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ABSTRACT This paper addresses the problem of task assignment and trajectory generation for installing
bird diverters using a fleet of multi-rotors. The proposed solution extends our previous motion planner
to compute feasible and constrained trajectories, considering payload capacity limitations and recharging
constraints. Signal Temporal Logic (STL) specifications are employed to encode the mission objectives and
temporal requirements. Additionally, an event-based replanning strategy is introduced to handle unforeseen
failures. An energy minimization term is also employed to implicitly save multi-rotor flight time during
installation operations. The effectiveness and validity of the approach are demonstrated through simulations
in MATLAB and Gazebo, as well as field experiments carried out in a mock-up scenario.

INDEX TERMS Aerial systems: applications, formal methods in robotics and automation, multi-robot
systems, task and motion planning.

I. INTRODUCTION
Power lines play a crucial role in providing energy to mil-
lions of people and are considered vital civil infrastructure
in any country. To enhance network reliability and minimize
power outages, electricity supply companies invest signifi-
cant resources in inspection and maintenance operations [1].
Among these activities, the installation of bird diverters on
power lines (see Figure 1) is essential to mitigate the risk of
bird collisions [2] and improve their visibility [3]. Bird mor-
tality caused by power line collisions is a significant concern,
particularly in areas with diverse bird populations or during
migratory seasons. It has been estimated that power line
collisions affect approximately 350 bird species [4], resulting
in millions of bird deaths annually worldwide [5], [6].

To address this issue, various types of bird diverters have
been developed, including active and passive designs. Active
bird diverters utilize wind-driven components, while passive
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diverters, such as helical objectsmade of plastic or aluminum,
are attached to power cables to serve as visual markers (see
Figure 1). Additionally, alternative techniques, such as visual
and auditory deterrents, have been developed to mitigate bird
collisions. Visual deterrents employ markers or reflective
materials to enhance visibility and assist birds in avoid-
ing power lines, while auditory deterrents emit sounds that
discourage birds from approaching. However, the effective-
ness of these techniques can vary depending on bird species
and local conditions. Integrating these techniques with other
mitigation strategies provides a multi-faceted approach to
enhance bird safety and maintain a reliable power supply [7].
However, the currentmethod of usingmanned helicopters and
experienced crews for the installation of bird diverters has
drawbacks. Firstly, it is time-consuming, as power lines are
often located in difficult-to-access areas. Secondly, it poses
safety risks due to installations being performed at heights on
active lines.

Unmanned Aerial Vehicles (UAVs) offer a promising solu-
tion to automate bird diverter installation [8], [9], [10]. They
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FIGURE 1. Various types of bird diverters installed on a medium voltage
power line infrastructure [11].

can operate continuously over long distances and be equipped
with lightweight manipulation devices for autonomous instal-
lation operations [8], [11], [12], [13], [14]. However, the
limited battery and payload capacity of individual UAVs
necessitate the use of multiple UAVs to expedite the process,
respond to unforeseen events and cover large-scale scenarios.
Planning for a multi-UAV team presents challenges such as
scheduling battery recharging and diverter installation, ensur-
ing collision-free trajectories, considering vehicle dynamics
and energy consumption models, among other concerns.

Therefore, advanced task and motion planning
techniques are required to enable bird diverter installation
using multi-UAV teams while meeting safety requirements
and mission objectives. Temporal Logic (TL) can serve
this purpose by providing a mathematical framework that
combines natural language commands with temporal and
Boolean operators [15], [16]. In particular, Signal Temporal
Logic (STL) [17] is equipped with a metric called robustness,
which not only evaluates whether the system execution meets
requirements but also quantifies the extent to which these
requirements are fulfilled. This leads to an optimization
problem that aims to maximize the robustness score, thereby
providing the best feasible trajectory while satisfying the
desired specifications.

This paper proposes a motion planner for multi-UAV sys-
tems that leverages STL specifications for the installation
of bird diverters on power lines. The mission requirements
are encoded as an STL formula, and a nonlinear non-convex
max-min optimization problem is formulated tomaximize the
robustness score. To handle the complexity of this nonlin-
ear optimization, a hierarchical approach is adopted. First,
a Mixed-Integer Linear Programming (MILP) problem is
solved, and the resulting solution is then fed into the final STL
optimizer.

A. RELATED WORK
This paper addresses a complex multi-UAV motion prob-
lem that requires considering vehicle dynamics, collision
avoidance, limited mission time, and payload capacity.
Sampling-based planners [18] like the well-known Rapidly-
exploring Random Tree (RRT) and its variants can compute
collision-free trajectories in high-dimensional configuration

spaces within reasonable time. Extensions have been pro-
posed to minimize energy consumption and handle vehicle
dynamics constraints [19], [20], although their convergence is
not proven. However, RRT-based methods do not inherently
handle payload capacity restrictions and struggle with com-
plex nonlinear problems or multi-robot settings. To achieve
real-time performance, motion primitives have been explored
for optimal trajectory planning of UAVs [21], [22]. Addi-
tionally, the problem often transforms into a combinatorial
optimization challenge, where an exhaustive search becomes
computationally infeasible. In such cases, heuristic methods
are commonly employed to simplify the complexity and iden-
tify the most viable solution [23], [24], [25], [26].

