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ABSTRACT With the increasing availability of high-resolution video recording and streaming, there is a
need for fast and high-quality video denoising methods that can handle high-resolution videos. However,
many existing methods fail to achieve high-quality denoising performance and computationally effecient
at the same time. This paper proposes a video denoising network, Pseudo Temporal Fusion Network
(PTFN), that satisfies these requirements. PTFN adopts a new Pseudo Temporal Fusion (PTF) module
that captures pseudo-temporal relationships between video frames in combination with the Temporal Shift
Module. PTFN also adopts a modern ConvBlock paradigm that breaks away from the classical ConvBlock
paradigm, contributing to denoising performance and computationally effecient. PTFN achieves better
performance than existing video denoising methods in terms of both video quality and computational
effeciency. Specifically, PTFN has only about 16.7% of the computational cost of existing lightweight
methods, while it improves denoising performance. PTFN is also superior in terms of memory consumption.
It can process 1080p videos with a GPU with 24 GB RAM. In addition, a lighter version (PTFN Half) can
process 2K videos at high speed under the same conditions.

INDEX TERMS Deep learning, video denoising, light weight network, pseudo temporal fusion, modern
ConvBlock.

I. INTRODUCTION
The technology related to photographic equipment and
the performance of processors for images and videos is
improving, making it possible to record or stream high-
resolution videos. However, it is impossible to eliminate the
noise generated by recording and streaming video, and it
degrades the quality of the videos. Therefore, video denoising
is essential for video quality, and there is a growing demand
for denoising methods that can process high-resolution
videos at high speed. [1], [2].

Video denoising methods can be broadly divided into
‘‘CPU-based methods’’ and ‘‘GPU/deep learning-based
methods.’’ CPU-based methods [3], [4] can process
high-resolution videos because they do not consume large
amounts of memory. However, they are slow because
CPUs process denoising, and their performance is low
compared to GPU/deep learning-based methods. GPU/deep
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learning-based methods [1], [2], [5], [6] are currently
mainstream. They perform high-quality denoising quickly
because the calculation is optimized for GPUs. However,
many GPU/deep learning-based methods have the drawback
that they cannot process high-resolution videos because they
consume a large amount of GPUmemory. Some methods can
process high-resolution videos [1], [7], but these methods
are not powerful enough. In addition, excellent quality
methods [8], [9] often use huge networks, which slow down
the video processing speed, limiting its practicality. Some
GPU/deep learning-based methods [8], [9] use networks
with Transformers [10], [11]. However, Transformer-based
networks cannot process high-resolution video because the
computational cost increases rapidly with image resolution.
Transformer-based methods with smaller computational
costs have also been proposed, but they cannot reduce the
computational cost to process high-resolution videos.1

1For example, when using the NVIDIA RTX 3090 24GB, VRT [8] cannot
process 128 × 128 videos due to insufficient memory capacity.
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FIGURE 1. Comparison of the existing method (blue) and the proposed
method (orange). The horizontal axis represents the computational cost
(GMACs) per 480p image, the vertical axis represents the PSNR value for
a noise level of 50 on the DAVIS test set, and the size of the bubble
represents the processing time in PyTorch. The proposed method
outperforms the existing lightweight method, BSVD, by only about 16.7%
computational cost.

Recently, networks that re-examine the structure of
classical CNNs and ConvBlocks [12], [13] (after this,
referred to as ‘‘modern CNNs/ConvBlock’’) have achieved
excellent results in the field of computer vision. Specifically,
‘‘Classical CNN’’ is the structure used in AlexNet [14] and
VGG [15] and its derivatives, typically consisting of regular
convolutions, batch normalization, and ReLU. ‘‘Modern
CNN’’ is the structure used in ConvNeXt and its derivatives,
with blocks consisting of Depthwise Separable Convolution,
GELU, and Pointwise Convolution and blocks consisting of
Pointwise Convolution and GELU. Each block is residually
connected, and layer normalization is applied at the blocks’
input. These structures are inspired by Transformer-based
networks and are lighter and more powerful than Classical
CNNs.

However, video denoising has not been as active as
researches on image denoising, and many existing networks
[1], [2], [5], [6] still use classical CNN.

