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ABSTRACT Human Activity Recognition (HAR) is one of the most popular research topics thanks to its
usefulness in providing targeted, meaningful assistance to older adults. Because of the aging of the population
in first-world countries, it becomes increasingly important to find innovative solutions that reduce risks
associated with aging-in-place policies. HAR proposes solutions that are based on Ambient Intelligence
(AmI) to alleviate those risks. In this work, we exploited three UWB radars to recognize 14 activities
performed by 19 participants in a prototype smart-home apartment. The main contribution of this paper is
UWB radar data cleaning on a practical dataset. The UWB radar data has been filtered using an unsupervised
deep convolutional autoencoder (CNN-AE) that learns background noise from the data. This filteringmethod
is compared to the unfiltered data using a Convolutional Neural Network (CNN) classifier in a Leave-One-
Subject-Out (LOSO) classification. Performances attest that the CNN-AE unsupervised filtering is efficient
for HAR. In addition, we tested the generalization potential of this architecture when the dataset is comprised
of a lower number of participants (1, 5, 10, and all 19 participants). Generalization in HAR is difficult
as the results show the importance of data quantity and number of subjects. We obtained 69.9% top-1
accuracy when using our filtering architecture compared to 48.4% without it. To conclude, we show that
an unsupervised CNN-AE can efficiently filter and generalize UWB radar data in a HAR setting while
providing easier learning constraints and implementation on a practical dataset.

INDEX TERMS Activity of daily living, data filtering, data processing, deep learning, human activity
recognition, unsupervised learning, UWB radars.

I. INTRODUCTION
As developed countries see a rise in life expectancy, more and
more of adult life is spent after the age of 65 [1], resulting in
additional strain on society as a whole. For example, adults
older than 60 years of age suffer the greatest number of fatal
falls, while most falls are severe enough to require medical
attention [2]. This pressure is put on the healthcare system
which leads to an increase in interest in gerontology technol-
ogy research.More specifically, HumanActivity Recognition
(HAR) is getting more and more popular as technology
progresses. With the rapid development of big data, 5G,
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the Internet of Things (IoT) and other technologies, sensors
such as wearables and radars become a focus of attention as
new classification models and fusion methods are developed.
Non-invasive sensors are helpful to conduct HAR which
helps us understand human behavior. This is of major interest
as HAR can be used to evaluate the functional capacity of
an individual by assessing his capabilities when performing
common Activities of Daily Living (ADL) [3]. Such assess-
ments can lead to early warnings of degrading health that are
useful to caregivers or relatives. Moreover, detected anoma-
lies can be used to alert caregivers in case of emergencies,
such as the aforementioned falls. As age-related health prob-
lems such as diabetes, cardiovascular disease, Alzheimer’s
disease, dementia, or other chronic diseases, associated with
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cognitive and physical weakening of the elderly people pre-
vents them from living independently, smart home and HAR
seem like promising solutions to the challenge of a growing
aging population [4]. Indeed, the lack of specialized facili-
ties in addition to the willingness to preserve the autonomy,
independence, and self-esteem of the elderly is a strong
motivation to develop HAR in automated health systems.
Ambient intelligence for HAR provides detection of motion
and interactions with objects and furniture inside the home
(light switch activation, electrical outlets usage, etc). Recog-
nition algorithms can then classify those activities and report
anomalous behaviors. ADL performance is a crucial metric
for assessing the quality of life [5] and such a recognition
system could improve the standard of living when the given
information is taken into account and acted upon by the
caregivers.

HAR, as promising as it seems, is not without its own
set of challenges. The most prominent one is the variety of
sensors used, which results in different types of collected
data. In addition to that, the accuracy of ADL recognition
systems is inherently related to the training dataset size,
participant variety, and number, as well as sufficiently diverse
and balanced performed activities [6], [7]. This increases
the difficulty of collecting quality data in experiments and
raises the cost of providing a meaningful dataset to train
models. Furthermore, special care has to be given to the val-
idation process, as randomized train/test/validation instances
separation results in all participants’ data present in train-
ing and validation datasets. High inter-class variance is
expected in HAR, seeing that each participant has their own
way of performing activities, with tendencies to use spe-
cific movements. It is then useful to use participants-based
cross-validation to assess the generalization potential of the
systems [8].
In this paper, we use data provided by three wall

