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ABSTRACT To address the issues of insufficient accuracy and low training efficiency in general musi-
cal emotion prediction models, we propose the muSi-ABC architecture for predicting music emotions.
Specifically, in the feature extraction stage of music emotions, we use a benchmark feature set to ensure
that the extracted music emotion features adhere to standardization. In the prediction stage, we introduce
the muSi-ABC architecture which first utilizes a 2D-ConvNet (two dimensional-Convolutional Neural
network) to extract partial critical features in music emotions. Then, the BILSTM (Bi-directional Long Short
Term Memory) neural network is employed to learn contextual sequential information of past and future
music emotions from the obtained partial critical features. Furthermore, the SA (Self-Attention) module
is applied to obtain the complete critical features highly relevant to music emotions, thereby improving
prediction accuracy and training efficiency. Through ablation experiments conducted at different time term
lengths, the roles of ConvNet model and SA module, as well as the advantages of the proposed muSi-ABC
architecture over other ablated models in terms of training efficiency and prediction accuracy, are verified.
Additionally, it is observed that representing music emotions using long term feature information for the same
song can enhance prediction accuracy. Finally, contrast experimental results demonstrate that the proposed
architecture outperforms other benchmark methods in terms of prediction accuracy. Moreover, it is validated
that the outlier points contained in the music emotions features extracted based on the benchmark feature set
help discover the variations trends of music emotions.

INDEX TERMS Predicting musical emotions, long term dependency, partial critical features, complete
critical points.

I. INTRODUCTION

Music is a language that can express emotions, specifically,
the composers and performers express their inner emotions
through music, and the listeners resonate with the emo-
tions expressed in the music, leading to an understanding of
the emotional essence of the music. Musical emotions are
the subjective description of one’s inner psychological state
while listening to music, which is influenced by a combi-
nation of internal subjective factors and external objective
factors [1], [31]. Musical emotions evolve over time as the
melody, harmony, and rhythm of the music change, and they
encompass subjectivity and complexity, as well as the tempo-
ral and continuous nature of music. The emotional features
of music are complex and diverse, providing listeners with
rich emotions. While humans have the ability to perceive the
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rich emotions in music, computers are still unable to do so.
Therefore, predicting the emotions expressed in music poses
a great challenge for computers.

Computers attempt to develop the ability to predict musi-
cal emotions like humans by intelligent computation [32].
Specifically, by using neural networks, the computer can
analyze the features in music emotions that are input into
the model, thus predicting the music emotions. At present,
the prediction network mainly analyzes the input musical
emotion features through the recurrent neural network (RNN)
and identifies the music emotions. In addition, different time
slices of a song represent different emotional forms, and
in order to find the critical information representing musi-
cal emotions in a slice, the convolutional neural network
(ConvNet) is introduced into the RNN to effectively capture
critical musical emotion information within partial time slices
[2]. Furthermore, there is a different correlation between the
musical emotion feature information contained in different
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time slices of the song and the musical emotion. In order
to capture the most relevant feature information related to
musical emotions, the attention module [3] is introduced
into the neural network, which can effectively capture the
feature information most relevant to the musical emotion in
the complete data and thereby improve the accuracy of emo-
tions predicting. Recent related studies focus on the design
of network models based on RNN, with emphasis on the
impact of partial and complete critical information on musical
emotions. Additionally, most studies verify the performance
of the model by predicting the musical emotions of labeled
songs [33], [34].

In practical applications, people predict the main melody
of a song through the auditory system. By considering the
relevance of the context and combining the emotional infor-
mation obtained with the stored musical emotion memory in
the brain, they analyze the complete critical musical emo-
tion information. This process allows humans to predict the
emotions expressed in music. Taking inspiration from this,
we propose the muSi-ABC architecture, which combines
ConvNet, BiLSTM (Bidirectional Long Short-Term Mem-
ory), and SA (Self-Attention) models, to simulate the process
of predicting musical emotions similar to humans. Specifi-
cally, based on ConvNet, the proposed method extracts partial
critical features of musical emotion, uses BiLSTM neural
network to learn the context sequences of musical emotions
past and future from extracted partial critical features, and
introduces SA mechanism to obtain complete critical features
information highly relevant to musical emotions. Finally,
The contrast and ablation experimental results validate the
effectiveness of the proposed method.

Il. RELATED WORK
In studying tasks about musical emotions prediction, the
existent models can be divided into two categories: traditional
machine learning methods and deep learning methods [35].
Most traditional machine learning methods for predict-
ing musical emotions are statistical probability models. The
selection and combination of handcrafted features have
a significant impact on the learning effectiveness of the
model, making them suitable for handling the limited-sample
problems. Initially, researchers often used Support Vector
Machines (SVM) or combined that with other statistical
probability models to classify musical emotions. Although
they achieved good prediction results, there is uncertainty in
the emotional classification criteria. To address this issue,
Cai et al. [4] first introduced using regression training to
solve the music emotions prediction problem. They concate-
nated the features extracted from different feature tools into
114-dimensional musical features and used Support Vector
Regression (SVR) models to identify the Valence and the
Arousal of each music sample. Xiang et al [5] used seven
different music features to identify continuous dimensional
emotional values based on the SVR model and compared it
with the SVM model. The experimental results showed that
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SVR performed better than SVM in predicting dimensional
emotions.