This paper proposes a GPU/deep learning-based video
denoising network, Pseudo Temporal Fusion Network
(PTFN), achieving high-level denoising quality and com-
putational effeciency simultaneously. PTFN uses a new
Pseudo Temporal Fusion (PTF) module to capture temporal
relationships between video frames. Since it does not process
the temporal axis directly, it cannot capture temporal rela-
tionships by itself. However, when combined with Temporal
Shift Module (TSM) [16], it can capture pseudo-temporal
relationships. PTF contributes to performance and network’s
computational effeciency since it does not process the
temporal axis directly, unlike heavy Conv3d. In addition,
PTFN also uses modern ConvBlock, which contributes to
both performance and computational effeciency. However,
the ConvBlocks proposed in [12] and [13] are not verified
to be suitable for video denoising, so this paper explores the
structure of ConvBlock suitable for video denoising.

PTFN improves the denoising performance while signifi-
cantly reducing the computational cost compared to existing
methods. It also achieves excellent performance in terms
of processing time in PyTorch [17]. PTFN is also superior
in terms of memory consumption. It can rapidly process
1080p (1980×1080) videos with NVIDIA RTX 3090 24GB.
In addition, a lighter version (PTFN Half) can process 2K
videos at high speed under the same conditions.

The main contributions of this paper are as follows:

• We propose Pseudo Temporal Fusion Network (PTFN),
a deep learning network that combines computational
effeciency and denoising quality at a high-level. PTFN
adopts a modern ConvBlock structure to improve com-
putational effeciency and denoising quality. In addition,
we propose Pseudo Temporal Fusion (PTF), a module
for capturing the pseudo-temporal relationship between
video frames. Since PTF does not directly calculate the
temporal axis, it contributes to computational effeciency
of the network.

• PTFN achieves excellent video denoising performance.
PTFN improves the PSNR value by 0.19 dB on the
DAVIS test set [18] with a noise level of 50 compared
to BSVD [2], the existing lightweight video denoising
method. Moreover, PTFN is a very computationally
effecient network with only 16.7% computational cost
from BSVD.

II. RELATED WORKS
A. VIDEO DENOISING
1) CPU-BASED METHODS
Video denoising has long been discussed, and many
researches are tackling it before GPU/deep learning-based
methods appear. Maggioni et al. [4] proposed a filtering
algorithm that exploits the temporal and spatial redundancy
that characterizes natural video. This method exploits tem-
poral and spatial correlations through non-local grouping.
Jovanov et al. [19] proposed a selective wavelet shrinkage
algorithm with motion estimation and noise level estimation.
Arias and Morel [3] proposed a method to build Bayesian
models for similar spatio-temporal patches.

These methods are too slow because the computational
processing is not optimized for GPUs. They also have lower
performance than the GPU/deep learning-based methods that
have recently become mainstream.

2) GPU/DEEP LEARNING-BASED METHODS
Recently, GPU/deep learning-based methods have been the
mainstream of video denoising because of fast inference and
high performance. Tassano et al. [5] proposed a network
that performs temporal denoising after spatial denoising
and achieves performance that exceeds existing CPU-based
methods. Since [5], many GPU/deep learning-based video
denoising methods have been proposed, and the denoising
performance has been dramatically improved.
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FIGURE 2. The overall structure of Pseudo Temporal Fusion Network (PTFN).

Recently, Vaksman et al. [6] proposed a method to
introduce patch-craft frames, pseudo-frames similar to actual
frames, to augment video sequences and denoise them in
CNNs. Liang et al. [8] proposed a module that recognized
the correlation between frames using the Attention module.
Buades and Lisani [20] proposed a method to capture tem-
poral relationships using a regularized optical flow method.
Shen et al. [21] proposed a complementary network based on
optical flow for spatial enhancement and flow enhancement
modules for temporal enhancement. Liang et al. [9] proposed
a method that efficiently exploits temporal relationships
using Guided Deformable Attention. Although [8] and [9]
achieved excellent performance, they are computationally
very expensive due to the use of Transformers in the network.
In addition, the inference speed of these methods is also
slow due to the huge size of the network. It is essential
to process high-resolution videos rapidly for practical use,
so a computationally effecient network with high denoising
performance is required.

Several lightweight networks [1], [2], [7] for video
denoisng have been proposed. Tassano et al. [1] proposed
a fast denoising network consisting of two lightweight
U-Nets [22]. This method combines frames in the channel
direction. It fuses the relationship between frames and
channels to achieve fast inference, but it has the problem
of inefficient inference because it performs sliding-window
inference. Qi et al. [2] proposed a Bidirectional Buffer
Block (BBB) that can replace the Temporal Shift Module
(TSM) [16] and proposed a MIMO (Multi Input Multi
Output) network that uses it. In [2], the performance
degradation caused by temporal clipping, a popular problem
of MIMO networks, is addressed by replacing the TSM with
the BBB during inference. In these methods, the network
structure is a classical CNN network, and there is room for
improvement.