mounted Ultra-WideBand (UWB) radars inside the Lab-
oratoire d’Intelligence Ambiante pour la Reconnaissance
d’Activités (LIARA) apartment. The UWB radar is techni-
cally an ambient sensor where collected data are richer in
information than usually found on other ambient sensors-
based technologies. As an example, thermal cameras are a
useful option for recognizing activities of daily living, but
they have limitations due to the fact that they only provide a
2D x,y image without depth information. This means that in
order to avoid the occlusion of objects and subjects, thermal
sensors need to be used in conjunction with RGB cameras
or other equipment to facilitate 3D scene reconstruction [9].
UWB radars also alleviate the privacy concerns typically
found when using cameras. They allow locating a person in
a room accurately and give information on their movements
(number and amplitude of movements). Such precision can
be used for movement detection and activity recognition.

Our goal is to recognize 14 distinct activities performed
by 19 participants. To this effect, data collected using these
3 radars have been cleaned from noise using an unsuper-
vised denoising autoencoder filter. The use of a denoising

autoencoder for the noise-cleaning process is motivated by its
unsupervised properties and ease of use. When dealing with
HAR datasets, it is often difficult if not outright impossible
to provide clean data to feed the training process because
of the noise from the transceiver circuit and low Signal to
Noise ratio. Using an autoencoder allows only select limited
features to partially reconstruct the data, effectively recon-
structing the background noise of the data. This background
noise is then subtracted from the original data, resulting in a
filtered output. Using this approach, we can train this archi-
tecture without the need for data labels, greatly facilitating
the data preprocessing steps. To assess the performances
of this architecture on our dataset, we trained a relatively
simple Convolutional Neural Network (CNN) classifier com-
prising only a few convolution layers. This classifier then
recognizes activities with a Leave-one-subject-out (LOSO)
cross-validation. Our findings show that using an unsuper-
vised autoencoder as a denoising filter improves the mean
accuracy of such a classifier by 21.6%, as the mean accuracy
reaches 70.0% for the cleaned dataset whereas feeding the
classifier with the original dataset results in a mean accuracy
of 48.4%. In addition to this result, top scores show that using
this filter gives better results when the number of instances
is low in the dataset, with tested accuracy gains with as low
as 3 participants in the training dataset. In summary, our
contribution is as follows:

• we explored the use of an unsupervised autoencoder
architecture in a data-cleaning process that is easy to
train and does not require any clean data.

• we compared the performance of this denoising method
with the unfiltered dataset

• we showed the generalization capabilities of such an
architecture when dealing with low instances and/or
subjects number, enabling the use of such a filter as an
additional module in those conditions.

The remainder of the paper is organized as follows:
Section II describes common HAR technologies and UWB
radar noise filtering state-of-the-art. Section III presents the
experimental setup and the unique set of activities performed
by the participants. Section IV details the noise filtering
method, including the autoencoder and classifier architec-
tures. Section V shows and discusses our results. Finally,
Section VI concludes this study.

II. RELATED WORK
In the literature, HAR is commonly used in conjunction
with wearable devices. For example, smartphones and smart-
watches provide a compact set of sensors (accelerometers,
gyroscopes, heart-rate sensors, etc.) [10] and have the means
of communicating the information to the automated health
system using WiFi or Bluetooth. The precision of classifiers
using this technology are usually high for a wide array of
activities found in ADL, such as walking, sleeping, eating,
and doing the dishes. In [11], the authors recognized four
activities (ambulation, cycling, sedentary and other) from
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wrist-worn accelerometer data and achieved an accuracy of
0.895. In any case, a limitation of the wearable approach
is that the device has to be worn. Older adults can forget
to wear the device, creating a lack of monitoring data for
extended periods of time. Another approach is to use ambi-
ent sensors such as Passive Infrared (PIR) sensors, on/off
switch sensors, and pressure mats [12], [13]. In [12], the
authors compared Adaptive Boosting (AdaBoost) and Fuzzy
C-means (FCM) classifiers for HAR from binary ambient
sensors. Features were extracted from collected data using a
Deep Convolutional Neural Network (DCNN). Eight activi-
ties were considered in the study: sleeping, using the toilet,
using the kitchen for food or dishwashing, watching TV,
eating, dressing, doing garden activities, and leaving home.
The authors decided to tie the human activity to each room,
resulting in activity recognition when the person was in a
specific room. As an example, a person located in the dining
room is probably eating a meal. Using the AdaBoost classi-
fier, the authors reached an accuracy of 0.995. The foremost
disadvantage of such an approach is the need to add sensors
of numerous types proportionally to the number of activities
that are to be recognized. The number of sensors can be
cost-prohibitive while the use of multiple sensor types adds
complexity to the data fusion process. Another approach is to
exploit RGB, depth, and/or thermal cameras.

