ith parent in the population, xr1 is a random individual
uniformly chosen from the population, x̂r2 is one individual
chosen randomly from P∪A, with P denoting the population,
and A representing an external archive utilized to store the
outdated parents which are replaced by their offspring. Such
selection of x̂r2 is directly borrowed from JADE [21] to
ensure high mutation diversity. It deserves notice that r1 ̸=

r2 ̸= i. However, it should be mentioned that different from
JADE [21], when generating the random difference vector
between the two randomly chosen individuals in Eq. (15),
we place the better one as xr1 and the worse one as x̂r2 to
create a directional random difference vector. By this means,
the convergence of the updated individual to optimal zones
can likely be accelerated. In addition, it also should be paid
attention to that if the value of one dimension in vi is
out of the search range of the optimization problem, it is
directly set as the associated lower or upper bounds of that
dimension.

Taking deep analysis of Eq. (15), we discover that
the devised mutation scheme preserves the following
advantages:

1) The devised mutation strategy affords high mutation
diversity for the population. Consequently, the popu-
lation could search the complex problem space dis-
persedly and preserves great chances to get out of
local regions. On the one side, the leading exemplar
for mutating each individual is sampled randomly by
a Gaussian distribution model. This indicates that the
leading exemplars of distinct individuals are likely dif-
ferent. Even though the mean value and the standard
deviation of the Gaussian distribution are occasionally
the same for some individuals, the generated guiding
exemplars of these individuals are also likely different.
On the other side, the mean of the Gaussian distribution
model is a randomly chosen elite from the elite set.
Therefore, it is highly possible that the mean of the
Gaussian distribution is distinct for distinct individ-
uals. Besides, during the calculation of the standard
deviation, thanks to the random generation of ε from
[1.0E-04, 1.0E-03], the standard deviation value of the
Gaussian distribution model is also likely distinct for
different individuals. In these two ways, high search
diversity can be maintained with the help of the devised
mutation strategy.

2) The designed mutation strategy also ensures fast con-
vergence of individuals to optimal areas. On the one
hand, the sampled guiding exemplars for all individ-
uals are randomly generated around the elite ones in
the current population. Since these elites are the top
best ones, they likely locate at or around the optima
in the solution space. Therefore, with the direction
of the guiding exemplars, individuals preserve high
probabilities to move towards optimal areas. On the
other hand, due to the small sampling range defined
by the calculated standard deviation, it is likely that
the Gaussian distribution generates a more promising
guiding exemplar than the associated elite randomly
selected from the elite group. With the direction of
such guiding exemplars, individuals are anticipated
to approach optimal zones faster. In the above two
manners, fast convergence of individuals to optimal
solutions is expectedly ensured.

3) Together, the devised mutation is capable of main-
taining a promising balance between search diversity
and search convergence to traverse the complex solu-
tion space. Specifically, with the random selection of
the elites along with the dynamics of the calculated
standard deviation and the random sampling of the
Gaussian distribution, the devised mutation strategy
makes dynamic compromises between exploration of
the problem space to locate promising regions and
exploitation of the located optimal zones to subtly find
high-accuracy solutions.
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B. DYNAMIC ADJUSTMENT OF THE NUMBER OF ELITE
INDIVIDUALS
In the devised mutation scheme, elites in the current popu-
lation are employed to sample leading exemplars to guide
the mutation of individuals. Therefore, the number of elite
individuals, namely NEI, have great impact on the diversity
of mutating individuals. Specifically, a larger NEI provides
more elites for the Gaussian distribution to sample and con-
sequently, higher mutation diversity is obtained. This is of
great usefulness for the population to traverse the problem
space in distinct directions. However, such too high diversity
may do harm to the convergence of the population to optimal
zones. By contrast, a smaller NEI leads to that fewer elites
participate into the Gaussian sampling. This may result in that
many guiding exemplars are sampled around the same elite.
This is actually very profitable for individuals to converge
to optimal zones fast and subsequently subtly exploit the
zones to locate high-accuracy solutions. However, a too small
NEI may lead to that the population moves towards optimal
areas in very limited directions, and thus individuals in the
population are at great danger of stepping into local regions.
Such analysis indicates that a fixed NEI is not suitable for
the designed mutation scheme to help DE achieve good
performance.

Particularly, it is well recognized that at the early evolu-
tion stage, high diversity is generally preferred to traverse
the problem space in various directions to locate optimal
regions fast, while at the late evolution stage, fast convergence
is generally favored to exploit the located optimal regions
subtly to seek as high-accuracy solutions as possible. Based
on this consideration, this paper designs a simple dynamic
adjustment for NEI.

Before the dynamic adjustment, we let NEI be related to
the population size NP for better adjustment as follows:

NEI =
⌈
p∗NP

⌉
(16)

where p denotes the ratio of the elite individuals out of the
whole population. ⌈x⌉ represents the ceil function that returns
the smallest integer that is larger than x.
Subsequently, instead of directly adjusting NEI, this paper

designs the following dynamic adjustment scheme for p:

p = pmax − (pmax − pmin)∗
nfe

FESmax
(17)

where nfe denotes the number of already consumed fitness
evaluations, while FESmax represents the given maximum
number of fitness evaluations. pmin and pmax are the lower
limit and the upper limit of p, respectively. In this paper,
for better adjustment, we set pmin = 1/2∗pmax . Since the
devised mutation scheme is a little similar with ‘‘DE/current-
to-pbest/1’’ proposed in JADE [21], we set pmax = 0.1 the
same as the recommended setting of p in JADE [21].
With the above dynamic adjustment of p, the number of

elite individuals (NEI) becomes smaller and smaller as the
evolution continues. As a result, not only the selection range

of the mean of the Gaussian distribution model becomes
smaller and smaller, but also the sampling range of the
Gaussian distribution model, which is determined by the
computed standard deviation, becomes narrower and nar-
rower. Therefore, as the evolution goes on, the population
gradually switches from exploration of the problem space
to exploitation of the located optimal areas intensively. This
indicates that the dynamic adjustment of NEI further helps
the population sustain a good compromise between explo-
ration and exploitation. The effectiveness of this dynamic
strategy is substantiated by experiments conducted in
Section IV.E.