Unlike existing methods, the proposed method employs a
modernConvBlock, contributing computational effeciency of

the network while keeping great performance. We propose
a new Pseudo Temporal Fusion (PTF) module, which
captures pseudo-temporal relationships of video sequences
when combined with the Temporal Shift Module. PTF is
suitable for computationally effecient video denoising net-
works compared to existing modules for capturing temporal
relationships because it does not directly process the temporal
axis.

B. MODERN CNN NETWORKS
Recently, image and video processing networks based on
Transformer have achieved excellent results [9], [10], [11],
[23]. Recently, however, some researches have begun to
re-examine the structure of traditional CNNs regarding
the structure of the Transformer networks. Liu et al. [12]
reviewed the structure of ResNet-50 [24] regarding the
Swin Transformer [11]. They proposed a new network
called ConvNeXt. [12] modified ResNet-50 from five
features. The features are ‘‘Macro design,’’ ‘‘ResNeXt-
ify [25],’’ ‘‘Reversed bottleneck,’’ ‘‘Large kernel size,’’ and
‘‘Micro design.’’ The proposed ConvNeXt outperforms the
Swin Transformer in COCO object detection and ADE-20K
segmentation. Chen et al. [13] proposed a CNN network
for image restoration tasks such as super-resolution and blur
removal for a single image, referring to [12].

III. PSEUDO TEMPORAL FUSION NETWORK (PTFN)
A. OVERALL STRUCTURE
PTFN is a MIMO (Multi Input Multi Output) network with
the structure shown in Fig. 2. Following some existing
methods [1], [2], PTFN is a network consisting of two Pseudo
Temporal Fusion Denoising Blocks (PTF Denoising Block)
(Fig. 3). The input of PTFN is the noisy video sequence
[fnoise(t−T ), · · · , fnoise(t+T )]. The output of PTFN is denoised
video sequence [f̂(t−T ), · · · , f̂(t+T )] and intermediate output
[f̂inter(t−T ), · · · , f̂inter(t+T )]. 1 × 1 Conv2d (ToRGB in Fig. 2)
is applied before outputting intermediate output.
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PTFN performs step-by-step denoising by connecting
denoising networks in series, and there is a possibility
that performance can be further improved by connecting
three or more networks. However, since this paper discusses
lightweight networks, we do not examine this possibility.
Actually, if three are connected in series, the NVIDIA RTX
3090 24GB will not be able to process 1080p resolution
videos.

B. PSEUDO TEMPORAL FUSION DENOISING BLOCK (PTF
DENOISING BLOCK)
The PTF Denoising Block is a four-scale U-shaped network
shown in Fig. 3. At each scale, the PTF Denoising Block
processes video in layers consisting of the Temporal Shift
Module (TSM), ConvBlock, and Pseudo Temporal Fusion
Block (PTF Block). Downsampling is performed by 2 × 2
Conv2d with stride 2, and upsampling is performed by 1× 1
Conv2d and Pixel Shuffle [26]. Unlike original U-Net, when
fusing features, the features are not concatenated but are
added element-wise. The number of channels is 32, 64, 128,
and 256 from the above scale. Following [2], TSM is replaced
with Bidirectional Buffer Block during inference.

C. TEMPORAL SHIFT MODULE (TSM)
TSM [16] is a module for fusing temporal information with
channel information in video processing MIMO networks.
TSM shifts specific ratio channels in the feature map to
the previous and next frames. When inputting feature map
f whose size is (B,T ,C,H ,W ), the output of TSM f ′ is
presented as:

f ′[:, t, :, :, :] = Concat
(
f
[
:, t − 1, :

c
2r

, :, :
]
,

f
[
:, t + 1,

c
2r

:
c
r
, :, :

]
, f
[
:, t,

c
r

:, :, :
])
(1)

Note that B is the batch size, T is the number of frames, C
is the number of channels, H is height, W is width, and r is
the ratio to shift feature maps. Concat(x1, x2, · · · , xn) means
to concatenate [x1, x2, · · · , xn] to channel axis. All r are set
to 8 in PTFN.