Cameras can be used to extract rich and detailed informa-
tion about the resident and its environment that can be used to
conduct HAR [14], [15], [16]. For example, a system capable
of performing scene understanding is presented in [14]. The
process includes leveraging a stereoscopic camera as part of
a device network composed of vital parameters (wristband,
glucose meter, etc.), home automation (smart switch, smart
plugs, etc.), and physical activity tracker (video monitoring,
accelerometers) devices. In this framework, video acquisition
is analyzed to detect human-object interactions and activities.
Specifically, the derived activities consist of an action per-
formed on an object (e.g. sitting on a chair, to lay on a bed).
Two convolutional networks are used to respectively detect
an object and a human in interaction with each other after
having been trained on the public COCO human interaction
dataset [17].
In [15], the authors developed a monitoring approach to

detect daily living activities such as eating or dressing. After
analyzing the available datasets, they applied Faster R-CNN
(Regions with CNN features) [18] for human localization
in the video frame, I3D [19] for benign activity recognition
(small movements often seen in eg. eating, drinking or wash-
ing teeth) and DeepHAR [20] for whole body movements
(such as falling or walking). The resulting architecture is a
low-cost vision-based monitoring expert system.

In the case of depth sensors, a recent review [21] presents
a systematic discussion on the state-of-the-art using depth
sensors to detect anomalous behavior, mainly fall detec-
tion. In conjunction with thermal and audio sensors, depth
sensors are a meaningful non-intrusive technique in HAR.

Indeed, vision-based monitoring is intrusive and raises con-
cerns about privacy in health monitoring, especially when
caregivers have access to the information.

Thus, another non-intrusive sensor found in monitoring
systems is radar-based. The two commonly used radar tech-
nologies in HAR are FrequencyModulated ContinuousWave
(FMCW) radars and UWB impulse radars [22]. Although
FMCW radars often use micro-Doppler signatures to recog-
nize human activities [23], the UWB radar uses ultra-short
pulses (in the range of a few nanoseconds) in a wide fre-
quency range at a low pulse power. The time of flight
of emitted pulses is measured to give the precise distance
between the radar and objects. A more detailed explanation is
given in Section III. While this technology is non-intrusive,
there is radar clutter and background noise in the received
data.

Considering UWB radar data denoising techniques, the use
of supervised deep learning denoising techniques for UWB
radar data is common in the literature using clean ground truth
supervision [24], [25], [26], [27]. Unsupervised deep learning
denoising, when clean and/or labeled data are not available,
is rarer. Nevertheless, several previous studies successfully
leveraged deep learning architectures to denoise UWB radar
data while using unsupervised or semi-supervised feature
extraction [28], [29] and denoising [30].

Similarly, the authors of [24] conducted experiments where
UWB radars were used in through-wall human recognition.
They used a sparse autoencoder as a supervised denoising
encoder and features extractor to process the radar data. The
evaluation of this architecture was done using radar record-
ings of participants standing behind a wall. They show in
their experiments that using multiple radars over a single
radar, as well as using L2 regularization and dropout layers
improves performances under small training data to mitigate
overfitting in a small dataset condition.