C. THE COMPLETE GSGDE
By introducing the devised mutation strategy and the
designed dynamic adjustment scheme for the number of elites
into the DE procedure, the complete GSGDE is developed
with the pseudocode exhibited in Algorithm 1. It should
be mentioned that to relieve GSGDE from the sensitivity
to the settings of CR and F , this paper directly adopts the
adaptive parameter scheme in SHADE [41] to adjust CR and
F during the evolution. Such an adaptive scheme is utilized
because in the literature [7], [35], [42], it has been employed
to successfully help many DE variants achieve good
performance.

Specifically, as exhibited in Algorithm 1, NP random
individuals are first generated and their fitness values are
computed as shown in Line 1. Besides, the two parameter
archives for F and CR in SHADE are initialized to be 0.5 and
the archive to record the obsolete parents is set as an empty set
(Line 2). Subsequently, GSGDE enters the main loop of the
evolution (Lines 3 ∼ 20). During the main loop, the number
of elite individualsNEI is first calculated (Line 5), and then all
individuals are sorted from the lowest to the highest in terms
of their fitness values (Line 6) to get the elites. After that,
for each individual, an elite individual is randomly chosen
from the elite group as the mean of the Gaussian distribution
model and accordingly the standard deviation is calculated
(Line 8). Subsequently, a guiding exemplar is sampled by the
Gaussian distribution model randomly (Line 9), and the asso-
ciated CR and F for the individual are randomly generated
(Line 10). Then, ‘‘DE/current-to-gselite/1’’ is executed to get
the mutation vector and the binomial crossover is performed
to gain the trial vector (Line 11). Next, the selection operation
is carried out along with the update of the archive storing the
obsolete parent individuals and the adaption of the successful
F and CR (Lines 13∼15). After the update of all individu-
als, the two parameter archives for CR and F are updated
accordingly (Lines 17∼19). Then, the next iteration proceeds.
GSGDE continues until the termination criteria is met, which
is usually that the preset number of fitness evaluations runs
out. In the end, the found best solution by the population is
output.

From this algorithm, we can see that except for the fit-
ness evaluation time in each iteration, it takes O(NP∗logNP)
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TABLE 1. The optimal population sizes of all methods on the CEC2017 suite with the three dimensionality settings.

to sort the population and O(NP∗D∗NEI+ NP∗D) to gen-
erate leading exemplars for all individuals. Then, it con-
sumes O(NP∗D) to get trial vectors of all individuals and
another O(NP∗D) to update the three archives. Compre-
hensively speaking, the overall complexity of GSGDE is
O(NP∗logNP+NP∗D∗NEI). In comparison with the classical
DE algorithm,GSGDEdoes not impose severe computational
burden.

Algorithm 1 The Overall Procedure of GSGDE
Input: population size NP, maximum fitness evaluations FESmax ;
1: Generate NP individuals randomly and calculate their fitness; nfe = NP;
2: Set all elements ofMCR andMF as 0.5, and set the archive A= ∅;
3: While(nfe≤ FESmax ) do
4: SF =∅,SCR = ∅;
5: Calculate the values of p and NEI by Eq. (17) and Eq. (16), respectively;
6: Sort individuals from the lowest to the highest with respect to their fitness;
7: Fori = 1:NPdo
8: Randomly choose an elite individual from the topNEI elites asµ and calculate

σ by Eq. (13);
9: Generate xgselite by the Gaussian distribution with µ and σ ;
10: Randomly selectMF,r fromMF and MCR,r fromMCR and then generate

F and CR by Eq. (8) and Eq. (9);
11: Obtain the mutant vector vi by Eq. (15) and then the trial vector ui by

Eq. (6);
12: Calculate the fitness of ui and nfe++;
13: If (f (ui) ≤ f (xi)) then
14: Insert xi into A and put the values of F and CR into SF and SCR,

respectively; xi = ui;
15: End If
16: End For
17: If (SF ̸= ∅ and SCR ̸= ∅) then
18: UpdateMF andMCR by Eq. (10)-(12);
19: End If
20: End While
21: Attain the best solution xbest and its fitness f (xbest );

Output: f (gbest) and gbest

D. DIFFERENCE BETWEEN GSGDE AND EXISTING
SIMILAR DE VARIANTS
The devised ‘‘DE/current-to-gselite/1’’ is similar to two clas-
sical mutation schemes, namely ‘‘DE/current-to-best/1’’ [64]
and ‘‘DE/current-to-pbest/1’’ [21], [41]. In addition, in the lit-
erature, some Gaussian distribution based mutation schemes
have also been designed [28], [71], [72], [73]. In compari-
son with these existing mutation schemes, GSGDE has the
following major difference from them:

1) Instead of directly utilizing existing elites in the current
population as the leading exemplars to update individu-
als as in ‘‘DE/current-to-best/1’’ [64] and ‘‘DE/current-
to-pbest/1’’ [21], [41], ‘‘DE/current-to-gselite/1’’
utilizes an unseen guiding exemplar randomly sampled
by the Gaussian distribution based on elites from the

population to direct the evolution of each individual.
On the one hand, since the number of elite individ-
uals is much smaller than the population size, many
individuals may share the same guiding exemplars
to mutate in ‘‘DE/current-to-pbest/1’’ [21], [41] and
‘‘DE/current-to-best/1’’ [64]. As a consequence, the
mutation diversity of these two classical mutation
schemes is limited. However, the devised mutation
scheme randomly samples a guiding exemplar for
each individual with the Gaussian distribution around
one randomly selected elite. Therefore, the leading
exemplars are likely distinct for different individuals.
Even though one elite may be selected as the mean
vector of the Gaussian distribution for many individ-
uals, the randomly generated guiding exemplars for
these individuals are usually different. As a result, the
devised mutation strategy could afford much higher
mutation diversity for DE. On the other hand, the
leading exemplars in ‘‘DE/current-to-pbest/1’’ [21],
[41] and ‘‘DE/current-to-best/1’’ [64] all exist in the
current population. However, the randomly sampled
leading exemplars in the devised mutation strategy
are all unseen positions by the population. Since they
are all generated by the Gaussian distribution around
the selected elites with small standard deviations, it is
highly possible that the generated guiding exemplars
are better than the selected elites. In this way, individ-
uals are expectedly guided to move towards promising
areas fast but with high mutation diversity. As a whole,
it is anticipated that the devised mutation strategy
provides much better balance between search diversity
and search convergence than the two classical mutation
schemes, and thus it is more effective than the two
classical mutation schemes to help DE obtain better
performance.

