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ABSTRACT This paper considers a multi-depot heterogeneous vehicle routing problem (MDHVRP) with
time windows, which is very crucial for hazardous materials transportation. For this reason, we formalize
this problem as a multi-objective MDHVRP optimization model, where the actual load dependent risk of
hazardous materials transportation is considered. To solve the optimization problem, we propose a hybrid
multi-objective evolutionary algorithm (HMOEA) and a two-stage algorithm (TSA). In addition, we verify
the performance of the proposed algorithms by experiments on the modified Solomon’s VRPTW examples.
In the experiment, it can be seen from the distribution of Pareto solution sets and the convergence distribution
of IGD values that HMOEA is significantly superior to the other three algorithms in searching for Pareto
solutions, as well as in the convergence and diversity of the algorithm. HMOEA and TSA were compared,
and the minimum cost obtained by TSA was 13.38% lower than HMOEA, while the minimum risk was
81.69% higher thanHMOEA. The advantages of each algorithm in finding solutions in reality were analyzed.
A comparison was made between multi-depots heterogeneous VRP and multi-depots homogeneous VRP in
the C101 instance, and the results showed that scheduling heterogeneous vehicles would reduce risk and
cost.

INDEX TERMS Hazardous materials transportation, actual load, robust multi-depot heterogeneous vehicle
routing problem, hybrid multi-objective evolutionary optimization algorithm, two-stage algorithm.

I. INTRODUCTION
With the rapid economic development, industrial production
activities are increasing, and a large number of hazardous
materials are transported through road transportation net-
works. By the end of 2018, there existed a total of 373 thou-
sand vehicles and 1.6 million relevant practitioners for
hazardous materials transport in China. Among them, road
transport accounted for 70% of the total hazardous materials.
Different from general goods, hazardous materials are prone
to rollover, collision, leakage, burning, explosion, poisoning,
etc. During transportation, and once an accident occurs,
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it may cause serious consequences such as personal injury
and death, property damages, and traffic interruptions [1].
For example, on 13 June 2020, in the middle section of
the Wenling exit interchange ramp of Shenhai Expressway,
a liquefied gas tanker exploded caused 20 deaths and more
than 175 were hospitalized [42]. Because dangerous goods
transport is essential in the national economic development,
it is very necessary to avoid all potential risks as far as
possible during the hazardous materials transportation [3].

With the aid of vehicle network communication technol-
ogy, vehicles can know the location of other things on the road
in real time [4], [5], [6]. In particular, dynamic navigation of
vehicle network can help dangerous goods transport vehicles
avoid crowded areas or places with high accident rate.
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Therefore, vehicle routing problem (VRP) has been widely
concerned in hazardous materials transportation [7], [8]
received extensive attention in hazardous materials, however,
most researches focus on uniform vehicle routing in single
repository, which is inconsistent with the actual situation.
In practice, different types of vehicles are transported
betweenmultiple depots and customers, therefore, it hasmore
practical significance to study the multi-depot heterogeneous
vehicle routing problem (MDHVRP) for hazardous materials
transportation [9], [10]. The transportation risk must be con-
sidered firstly. Usually, the traditional risk model [12], [13]
is used to evaluate the safety of transportation, which defines
the risk as inner product of accident probability and accident
consequence. The accident probability is usually represented
by a random distribution, and the accident consequences
are represented by the number of affected residents within
a certain distance from the accident site [14]. Nonetheless,
it does not make sense to view the traditional risk as
merely transport risk within a road segment. The range of
areas affected by hazardous materials vehicles with different
loads during accidents is also significantly. Therefore, it is
very necessary to consider the actual load dependent risk
of vehicles on the road segment when building the risk
assessment model of MDHVRP.

Because of the above-mentioned reasons, the transporta-
tion of hazardous materials has been taken as a MDHVRP
model in this manuscript at first. A multi-objective vehicle
routing optimization model that simultaneously considers
uncertain transportation risks and costs has been proposed
in this article. According to literature research, although
there are many researches on the optimization of IoV
resources [15], [16], there are few researches the MDHVRP
with time windows for uncertain hazardous materials trans-
port. In this work, the actual load dependent risk of vehicles at
different times along each route is regarded as themain uncer-
tain transportation risk. The transportation risks and costs of
planing routs are used to determine the goals and form a dual
objective problem. A hybrid multi-objective evolutionary
method (HMOEM) based on the Nsga-ii framework and a
two-stage algorithm (TSA) has been proposed in this work
to solve the MDHVRP, which integrates a sequence-based
crossover operator, a route elimination mutation operator
and variable neighborhood descent algorithm to generate
better offspring. TSA decomposes MDHVRP into multiple
single-depot vehicle routing problems in the first stage.
Push-forward insertion heuristic (PFIH) is used to construct
part of the initial population and a HMOEM is used
to solve the routing optimization problem in the second
stage.