In recent years, with the development of deep learn-
ing, the accuracy of using deep learning methods to pre-
dicting musical emotions has greatly improved [6]. Most
deep learning music emotion prediction methods are based
on neural network models. The design of the network
model affects the prediction accuracy, making it suitable
for handling large-sample data problems. The most com-
monly used neural network models can be divided into
three categories: A. RNNs, B. a combination of ConvNets
and RNNs, and C. Neural networks with fused attention
models.

A. RNNS

Huang et al. [7] incorporated psychoacoustic features into the
ComPareE feature set and used LSTM-RNN to model longer
term contextual information, capture the temporal emotion
features, and predicting musical emotions. Dutta et al. [8]
proposed a Deep Bidirectional Long Short-Term Memory
Extreme Learning Machine (DBLSTM-ELM) model that
combines extreme learning machine to fuse the prediction
results of DBLSTM of music emotions with different time
intervals, and obtain the final decision. RNNs have performed
well in solving temporal problems, but they do not con-
sider the influence of partial critical information on musical
emotions. Meanwhile, LSTM is at risk of overfitting during
the training phase, and there are issues with low training
efficiency and long term dependence.

B. A COMBINATION OF CONVNETS AND RNNS

Naser and Saha [9] used two ConvNet-based L3-Net and
VGGish models with the deep audio embedding method to
aggregate high-dimensional spectrogram features for predict-
ing musical emotions, considering the influence of partial
critical information. However, ConvNets did not consider the
temporality of musical emotions, so the use of the single
ConvNet or RNN cannot solve the musical prediction prob-
lem well. Dang et al. [10] introduced a deep learning model
that combines 2D-ConvNet and RNN to analyze spectrogram
features for predicting musical emotions. Satayarak et al.
[11] proposed a method that combines transfer learning and
CRNN (Convolutional Recurrent Neural Network) to extract
emotional features in both the time-frequency domains of
spectrograms for speech emotion prediction. Liu et al. [12]
introduced a Convolutional Long Short-Term Memory Deep
Neural Network (CLDNN) that combines Mel-Frequency
Cepstral Coefficients (MFCC) spectrograms and Mel fil-
terbank energy spectrogram features on base of standard
acoustic statistics for predicting musical emotions. To address
the low training efficiency problem of LSTM, Hasanzadeh
et al. [13] found that ConvNet can learn directly from
input data in image recognition tasks, thereby reducing the
parameter size of spatial structure information and improving
training efficiency.
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FIGURE 1. The proposed architecture. In the figure, musi-C is the musical
emotion prediction model with ConvNet only, musi-BC is the musical
emotion prediction model with ConvNet and BiLSTM, and muSi-ABC is the
comprehensive model.

C. NEURAL NETWORKS WITH FUSED ATTENTION MODELS
To address the problem of long term dependence in LSTM,
Huang et al. [14] proposed a hybrid LSTM model with
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attention mechanism to alleviate the reduction of learning
contextual information with increasing input term over time
in music. Traditional attention-based models rely heavily on
external information, but the complex and diverse nature of
musical emotions means that the overall emotional expres-
sion is not simply a simple summation of time and emotional
features, but largely depends on the correlation with musi-
cal emotional features. To tackle this problem, Jiang et al.
[3] introduced a Bidirectional Gate Recurrent Unit (BiGRU)
network model with self-attention mechanism, for predicting
musical emotions and themes. Compared with the hybrid
LSTM model that integrates the traditional attention mech-
anism, the experimental results showed that the self-attention
module exhibits stronger fitting ability and higher training
efficiency than the traditional attention model.

In summary, considering the temporal and continuous
nature of music emotions, BILSTM is chosen as the basic
model (referred to as musi-B) in this paper. To address
the problem that LSTM do not consider the influence of
partial critical information on musical emotions and have
low training efficiency, a ConvNet-BiLSTM (in other words,
musi-BC) model is constructed by integrating 2D-ConvNet.
For the long term dependency problem of LSTM, a self-
attention module is further integrated into the musi-BC
model, forming the overall muSi-ABC architecture. By cap-
turing partial critical information, sequential information,
and complete critical information of musical emotions, the
proposed considerate architecture addresses the limitations
of LSTM in predicting long term musical emotions and
improves training efficiency. Thus, it provides an effective
method for enhancing the accuracy and efficiency of long
term musical emotion prediction.