In [25], the authors proposed the utilization of a Generative
Adversarial Network (GAN) to denoise UWB spectrograms.
They measured motion data of seven human motions: run-
ning, jumping, creeping, walking, standing, crawling, and
boxing. In addition to this dataset, 1 second of slow time for
each motion is simulated to produce the corresponding simu-
lated dataset. The GAN architecture is trained in a supervised
manner to differentiate between noisy-denoised outputted by
a denoising generator and a real noisy-clean pair. The goal
is to train a generator through the GAN architecture that can
effectively denoise input data. In their study, they simulated
noisy data of five decreasingly noisy Signal-To-Noise Ratios
(SNR) to assess the performance of such an architecture. The
generator architecture is composed of convolutional layers to
extract relevant feature maps from the noisy data.

Reference [26] proposes a sparse deep autoencoder that
is compared to Singular Value Decomposition (SVD) and
wavelet denoising algorithms. In simulated and real exper-
iments involving noise from a participant and walls, the
use of sparsity in the CNN-AE architecture results in better
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denoising, while the denoising performance of the deep
autoencoder is still better than SVD and wavelet. It should be
noted that the targeted noise in their study is mainly reflec-
tions from the wall and the target, with supervised training.

The authors of [27] did also use the autoencoder filter-
ing properties to reduce the motion noise of the participant
using a motionless ground truth to extract respiratory data.
The autoencoder architecture is variational and takes two
processed inputs calculated from the radar data frames. The
training is also directed by ground truth and provides res-
piratory data extraction under heavy movements from the
participants.

UWB radar can also be used to perform feature extraction
that reduces data dimensionality while retaining information.
An unsupervised feature learning architecture is developed
in [28], where a K-means algorithm is performed on ran-
domly selected patches of data frames to learn relevant
features that will be used to feature-transform UWB data
before SVM classification.

In [30], the authors denoised UWB data using a CNN
network to compress and decompress the data for localization
purposes. Similarly to our work, the sparsity and spatial
correlation of the signal in the radar data frame are leveraged
by stackingmultiple layers of convolutions to extract themost
relevant features. Deconvolutions layers are then stacked to
decompress the data. This architecture is then evaluated on
simulated UWB radar data, with results that demonstrate
the affiliated gain in UWB denoising based on the Root
Mean Square Error (RMSE)metric.Multiple simulatedUWB
radar datasets were created and used in training to mimic a
localization scenario. In addition, results show that increasing
layer size and kernel size does not necessarily improve the
performance of this architecture.

Most of the work found in the literature revolves around
denoising labeled data using clean and noisy pairs. In prac-
tice, labeling and creating a clean dataset is time-consuming,
pricey, and difficult. Thus, CNN architectures seem interest-
ing in their ability to extract features in unlabeled noisy data
when used in unsupervised algorithms.

III. EXPERIMENTAL SETUP
This section is a description of the entire experimental setup
to provide a clear understanding of all the specifics of this
study. To this end, the apartment where the experiments were
conducted is detailed. A brief explanation of the UWB radar
is also given. To conclude this section, the activities that the
participants carried out are laid out in detail.

A. APARTMENT LAYOUT AND UWB RADAR LOCATIONS
The dataset has been collected at the LIARA,which has a pro-
totype apartment with a surface of approximately 40 square
meters that aims to reproduce an entire operational apartment.
This apartment is an environment to test monitoring and assis-
tance methods. Fig. 1 presents the layout of the apartment.
It is comprised of a bedroom, kitchen, and living room. More
than a hundred sensors (passive infrared sensors, contact

FIGURE 1. LIARA apartment layout. The 3 UWB radars are visible in red.

sensors, pressure-mat sensors, etc) and effectors (screens,
speakers, etc) are set up to provide data collection. The objec-
tive is to monitor human activities using these data with the
end goal of providing specific assistance at the right time.
For example, to notify the user with speakers when the oven
has been let on for an extended period of time with the help
of data processing and machine learning. The use case of
such an environment is to allow the elderly to keep their
in-home autonomy while maintaining health monitoring and
assistance.

For this study, three wall-mounted UWB radars were used.
The model used is the Xethru X4M200 from Novelda, which
can be electrically supplied directly from the electrical out-
lets. Thus, the height at which they are mounted was selected
to be around standard electrical height in Canada, approxi-
mately 36cm. The locations of the radars have been designed
to provide ample coverage of the apartment’s surface, with at
least one radar having a direct line of sight on every possible
location of the user.