D. ConvBlock
PTFN adopts a modern ConvBlock structure, as shown in
Fig. 4 (a). The ConvBlock is unlike the ConvBlocks used in
existing networks, composed of Layer Normalization [27],
1 × 1 Conv2d, 3 × 3 Depthwise Conv2d [28], GELU [29],
and 1 × 1 Conv2d. A residual connection between the input
and output is adopted. The width of channels is twiced by
1 × 1 Conv2d before GELU and halved by 1 × 1 Conv2d
after GELU.

The main difference between PTF Block and ConvBlock
is the role in network processing. ConvBlock has spatial
operations such as 3×3 DConv, but PTF Block does not have
such operations. ConvBlock has the role of spatial processing,
which is the difference from PTF Block.

E. PSEUDO TEMPORAL FUSION BLOCK (PTF BLOCK)
The structure of the PTF Block is shown in Fig. 4 (b).
It consists of Layer Normalization, 1 × 1 Conv2d, Pseudo
Temporal Fusion (PTF), and 1 × 1 Conv2d. The specific
operations of PTF are calculated in (2) and (3).

Xt−1,Xt ,Xt+1 = Split(X , 3) (2)

Y = Like(0.5,Xt )

⊗ ((Xt−1 ⊗ Xt ) ⊕ (Xt ⊗ Xt+1)) (3)

Note that Split(X , n) is the operation that splits X into
n equal parts by channel axis, and Like(a,X ) means a
tensor of identical size to X with all values a. ⊗ and
⊕ means element-wise multiplication and element-wise
addition.We use PyTorch in our experiments and torch.chunk
is used for dividing the feature into equally three parts.
The PTF divides the input into three equal parts by channel
axis to separate temporal information from feature maps.
Each divided feature map means the information at time t
and before and after. Usually, it is impossible to separate
temporal information by splitting feature maps in the channel
axis. Thus, PTF cannot capture the temporal relationship
alone. However, the PTF Denoising Block contains a TSM,
and the temporal relationships are merged with the channel
relationships. Therefore, PTF can capture pseudo-temporal
relationships by splitting feature maps by channel axis
between feature maps. PTF is also computationally effecient
because it does not perform calculations directly on the
temporal axis. Conv3d performs operations on the temporal
axis in addition to the channel, horizontal and vertical axis
in spatial. The PTF operation does not perform operations on
the temporal axis. The ratio of the computational cost of PTF
Block to that of 3 × 3 Conv3d is expressed by (4).

3hwc2
1 × 1 Conv2d

+ 3hwc
PTF

+ hwc2
1 × 1 Conv2d

9fhwc2
3 × 3 Conv3d

∼
4
9f

(4)

Note that h,w, c, f represent the height, width, number of
channels, and number of frames of the feature map. Eq. (4)
indicates that Conv3d directly performs the temporal axis
calculation, which increases the computational complexity
over PTF by the number of frames f .

F. LOSS FUNCTION
The loss function used during training is expressed by:

1
(2T + 1)(1 + α)

(
t+T∑

τ=t−T

PSNRLoss(f̂τ , fτ )

+ α

t+T∑
τ=t−T

PSNRLoss(f̂inter(τ ), fτ )

)
(5)

The meanings of the symbols in (5) follow those in Fig. 2,
where t and T are the frame indices, f̂ is the final output
image of the network, f̂inter is the intermediate output of the
network, and f is the clean image. PSNRLoss(x, y) means the
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FIGURE 3. The structure of Pseudo Temporal Fusion Denoising Block (PTF Denoising Block).

FIGURE 4. The structure of ConvBlock and Pseudo Temporal Fusion
(PTF Block).

FIGURE 5. The structure of Pseudo Temporal Fusion. ⊗ and ⊕ means
element-wise multiplication and element-wise addition.

PSNRLoss between x and y, and α is a coefficient to adjust
the loss ratio.

Since many lightweight methods [1], [2] consist of
two denoising networks connected in series, multi-stage
denoising would be helpful for high-quality denoising.
Therefore, in (5), the loss between the intermediate output
and the clean image is adopted to assist in learning multi-step

denoising. Since the PSNRLoss used in this training has a
large absolute value, the value of the loss function changes
significantly by adding a term, and the value of the gradient
also changes significantly. Therefore, by dividing the loss
value by 1 + α, the change in loss value caused by the value
of α is reduced.