The rest of this paper is organized as follows. The
existing relevant studies are introduced briefly in Section II.
The description and formula of MDHVRP are provided in
Section III. The hybrid multi-objective evolutionary method
(HMOEM) is presented in Section IV. Afterwards, the
experimental settings and results are reported in Section V.
Finally, conclusions are given in Section VI.

II. RELATED WORK
As a major issue in the field of transport safety, the
VRP for hazardous materials transportation has been widely
concerned in recent years. Most studies in this area assume
that there is only a single depot and homogeneous vehicles.

However, in reality, there may be multiple depot and
multiple types of vehicles involved in the transportation.
Reference [21] formulated a multi-level programming model
for urban hazardous materials transportation based on the
VRP with multi-depot capacity constraints, which took into
account multiple factors in practical applications. Refer-
ence [22] converted MDVRP into multiple VRPs with a
single depot according to the distance between each depot and
each customer, and then use genetic algorithms to solve each
VRP. Reference [23] proposed a bi-objective optimization
model to minimize the total energy consumption and risk for
MDVRP of hazardous materials transportation, focusing on
energy consumption. Reference [11] proposed a half open
MDHVRP model for hazardous materials transportation,
which mainly considers that vehicles at multiple depots
can stop at any depot after serving the last customer.
Reference [18] established a low-carbon multi-objective
hazardous materials transportation model and took road
traffic elasticity as one of the weighting factors for hazardous
materials transportation risk calculation. In addition, some
studies have also focused on the transportation of hazardous
materials with different vehicle types, in stochastic trans-
portation networks [19], and with traffic restriction constraint
in inter-city roads [20], where vehicles have different
capacities, transportation costs, and accident probabilities,
etc. [24] focused on building a heterogeneous VRP (HVRP)
model for the transportation of hazardous materials, and
used a variable neighborhood search algorithm to find
the route set with the least total transportation risk. After
that, [25] proposed a bi-objective model for minimizing the
total transportation risk and cost of HVRP for hazardous
materials.

For the modeling of hazardous materials transportation
VRP, risk assessment method is an important content.
Reference [26] studied with the dual objectives of minimizing
the individual risk and transportation cost of vehicles, so as
to avoid the adverse situation that the total risk is not high but
the risk of a vehicle is particularly high. Reference [27] gave
the risk definition based on the real-time loading capacity
of vehicles, and established the vehicle route optimization
model with the objective of minimizing the individual
risk of vehicles and cost. Reference [28] proposed a risk
assessment model for hazardous materials transportation that
considers waiting time and heterogeneous vehicle types.
Taking into account the uncertainty of dangerous goods
transportation, [29] constructed an uncertainty set containing
multiple potential accident situations, and establishes a robust
model for the uncertain parameters. Reference [42] used
Causal Bayesian Network (CBN) to describe the relationship
between risk factors in view of time-varying conditions of
hazardous materials transportation location and environment.
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TABLE 1. Main notations.

In summary, it can be seen that in previous related work,
when considering the transportation of hazardous materials,
most of them only focused on a certain aspect of factors.
For example, [11], [26], and [27] did not consider time
windows, [29] did not consider multiple vehicle types,
and [28] did not consider multiple depots. In this paper,
we define a risk assessment model for hazardous materials
transportation considering heterogeneous fleet, actual load
dependent risk of vehicles, and stochastic time-dependent
population density of road segments. A multi-objective vehi-
cle routing model that minimizes transportation cost and risk
is established by integrating factors such as multiple depots,
heterogeneous fleet, time windows, and depot distribution
capabilities. A hybrid multi-objective evolutionary algorithm
and a two-stage algorithm are proposed to solve it. The next
section will provide a problem description and model.

III. PROBLEM DESCRIPTION AND FORMULATION
In this section, we define the MDHVRP and then formulate
the mixed integer programming (MIP) model. For simplicity,
we define the related notations in Table 1, Table2 and Table3.