B. UWB RADARS
The Xethru X4M200 uses a UWB transceiver (transmit-
ter and receiver) operating within the 6.0-10.2GHz band.
The low-frequency band that this radar uses is 6.0-8.5GHz,
while the high-frequency range for the same radar is
7.25-10.20GHz. The power spectral density (PSD) of the
UWB radar is very low compared to other wireless communi-
cation technologies. With its high-frequency range combined
with its low PSD, this radar emits low-energy electromagnetic
waves that are suitable for medical applications [31].
Due to those properties, The radar is only able to detect

reflected waves over a short range of 5 to 10 meters, but
can still pierce through thin walls and obstacles. In addition,
the waves do not interfere much with other electromagnetic
waves. The transmitter module of the transceiver continu-
ously emits very short pulses (Impulse-radio) of about two
nanoseconds. The emitted waves are then reflected by the
environment, and the receiver module of the transceiver
senses the reflected waves. The time of flight (ToF) is used
to compute the distance between the radar and the element of
the environment that reflected the wave. The very short pulse
generated by the UWB radars is what gives this technology
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FIGURE 2. Example of a UWB radar scattering matrix of a single radar
over a period of 300 frames of slow time (6 seconds) for the activity
’doing housework’. The participant’s movement is visible around the 30th
bin in the fast time axis.

such precision. In our case, the UWB radar has a spatial
resolution of 5.14 cm.

The data collected by the radar is a sequence of basebands.
This particular model is set up to produce 50 basebands
per second. A baseband is a series of values representing
the amplitude of the reflections at all distances in front of
the radar. In the literature, basebands can also be called a
range [m], a radar frame, or fast time. In this study, a baseband
has 184 values (bins) in the detection zone of [0.4-9.8m].
The radar frames start 5.14 cm before the lower range and
5.14 cm after the higher range. Collecting radar frames along
one axis represents the slow time. For example, accumulating
100 radar frames at a sampling rate of 50 frames per second,
the slow-time will range from 0 to 2 seconds. This collection
of baseband represents a radar scattering matrix. To ensure
comprehensiveness and to better understand the presented
work, it is worth noting that our previous work [32] utilized
the same dataset and equipment. Fig. 2 illustrates a radar scat-
tering matrix provided by one UWB radar over 300 frames
(6 seconds).

C. LIST OF HUMAN ACTIVITIES
The collected dataset is composed of 14 distinct human
activities performed by 19 participants. The activities were
designed to be ADLs that would often be performed in
an apartment. The complete list of activities is as follows:
Brushing teeth, doing housework, drinking, eating, getting
dressed and undressed, going to the toilet, putting away laun-
dry, putting away dishes, reading a book, resting, sleeping,
taking a shower, using a computer or a phone, washing
dishes. For each of these activities, the participants were
briefed on where to be located when performing the activ-
ity inside the apartment, as well as what objects to use.
As such, we attempted to reduce intra-class variability that
would otherwise be significant (picture cleaning the room at

different locations, with different tools such as a broom, vac-
uum, or participants cleaning the table and others the floor).
However, the participants were allowed to do the activities
in their own way (eg. moving while sleeping, the order of
dishes to be washed, the posture, etc.). The goal is to have a
dataset that mimics the diversity of movements different users
would have when performing the same activity. It should be
mentioned that all experiments have been conducted under
an ethical certificate obtained through the Université du
Quebec Chicoutimi human research ethic board (ID number:
2019-202), with the participant’s signed consent.

IV. THE PROPOSED APPROACH
This section presents the data processing steps that have been
carried out prior to model training. Then, the filtering and
classifier architectures that we exploited for our HAR needs
are detailed.

A. DATA PROCESSING
As seen in Section III, data are collected from three UWB
radars that send timestamped radar frames at a specified
sampling rate. The data collection process consists of creating
for each activity three radar scattering matrices, where each
radar frame is temporally aligned. The resulting scattering
matrices, one for each radar, then represents the amplitude
of reflected electromagnetic waves at all distances over time.
The number of bins collected is 184 for each radar frame. In a
preprocessing step, we cropped the start of each activity by
10 seconds and the end by 5 seconds. This was motivated by
the fact that there was a delay between the start of the record-
ing and the moment the participants were instructed to start
the activity. In the samemanner, the participant was instructed
to stop the activity before the recording was stopped. The
three scattering matrices are then stacked, effectively com-
bining the three radar outputs in a single scattering matrice of
thrice the size.