Ill. MATERIALS AND METHODS

A. OVERALL ARCHITECTURE AND FORMAL DEFINITION
The proposed muSi-ABC architecture comprises the
two-dimensional convolutional layer, the bidirectional long
short-term memory layer, and the self-attention layer (see
Figure 1 for the overall model structure).

Firstly, each input song is represented as an
{i1,i2,.. iy} of music emotional features, where M repre-
sents the time dimension and N represents the dimension of
music emotional features. Furthermore, the output of musi-C
(i.e., ConvNet) is denoted as N4> Subsequently, the output
of musi-BC is represented as LP*#, Lastly, the holistic output
of muSi-ABC is denoted by AV *#

IM><N —

B. BACKBONE MODEL

The proposed muSi-ABC architecture simulates the process
of human music prediction and emotional expression. It uti-
lizes the two-dimensional ConvNet model to extract melody
slices, the BiLSTM network to obtain emotional context
information, and the SA module to combine obtained emo-
tional information with stored emotional memory, resulting
in complete critical music emotion information.
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1) 2D-ConvNet

To obtain partial critical features of musical emotions from
the two dimensions of time and music emotion features
in the feature matrix, a two-dimensional CNN is used for
processing, as shown in Figure 2. Taking the prediction of
the continuous emotional values of a song as an example,
the musical emotion feature matrix, i.e., IV jis first input
into the two-dimensional convolutional layer, which extracts
music emotion features with a K(3 x 3) filter while preserv-
ing edge information. Then, BatchNorm2d is used for data
normalization processing to ensure consistent distribution of
the output data after convolution. Next, the ReLU activation
function is used to add non-linear factors and enhance the
ability of the two-dimensional convolutional layer to express
music emotions. Finally, the maximum pooling (MaxPool-
ing) method is selected to reduce the matrix dimension and
preserve some critical information in the music emotion fea-
tures, thus obtaining the feature matrix N4*8 about partial
critical music emotions.

Conv2d(1,4.k(3.3.padding)) Conv2d(4.4.k(3.3,padding))

BatchNorm2d(4)

Input(1"™) +

RelLU Rel.U

BatchNorm2d(4)
Output(N'"%)

Maxpooling(2. stride=2) Maxpooling(2, stride=2)

Convolution Layer] Convolution Layer2

FIGURE 2. 2D-ConvNet.

2) BiLSTM

LSTM has a unidirectional transmission direction, from the
previous time step to the next time step. However, music
emotions have strong internal correlations, and the current
state is not only related to the previous state but also to
the next state. Therefore, the bidirectional LSTM network
is constructed using two LSTM layers [15] to predict past
and future emotional information in music and model the
contextual information of music emotions.

The recurrent unit structure of LSTM includes three gates
and two states, i.e., the input gate i;, the forget gate f;, the
output gate o;, the internal state ¢;, and the candidate state
c;, as shown in Figure 3. Assuming that the external state
at time ¢ is A, and the external state at the previous time
step is ;1. LSTM combines the previous external state ;1
with the current input music emotion feature vector n;. The
three gate values and the candidate state value of the LSTM
recurrent unit are calculated using (1)-(4). The memory unit
¢y is updated using the forget gate f; and the input gate i;
through (5), and the output gate o; transfers the emotional
information of the internal state to the external state A,
through (6).

ir = o(Win, + Uihy—1 + b)) (D
fi =o(Wrn; + Urhi—1 + by) 2
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or = 0 (Wony + Uphi—1 + by) (3)
¢, = tanh(Weny + Uchy—1 + be) 4)
¢ =f ©c—1 +it®C; 5)
hy = oy © tanh(cy) (6)

Here, x € {i, f, o, c} represents the components of Wy, Uy,
and b,, W, is the weight matrix at the current time step, Uy
is the weight matrix at the previous time step, and b, is the
bias vector, o represents the sigmoid function, while tanh
represents the hyperbolic tangent function.

FIGURE 3. The structure of an LSTM recurrent unit.

The BiLSTM model consists of a forward layer and a
backward layer of LSTM. (7) and (8) are utilized to extract
and retain emotional information from both past and future
music. Figure 4 illustrates the structure of the single-layer
BiLSTM network. Assuming that the forward layer follows
the time order while the backward layer follows the reverse
time order, the hidden layer states at time ¢ are defined as hzl
and ht2 The output vector /;of the bidirectional Long Short-
Term Memory layer at time ¢ is computed based on the hidden
layer states in both directions, as depicted in (9).

hi = fWU B _| +W'n + b (7
2 = f(UPh: | + W2n, + b%) ®)
I, =W'hl + w2n? + %) )

In which, W, (x € {1, 2}) represents the weight matrix at the
current time step, U and U? represent the weight matrices at
the previous and next time steps, f represents the activation
function of the hidden layer, W™ (x € {1, 2}) represents the
weight matrix of the hidden layer state at the current time
step, and b* (x € {0, 1, 2}) represents the bias vector. After
two layers of BiLSTM, a serialized music emotion feature
matrix LP*H is obtained.