A. PROBLEM DESCRIPTION
We consider that MDHVRP consists of multiple depots,
customers, and different types of vehicles. Each depot has
the number of different types of vehicles and hazardous
materials capacity whichmeans that all depots cannot provide
unlimited vehicles and hazardous materials. An illustrative
example with 2 depots, 13 customers and 2 types of vehicles
is given in Figure 1. Among them, depot d1 has 150 existing
hazardous materials, and has two a-type vehicles with a
maximum load of 50 and one b-type vehicle with a maximum
load of 70. Similarly, depot d2 has 130 existing hazardous
materials and has two b-type vehicles. Each customer’s
demand is 20. As shown in Figure 1, each depot will deliver to
customers based on existing hazardous materials and vehicles
and plan the driving path of the vehicles.

TABLE 2. Main parameters.

TABLE 3. Variable.

We formulate the above problem as a bi-objective MIP
model that minimizes transportation risks and transportation
costs. The goal is to determine the distribution of customers
in the depot and the optimal driving route of the vehicles
with the constraints of the existing hazardous materials and
the number of vehicles in the depot, customer’s demands
and service time windows, and the maximum load of various
types of vehicles. Before formulating the model, several
assumptions are listed as follows:
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FIGURE 1. Multi-depot heterogeneous vehicle routing problem.

1) The amount of hazardous materials owned by each
depot and the number of various types of vehicles are
known.

2) The total number of vehicles and the total volume of
hazardous materials in all depot meet the distribution
requirements.

3) Each vehicle must return to the depot at the time of
departure after completing its transportation task.

4) The demand and time window of each demand point
can be known in advance and the demand cannot be
split.

5) The vehicle must arrive and serve within the predefined
time window of the demand point, and wait if it arrives
early.

6) The maximum load of all types of vehicles is known,
and all vehicles must not be overloaded.

7) The depot must deliver to the demand points according
to the number of existing vehicles and the volume of
hazardous materials.

B. DETERMINISTIC MDHVRP
According to the hazardous materials transportation guide-
lines [30], the formulation of the transportation risk on
arc(i, j) can be expressed as:

Rij = PijCij, (1)

where Pij andCij are the accident probability and the accident
consequence on arc (i, j), respectively.Moreover, the accident
probability includes the probability of the accident and the
conditional release probability for the given accident. The
probabilities can generally be obtained through historical
data [31]. In related studies, the consequences of accidents
are usually expressed in terms of population coverage, which
is measured by the population density and affected area.
However, the areas affected by vehicles with different loads
are obviously different in the event of an accident. The area
affected by a hazardous materials vehicle can be shown in
Figure 2.
The area is regarded as a circle with a center point of

vehicle k and a radius of r . When the vehicle k has served the
demand point i, its carrying capacity when traversing the arc
(h, i) is less than the carrying capacity when traversing the

FIGURE 2. Multi-depot heterogeneous vehicle routing problem.

arc (i, j) [17]. Therefore, the affected area of transport
vehicles is dynamic, and the smaller the cargo load, the
smaller the radius of the affected area. For example, rij is less
than rhi. Similar to the works [24], [25], this study defines the
transportation risk as on arc (i, j), i.e.,

Rij = pvijρijPopijπ (α(y
dv
ijk )

β )2, (2)

where α and β are based on the constant value of the vehicle
type and hazardous materials category, the pvij can be obtained
from historical traffic data.

This paper defines a bi-objective deterministic MDHVRP
model for the transportation of hazardous materials. Aiming
at the safety and economic factors optimized for this problem,
the established objective functions are Eqs. (3) and (4). Eq. (3)
is to minimize the total risk, and Eq. (4) is to minimize
the total transportation cost. In Eq. (4), the first item is the
routing cost, the second item is the fixed cost for all types of
vehicles.

min f1 =
∑
d∈D

∑
v∈Kd

∑
k∈vd

∑
i∈N

∑
j∈N

Rijxdvijk , (3)

min f2 =
∑
d∈D

∑
v∈Kd

∑
k∈vd

(
∑
i∈N

∑
j∈N

tcvijlijx
dv
ijk

+

∑
i∈D

∑
j∈C

f vxdvijk ), (4)

subject to
∑
i∈N

∑
d∈D

∑
v∈Kd

∑
k∈vd

xdvijk = 1, ∀j ∈ C, (5)