The data filtering process consists of training a deep
convolutional autoencoder (CNN-AE) on all the datasets,
without taking into consideration the class or the subject. The
intuition is to use the restrictive nature of the CNN-AE to
limit the number of features that the architecture can extract.
In practice, the CNN-AE can reconstruct the background
noise, without using any metadata (eg. label data, subject
information, room of the activity, duration, etc.). The pro-
posed method has the advantages of reducing the amount
of necessary data preprocessing, such as labeling, as well as
reducing the training time complexity that is usually found
in deep learning architectures. Considering the unsupervised
approach and the relatively fast training time, this cleaning
step can be viewed as a fast modular architecture to be
used in a preprocessing step in more complex architectures.
Fig. 3 illustrates the training process, including the use of a
sliding window over the slow time axis to create the training
instances. The sliding window has an overlap of 90%, result-
ing in data augmentation to provide a sufficient instances
number. The chosen shape for an instance is (500 × 552),
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FIGURE 3. The preprocessing steps leading to the unsupervised training.
An overlapping sliding window is in charge of creating the training
instances.

FIGURE 4. The filtering process. The denoising module reconstructs the
background noise and subtracts it from the noisy input.

meaning that the duration of an instance is 10 seconds (10
times the sampling rate of 50 radar frames per second) with
the three radar frames stacked on one axis (3 times 184 bins
of a radar frame). The resulting total number of instances is
26391. It should be noted that using one axis per radar frame
resulting in instances with the shape (500 × 184 × 3) had
the effect of slowing the training phase of the CNN-AE. The
instances are min-max normalized on a per-instance basis
and the CNN-AE is then trained on all the created instances.
The loss function used during training is the mean squared
error (MSE), which drives the architecture to learn features
necessary to reconstruct the instances. The training process

The trained CNN-AE is used in inference during the fil-
tering process. Raw instances are fed for the CNN-AE to
reconstruct. The partial reconstruction is made possible by
the architecture, which outputs only the background noise,
omitting the signal. With this noise signature available, the
original data are cleaned by subtracting the reconstructed
noise. This process uses the ability of the CNN-AE to encode
the noise patterns and reconstruct instance-tailored noise,
meaning that each instance has its specific noise recon-
structed. Fig. 4 represents the filtering process, whereas Fig. 5
shows a comparison between a raw instance, its reconstructed
noise, and the cleaned instance using this instance-specific
reconstructed noise.

B. FILTERING EVALUATION
To evaluate the effect of the proposed data cleaning method,
we chose to use a fairly simple CNN classifier to provide the

basis for a comparison tool. To avoid any data contamination,
two datasets were created. The first one is the raw dataset,
comprised of the original data. The second dataset is the
filtered data, where a sliding window has been used to filter
the data using the trained CNN-AE. The two datasets are
then normalized using a min-max normalization, resulting
in two datasets that have the same shape, same number of
possible instances, and range. Each dataset undergoes the
same following training process, as summarised in Fig. 6:
First, the dataset is divided into a training set, a validation set,
and a test set following the LOSO-CV principle. For each of
the 19 test participants, a validation participant is randomly
chosen. The 17 remaining participants are then forming the
training set. To give a better understanding of the size of
each dataset, Table. 1 shows the number of instances of shape
(500 × 184 × 3) in the training, test and validation dataset
for each test participant in a single run. Next, instances are
created from the training and validation sets and are fed to
the CNN classifier with their activity label. To summarize,
each participant is a test dataset used in cross-validation to
assess the generalization potential of the architecture. At the
end of the training phase of the classifier, the weights of
the best-performing epoch on the validation set are saved.
Its performance after training is evaluated in inference as
the previously saved weights are used to classify all the
instances in the test set. Evaluationmetrics are thenmeasured.
This training and evaluation process is repeated 10 times
to provide accurate measurements. The entire training and
evaluation process is the same for the raw and filtered dataset,
including the choice of the validation participant for each
test participant. The evaluation metrics used for each training
are accuracy and top-1 to top-14 accuracy scores. Addition-
naly, to provide a comprehensive overview of the procedures
employed throughout this study, we have depicted the general
framework in Fig. 7.