3) SELF-ATTENTION
The musical emotion feature matrix , which represents
the output of the bidirectional LSTM layer, is inputted to

LDXH
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FIGURE 4. The structure of BiLSTM.

the self-attention layer. Each music emotion feature vector
in matrix L at every time step is treated as a query vector
and compared with the music emotion feature vectors at
different time steps in the song to calculate similarity scores.
After performing weighted averaging, the complete critical
feature information about music emotions is obtained. The
self-attention module structure, with the number of rows and
columns labeled outside each box, is illustrated in Figure 5.
The computation process is as follows

(1) For the input matrix L, the linear mapping is performed
to obtain the Q, K, and V matrices, as shown in (10)-(12).

QKXH WKXDL (10)
KK><H WKxDL (11)
VVXH WVXDL (12)

In which, W, W, and W, are parameter matrices for linear
mapping, and Q, K, and V are matrices composed of query
vectors, key vectors, and value vectors, respectively.

(2) The dot product of the transpose matrices of Q and K
produces the musical emotion feature similarity score matrix
ScoreH | To address the issue of imbalanced softmax dis-
tributions resulting in small gradients when the dot product
result is large, the dot product result is smoothed by scaling
it with the square root v/K of the row-wise scaling of matrix
Q, as shown in (13).

KT

VK

(3) Softmax is applied to normalize the musical emotion
similarity score matrix Score into the probability distribution
matrix. The probability distribution matrix is then multiplied
element-wise with matrix V to obtain the complete critical
feature matrix A *# about music emotions, as shown in (14).

13)

Score =

A = VSoftMax(Score) (14)

C. LOSS FUNCTION
As an essential part of deep learning-based model training,
loss functions such as Mean Squared Error (MSE) and Mean
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¢ Sofimax(Score)

FIGURE 5. Self-attention module.

Absolute Error (MAE) are commonly used in regression
problems. MAE is insensitive to outliers, and the gradient
does not decrease with the decrease of the loss value during
the gradient update process, which is not conducive to model
convergence. On the contrary, MSE is more sensitive to out-
liers, and the gradient decreases as the loss value decreases
during the gradient update process, which is beneficial to
model convergence. Outliers refer to a very small portion of
data with distribution patterns significantly different from the
main data, often containing the trends of things. Therefore,
outliers cannot be simply equated with noise [16]. Consid-
ering the complex and diverse features of music emotions,
outliers in music emotion information may represent sudden
changes in music emotions, but they may also be noise data.
Considering the sensitivity to outliers and convergence, MSE
is chosen as the loss function for model training in this paper.
Its calculation is shown in (15):

N

.. “ 2
MSE() = Z i — 50 (15)

i=1
where N is the total number of musical emotion data points,
yi is the ground truth of the i-th musical emotion data point,
and y; is the regression value of the i-th music emotion data
point.

IV. EXPERIMENTS

A. EXPERIMENT SETTINGS

The experiment is conducted based on the audio data of the
EmoMusic dataset [17], the DEAM dataset [ 18] and PMEmo
dataset [30]. To ensure that the musical emotion feature infor-
mation analyzed by the proposed muSi-ABC model adheres
to standardization, the eGeMAPS feature set, which has been
validated and achieved significant results by researchers, was
selected as the standard. The music emotional features were
extracted from the audio data based on this feature set.

1) DATASET
The EmoMusic dataset, DEAM dataset, and PMEmo dataset
were used in the experiment to train and evaluate the
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effectiveness of the proposed muSi-ABC architecture in pre-
dicting musical emotions. The EmoMusic dataset consists
of 744 songs, and 45-second music slices were extracted
starting from 15 seconds of each song. The slices were
annotated by Amazon Mechanical Turk workers, with at
least 10 annotations per slice. Each slice was labeled with a
static Valence-Arousal (VA) value and dynamic VA values
at intervals of 0.5 seconds. The DEAM dataset expanded
the EmoMusic dataset to 1744 songs. Besides the increased
number of songs, the annotation mode and the length of music
slices remained the same. To validate the generalizability
of the proposed method, in addition to the two Perceived-
style collected datasets mentioned above, the Induced-style
collected PMEmo dataset was also used. The PMEmo dataset
contains 794 full songs, and similar to the above two datasets,
the annotation in the PMEmo dataset was done with the slider
to collect dynamic annotations at a sampling rate of 2 Hz.
Additionally, annotators should make a static annotation for
the whole music excerpt on a nine-point scale after finish-
ing dynamic labeling. To obtain long term musical emotion
information, static musical emotions were predicted based on
continuous time, and the ground truth labels were normalized
to the [0, 1] range. In addition, the whole dataset was ran-
domly divided into two parts, i.e., training set and testing set,
in an 8:2 ratio.