2) Unlike existing Gaussian distribution based mutation
strategies [28], [70], [71], [72], [73], which directly
sample a mutation vector randomly for each individual,
the devised mutation scheme first randomly samples
a leading exemplar for each individual and then uses
such a sampled leading exemplar to mutate the individ-
ual. Specifically, in [28], the Gaussian based mutation
randomly generates a mutation vector around a ran-
domly selected individual for each target individual.
Specifically, it first chooses three distinct individuals
randomly from the population and then utilizes one
random individual as the mean and the Euclidean dis-
tance between the other two random individuals as
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the standard deviation of the Gaussian distribution to
randomly sample a mutation vector randomly for each
individual. In [73], for each individual to be mutated,
the designed Gaussian distribution based mutation uti-
lizes the mean position between this individual and
the best individual as the mean and their difference as
the standard deviation of the Gaussian distribution to
randomly sample a mutation vector for the individual.
In [70], for each individual to be mutated, the proposed
Gaussian distribution based mutation utilizes the mean
position among this individual, the best individual, and
a randomly chosen individual as the mean. Then, it uses
the weighted sum of their difference and fitness val-
ues to serve as the standard deviation of the Gaussian
distribution to randomly sample a mutation vector for
the individual. In [71] and [72], the Gaussian distri-
bution is adopted as a local search engine to mutate
each individual. Specifically, it directly utilizes each
individual as the mean and a small fixed value as the
standard deviation to randomly generate a mutation
vector for the individual. Nevertheless, the devised
mutation scheme in this paper randomly generates a
guiding exemplar based on the Gaussian distribution
around one randomly selected elite for each individual.
Thanks to the small sampling range of the Gaussian
distribution, the randomly generated guiding exemplar
is likely better than the selected elite. Therefore, com-
pared with the existing Gaussian distribution based
mutation schemes, individuals mutated by the devised
mutation strategy are likely guided to move towards
optimal regions faster.

IV. EXPERIMENTS
This section performs experiments to substantiate the effi-
ciency and effectiveness of GSGDE comprehensively. To be
concrete, Section IV-A describes the experiment environ-
ments briefly including the used two benchmark prob-
lem suites, the evaluation measurement, and the compared
algorithms. Subsequently, Section IV-B shows the compar-
isons between GSGDE and the compared algorithms on the
CEC2017 problem set. Next, Section IV-C exhibits the com-
parisons between GSGDE and the compared approaches on
the CEC2014 problem suite. At last, Section IV-D presents
investigations on GSGDE by observing the effectiveness
of the designed mutation strategy and the devised dynamic
adjustment scheme for the number of elites.

A. EXPERIMENTAL SETUP
To verify the optimization effectiveness of GSGDE,
we conduct experiments on the latest CEC2014 [55] and
CEC2017 [56] benchmark sets, which has been widely
adopted to test evolutionary computation algorithms includ-
ing DE in the literature [23], [26], [27]. Specifically, the
CEC2017 suite has 29 optimization problems with four
types, namely the unimodal, the multimodal, the hybrid,
and the composition problems, while the CEC2014 suite

has 30 benchmark problems with the same four types.
Tables SI and SII in the supplementary document display
the summarized information of the CEC2017 suite and the
CEC2014 set, respectively. For more concrete information,
please refer to [55] and [56]. In the experiments, to assess
the performance of GSGDE comprehensively, we adopt three
distinct dimensionality settings, namely 30, 50, and 100, for
both benchmark suites.

To comprehensively show the efficiency and effectiveness
of GSGDE, this paper compares it with a number of latest and
well-performed DE variants. Particularly, totally 11 latest and
representative DE algorithms are chosen, namely GPDE [28],
ITGDE [70], DMCDE [32], SEDE [40], FADE [36],
FDDE [30], TPDE [31], CUSDE [23], NSHADE [42],
PFIDE [7], and SDEGCM [71]. To make fair comparisons,
if the compared DE algorithm has not been tested on the
CEC2017 set in the associated paper, we fine-tune its pop-
ulation size NP on the CEC2017 suite with the three dimen-
sionality settings. Otherwise, we directly set the parameters
by following the recommendation in the associated paper.
The concrete fine-tuning results of GSGDE and some com-
pared DE variants for the population size are displayed in
Tables SIII ∼ SX in the supplementary document. According
to these results, Table 1 summarizes the optimal NP of all
methods on the CEC2017 suite with the three dimensionality
settings. It deserves notice that these population size settings
of all methods are also utilized in the experiments on the
CEC2014 benchmark suite.

Unless otherwise elucidated, the maximum number of fit-
ness evaluations is configured as 10000∗D (where D is the
dimension size) for all methods. Additionally, we execute
each method independently 51 times and then employ the
mean value and the standard deviation (std) value over
the 51 independent executions to measure the performance of
the algorithm. In addition, to show the statistical significance,
we perform the Wilcoxon rank sum test at the significance
level of α = 0.05 to compare GSGDE with each algorithm
on each benchmark problem. The symbols ‘‘+’’, ‘‘=’’, and
‘‘−’’ at the upper right corner of each p-value in the tables
indicate that GSGDE obtains significantly better, equivalent
and significantly worse optimization performance than the
compared method on the corresponding problem, respec-
tively. ‘‘w/t/l’’ in the tables count the numbers of ‘‘+’’, ‘‘=’’,
and ‘‘−’’, respectively. To compare the overall optimization
performance of different methods on the entire problem suite,
we also conduct the Friedman test at the significance level of
α = 0.05 to attain the average ranks of all methods on the
whole problem suite.

At last, it should be noted that all methods are run on the
same PC with the Ubuntu 20.04 LTS 64-bit system, along
with 8Gb memory and 4 Intel(R) Core(TM) i5-3470 CPUs.