IV. EXPERIMENTS
A. DATASET
In order to compare the proposed method with existing
methods, we follow [1] and perform the quantitative and
qualitative comparison using the DAVIS data set [18] and
the Set8 test set [1], [30]. The DAVIS dataset consists of a
training set containing 90 RGB video sequences and a test set
containing 30 RGB video sequences with a resolution of 480p
(480 × 854). The Set8 test set consists of 4 video sequences
from the Derf test set [30] and 4 video sequences captured by
GOPRO with a resolution of 540p (540 × 920).

B. CONDITIONS
The batch size of the proposed method during training is
16. The number of input frames is 11, T = 5 according to
the notation in Fig. 2. The input video is randomly cropped
to 96 × 96, and random flipping is applied to each video
sequence. Additive White Gaussian Noise (AWGN) is added
to the video sequences, and the noise level σ is selected from
the uniform distribution U (5, 55).

The training is performed on the DAVIS train set with
400,000 iterations. Adam [31] with β1 = 0.9, β2 = 0.9 is
used as the optimizer. Cosine Annealing [32] with ηmax =

1.0× 10−3, ηmin = 1.0× 10−7, and Tmax = 400, 000 is used
as the learning rate scheduler. The ratio α of the intermediate
output loss in the loss function (5) is set to 0.1. The value of
the gradient is clipped at 0.1 during training.
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TABLE 1. PSNR (dB) for the non-blind denoising on DAVIS and Set8 test sets. σ represents the AWGN noise level and Avg is the average PSNR for each
noise level. The best value for each item is bolded, and the second best value is underlined.

TABLE 2. PSNR (dB) for the blind denoising on DAVIS and Set8 test sets. σ represents the AWGN noise level and Avg is the average PSNR for each noise
level. The best value for each item is bolded, and the second best value is underlined.

TABLE 3. Comparison of the lightness of the models of the proposed and existing methods. Runtimes (s/image) represents the processing time per
image in Python or PyTorch implementation, and GMACs/image represents the computational cost per image. 480p means 480 × 854, 720p means
720 × 1280, and 1080p means 1080 × 1920. For processing, the GPU-based method used an NVIDIA RTX 3090 24GB, and the CPU-based method used an
Intel Xeon CPU E5-1650 v4. The PSNR values at σ = 50 for the DAVIS test set are also shown in Tab 3 to compare the trade-off between processing time
and performance. OOM stands for Out Of Memory, and the computational cost per image is calculated only for the GPU-based method.

In addition to the model using the PTF Denoising Block
(PTFN) shown in Fig. 3, we also train PTFN-L in which the
number of PTF Blocks at each stage of the PTF Denoising
Block is increased from one to two. Lighter models with
only one PTF Denoisig Block (PTFNHalf and PTFN-L Half)
are also trained. These models are fine-tuned using weights
of trained PTFN and PTFN-L. The DAVIS train set is used
for fine-tuning with 100,000 iterations. Adam is used as the
optimizer with β1 = 0.9 and β2 = 0.9. Cosine Annealing
with ηmax = 1.0 × 10−4, ηmin = 1.0 × 10−7, and Tmax =

100, 000 is used as the learning rate scheduler.
In addition, experiments were also conducted on blind

video denoising. In this case, the training conditions are the
same as non-blind denoising.

C. QUANTITATIVE COMPARISON
1) QUALITY OF GENERATED VIDEO
Tab. 1 compares the PSNR values of the non-blind denoising
results on the DAVIS and Set8 test sets for the proposed
and existing methods. Tab. 1 shows that our method achieves

better performance for a wide range of noise levels than the
existing methods. Compared to BSVD, PTFN and PTFN-L
improve by 0.19 dB and 0.43 dB on the DAVIS test set and
by 0.05 dB and 0.20 dB on the Set8 test set at a noise level of
50. Compared to FastDVDNet, PTFN Half and PTFN-L Half
improved by 0.38 dB and 0.75 dB in the DAVIS test set and
by 0.10 dB and 0.38 dB in the Set8 test set at a noise level
of 50.

VNLB and PaCNet perform very well when σ = 10, and
the proposedmethods are not as good as thesemethods. These
methods are patch-based, and they obtain useful features
from the surroundings by patch matching. When σ is small,
useful features can be obtained from surrounding patches
because the image or video is relatively clean. Therefore,
these conventional methods tend to perform better when σ is
small. However, this tendency is limited to where σ is small,
and our method performs much better when σ is high.
Tab. 2 compares the PSNR values of the blind denoising

results on the DAVIS and Set8 test sets for the proposed and
existing methods. As in the non-blind case, PTFN achieves
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FIGURE 6. Comparison of the denoised images of the proposed method and the exiting method in one frame of video Snowboard in the Set8 test set.