∑
j∈N

∑
d∈D

∑
v∈Kd

∑
k∈vd

xdvijk = 1, ∀i ∈ C, (6)

∑
i∈N

∑
j∈C

δjxdvijk ≤ q
v, ∀d ∈ D, v ∈ Kd , k ∈ vd ,

(7)∑
j∈C

∑
k∈vd

xdvijk ≤ |vd |, ∀i ∈ D, d ∈ D, v ∈ Kd , (8)

∑
i∈N

∑
j∈C

∑
v∈Kd

∑
k∈vd

δjxdvijk ≤ Capd , ∀d ∈ D, (9)

∑
i∈N

ydvijk −
∑
i∈N

ydvjik = δj,

∀j ∈ C, d ∈ D, v ∈ Kd , k ∈ vd , (10)∑
j∈C

xdvijk −
∑
j∈C

xdvjik = 0,

∀i ∈ D, d ∈ D, v ∈ Kd , k ∈ vd , (11)
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∑
j∈D

xdvijk =
∑
j∈D

xdvjik = 0,

∀i ∈ D, d ∈ D, v ∈ Kd , k ∈ vd , (12)

ETi ≤ ATi + wi ≤ LTi, ∀i ∈ C, (13)

where Eqs. (5) and (6) ensure that each demand point has and
can only be served by a transport vehicle sent by any depot.
Eq.(7) means that any type of vehicle in all depots should
meet the corresponding load constraint, that is, it cannot be
overloaded. Eq. (8) indicates that the number of vehicles used
to transport hazardous materials in any depot cannot exceed
the number of vehicles owned by it. Eq. (9) indicates that
the quantity of hazardous materials in the depots is limited,
and the total quantity of hazardous materials delivered by any
depot to the demand point cannot exceed its existing quantity
of hazardous materials. Eq. (10) ensures that the needs of
all demand points are met. Eq. (11) ensures the formation
of a vehicle loop, that is to say, each vehicle starts from the
depot and completes its task before returning to the same
depot. Eq. (12) restricts transportation vehicles from being
able to drive from one depot to another. Eq. (13) represents
the hard time window constraint. Although the vehicle must
start delivery within the customers time window, vehicles that
arrive earlier are allowed to wait for the beginning of the
customers time window.

IV. SOLUTION METHODS
This section proposes an efficient hybridmulti-objective opti-
mization evolutionary algorithm (HMOEA) and a two-stage
algorithm (TSA) for solving the multi-objectiveMDHVRP in
the transportation of hazardous materials.

A. HYBRID MULTI-OBJECTIVE OPTIMIZATION
EVOLUTIONARY ALGORITHM
In this section, we propose a hybrid multi-objective evo-
lutionary algorithm to solve MDHVRP, which compre-
hensively considers the customer points to be served by
each depot and the service order in the solution process.
Algorithm 1 gives the main framework of HMOEA. The
specific operations are as follows:

1) REPRESENTATION STRUCTURE
The optimal solution of the MDHVRP problem includes
determining the optimal routes, vehicle types and service
order of each depot. In addition, there are still some
problems to be determined in the transportation of hazardous
materials in theMDHVRP: (1) each depot should servewhich
customers. (2) which type of vehicle should each customer
be served. (3) routes of vehicles serving customers. (4)
whether to meet customer demands, customer time windows
and vehicles capacities. (5) whether it meets the existing
hazardous materials volume and the number of vehicles in the
depot. It is worth noting that a feasible solution represents a
chromosome. A feasible solution consists of a set of routes
x = {γ1, γ2, · · · , γ|x|}, where |x| ≤

∑
d∈D

∑
v∈Kd |Vd |.

A route γi = {d, v, γ i1, γ
i
2, · · · , γ

i
|γi|−2
}, where d and v

Algorithm 1 TheMain Framework of the Proposed HMOEA
Input: Instance data
Output: The non-dominated solution set in Population
Initialization:Population of size |C| for the
RMDHVRP
1: while stopping criterion not met do
2: Parent ← Tournament Selection(Population)
3: Off ← Sequence-Based Crossover (Parent)
4: Off ← Route Eliminate Mutation (Off )
5: for all solutions do
6: x ′← VND (x), Update Off
7: end for
8: Population← Parent

⋃
Off

9: NDSet ← Fast non-dominated sort (Population)
10: Population← Elite strategy select (NDSet)
11: end while

FIGURE 3. Chromosome structure of HMOEA.

represent the depot and vehicle type, ∀γ ij ∈ C and
|γi| − 2 represent the customer sequence and the number of
customers to be served in the i-th route, respectively.