B. COMPARISON WITH STATE-OF-THE-ART DE VARIANTS
ON THE CEC2017 SUITE
This subsection compares GSGDE with the 11 selected latest
DE algorithms on the CEC2017 problem suite with the three
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TABLE 2. Optimization results of GSGDE and the 11 state-of-the-art DE variants and their comparisons on the 30 D CEC2017 suite.
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TABLE 3. Optimization results of GSGDE and the 11 state-of-the-art DE variants and their comparisons on the 50 D CEC2017 suite.
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TABLE 4. Optimization results of GSGDE and the 11 state-of-the-art DE variants and their comparisons on the 100 D CEC2017 suite.
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TABLE 5. Statistical comparison results between GSGDE and the 11 compared DE methods concerning ‘‘w/t/l’’ and the average rank on the CEC2017 suite
with the three dimensionality settings.

settings of the dimension size, namely 30, 50, and 100.
With the optimal population sizes of all methods listed in
Table 1, the detailed optimization results of all methods on
the 30D, 50D, and 100D CEC2017 sets are presented in
Tables 2∼4, respectively. For convenient observation,
we summarize the statistical comparison results between
GSGDE and the 11 compared DE variants on the CEC2017
suite with the three settings of the dimensionality in Table 5
concerning the average rank and ‘‘w/t/l’’. In particular,
in these tables, ‘‘w/t/l’’ means that in comparison with the
associated compared DE variants, GSGDE performs signif-
icantly better on w problems, equivalently on t problems,
and significantly worse on l problems, respectively. ‘‘Rank’’
represents the average rank of each method attained from
the Friedman test. From Tables 2 ∼ 4 and Table 5, the
results in terms of the comparisons between GSGDE and the
11 compared methods are summarized in the following:

1) As shown in Table 5, concerning ‘‘Rank’’, GSGDE
consistently gets the first rank among all algorithms
on the 30D, 50D, and 100D CEC2017 benchmark
sets. This implies that GSGDE consistently gains the
best overall optimization results among all methods
on the CEC2017 problems with the three dimension-
ality settings. Furthermore, it is also found that the
rank values of GSGDE on the 30D, 50D and 100D
CEC2017 benchmark sets are much lower than those of
the 11 compared algorithms. This implies that GSGDE
consistently is significantly superior to the 11 com-
pared DE algorithms on the CEC2017 set with the three
dimensionality settings. Further observation shows that
the rank value of GSGDE becomes smaller and smaller
as the dimensionality increases. This implies that
GSGDE achieves better and better overall optimization
performance with the dimensionality increasing. This
demonstrates that GSGDE has a good scalability to
solve optimization problems.

2) As displayed in Table 5, in view of ‘‘w/t/l’’, on the
30D CEC2017 benchmark suite, GSGDE gains sig-
nificantly better optimization performance than the
11 compared DE algorithms on at least 12 prob-
lems, and is significantly inferior to them on no more
than 7 problems. Particularly, compared with GPDE,
ITGDE, DMCDE, FDDE, NSHADE and SDEGCM,
GSGDE obtains significantly superior performance on
more than 20 problems. In competition with SEDE
and TPDE, GSGDE is much better both on 18 prob-
lems. On the 50D CEC2017 benchmark set, except
for CUSDE, GSGDE significantly outperforms the
rest 10 compared DE algorithms on at least 15 prob-
lems. Particularly, compared with GPDE, ITGDE,
DMCDE, SEDE, TPDE, NSHADE and SDEGCM,
GSGDE shows significant superiority on more than
20 problems. In comparison with FADE and FDDE,
GSGDEpresents significantly superior performance on
at least 18 problems. On the 100D CEC2017 bench-
mark set, GSGDE shows much superior performance
to the 11 compared DE approaches on more than
19 problems. Particularly, except for PFIDE, GSGDE
is significantly better than the rest 10 compared DE
algorithms on at least 21 problems. Further observa-
tion shows that with the dimension size increasing, the
superiority of GSGDE to most compared DE variants
becomes more and more significant. This indicates that
GSGDE is more effective in dealing with high dimen-
sional optimization problems. Therefore, GSGDE has
a good scalability in problem optimization.

3) As exhibited in Table 5, with respect to the
4 types of benchmark problems, (a) on the two
unimodal problems (F1and F3), GSGDE significantly
beats 5 compared DE variants down on the two 30D
unimodal problems. Confronted with the two 50D
unimodal problems, GSGDE significantly outperforms
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8 compared DE variants on both problems. On the
two 100D unimodal problems, GSGDE is significantly
superior to all 11 compared DE variants on both
problems. Therefore, competed with the 11 compared
DE variants, GSGDE presents increasing superior-
ity as the dimension size grows. This implies that
GSGDE is effective in addressing unimodal optimiza-
tion problems, especially those with high dimension-
ality. (b) On the 7 multimodal problems (F4-F10),
we discover that with the dimension size increasing,
GSGDE gains increasingly superior performance to
the 11 compared DE approaches. Specifically, on the
seven 30D multimodal optimization problems, apart
from FADE, FDDE, CUSDE, NSHADE, and PFIDE,
GSGDE shows significant dominance to the rest 6 com-
pared DE approaches on at least 6 problems. On the
seven 50D multimodal problems, excluding CUSDE
and NSHADE, GSGDE presents significant superi-
ority to the rest 9 compared DE algorithms on at
least 5 problems and presents inferiority on at most
1 problem. On the seven 100D problems, GSGDE
significantly outperforms the 11 compared approaches
on at least 5 problems and exhibits inferiority to them
on at most 2 problems. These discoveries demonstrate
that GSGDE is more effective to optimize multimodal
problems and its superiority to the 11 compared DE
methods becomes more and more significant as the
dimensionality increases. (c) On the 10 hybrid func-
tions (F11-F20), when the dimension size is 30, except
for FADE, GSGDE significantly beats the rest 10 com-
pared algorithms down on more than 5 problems and
presents slight inferiority on at most 2 problems. When
the dimension size is 50, GSGDE achieves equivalent
performance with FADE, CUSDE, and PFIDE, but
displays dominance to the rest 8 compared algorithms
on more than 6 problems and presents inferior per-
formance to them on at most 3 problems. When the
dimension size is 100, except for PFIDE, GSGDE
shows significantly superior performance to the rest
10 compared methods on at least 5 problems and
presents inferiority on at most 2 problems. These
observations demonstrate that GSGDE could solve the
hybrid problems effectively and its dominance to most
of the 11 compared algorithms becomesmore andmore
significant as the dimensionality increases. (d) On the
10 composition functions (F21-F30), GSGDE shows no
inferior performance to the 11 compared approaches
on more than 7 of the ten 30D problems, on at least
6 of the ten 50D problems and on at least 8 of the ten
100D problems. These observations prove that GSGDE
is effective in tackling the complicated composition
problems and its superiority tomost of the 11 compared
algorithms becomes more and more significant with
the dimensionality increasing. In conclusion, with the
dimension size growing, GSGDE shows increasingly
superior performance to the 11 compared DE methods

in coping with the 4 types of optimization problems.
This further demonstrates that GSGDE has a good
scalability to tackle optimization problems.