FIGURE 7. Comparison of the denoised images of the proposed method and the exiting method in one frame of video Tractor in the Set8 test set. The
cyan framed area is enlarged for comparison. The results of noise reduction by Restormer, a lightweight state-of-the-art single-image denoising method,
are also compared.

superior performance compared to the existing methods.
In the non-blind case, the PTF Denoising Block receives a
noise map representing the input image’s noise level. Since
this noise map assists the denoising network, the non-blind
methods perform better. However, the blind case performs
as well as or better than the non-blind method for the half
model with only one PTF denoising block. This implies that
the noise map-assisted network denoising is only valid for
deeper models.

2) MODEL LIGHTNESS
Fig. 1 shows a bubble chart with the computational cost
per 480p image (GMACs) on the horizontal axis, the
PSNR value of the DAVIS test set at σ = 50 on the
vertical axis, and the inference time per 480p image in
Pytorch [17] as the bubble size. GMACs stands for Giga
Multiply Accumulation Calculation. Multiply Accumulation
Calculation is the number of multiplication and addition
appearing in processing.

Tab. 3 and Fig. 1 show that PTFN can achieve
high-quality denoising performance with tiny computational

cost compared to existing methods. Specifically, PTFN
outperforms BSVD with approximately 16.7% of its compu-
tational cost.

Both BSVD and PTFN have UNet-like structures, but
while BSVD uses a classical ConvBlock, PTFN uses modern
ConvBlock and PTF Block, which are lighter but have
excellent performance. The ConvBlock used in BSVD is a
two-layer Conv2d, and its computational cost is expressed
by:

9hwc2
3 × 3 Conv2d

+ 9hwc2
3 × 3 Conv2d

= 18hwc2 (6)

The computational cost in PTFN’s ConvBlock is expressed
by:

2hwc2
1 × 1 Conv2d

+ 18hwc
3 × 3 DWConv2d

+ 2hwc2
1 × 1 Conv2d

= 4hwc2 + 18hwc

(7)

Note that h, w, and c are the feature map’s height, width,
and number of channels. When h,w, c = 480, 856, 32, the
computational cost of the BSVD ConvBlock is 7.57 × 109,
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FIGURE 8. The horizontal axis is the change in the velocity versus PTFN
for items other than 4⃝ in Tab. 4, and the vertical axis is the value of PSNR
for noise level σ = 50 in the DAVIS test set. The orange line is the straight
line connecting 1⃝ and 2⃝.

whereas the ConvBlock used in PTFN is 1.92×109, a signif-
icant reduction. PTFN Half shows superior performance with
approximately 15.4% of FastDVDNet’s computational cost,
and the inference speed has also improved. The proposed
method is also superior in terms of memory consumption.
BSVD could not process 1080p videos on the NVIDIA RTX
3090 24GB, while PTFN can process 1080p videos. The
lighter PTFN Half can process even higher resolution images
with the same GPU. It can process 2K resolution (2560 ×

1440) videos in 0.22 s per image.

D. QUALITATIVE COMPARISON
Fig. 6 and Fig. 7 compare the denoised images in one frame of
the Snowboard and Tractor videos in the Set8 test set. As can
be seen by focusing on the sky in Fig. 6, PTFN can denoise
more cleanly than the existing methods, indicating that it has
superior denoising performance.

The ability to capture temporal relationships is closely
related to the noise removal performance of video. As shown
in Fig. 7, Restormer [23], the lightweight state-of-the-
art single image denoising method, cannot restore delicate
patterns such as characters. This is because the characters are
completely distorted in the noisy image of Fig. 7. It means
that restoration is impossible from a single image in this
case. Therefore, to restore characters, it is necessary to
capture temporal relationships, and this capability is essential
in video denoising. Due to these facts, we proposed the
PTF to capture temporal relationships better. Our method
can restore characters compared to previous methods, which
means that our method successfully captures temporal
relationships.

E. ABLATION STUDIES
Tab. 4 shows an ablation study of the PTFNnetwork structure,
verified in terms of denoising performance and inference
speed.