As shown in Figure 3, the chromosome can be expressed
as (d1, v1, 1, 2, 5, ; d2, v2, 3, 4), in which dark grey squares
indicate depots, light grey squares indicate vehicle types and
white squares indicate customers. For example, depot d1 and
depot d2 respectively dispatch one v1-type vehicle and one
v2-type vehicle to serve customers 1, 2, 5 and customers 3,
4 in order. After that, each vehicle returns to its depot after
completing the delivery task.

It is worth noting that the constructed solution cannot
violate all constraints. Similarly, in the process of crossover,
mutation, local search and selection, the direct elimination
method is used to eliminate infeasible solutions. The
constraints mainly include: vehicle load constraints, see
Eq. (7); vehicle quantity constraints, see Eq. (8), depot
inventory constraints, see Eq. (9), and customer time window
constraints, see Eq. (13).

2) POPULATION INITIALIZATION
The initial population are constructed randomly. Specifically,
it is to randomly select a node g from C = (1, 2, · · · , n) to
reorganize C into RC = (g, · · · , n, 1, · · · , g − 1), and then
sequentially insert the customers in RC into the empty route
when the all constraints are met.

3) EVOLUTIONARY OPERATORS
The proposed HMOEA uses crossover and mutation methods
in genetic algorithms (GA) to generate offspring populations.
According to the characteristics of the problem, we use
sequence-based crossover and route eliminate mutation to
generate offspring.
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FIGURE 4. Sequence-based crossover.

a: SEQUENCE-BASED CROSSOVER
This paper uses a sequence-based crossover method to
generate offspring. The main idea is to use the combination
of the first half of a route of parent1 and the second half
of a route of parent2 [32]. As is well known, time windows
constraint greatly increase the difficulty of generating new
route sequences in VRP. Based on sequence crossing, a feasi-
ble route plan will strictly arrange vehicle delivery according
to the customer’s time windows requirements. Therefore,
connecting customers at the front of one route with customers
at the back of another route is likely to form a new route that
meets the time windows constraint. As shown in Figure 4,
randomly select a route from parent1 and parent2, namely
γ1 = (d1, a, 1, 2, 5, d1) and γ2 = (d2, b, 2, 5, 4, d2). And
randomly select a breakpoint from the customer sequence
of γ1 and γ2, and divide each customer sequence into two
sequences. Then replace the second half sequence (5) of γ1 of
parent1 with the second half sequence (4) of γ2 to generate a
new route (d1, a, 1, 2, 4, d1). If there are duplicate customers,
delete the customers in the old route, such as customer 4.
If there are unrouted customers, it is repaired by randomly
inserting a feasible position of parent1, such as customer 5.
In the same way, parent2 can be used as the mainstay to
create a second offspring. The specific process is described in
Algorithm 2.

b: ROUTE ELIMINATE MUTATION
Due to the time windows constraint of MDHVRP, it may
be difficult for vehicles to select customer delivery
routes, resulting in a vehicle that only delivers a small
number of customers. This will make the utilization
rate of a certain vehicle too low, increase the number
of vehicles and transportation distance that could have
been avoided, thus increasing the degree of difficulty
of bi-objective optimization. Therefore, we use the route
elimination method proposed by [33] to eliminate the
route with the fewest customers to improve the above
problems.

Algorithm 2 Sequence-Based Crossover
Input: Two solutions, x1 and x2
Output: The offspring solution x ′1
Initialization: Randomly select two routes γ1 and γ2
from x1 and x2 respectively, feasible = 0, times =
1
1: m1 = (length(γ1)− 3) ∗ (length(γ2)− 3)
2: while (feasible = 0) || (times ≤ m1) do
3: Randomly select two breakpoints bp1 and bp2 from γ1

and γ2 respectively
4: (γ f1 , γ b1 ) = segmentation(γ1, bp1)
5: (γ f2 , γ b2 ) = segmentation(γ2, bp2)
6: γ ′1 = combine(γ f1 , γ b2 )
7: Clear duplicate customers in γ ′1
8: if γ ′1 satisfies time windows constraint and load

constraint then
9: feasible = 1

10: x ′1← replace(x1, γ1, γ ′1)
11: Clear duplicate customers in x ′1
12: if x ′1 does not meet depot distribution capabilities

constraint then
13: feasible = 0
14: end if
15: end if
16: times = times+ 1
17: end while
18: if feasible = 1 then
19: Clear duplicate customers in γ b1
20: Customers in γ b1 insert in x ′1
21: else
22: x ′1 = x1
23: end if