The above experimental results have verified the great
effectiveness of GSGDE in dealing with the 29 CEC2017
problems with the three settings of the dimensionality. To fur-
ther exhibit its efficiency in dealing with optimization prob-
lems, we compare the convergence behaviors of GSGDE
with those of the 11 compared latest and well-performed DE
approaches on the CEC2017 problem suite with the three
dimensionality settings. Figs. 1 ∼ 3 show the convergence
behaviors of GSGDE and the 11 compared DE methods on
the 30D, 50D, and 100D CEC2017 sets, respectively. From
these three figures, we attain the following findings:

1) From Fig. 1, on the 30D CEC2017 problems, GSGDE
achieves slower convergence than some compared
methods at the early stage but at last converges to
much better solutions than all 11 compared DE variants
on 12 problems (F1, F3, F5, F8, F9, F13, F15, F16,
F21, F23, F24, and F26). On the other 17 problems,
GSGDE obtains very competitive or evenmuch quicker
convergence and higher-accuracy solutions than most
of the compared 11 DE approaches.

2) From Fig. 2, on the 50D CEC2017 problems, GSGDE
obtains much higher-quality solutions and much faster
convergence than the 11 compared DE variants on
6 problems (F3, F5, F7, F12, F17, and F26). On the other
23 problems, GSGDE shows superior performance
concerning the convergence speed and the solution
quality to most of the 11 compared DE algorithms.

3) From Fig. 3, on the 100DCEC2017 problems, GSGDE
performs better than all 11 compared DE methods
in regard to the solution quality and the convergence
speed on 16 problems (F1,F3-F5,F7,F8,F12,F15,F18-
F21, F23, F24, F26, and F30). On the other 13 problems,
it gains very competitive performance with a few com-
pared methods, but shows great dominance to most of
the 11 compared DE methods.

4) In-depth observation shows that with the dimensional-
ity increasing, the dominance of GSGDE in the conver-
gence and the solution quality becomes more and more
significant. This further demonstrates that GSGDE pre-
serves a good scalability in dealing with optimization
problems with higher dimensionality.

According to the above experimental results, GSGDE
is capable of solving different types of optimization prob-
lems and has a good scalability to tackle optimization
problems. The effectiveness and efficiency of GSGDE is
mainly attributed to ‘‘DE/current-to-gselite/1’’. Specifically,
this novel mutation scheme affords a good compromise
between exploration of the problem space to locate optimal
zones fast and exploitation of the located optimal areas sub-
tly to find high-quality solutions. This is mainly attributed
to that ‘‘DE/current-to-gselite/1’’ randomly samples a guid-
ing exemplar for each individual according to the Gaussian
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FIGURE 1. Convergence behaviors of GSGDE and the 11 compared DE variants on the 30D CEC2017 benchmark set.
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FIGURE 2. Convergence behaviors of GSGDE and the 11 compared DE variants on the 50D CEC2017 benchmark set.
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FIGURE 3. Convergence behaviors of GSGDE and the 11 compared DE variants on the 100D CEC2017 benchmark set.
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distribution around one stochastically chosen elite from the
elite group in the population. With this mutation mechanism,
different individuals likely have different guiding exemplars,
which is of great benefit for high diversity maintenance.
Besides, thanks to the small sampling range of the Gaussian
distribution, the randomly sampled guiding exemplars around
elite individuals in the population are expectedly better than
the associated elites with a high probability. This results in
that individuals are mutated by following the guidance of
better exemplars, which is very profitable for individuals to
move towards optimal regions fast. In addition, the devised
dynamic strategy for the number of elites further provides an
additional compromise between exploitation and exploration
for GSGDE. With the evolution proceeding, the population
gradually switches from exploration of the problem space
with more elites to exploitation of the located optimal zones
subtly with fewer elites. The cooperation between the two
major components contributes to the good performance of
GSGDE, which is further demonstrated by the following
experiments.

C. COMPARISON WITH STATE-OF-THE-ART DE VARIANTS
ON THE CEC2014 SUITE
This subsection compares GSGDE with the 11 selected latest
DE algorithms by further conducting experiments on the
CEC2014 problem suite with three settings of the dimension
size, namely 30, 50, and 100, to demonstrate the effectiveness
of GSGDE. Since the CEC2017 set shares similarities with
the CEC2014 suite, we employ the fine-tuned settings of the
population size (as listed in Table 1) for all algorithms on the
CEC2017 set to configure them to optimize the CEC2014
benchmark problems. The detailed optimization results of
all methods on the 30D, 50D, and 100D CEC2014 sets are
presented in Tables 6 ∼ 8, respectively. Table 9 summarizes
the statistical comparison results concerning ‘‘w/t/l’’ and the
average rank.

From Tables 6 ∼ 8 and Table 9, the comparison results
between GSGDE and the 11 compared methods are summa-
rized in the following:

1) Concerning ‘‘Rank’’, GSGDE consistently gains the
first rank among all approaches on the 30D, 50D,
and 100D CEC2014 benchmark sets. This implies
that GSGDE consistently gains the best overall opti-
mization results among all methods on the CEC2014
problems with the three dimensionality settings.
Furthermore, the rank values of GSGDE on the 30D,
50D and 100D CEC2014 benchmark sets are much
lower than those of the 11 compared algorithms. This
indicates that GSGDE consistently displays signifi-
cant superiority to the 11 compared methods on the
CEC2014 suite with the three dimensionality settings.