C. MODELS ARCHITECTURES
For the CNN-AE, we stated previously that the shape of
the instances is (500 × 552). This is due to the choice of
using 10 seconds duration for an instance with three radar
frames divided into 184 bins; one for each UWB radar. This
input shape is consistent with a monochrome image, which
renders the use of CNN-based deep learning architecture
functional.

Fig. 8 illustrates the architecture of the CNN-AE, while
Table. 2 shows the parameters of themodel.We defined 2 suc-
cessive convolutional layers for the encoding architecture,
followed by a max pooling layer of stride 2. For the two
first convolutional layers, a filter of 32 kernels of size 3 ×

3 and strides of 2 has been set with a Rectified Linear Unit
(ReLU) activation function. The output is then flattened and
connected to a dense layer of size 800. This third layer is the
constricted latent space, which is connected to the decoder.
The CNN-AE decoder part has 3 deconvoluting layers set up
with the same parameters as the encoding layers (filters of
32 kernels of size 3 × 3, strides of 2, and ReLU activations).

VOLUME 11, 2023 81303



V. Lafontaine et al.: Denoising UWB Radar Data for Human Activity Recognition Using Convolutional Autoencoders

FIGURE 5. Comparison between a noisy input data frame, its background noise reconstructed by the
CNN-AE, and the denoised output.

TABLE 1. Number of instances of shape (500 × 184 x 3) in used datasets
for each validation participant.

The output layer is set to be the same dimensions as the input
shape (500 × 522).

For the CNN classifier, Fig. 9 details the six convolutional
layers that were used, while Table. 3 shows the parameters of
the model. The shape of the input layer is (500 × 184 × 3),
where the three radar frames are shaped in a format similar
to an RGB image. Similarly to the CNN-AE input shape,
this formatting allows the use of deep learning CNN-based
architectures. A batch normalization layer has been inserted
between almost every convolutional layer. The first convo-
lutional layer has been set with a filter of 32 kernels of size
7 × 7 × 3, and a padding of zeroes with a ReLU activation
function. With an input shape of (500 × 184 × 3), the output
shape is (250× 92× 32). The second and third convolutional

TABLE 2. Number of parameters for each layers of the CNN-AE.

layers have been set with a filter of 64 kernels of size 5 ×

5 × 32, a stride of 2, padding with zeroes, and the ReLU
activation function. The output shape for each are respectively
(125 × 46 × 64) and (63 × 23 × 64). The fourth, fifth, and
sixth convolutional layers are set with the same parameters
as the preceding layers, except for their filters of 128 kernels
of size 3 × 3 ×64. The output shape of the last convolutional
layer is (8× 3× 128). This output is then flattened in a vector
of size 3072, which is then connected to two dense layers of
size 200 and 100 with ReLU activation functions. The output
is then finally connected to the softmax layer of 14 nodes,
resulting in an architecture that can be used to classify our
14 activities.

V. RESULTS
We evaluated our denoisingmodule on our dataset. The UWB
radar frames have clutter and noise in part generated by the
hardware constraint of the UWB radar, and in part generated
by multiple reflections of electromagnetic waves. As seen in
the raw data classification results, a classifier that uses the
data without performing any denoising is significantly less
accurate. The baseline classifier architecture trained on unfil-
tered data is evaluated using LOSO-CV. Its top-1 accuracy is
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FIGURE 6. Methodology for LOSO cross-validation evaluation of the classifier’s performance on the raw and filtered dataset.

FIGURE 7. Overview of the procedures employed in this study.

48.35%, with a standard deviation of 0.115. The addition of
the denoising module as a preprocessing step increases the
results to an average of 69.93% (+21.58%) top-1 accuracy,
with a standard deviation of 0.073 (−0.042). Fig. 10 shows

the disparity in accuracy between the classifier trained on
the raw dataset and the one trained on the filtered dataset
for each participant, including per-participant distribution on
the boxplot. For each test participant, the denoising module
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FIGURE 8. Architecture of the CNN-AE used to reconstruct background noise.