2) FEATURE EXTRACTION

The eGeMAPS feature set was used as the standard for
extracting music emotion features. This feature set is an audio
emotion feature set that consists of 88 statistical acoustic fea-
tures derived from 7 spectral features, 11 frequency-related
features, and 7 energy/amplitude-related features through sta-
tistical calculations [22]. The features in the set and their
correlations have been theoretically and practically validated,
making it a standardized audio emotional feature set [23].
It is widely used in research related to audio emotion pre-
diction [24] and music emotion prediction [25]. Based on
the eGeMAPS feature set, the OpenSmile tool was used
to extract continuous-time music emotion features from the
audio dataset. The time term length, which is defined as the
total length of different time sequences based on different
frame intervals of the same song. Larger frame intervals
generate long-term sample data, while smaller frame intervals
generate long-term sample data. In this paper, a simplified
variation approach was taken, considering only sample fea-
tures of different term lengths for music emotion prediction,
without considering the rationality of frame intervals, and
ignoring the last frame information. Each song was repre-
sented in the form of time x features and saved in the .csv
file. In addition, the advantages of feeding feature sets into
the two-dimensional ConvNets are as follows:

1) Efficient feature extraction: Feature sets (such as
eGeMAPS in this paper) provide pre-computed audio fea-
tures that have been carefully selected and processed to
capture key information from the audio. Using feature sets
instead of raw audio signals reduces the computational
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requirements and number of parameters in the network, thus
improving efficiency and training speed.

2) Enhanced representational power: Feature sets con-
tain rich audio features that capture information related to
different frequencies, temporal features, and semantics. By
employing the two-dimensional ConvNets, we can lever-
age convolutional layers to model the spatial relationships
of these features locally and globally, extracting more dis-
criminative representations. This helps capture the structure,
patterns, and crucial emotion-related information in the
audio.

3) Network interpretability: Using feature sets as input
makes it easier to understand and interpret the network’s
predictions. Since the features in the set have semantic inter-
pretations, we can infer the network’s attention to different
audio attributes and emotion dimensions based on these fea-
tures, thereby increasing the model’s interpretability.

3) MODEL PARAMETERS AND EVALUATION METRICS

The experimental setup included using the Adam opti-
mization algorithm, a weight decay coefficient of 0.0001,
alearning rate of 0.0001, and a batch size of 4 samples. ReLU
was used as the activation function in the model, and the num-
ber of training epochs was set to 80. Based on the eGeMAPS
feature set, 88-dimensional features were extracted from the
source music. Taking a time term of 99 as an example,
the specific parameters of the model are shown in Table 1,
where both the ConvNet and BiLSTM parts consist of two
neural network layers. Connection was used to avoid repeated
representation of input and output layers since the output of
the previous layer serves as the input for the next layer. The
SA module used Q=K=V, and the output layer’s temporal
dimension information was aggregated using the summation
method. The batch size, which is the first dimension of
each tensor and has the same value, is not presented in the
model training parameters. Root Mean Square Error (RMSE)
was used as the accuracy metric, and R2 (R-Squared) was
used as the fitting metric. Additionally, we also used the
concordance correlation coefficient (CCC), which focuses
more on the dynamic trends of prediction results, as the
metric.

TABLE 1. Parameter description of the model.

Model Input / Output  Input[(height, width)] ->[1Input[(99,88)]
ConvNet Input [(1, 99, 88)]
Connection [(4, 49, 44)]
Output [(4, 24, 22)]
BiLSTM Input [(24, 4x22)]
Connection [(24, 72)]
Output [(24, 32)]
SA Input [(24, 32)]
W, kv Linear (in= 32, out = 32)
Output [(32)]
Linear Input [(32)]
Output [(D)]
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B. ABLATION EXPERIMENT

Due to the uncertainty of whether the proposed muSi-ABC
architecture can improve the training efficiency and accuracy
of music emotion prediction, experiments were conducted to
verify the effectiveness of the muSi-ABC architecture and its
components by extracting music emotion features with dif-
ferent temporal distance lengths from the EmoMusic dataset.
The muSi-ABC architecture and its ablation models were
tested. Firstly, the BILSTM was used as the baseline model.
Then, the two-dimensional ConvNet model and SA module
were added to the BILSTM separately. Finally, the ablation
models obtained were BiLSTM (i.e., musi-B), ConvNet-
BiLSTM (i.e., musi-BC), and BiLSTM-SA (i.e., muSi-AB).
Ablation experiments were conducted to evaluate the predic-
tion accuracy (i.e., RMSE), goodness of fit (i.e., R2), and
training efficiency on data with time term lengths of 99, 199,
and 299. The RMSE and R? of each model with the mini-
mum loss during training were compared, and the training
efficiency (TE) was calculated as the ratio of the total training
time to the total number of training epochs, representing the
time required for one training epoch in seconds.