2) In view of ‘‘w/t/l’’, on the 30D CEC2014 bench-
mark suite, GSGDE gains better optimization per-
formance than the 11 compared DE approaches on
at least 12 problems, and is significantly inferior

to them on no more than 6 problems. Particularly,
compared with GPDE, ITGDE, DMCDE, FDDE and
SDEGCM, GSGDE is significantly superior on more
than 24 problems. In competition with SEDE, FADE,
TPDE, CUSDE, andNSHADE, GSGDE ismuch better
on more than 15 problems. On the 50D CEC2014
benchmark set, GSGDE significantly beats the 11 com-
pared algorithms down on at least 15 problems. Particu-
larly, compared with GPDE, ITGDE, DMCDE, FADE,
NSHADE and SDEGCM, GSGDE shows significant
superiority on more than 20 problems. Competed with
SEDE, FDDE, TPDE, CUSDE, and PFIDE, GSGDE
gains superior performance on at least 15 problems.
On the 100D CEC2014 benchmark set, GSGDE shows
significantly superior performance to the 11 compared
DE variants on at least 14 problems. Particularly,
GSGDE performs significantly better than GPDE,
ITGDE, DMCDE, FADE, FDDE, CUSDE, NSHADE,
and SDEGCM on more than 20 problems. Compared
with SEDE and TPDE, GSGDE is much better on
18 and 17 problems respectively. These findings indi-
cate that GSGDE preserves a good scalability in prob-
lem optimization.

3) With respect to the 4 types of benchmark problems,
(a) on the three unimodal problems (F1, F2, and F3),
GSGDE is superior to 5 compared DE approaches
on all the three 30D unimodal problems and shows
no inferior performance to the 11 compared DE vari-
ants on any problems. On the three 50D unimodal
problems, GSGDE shows significant superiority to
8 compared DE approaches on all the three problems
and shows no inferior performance to 10 compared
methods on any problems. On the three 100D uni-
modal problems, GSGDE is superior to 9 compared DE
approaches on all the three problems and displays no
inferiority to 10 compared algorithms on any problems.
As a whole, in comparisons with the 11 compared
DE approaches, GSGDE presents increasing superi-
ority as the dimension size grows. This implies that
GSGDE is effective in addressing unimodal optimiza-
tion problems, especially those with high dimension-
ality. (b) On the 13 multimodal problems (F4-F16),
we discover that with the dimension size increasing,
GSGDE gains increasingly superior performance to the
11 compared DE approaches. Specifically, on these
problems with the three different dimension sizes, apart
from TPDE, CUSDE, and NSHADE, GSGDE presents
great dominance to the rest 8 compared DE approaches
on more than 10 problems and exhibits inferior per-
formance to them on at most 3 problems. These dis-
coveries demonstrate that GSGDE is more effective to
optimize multimodal problems. (c) On the 6 hybrid
functions (F17-F22), when the dimension size is 30,
except for SEDE, FADE, TPDE, CUSDE, and PFIDE,
GSGDE significantly beats the rest 6 compared algo-
rithms down on at least 4 problems and shows slightly
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TABLE 6. Optimization performance comparisons between GSGDE and the 11 state-of-the-art DE variants on the 30D CEC2014 suite.

VOLUME 11, 2023 80935



W.-X. Ji et al.: Gaussian Sampling Guided DE Based on Elites for Global Optimization

TABLE 7. Optimization performance comparisons between GSGDE and the 11 state-of-the-art DE variants on the 50D CEC2014 suite.
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TABLE 8. Optimization performance comparisons between GSGDE and the 11 state-of-the-art DE variants on the 100D CEC2014 suite.
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inferior performance on at most 1 problem. When the
dimension size is 50, GSGDE achieves equivalent per-
formance with SEDE, FADE, FDDE, TPDE, CUSDE,
and PFIDE, but presents great dominance to the rest
5 compared approaches on at least 4 problems. When
the dimension size is 100, excluding PFIDE, GSGDE
shows better performance than the rest 10 compared
approaches on more than 3 problems and exhibits infe-
rior performance to them on at most 2 problems. These
discoveries demonstrate that GSGDE could solve the
hybrid problems effectively and its dominance to
most of the 11 compared algorithms becomes more
and more significant as the dimensionality increases.
(d) On the 8 composition problems (F23-F30), GSGDE
shows much better performance than GPDE, ITGDE,
DMCDE, FDDE, NSHADE, and SDEGCM on more
than 5 problemswhen the dimensionality is 30.When it
comes to the 50D composition problems, GSGDE per-
forms significantly better than ITGDE and NSHADE
on at least 5 problems. Confronted with the 100D com-
position problems, GSGDE significantly outperforms
DMCDE, FDDE, NSHADE, and SDEGCM on at least
5 problems. These discoveries prove that GSGDE is
effective in coping with the complicated composition
problems.

In summary, the above experimental results have demon-
strated that with the dimension size growing, GSGDE shows
increasingly superior performance to most of the 11 com-
pared DE approaches in coping with the CEC2014 problems.
This further demonstrates that GSGDE has a good scalability
in coping with optimization problems.

D. DEEP INVESTIGATION ON GSGDE
This subsection carries out experiments on the 50DCEC2017
problem set to observe the effect of the two major techniques
on the optimization performance of GSGDE.

1) EFFECTIVENESS OF THE DEVISED
‘‘DE/CURRENT-TO-GSELITE/1’’
This subsection performs experiments extensively to tes-
tify the effectiveness of the devised mutation strategy
‘‘DE/current-to-gselite/1’’. For this purpose, we develop dif-
ferent variants of GSGDE to make comparisons.

First, since ‘‘DE/current-to-gselite/1’’ is a little simi-
lar with ‘‘DE/current-to-pbest/1’’ [21] and ‘‘DE/current-to-
best/1’’ [64], we directly replace the devisedmutation scheme
with the two classical ones and thus two variants of GSGDE
are developed, which are denoted as ‘‘GSGDE-pbest’’ and
‘‘GSGDE-best’’, respectively.

Second, in the devised mutation strategy, for each individ-
ual, we select an elite randomly from the elite group as the
mean vector of the Gaussian distribution model. To demon-
strate the effectiveness of this scheme, we utilize the mean
position of all elites in the elite group as themean of the Gaus-
sian distribution to sample guiding exemplars. In particular,

the mean of all elites is computed as follows:

µ1 =
1

NEI

NEI∑
i=1

xi (18)

where µ1 denotes the mean of all elites, xi is the ith elite in
the elite group, and NEI is the number of elite individuals.
Replacing the randomly selected elite in Eq. (14) with the
computed µ1, we develop another variant of GSGDE, which
is denoted as ‘‘GSGDE-mean’’.