FIGURE 9. Architecture of the convolutional classifier used during evaluation.

TABLE 3. Number of parameters for each layers of the CNN classifier.

consistently improves the classifier mean accuracy, often by
a large margin. In addition, the accuracy spread is reduced,
demonstrating that the classifier produces more constant
results over several evaluation runs.

Additionally, we simulated an even lower dataset size by
only selecting a few participants to assess the generalization
capabilities of this denoising under very low dataset variabil-
ity. To this effect, n random participants were chosen to create
3 additional subset datasets with n ∈ {5, 10, 15}. The chosen
participants are the same for all datasets. As seen in Fig. 11,
the denoising module is efficient in all cases, with a more

TABLE 4. Improved classifier accuracy with CNN-AE filtered data
compared to raw data.

pronounced effect the smaller the dataset. Even in an extreme
case such as only using 5 participants (3 for training, 1 for test,
and 1 for evaluation), the classifier that uses the denoised data
still outperforms the classifier trained on the full dataset of
19 participants. This effect is summarized in Table. 4, where
the accuracy gains when using the denoised dataset increase
over all the top scores as the number of participants decreases.
As an example, the difference in mean accuracy for the top-2
score is at +19.4% accuracy gain on the full dataset, and at
+29.6% with n = 5 participants. In general, as the variability
of the dataset decreases, the effect of the denoising module
becomes more apparent.

Adding this CNN-AE architecture as a preprocessing step
in HAR classification is an effective method to improve the
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TABLE 5. Mean of classification metrics for all data subsets over all runs.

FIGURE 10. Classifier accuracy when trained on the raw dataset and
filtered dataset. Distributions grouped by participants.

FIGURE 11. Classifier mean top accuracies when trained on the raw and
filtered dataset, using a subset of n participants.

overall accuracy when labeled data is difficult to acquire. Our
results show that unlabeled data can be used to improve a
classifier’s accuracy without the need to gather more labeled
data.

Furthermore, to provide a comprehensive analysis, addi-
tional classification metrics are presented in Table. 5, where

using bigger filtered datasets result in improved true positive
and true negative rates, as well as reduced rates of false
positives and false negatives.

VI. CONCLUSION
In this paper, we presented an unsupervised deep convolu-
tional autoencoder used as a UWB radar scattering matrix
denoiser. The restrictive part of the encoder guides the
architecture to learn the specific background noise for each
instance and subtracts it from the data.The training process
involves using a sliding window over the slow time axis to
create training instances, with an overlap of 90% for data
augmentation. The instances are then min-max normalized,
and the CNN-AE is trained on all instances using the mean
squared error (MSE) as the loss function. This drives the
architecture to learn the necessary features to reconstruct the
instances.

The dataset andmethodology used in this studywere devel-
oped to evaluate this architecture using LOSO-CV to avoid
participants’ data contamination. A baseline pipeline and a
denoised data pipeline were fed into a classifier, where its
averaged accuracy serves as a differentiation metric to eval-
uate the model. Our results show that our denoising module
performs under normal and low practical dataset sizes whilst
also being easily trained due to its unsupervised nature.

Nevertheless, this approach has limitations. Namely, one
limitation is that the dataset is collected in a controlled
environment with a limited number of participants and activ-
ities. This may not fully represent the real-world scenarios
and may not generalize well to different settings or people.
Additionnaly, the denoising module quality may depend on
the environment and not be as efficient when more noise or
interferences are present. Finally, the unsupervised nature of
the CNN-AE training may limit its ability to capture specific
noise patterns related to different activities.

As for future work, the autoencoder could be optimized
to maximize the accuracy gain. As an example, an auto-
mated hyper-tuner could use the classifier’s accuracy result
to fine-tune the latent space size and autoencoder archi-
tecture. Furthermore, it would be useful to investigate the
incorporation of other equipment, such as thermography and
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stereoscopic cameras, in conjunction with UWB radars. This
approach would provide more comprehensive data for data
fusion, enabling us to overcome the limitations of individual
sensors, resulting in a more complete dataset.
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