4) LOCAL SEARCH EXPLOITATION
In this paper, in order to enhance the performance of HMOEA
in solving MDHVRP, a VND procedure [34] is used for
local search. The optimal solution of a neighbor structure
does not mean that the structure in another neighborhood is
locally optimal. For the local optimal solution with only one
neighborhood structure, the local optimal solution generated
by the multiple, changeable neighborhood structure of the
VND is more likely to converge [36].

The specific process is described in Algorithm 3, where
x is the solution that meets the local search conditions,
and Lλ is the λth neighborhood structure developed by
the solution. If the current solution x in the λth neigh-
borhood structure searched for the solution x∗ dominates
x(x∗ ≻ x), then x is replaced by x∗. Our neighborhood search
strategy is to search for ⌈0.1|C|⌉ feasible solutions in each
neighborhood structure, and then select the best solution from
these solutions as the new current solution. As used herein,
the neighborhood structures are as follows:
a) L1 Operator : L1 randomly selects a customer on a

route and reinserts it to another feasible position. As shown in
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Algorithm 3 Variable Neighborhood Descent (VND)
Input: A solution x, a set of neighborhood structures Lλ,
λ = 1, 2, . . . ,λmax
Output: The improved solution x
Initialization:λ = 1, randomrate: random value in
[0, 1]
1: if x is non-domination then
2: LSrate = 1%
3: else
4: LSrate = 0.1%
5: end if
6: if randomrate ≤ LSrate then
7: while λ ≤ λmax do
8: x∗← Best (Lλ(x))
9: if x∗ ≻ x then

10: x ← x∗

11: λ = 1
12: end if
13: λ = λ+ 1
14: end while
15: end if

FIGURE 5. Procedure of the local search.

Figure 5(a), L1 selects customer 5 from the current solution
((d1, a, 4, 5, 1, d1), (d2, b, 2, 3, d2)) and reinserts it into the
feasible position after customer 2 to obtain a new solution
((d1, a, 4, 1, d1), (d2, b, 2, 5, 3, d2)).
b) L2 Operator : L2 randomly selects two customers in

the two routes and exchanges their positions. As shown in
Figure 5(b), L2 selects customer 5 and customer 3 from route
(d1, a, 4, 5, 1, d1) and route (d2, b, 2, 3, d2) respectively, and
exchanges their positions to generate a new feasible solution
((d1, a, 4, 3, 1, d1), (d2, b, 2, 5, d2)).

FIGURE 6. Chromosome structure of TSA.

B. TWO-STAGE ALGORITHM
Meanwhile, we propose a two-stage algorithm to solve
MDHVRP. In the first stage, the multi-depot VRP is
transformed into a multiple single-depot VRPs by assigning
customers to the nearest depot according to the distance
between each customer and all depots. Then in the second
stage, we adopt the hybrid multi-objective evolutionary
algorithm to solve the VRP of each single depot transformed
in the first stage separately. Therefore, the algorithm is
different from HMOEA mainly in representation structure
and population initialization. The specific operations are as
follows:

1) REPRESENTATION STRUCTURE
Since each single depot problem is solved separately, the
chromosome does not need to represent depots. As shown in
Figure 6, the chromosome of depot d1 can be expressed as
(v1, 1, 2, 5; v2, 3, 4; v2; v3), in which one type v2 vehicle and
one type v3 vehicle are idle.

2) POPULATION INITIALIZATION
Before initializing the population, according to the distance
between each customer and all depots, customers are assigned
to the nearest depot under the constraints (8)-(9). The specific
allocation method is as follows:

If lc1d1 ≤ lc1d2 , and δc1 ≤ min(
∑

v∈Kd1

∣∣vd1 ∣∣ qv,Capd1 )
−

∑
c∈C ξ

d1
c δc, customer c1 is assigned to depot d1.