Third, in the devised mutation strategy, we utilize the
Manhattan distance to calculate the standard deviation of the
Gaussian distribution as shown in Eq. (13). To demonstrate
the effectiveness of this scheme, we utilize another two pop-
ular distance measures to compute the standard deviation of
the Gaussian distribution, namely the Euclidean distance and
the Chebyshev distance. Specifically, the Euclidean distance
based standard deviation is computed as follows:

σ1,d = ε∗

√√√√ 1
NEI − 1

NEI∑
i=1

(xi,d − xrandE,d )2 (19)

where xrandE is the associated elite which is chosen from the
elite group randomly and is the same as the one in Eq. (14).
xi is the ith elite in the elite group, d represents one of the
dimensions, NEI is the number of elite individuals, and ε is
the same as the one in Eq. (13) and also randomly sampled
from [1.0E-04, 1.0E-03].

The Chebyshev distance based standard deviation is calcu-
lated as follows:

σ2,d = ε∗ max
i,j∈[1,NEI ]

∣∣xi,d − xj,d
∣∣ (20)

where xi and xj are the ith and the jth elites in the elite group,
respectively. d represents one of the dimensions. ε is the same
as the one in Eq. (13) and also randomly sampled from [1.0E-
04, 1.0E-03].

By replacing the standard deviation of the Gaussian dis-
tribution in GSGDE with these two new ones, another two
variants of GSGDE are developed, which we denote as
‘‘GSGDE-Eul’’ and ‘‘GSGDE-Che’’, respectively.

Fourth, in the devised mutation strategy, for the scaling
parameter ε as shown in Eq. (13), we randomly sample a value
for it from [1.0E-04, 1.0E-03] for diversity maintenance.
To demonstrate the effectiveness of this scheme, we develop
different variants of GSGDE by using different fixed values
of ε from 1.0E-05 to 1.0E-01.

Fifth, in the devised mutation strategy as shown in Eq.
(15), to generate the random difference vector, we randomly
choose x̂r2 from P∪A and randomly select xr1 from the pop-
ulation P. To demonstrate the effectiveness of this scheme,
we develop another two variants of GSGDE. In the first
variant, both xr1 and x̂r2 are stochastically chosen from the
populationP. That is, the archiveA is removed in this version.
We denote it as ‘‘GSGDE-WA’’. In the second variant, both
xr1 and x̂r2 are randomly selected from P∪A. This version is
represented as ‘‘GSGDE-2PA’’
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TABLE 9. Statistical comparison results between GSGDE and the 11 compared DE algorithms concerning ‘‘w/t/l ’’ and the average rank on the CEC2014
set with the three different dimensionality settings.

TABLE 10. Comparison results between the devised GSGDE and its variants on the 50D CEC2017 set.

After the above preparation, we carry out experiments on
the 50D CEC2017 set to compare the above developed vari-
ants with GSGDE. Their comparison results are displayed in
Table 10. Observing this table, we get the following findings:

1) As displayed in the first part of Table 10, it is found
that GSGDE ranks the first place among the four
GSGDE variants. This implies that GSGDE gains the
best overall performance among the four algorithms.
In particular, GSGDE attains the best performance on
16 problems, while the three variants gain the best
results on no more than 10 problems. This further
proves the superiority of GSGDE to its three variants.
These two findings substantiate the great effectiveness

of ‘‘DE/current-to-gselite/1’’. Specifically, compared
with ‘‘DE/current-to-pbest/1’’ and ‘‘DE/current-to-
best/1’’, ‘‘DE/current-to-gselite/1’’ shows significant
superiority. This demonstrates that the superiority of
using the Gaussian distribution model based on elites
in the population to sample guiding exemplars for
individuals to directly using the elites as the guiding
exemplars. Compared with ‘‘GSGDE-mean’’, GSGDE
is significantly superior. This demonstrates the supe-
riority of using one random elite as the mean vector
of the Gaussian distribution to using the mean position
of all elites as the mean of the Gaussian distribution.
Comprehensively speaking, the superiority of
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TABLE 11. Comparison results between GSGDE with the dynamic adjustment mechanism for the number of elites and the ones with distinct fixed values
of p on the 50D CEC2017 benchmark problems.

‘‘DE/current-to-gselite/1’’ to the three compared muta-
tion schemes mainly benefits from that it affords much
higher mutation diversity for the population, such that
individuals could search the problem space in quite
diverse directions to find promising regions.

2) As shown in the second part of Table 10, on the
one hand, GSGDE achieves a much lower rank value
than GSGDE-Eul and GSGDE-Che; on the other hand,
GSGDE attains the best performance on 18 problems,
whereas the compared two variants perform the best
on no more than 9 problems. These two observations
verify the great superiority of the Manhattan distance
based standard deviation calculation for the Gaus-
sian distribution to the compared two ways, namely
the Euclidean distance based standard deviation cal-
culation and the Chebyshev distance based standard
deviation calculation. Such great superiority of the
Manhattan distance based standard deviation mainly
profits from that the Manhattan distance offers more
accurate assessment of the difference between the
selected elite and the other ones with respect to each
dimension.

3) As shown in the third part of Table 10, we discover that
GSGDEwith the dynamic strategy for ε obtains a much
smaller rank value than those with the 5 fixed values of
ε. Besides, GSGDE with the dynamic strategy attains
the best performance on 14 problems, whereas GSGDE
with the fixed values attain the best performance on no
more than 5 problems. These observations substantiate

the great effectiveness of the dynamic scheme for ε.
In particular, such superiority of the dynamic scheme is
mainly ascribed to that it potentially affords a dynamic
compromise between exploitation and exploration for
the population to search the problem space appropri-
ately. Concretely, the random generation of ε from
[1.0E-04, 1.0E-03] could let the standard deviation of
the Gaussian distribution for distinct individuals be
different. On the one hand, the diversity with respect
to the Gaussian distribution is promoted, and thus high
search diversity is accordingly sustained during the
iteration; on the other hand, the dynamic change of ε

results in the dynamic change of the sampling range of
the Gaussian distribution. When ε is small, the Gaus-
sian distribution samples guiding exemplars around the
associated elites with a narrow range, which increases
the probability of generating a better exemplar than the
associated elite. In this case, fast convergence to opti-
mal regions could be achieved. By contrast, when ε is
large, the Gaussian distribution samples guiding exem-
plars with a wide range. In this situation, the probability
of generating an exemplar far from the associated elite
is promoted. This is profitable for individuals to get
out of local regions once the associated elites step
into local zones. Hence, with the dynamic genera-
tion of ε, GSGDE dynamically maintains a promising
balance between search convergence and search diver-
sity to traverse the problem space to seek satisfactory
solutions.
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4) As shown in the fourth part of Table 10, we dis-
cover that GSGDE obtains a much smaller rank value
than GSGDE-WA and GSGDE-2PA. Besides, GSGDE
gains the best performance on 15 problems, whereas
the other two variants attain the best performance on at
most 8 problems. These observations show the superi-
ority of randomly selecting xr1 from P and randomly
choosing x̂r2 from P∪A to randomly choosing both xr1
and x̂r2 from the population P and randomly selecting
them both fromP∪A. This ismainly because the former
selection scheme for the selection of the two random
individuals helps DEmaintain a better balance between
exploration and exploitation than the latter two selec-
tion schemes.