1) STRUCTURE OF ConvBlock
Although [12], [13] proposedmodernConvBlockswith better
performance than classical ConvBlocks, it is unclear whether
they are suitable for video denoising. Therefore, in this paper,
we also examine the ConvBlocks to find one suitable for
video denoising.

1⃝ in Tab. 4 shows the case where the kernel size of the
Depthwise Conv in the ConvBlock was changed from 3 to 7.
In this case, the PSNR value for a noise level of σ = 50 in
the DAVIS test set improved by 0.13 dB. A larger kernel size
can capture more spatial redundancy in the image, resulting
in improved performance. However, the processing time per
1080p image in PyTorch increased by 24%.

In Tab. 4, 2⃝ and 3⃝ represent the case where the Depthwise
Conv position of the ConvBlock is moved up. 2⃝ represents
the case where the kernel size is 3, and 3⃝ represents the case
where the kernel size is 7. Moving up the Depthwise Conv
position is introduced in [12], and its effectiveness in the
image classification task has been demonstrated. The value
of PSNR in 2⃝ is reduced by 0.04 dB, but the speed is also
reduced by 4%, while the 3⃝ value of PSNR is increased by
0.04 dB, but the speed is slowed down by 8%.

Fig. 8 verifies the trade-off between performance and speed
for the items other than 4⃝ in Tab. 4. From Fig. 8, It can be
interpreted that PTFN, which has a kernel size of 3 and does
not move up the position of the Depthwise Conv, is the most
optimal model in terms of the trade-off between speed and
performance.

2) PSEUDO TEMPORAL FUSION (PTF)
In order to verify the effectiveness of the PTF, a comparison
between PTFN and 4⃝ when the PTF of the PTF Block is
replaced with GELU is conducted. Tab. 4 shows that the
PSNR value of the DAVIS test set increased by 0.32 dB
by introducing PTF, suggesting that the PTF improved the
quality of the generated video by enhancing the ability to
capture the temporal relationships of the network.

3) INTERMEDIATE LOSS
Tab. 5 compares the performance when the value of α in the
loss function (5) is changed. The value of α = 0 represents
the case where Intermediate Loss is not used. Tab. 5 shows
that the best performance is obtained when training with
α = 0.1. Since multi-step denoising is helpful for high-
quality denoising, Intermediate Loss for multi-step denoising
improves the network’s performance.

4) SCALE OF PSEUDO TEMPORAL FUSION DENOISING
BLOCK
There are three downsampling operators in Pseudo Temporal
Fusion Denoising Block (PTF Denoising Block), with
calculations on four different scales. Tab. 6 compares video
denoising results for PTF Denoising Block scales of two
and three. The depth of the model is adjusted to keep the
processing speed of 1080p images in PyTorch constant.
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TABLE 4. The results of ablation studies of the PTFN network structure. The PSNR values are calculated in the DAVIS test set with noise level σ = 50. The
GPU used for the speed evaluation is an NVIDIA RTX 3090 24GB, and the framework used was PyTorch.

TABLE 5. PSNR values for the DAVIS test set when varying the coefficient
of the Intermediate Loss term of the loss function. The best values are in
bold.

FIGURE 9. The horizontal axis is the change in the velocity versus PTFN
for items other than 4⃝ in Tab. 7, and the vertical axis is the value of PSNR
for noise level σ = 50 in the DAVIS test set. The orange line in Fig. 9 is the
approximate straight line for samples with PTF ( 1⃝, 2⃝ 3⃝ and PTFN).

Table 6 shows that a scale of four gives the best performance.
Denoising at a variety of scales increases the virtual receptive
field and improves performance.

V. CONCLUSION
In this paper, we propose the Pseudo Temporal Fusion
Network (PTFN) for video denoising, which supports high
performance and computational effeciency at the same
time. PTFN are much less computationally expensive than
existing video denoising methods, and their performance is
significantly improved. PTFN is also superior in memory
consumption and can process 1080p images on a GPU with
24GB RAM. PTFN employs a new Pseudo Temporal Fusion
module, which captures pseudo-temporal relationships when
combined with the Temporal Shift Module, contributing to
performance. This paper also searches for a more suitable
modern ConvBlock for video denoising. We demonstrated
that PTFN is a valuable network for video denoising from
various perspectives.

FIGURE 10. PSNR of each frame numbered 0 to 24 on snowboard of Set8
testset for the proposed and existing methods. The horizontal axis is the
frame number and the vertical axis is the PSNR.