Based on the different term lengths, the regression evalua-
tion results of the ablation models in the valence dimension
and arousal dimension are shown in Table 2 and Table 3.
The proposed muSi-ABC architecture outperformed the other
three ablation models in terms of prediction performance
on datasets with three different term lengths. Moreover, the
prediction accuracy improved as the term length increased.

TABLE 2. The regression evaluation results of each ablation model in the
valence dimension.

Modelvaiance

fTerm length musi-B musi-BC muSi-AB muSi-ABC

RMSE 0.0893 0.0894 0.0850 0.0850

99 R? 0.497 0.466 0.516 0.515
TE/s 55 3.9 5.8 43

RMSE 0.0921 0.0880 0.0839 0.0832

199 R? 0.499 0.503 0.531 0.555
TE/s 9.0 4.7 9.2 52

RMSE 0.0968 0.0862 0.0827 0.0825

299 R? 0.351 0.456 0.584 0.567
TE/s 12.3 5.8 12.4 6.1

1) ANALYSIS OF THE EFFECTIVENESS OF THE
TWO-DIMENSIONAL ConvNet AND SELF ATTENTION

Taking Arousal at the term length of 99 as an example, com-
pared to using musi-B, musi-BC and muSi-AB reduced the
RMSE by 0.0042 and 0.0098, respectively. The result from
Table 3 indicates that the inclusion of the two-dimensional
ConvNet and Self Attention has a positive effect on improving
the prediction accuracy. In terms of the model performance of
fusing SA across the three term lengths, BILSTM-SA reduced
the RMSE by 0.0098, 0.0093, and 0.0123, respectively, com-
pared to BiLSTM. In terms of the model performance of
fusing ConvNet across the three term lengths, ConvNet-
BiLSTM reduced the RMSE by 0.0042, 0.0056, and 0.0089,
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TABLE 3. The regression evaluation results of each ablation model in the
arousal dimension.

Modelarousal

e I musi-B musi-BC muSi-AB  muSi-ABC
RMSE 0.0853 0.0811 0.0755 0.0755
99 R? 0.616 0.632 0.695 0.646
TE/s 55 3.8 5.9 4.1
RMSE 0.0837 0.0781 0.0744 0.0744
199 R? 0.622 0.675 0.716 0.698
TE/s 8.8 4.8 9.1 5.1
RMSE 0.0852 0.0763 0.0729 0.0725
299 R? 0.594 0.679 0.733 0.712
TE/s 12.2 5.8 12.8 6.4

respectively, compared to BILSTM. Additionally, the training
efficiency decreased by 1.7, 4, and 6.4 for ConvNet-BiLSTM
across the three term lengths. These results further demon-
strate the beneficial impact of combining Self Attention and
the two-dimensional ConvNet in enhancing the overall per-
formance of the final muSi-ABC architecture.

2) ANALYSIS OF RMSE AND R2 CURVES

Combining Table 3 and taking Arousal at a term length
of 99 as an example, the RMSE of the overall muSi-ABC
architecture is reduced by 0.0098, 0.0056, and 0 compared
to musi-B, musi-BC, and muSi-AB, respectively, as shown in
Figure 6.

Arousal-RMSE(99)

Ll musi-B

- muSi-AB
0.18 1 — musi-BC

— muSi-ABC
0.16

i
£
|

0.14

RMSE

0.12 1

0.10

0.08 1

Epoch

FIGURE 6. The RMSE curves for each model in Arousal with the term
length of 99.

In Figure 6, although the final muSi-ABC architecture
and muSi-AB architecture have the same RMSE under the
minimum loss, the overall trend of the muSi-ABC archi-
tecture’s RMSE is lower than that of muSi-AB. This result
demonstrates that the overall prediction accuracy of the muSi-
ABC architecture is higher than that of muSi-AB.

The R? of the muSi-ABC architecture relative to musi-B,
musi-BC, and muSi-AB is increased by 0.03, 0.014,
and -0.049, respectively, as shown in Figure 7.
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FIGURE 7. The R2 curves for each model in Arousal with the term length
of 99.

Although the final muSi-ABC architecture is 0.049 lower
than muSi-AB, the R? is influenced by multiple factors.
This result only indicates that the fitting performance of the
proposed muSi-ABC architecture is slightly lower than that
of muSi-AB and does not affect the comparison of their
prediction accuracy.

3) ANALYSIS OF RMSE AND TRAINING EFFICIENCY FOR
DIFFERENT TERM LENGTHS

Combining Table 3 and taking Arousal as an example, the
variation of RMSE under the minimum loss for each model
with increasing distance length is shown in Figure 8.

Arousal Term Length

* &  Arousal-Term(99)
0.084 \'\ il Arousal-Term(199)
\\ .\ 8=  Arousal-Term(299)
0.082
0.080

RMSE

0.078

0.076

0.074

~
.———-—_-_.