Here
∑

c∈C ξ
d1
c δc is the total demand of all customers who

have been assigned to depot d1. ξ
d1
c is a binary variable,which

is 1 when depot d1 serves customer c and 0 in other cases.
If a fast and simple heuristic method is used to obtain

a part of the initial population, the evolution time within a
reasonable local minimum can be significantly reduced [36].
In the population initialization stage, this paper uses the
PFIH of [29] to construct a feasible individual, and then
selects some individuals in its neighborhood. These indi-
viduals are accounted for one-tenth of the initial popula-
tion, and the remaining viable individuals are constructed
randomly.

V. COMPUTATIONAL RESULTS
In this section, the model and algorithm are evaluated
by experiments. The proposed methods are coded with
on MatlabR2019a software platform. All experiments and
algorithms are based on a PC (Core 3.60GHz with 8.0GB of
RAM) under Windows 10.

A. PROBLEM INSTANCES AND EXPERIMENT SETUP
The applicability and effectiveness of HMOEA to the
MDHVRP solution are verified by testing on the modified
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FIGURE 7. Locations of depots and customers.

FIGURE 8. Distribution of pareto solutions at 1000 generations.

Solomon’s VRPTW standard problem set [37]. Its problem
scale is divided into 25 customers, 50 customers and 100 cus-
tomers according to the number of delivery customers.
Here we choose the larger problem scale, i.e., an instance
of 100 customers for experimentation. In each data set,
it includes the coordinate information, demand, service time
and time window of a depot and multiple customers, and
the maximum load of the vehicle. The Euclidean distances
between the customers and the distribution center are used
to express the distances. The travel time is equal to the
corresponding distance.

In this paper, we establish three test examples based on
the customer data of the C101, R101 and RC101 instances in
the Solomon standard dataset. Where the geographic data are
randomly generated in instance R101, clustered in instance
C101 and and a mix of random and clustered structures
in instance RC101. The depot coordinates of the modified
instance C101 are (40, 50), (10, 20) and (80, 90), respectively.
The depot coordinates of the modified instance R101 are (35,
35), (10, 20) and (50, 60), respectively. The depot coordinates
of the modified instance RC101 are (40, 50), (10, 20) and
(50, 60), respectively. Table 4 and Table 5 give the vehicle
attributes and depot attributes, respectively. The red squares
and black circles in Figure 7 represent the locations of

TABLE 4. Vehicles attributes.

TABLE 5. Depots attributes.

depots and customers, respectively. Population density is
randomly generated, ranging from 0 to 50. Besides, ρij is
set to 1. We divide it into four equal periods according to

83076 VOLUME 11, 2023



J. Zhang et al.: Multi-Depot Heterogeneous Vehicle Routing Optimization

FIGURE 9. Values of IGD metric.

FIGURE 10. The minimum risk and cost of HMOEA and TSA.

the depot’s time window. For the population density of some
road sections in periods 1 and 4, increase the fluctuation
range by ±20. For the population density of some road
sections in periods 2 and 3, increase the fluctuation range
by ±10.

The parameters are set as follows: population size is 100;
max generation is 1000; crossover rate is 0.9; mutate rate is
0.1; repeat the experiment 5 times.

B. ALGORITHM EXPERIMENT
This section compares the results of HMOEA with Nsga-
ii [38], Spea2 [39] and HEA [29]. HEA is proposed to
solve the robust multi-objective VRP with time windows for
hazardous materials. Both Nsga-ii and Spea2 are currently
popular high-efficiency multi-objective genetic algorithms,
which have the advantages of fast running speed, good
convergence and distribution of the solution set, and are
the benchmarks for the performance of other multi-objective
algorithms. Since Nsga-ii and Spea2 are not tailor-made for
MDHVRP, they all use the population initialization method
and evolutionary operators of this paper.