APPENDIX A
COMPARING PSEUDO TEMPORAL FUSION AND
SIMPLEGATE
The Pseudo Temporal Fusion (PTF) proposed in this paper
divides the feature map in the channel direction and
then performs element-wise computation. This operation is
similar to the SimpleGate (SG) proposed by Chen et al. [13].
However, there are clear differences between PTF and SG.
We will discuss the difference between them from the two
viewpoints of ‘‘Purpose’’ and ‘‘Effect on video denoising’’.

A. PURPOSE
PTF aims to efficiently capture the temporal relationships
of video sequences in conjunction with the Temporal Shift
Module (TSM) [16], which merges the temporal and channel
relationships of feature maps. Therefore, PTF can capture
pseudo-temporal relationships by operating feature maps in
channel axis. Moreover, Since the TSM shifts the features
one frame before and after, the PTF also divides the feature
map into three equal parts. On the other hand, Chen et al.
considered GELU as a special case of Gated Linear Units
(GLU) and replaced them with SG, simpler GLU, to speed
up the network. So for video denoising, PTF is more suitable
than SG.

B. EFFECT ON VIDEO DENOISING
Tab. 7 is the comparison of PTFN and other networks with
different settings. 1⃝ in Tab. 7 shows the case where the kernel
size of the Depthwise Conv in the ConvBlock was changed
from 3 to 7. 2⃝ and 3⃝ represent the case where the Depthwise
Conv position of the ConvBlock is moved up. 2⃝ represents
the case where the kernel size is 3, and 3⃝ represents the case
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TABLE 6. Comparison of PTF Denoising Block at different scales. Num Scale means the number scales in the PTF Denoising Block. Depths at nth scale
means the number of the processing block (TSM, ConvBlock, PTF Block) for the encoder and decoder at the scale where the PTF Denoising Block is
downsampled n times. In the case of the bottom scale, a single value is shown because there is no distinction between the encoder and the decoder. The
GPU used for the speed evaluation is an NVIDIA RTX 3090 24GB, and the framework used was PyTorch. The PSNR values are calculated in the DAVIS test
set with noise level σ = 50. The best PSNR value for each item is bolded.

TABLE 7. The results of ablation studies of the PTFN network structure. The PSNR values are calculated in the DAVIS testset with noise level σ = 50. The
GPU used for the speed evaluation is an NVIDIA RTX 3090 24GB, and the framework used was PyTorch.

FIGURE 11. Comparison of the denoised images of the proposed method and the existing method in one frame of video 0001 in the spring dataset. The
cyan framed area is enlarged for comparison. To the right of the method’s name is the average of the PSNR in video 0001 in the spring dataset.

where the kernel size is 7. 4⃝ shows the case when PTF is
replaced with GELU. The case where the PTF is replaced by
SimpleGate ( 5⃝) is added fromTab. 4 in themain paper. Fig. 9
is a graph of Tab. 7.

Tab. 7 shows that PSNR is 0.10 dB higher when using
PTF than when replacing it with SG. The orange line in
Fig. 9 is the approximate straight line for samples with
PTF. It represents the trade-off between computational cost
and PSNR when PTF is used. In Fig. 9, point of 5⃝ is
located on the lower side of the orange line. This indicates
that PTF is superior performance of SG in terms of the
trade-off.

APPENDIX B
PSNR VALUES IN VIDEO SEQUENCES
Fig. 10 shows the PSNR for each frame from number 0 to
24 on the snowboard of the Set8 testset [18], [30]. It can be
seen that our method (PTFN, PTFN-L) achieves overall better
PSNR than the existing methods [1], [2], [6]. PTFN replaces
the TSM with a Bidirectional Buffer Block [2] during
inference. Thus it is free from inefficiencies in inference such
as overlapping sliding windows.

APPENDIX C
DENOISING RESULTS IN HIGH-RESOLUTION VIDEO
To verify that the proposed methods perform well on high-
resolution videos, we add Gaussian noise with σ = 50 to
Video 0001 in the Spring Dataset [33] and denoise it with
the proposed method and FastDVDNet. Spring Dataset is
a high-resolution and high-detail dataset with a resolution
1080p (1920 × 1080). Fig. 11 shows one of the frames of
the video denoising results. Fig. 11 shows that our method
reconstructs hillside lines and rock textures more detail than
FastDVDNet. The PSNR in our methods is also higher than
FastDVDNet.
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