0.072

musi-B musi-BC muSi-AB muSi-ABC

FIGURE 8. The RMSE for different term lengths in Arousal for each model.

As shown in Figure 8, for musi-B, the RMSE at a term
length of 299 is 0.0015 higher than that at a term length of
199. This result indicates a decrease in learning ability for
LSTM beyond a certain term length. Using muSi-AB, musi-
BC, and the final muSi-ABC architecture, relative to a term
length of 99, the RMSE values at term lengths of 199 and
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299 are reduced by 0.0011, 0.0026, 0.003, 0.0048, 0.001, and
0.003, respectively. This result demonstrates that using long
term data compared to short term data can improve predic-
tion accuracy. As the term length increases, the prediction
accuracy of the proposed muSi-ABC architecture gradually
surpasses other ablated models, further confirming the muSi-
ABC architecture’s ability to improve the accuracy of long
term musical emotion prediction.

In terms of training efficiency, Figure 9 clearly shows that
the training efficiency of each model gradually increases with
the term length.

Arousal Training Efficiency
14
| i | musi-B
12| EEEB muSi-AB
== musi-BC
3 muSi-ABC
10 -
e
>
=
=

61 6558

43

o

FIGURE 9. The training efficiency for different distance lengths in Arousal
for each model.

T
199
Term Length

Compared to muSi-AB, the muSi-ABC architecture’s
training efficiency is reduced by 1.8, 4, and 6.4 for differ-
ent term lengths. This result demonstrates that integrating
ConvNet can reduce model complexity and improve training
efficiency.

In conclusion, although musi-BC has lower training effi-
ciency than the muSi-ABC architecture, its RMSE is higher.
muSi-AB has a similar RMSE to the muSi-ABC architecture,
but lower training efficiency. Therefore, the construction of
the muSi-ABC model, which simulates the perception pro-
cess of music for people to express emotions, has certain
advantages in predicting continuous-time, long term static
music emotions, and can improve the accuracy and training
efficiency of long term music emotion prediction.

4) COMPARISON OF PREDICTION ACCURACY BETWEEN
BiLSTM AND ConvNet WITH DIFFERENT NUMBERS OF
LAYERS

Adjusting the number of layers in BiLSTM and ConvNet
networks to achieve higher music emotion prediction accu-
racy in the final muSi-ABC architecture. Firstly, experiments
were conducted to determine the optimal number of layers
in the BiLSTM network. Based on the determined number
of BILSTM layers, the number of ConvNet layers in the
muSi-ABC model was determined. To ensure a suitable time
term length, the RMSE at a term length of 199 was chosen
as the evaluation metric for the model’s layer configuration.
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The RMSE of the BiLSTM network represents the prediction
accuracy when using that network alone, while the RMSE
of the 2D-ConvNet network represents the prediction accu-
racy when adjusting the number of ConvNet layers in the
muSi-ABC architecture based on the determined number of
BiLSTM layers.

The experiments compared the prediction accuracy of BiL-
STM networks with 1 to 3 layers and the prediction accuracy
of the muSi-ABC model using 1 to 3 layers of ConvNet. The
goal was to identify the impact of the number of layers in BiL.-
STM and ConvNet on prediction accuracy. The experimental
results are summarized in Table 4.

TABLE 4. Comparison of prediction accuracy for different BiLSTM and
ConvNet layer numbers.

Model Layer numbers ~ Valence RMSE Arousal RMSE
BiLSTM 1 0.1013 0.0994
2 0.0921 0.0837
3 0.0961 0.0856
ConvNet 1 0.0866 0.0762
2 0.0832 0.0744
3 0.0895 0.0754

Taking Arousal as an example, the RMSE of the Bil-
STM network with two layers was reduced by 0.0157 and
0.0019 compared to the network with one layer and three
layers, respectively. Similarly, the RMSE of the Con-
vNet network with two layers was reduced by 0.0018 and
0.001 compared to the network with one layer and three
layers, respectively. These results indicate that the prediction
accuracy of the BiLSTM network with two layers and the
ConvNet network with two layers is higher than the other
configurations, and increasing the number of layers does not
necessarily improve the prediction results. Therefore, based
on the BiLSTM network with two layers and the ConvNet
network with two layers, the ConvNet-BiLSTM model was
constructed and combined with the self-attention model to
form the muSi-ABC architecture for music emotion regres-
sion training.

5) THE IMPACT OF LOSS FUNCTIONS ON PREDICTING
MUSICAL EMOTIONS

To verify whether the outliers in the music emotion features
obtained from the eGeMAPS feature set are the turning points
that affect the trend of music emotion changes, considering
the complex and diverse nature of music emotion features and
the sensitivity to outliers, MAE and MSE were used as the
model training loss functions in the muSi-ABC architecture.
RMSE was used as the evaluation metric for prediction accu-
racy. The experimental results are shown in Figure 10.