Due to MDHVRP is a bi-objective problem, the perfor-
mance of the algorithms can be intuitively demonstrated
through the distribution of the pareto solution set. Figure 8
shows the approximation of each of the four algorithms for
the Pareto-optimal front. It can be seen from the figure that
the pareto solutions obtained by Nsga-ii, Spea2 and HEA are
similar, and the pareto solutions obtained by HMOEA are far
superior to the first two in terms of risk value and cost value in
all three instances. Inverted generational distance (IGD) [40]
is a commonly used index that can simultaneously evaluate
the convergence and diversity of algorithms. In this section,
we use IGD to evaluate the overall performance of the
algorithms. It mainly calculates the average distance from
each point (individual) on the true POF to the nearest solution
in the non-dominated solution set obtained by the algorithm.
The smaller its value, the better the overall performance of
the algorithm. Since the true POF of MDHVRP is unknown,
the non-dominated solutions among all the solutions obtained
after 3000 iterations by the four algorithms compared is
regarded as the true POF. From the convergence distribution
of IGD values in Figure 9, it can be seen that HMOEA
significantly outperforms the other three algorithms in all
three instances.
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FIGURE 11. Final non-dominated solutions found by HMOEA.

C. EXPERIMENTAL RESULTS OF THE HMOEA AND THE
TSA
In real life, most depots prefer to deliver goods to customers
around them. Therefore, we propose a two-stage algorithm
and compare the experimental results with HMOEA in
instance C101. Figure 10 shows the minimum risk value
and cost value obtained by the two algorithms, respectively.
It can be seen that although the minimum cost obtained by
TSA is 13.38% lower than that of HMOEA, the minimum
risk is 81.69% higher than that of HMOEA. For the
transportation cost, it is closely related to travel distance.
TSA is committed to the least distance, that is, each depot
chooses customers gathered around it for distribution. For
risk, it is closely related to vehicle accident rate, population
density and real-time load. HMOEA has more options than
TSA when it comes to deciding which vehicle in which
depot will deliver to which customer. Moreover, it can be
seen from Figure 10(a) that in the optimal risk solution
obtained by HMOEA, the risks borne by each depot are
relatively balanced. Hence, when solving the MDHVRP of
hazardous materials transportation, TSA is more suitable for
enterprises pursuing cost, and HMOEA is more suitable for
the government considering social risk.

D. MODEL EXPERIMENT
We compare multi-depots heterogeneous VRP with multi-
depots homogeneous VRP to demonstrate the benefit of
adopting heterogeneous vehicles in instance C101. Among
them, multi-depot heterogeneous VRP adopts four vehicle
types, with capacities of 200, 120, 80 and 50 respectively.
Figure 11 shows the distribution of the final non-dominated
solutions found by HMOEA. Figure 12 shows the shipping
loading rates of different types of vehicles when the risk
is optimal and the cost is optimal. The computational
results obtained using heterogeneous vehicles are better
in terms of risk and cost. This is because the use of
heterogeneous vehicles enables different types of vehicles

FIGURE 12. Shipping load rates for homogeneous VRP and
heterogeneous VRP.

to be assigned suitable customers for delivery due to all
constraints. As shown in Figure 12, regardless of the type of
vehicle, the lowest-cost solution will have a higher shipping
load rate than the lowest-risk solution. This is because the
transportation cost is closely related to the fixed cost of the
vehicle. When vehicles choose to deliver more customers,
the number of vehicles decreases, load rate increase, and
transportation cost decrease. But vehicles may therefore
travel riskier routes.

VI. CONCLUSION
This paper has considered the vehicle routing optimization
problem of road transport for hazardous materials in practice.
For this reason, more factors such as multiple depots, hetero-
geneous fleets, time windows, vehicle quantity, vehicle actual
load, and depot stock have been considered simultaneously.
Given the actual load dependent risk of vehicles on the
road segment during hazardous materials transport, a multi-
objective MDHVRP model has been proposed to minimize
total travel cost and transport risk. In this model, the risk of
road sections is measured by the actual load of vehicles and
the number of people who could be affected.

To solveMDHVRP, we have devised two algorithms called
HMOEA and TSA. In the algorithm design of HMOEA,
the customer points to be served by the depot and travel
route are optimized at the same time. In the TSA, the first
stage is to assign customers to be served to each depot
according to the distance between the customer and the depot
and the distribution ability of each depot. In the second
stage, the vehicle routing problem for each single depot is
solved separately. Tested on themodified Solomon’sVRPTW
examples. The results have shown that compared with Nsga-
ii, Spea2 and HEA, HMOEA has certain competitiveness in
terms of convergence and diversity. The solutions found by
TSA and HMOEA have their own advantages. The numerical
experiments of RMDHVRP are compared with MDHVRP,
demonstrating the validity of the model.

The future work will consider the impact of uncer-
tain factors such as customer needs, road conditions and
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environment on transportation, and design a dynamic trans-
portation planning.
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