Based on the above experimental results, the effectiveness
of ‘‘DE/current-to-gselite/1’’ including the techniques within
this strategy has been verified. In particular, it makes signifi-
cant contribution to the promising performance of GSGDE.

2) EFFECTIVENESS OF THE ADAPTIVE ADJUSTMENT OF THE
NUMBER OF ELITES
This subsection aims to testify the effectiveness of the
designed dynamic scheme for the number of elites. For this
purpose, distinct fixed values (from 0.05 to 0.50) are set
for p in Eq. (16) instead of the dynamic adjustment of
p. Then, we make comparisons between GSGDE with the
dynamic scheme and the ones with these distinct fixed p on
the 50D CEC2017 benchmark set. The comparison results
are presented in Table 11. Observing this table, we gain the
following discoveries:

1) Concerning ‘‘Rank’’, GSGDE with the adaptive
scheme attains the smallest rank value among all
GSGDE variants. This proves that GSGDE gains
the best overall performance on the entire 50D
CEC2017 set. This proves the effectiveness of the
designed adaptive mechanism for controlling the num-
ber of elites.

2) Further observation shows that GSGDE with the adap-
tive scheme achieves the best results on 11 problems,
whereas the ones with the fixed values of p gain the best
performance on no more than 5 problems. This further
shows the superiority of the designed adaptive scheme
for the number of elites to the fixed number of elites.
Such superiority ismainly attributed to that the adaptive
strategy affords a special way for GSGDE to balance
exploration and exploitation. Specifically, as the evolu-
tion continues, the number of elites becomes smaller
and smaller, leading to that the selection range of
the mean vector of the Gaussian distribution becomes
narrower and narrower. Therefore, with the evolution
proceeding, GSGDE gradually switches from concen-
tration on exploring the problem space to focus on
exploiting the located optimal regions.

3) In-depth observation reveals that on different optimiza-
tion problems, the best number of elites is distinct for

GSGDE to achieve the best performance. This means
that a lot of effort is needed to fine-tune this parameter
for GSGDE to attain good optimization performance.
However, with the help of the devised adaptive strategy,
GSGDE could alleviate its sensitivity to this parameter,
and thus effort for fine-tuning the number of elites can
be saved.

On the whole, the above experimental results have proven
that the devised two techniques are of great use for GSGDE
to acquire good optimization performance in tackling opti-
mization problems. With the cohesive cooperation between
these two techniques, GSGDE is anticipated to keep a good
and dynamic balance between search convergence and search
diversity to explore and exploit the problem space to seek
high-accuracy solutions.

V. CONCLUSION
This paper has designed a new mutation scheme termed as
‘‘DE/current-to-gselite/1’’ for DE to deal with global opti-
mization problems. Instead of directly using existing elite
individuals to mutate the population, the devised mutation
scheme randomly samples a leading exemplar for each indi-
vidual to direct its mutation according to the Gaussian distri-
bution around one randomly chosen elite in the population.
By this means, the guiding exemplars for distinct individuals
are likely different and hence high mutation diversity can be
sustained. This is of great help for DE to traverse the problem
space in diverse directions. In addition, thanks to the small
sampling range of the Gaussian distribution, the generated
guiding exemplar is expectedly better than the associated elite
and thus individuals are anticipated to be guided to promising
areas fast. This is of great use for DE to converge fast to opti-
mal solutions in the space. Besides, to relieve GSGDE from
the sensitivity to the number of elites, we further developed
a dynamic adjustment strategy to dynamically regulate the
number of elites during the optimization. Hence, the popula-
tion gradually switches from exploring the solution space for
seeking optimal regions to exploiting the found optimal areas
intensively for locating high-accuracy solutions. Integrating
the two techniques along with an existing adaptive scheme
for CR and F, we developed a new DE algorithm, called
Gaussian Sampling Guided Differential Evolution (GSGDE).
With the cooperation between the above two techniques,
GSGDE is anticipated to sustain a promising compromise
between exploitation and exploration to traverse the problem
space and thus is anticipated to achieve good optimization
performance.

Experiments have been comprehensively carried out on the
CEC2014 and the CEC2017 problem suites with three dis-
tinct dimensionality settings to substantiate the effectiveness
of GSGDE. In comparison with totally 11 latest and repre-
sentative DE methods on the CEC2017 and CEC2014 sets,
GSGDE performs competitively with or even significantly
outperforms them on different types of benchmark problems.
Particularly, it is proven that GSGDE has a good scalability to
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tackle optimization problems with higher dimensionality and
its superiority to the 11 compared DE algorithms becomes
more and more significant as the dimensionality increases.
Furthermore, verification experiments on the influence of the
two devised techniques on GSGDE have also been executed.
Experimental results have substantiated that the devised two
techniques are of great benefit to help GSGDE achieve good
optimization performance.

The future works of this paper lie in two ways. The first is
to replace the Gaussian distribution with the Cauchy distri-
bution to randomly sample guiding exemplars for individuals
because the Cauchy distribution is very similar to the Gaus-
sian distribution but it preserves a wider sampling range.
Besides, we can also try to hybridize these two distribu-
tion models to generate guiding exemplars for individuals,
such that the advantages of both distribution models can be
assembled to help GSGDEmaintain a better balance between
exploitation and exploration. The other direction is to employ
GSGDE to tackle real-world optimization problems, like the
optimization of the neural network architecture [81], the
optimization of control parameters in wireless power trans-
fer [82], expensive optimization [83], the optimization of
information spreading in social network [84], etc.
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