It is clear that using MSELoss for Valence and Arousal
achieves good prediction accuracy compared to using
MAELoss. Therefore, the music emotion features extracted
based on the eGeMAPS feature set have standardization, and
the outliers in the information contain the trend of music
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FIGURE 10. The impact of loss functions on predicting musical emotions.

emotion changes, which can improve the model’s prediction
accuracy.

C. CONTRAST EXPERIMENT

To further validate the performance effectiveness, the pro-
posed method is compared with benchmark methods and
state-of-the-art music emotion prediction methods using the
EmoMusic dataset and the DEAM dataset, based on the same
evaluation metrics. The following provides an overview of
each comparative method:

MLR, BLSMT-RNN, SVR, and GPR [26]: These four
models represent the benchmark prediction methods used
for training and evaluating the EmoMusic dataset by the
Technical University of Munich, Aizu University, and Utrecht
University, respectively.

ConvNet_D-SVM [27]: This method explores the contex-
tual information of emotion computation by increasing the
receptive field of the network layers using dilated convolution
(ConvNet_D) and feeding it into an SVM regression model.

AC2DConv [28]: This method analyzes audio features rep-
resented by a combination of raw audio, audio signals, and
spectrograms using an audio and computed 2D convolution
(AC2DConv) network model.

ResNets-audioLIME [29]: This method combines the
source separation explainer audioLIME with residual net-
works (ResNets) to analyze intermediate perceptual features
and spectrogram features.

The evaluation metric results of these methods are shown
in Table 5.

Compared to other methods, the proposed method achieves
the lowest RMSE and highest R? in music emotion prediction
tasks. It improves the accuracy of music emotion prediction
and exhibits the best fitting ability. Furthermore, to validate
the generalization ability of the proposed method, compar-
ative experiments were conducted on the PMEmo dataset,
and the evaluation metric CCC was used. The results are also
shown in Table 5. It can be seen that the fitting ability of
the proposed method is still the best among the comparison
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TABLE 5. Comparative experimental results of different methods on different datasets. Note that MLR* and SVR* are the baseline methods in the PMEmo

dataset [30].
Arousal
Datasets/Methods RMSE
MLR 0.12
BLSMT-RNN 0.10
SVR 0.10
EmoMusic GPR 0.10
ConvNet D-SVM 0.10
muSi-ABC 0.0775
AC2DConvStat 0.2003
DEAM ResNets-audioLIME 0.25
muSi-ABC 0.0815
MLR* 0.096
SVR* 0.097
PMEmo AC2DConvStat 0.087
ResNets-audioLIME 0.083
muSi-ABC 0.071

methods, and this result once again proves the effectiveness
of the muSi-ABC model.

V. CONCLUSION

With the continuous advancement of music technology
research, music emotions prediction has been widely applied
in all kinds of fields. Inspired by this, we aim to simulate the
perception process of music as people to express emotions.
In response to the problems of long term dependencies and
low training efficiency in music emotions prediction with
LSTM neural networks, a novel and comprehensive network
model called muSi-ABC is proposed for regression training
of long-term music emotions prediction. Specifically, the pro-
posed model uses the 2D-ConvNet to extract partial critical
features of music emotions, employs the BiLSTM neural
network to extract sequential information of music emotions
from the obtained partial critical features, and utilizes the
SA model to dynamically adjust the weights of the obtained
sequential information, highlighting the complete critical
points of music emotions. The ablation and contrast exper-
imental results demonstrate that the proposed muSi-ABC
model can reduce the training time for analyzing the regular-
ities in music emotions information and effectively improve
the accuracy of predicting music emotions. In conclusion, the
proposed model for predicting musical emotions can capture
the regularities of music emotions information from longer
continuous durations, thereby improving prediction accuracy
and training efficiency, and effectively achieving emotions
music regression. It provides a new feasible idea for the
direction of predicting music emotions.

The limitations of this study include the lack of consid-
eration for additional modal information, and this may limit
the generalization of the proposed method in capturing music
emotions. In future research, we will explore the integration
of audio data with listening data, lyrics text, and even video
frames for a more comprehensive multimodal music emotion
prediction.
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Arousal ~ Valence  Valence  Arousal  Valence
R? RMSE R? Cccc ccc
0.48 0.15 0 0.501 0.474

0.59 0.11 0.42 0.582 0.516
0.63 0.12 0.35 0.603 0.584
0.59 0.12 0.31 0.59 0.453
0.63 0.11 0.41 0.612 0.509
0.7431 0.0857 0.5894 0.758 0.65
0.5375 0.1928 0.162 0.568 0.51
0.51 0.21 0.54 0.551 0.483
0.6233 0.0791 0.5581 0.8 0.731
0.457 0.143 0.122 0.694 0.587
0.511 0.129 0.144 0.753 0.664
0.677 0.093 0.322 0.701 0.574
0.791 0.090 0.389 0.658 0.551
0.85 0.082 0.644 0.813 0.7
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