When themission requires visitingmultiple locations, opti-
mization approaches based on the Vehicle Routing Problem
(VRP) formulation have been proposed [27], [28]. Since VRP
variants are NP-hard combinatorial problems, many works
propose heuristic approaches sacrificing optimality [29],
[30]. While these methods can handle UAV capacity and
mission time constraints, they face challenges in obstacle
avoidance and multi-vehicle dynamics [31]. Hierarchical
approaches utilizing Probabilistic Roadmaps (PRMs) and
kinodynamic Stable Sparse RRT (SST) methods have been
investigated to generate collision-free and minimum-time
flight trajectories [32], [33]. However, the problems discussed
do not consider UAV payload capacity or multi-UAV settings.

Alternatively, with the advancement of computational
resources onboard UAVs and recent progress in efficient
numerical methods, receding horizon approaches for optimal
control have emerged as a viable solution for addressing
multi-UAV trajectory planning [34]. Centralized methods for
non-convex optimization [35] and distributed Model Predic-
tive Control (MPC)-based algorithms [36], [37] have been
proposed. Others have employed knowledge transfer tech-
niques between agents to achieve collision avoidance and
safety [38].While thesemethods efficiently compute safe and
optimal trajectories for multiple UAVs, they do not incor-
porate high-level mission specifications (e.g., time interval
or ordering constraints) or task planning into the problem
formulation.

Moreover, literature includes publications that enhance
motion planning for multi-robot systems using formal spec-
ification languages [17], [39]. The authors in [40] propose
extracting local specifications assigned to specific robots
to address multi-robot trajectory planning. Motion capabil-
ities of each robot are represented using a transition system,
which may become computationally expensive as the number
of agents and tasks increase. On the other hand, Control
Barrier Functions (CBFs) [41] have shown promise in effi-
cient motion planning, but they are limited to a fragment
of the STL formula, restricting their application to simple
scenarios [42]. In [43], the authors present robust algo-
rithms for multi-robot coordination that encode high-level
temporal logic specifications into an MILP problem. How-
ever, their sequential multi-robot RRT algorithm leads to
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suboptimal trajectories. A reinforcement learning approach
for multi-agent systems has been proposed in [44], focusing
on finite abstractions and deterministic systems. Neverthe-
less, methodological advances are still needed as it poses
computational challenges for complex STL formulae. In [45],
the authors propose a mathematical programming-based
method for MPC using STL specifications. Nonetheless, its
scalability is limited due to exponential complexity in the
number of binary variables. In [46], a scalable algorithm for
multi-agent optimal control with TL is presented, but it lacks
the ability to handle concrete timing requirements and agent
counting.

B. CONTRIBUTIONS
This paper introduces an innovative approach to task and
motion planning for the installation of bird diverters on
power lines using a team of multi-rotor UAVs. The pro-
posed method leverages STL to generate optimal trajectories
that are dynamically feasible, considering vehicle dynamics
and velocity and acceleration limits. These trajectories fulfill
various mission specifications, including collision avoidance
between UAVs and the environment, adherence to UAV
payload capacity limits, and reaching all installation targets
within the given mission time while ensuring sufficient time
for diverter installation and refilling operations. The prob-
lem results in a complex nonlinear non-convex max-min
optimization problem, which is addressed through a novel
hierarchical approach.

Building upon our previous research [47], the work
is extended to specifically address the installation of bird
diverters, incorporating payload capacity limitations and con-
sidering the presence of refilling stations for long-endurance
operations. However, finding an optimal solution in a rea-
sonable time frame can be challenging due to the solvers’
tendency to get stuck in local optima based on the initial
guess [48], [49]. Therefore, the work [47] is also extend
by introducing a novel procedure to compute the initial
guess solution for the optimization problem. Additionally,
our approach incorporates an event-based replanning strat-
egy to handle unforeseen failures. Whenever a UAV fails,
a new plan is computed online using the motion planner for
a backup drone. This ensures uninterrupted mission progress.
Lastly, to implicitly save multi-rotor flight time during instal-
lation operations, the proposed method also integrates an
energy minimization term. The core idea is to determine an
optimal cruising speed for each UAV, minimizing energy
consumption, and generating trajectories that closely follow
these nominal speeds. The main contributions of this paper
are summarized as follows:

• The multi-UAV planning problem for installing divert-
ers on power lines is formulated in Section II.
We extract STL specifications (see Section III) and
employ them to establish an optimization problem
that integrates task and motion planning. This results
in dynamically feasible trajectories that satisfy safety

requirements, including obstacle avoidance and mutual
safety distances, while ensuring mission fulfillment.

• The proposed STL optimization problem (Section IV)
provides global optimal solutions. However, its nonlin-
ear non-convex max-min nature presents challenges for
solution methods [48], [49]. To address this, we pro-
pose a hierarchical approach where an MILP approach
(Section IV-B) generates the initial guess. This MILP
approach works with simplified constraints, neglect-
ing obstacle avoidance, safety requirements, vehicle
dynamics, and timemission specifications. It outputs the
sequence of target regions and corresponding refilling
operations for each UAV. Motion primitives [47] are
then utilized to approximate UAV dynamics and gen-
erate feasible trajectories (position, velocity, and accel-
eration) between each pair of points. These trajectories
serve as the initial guess for the global STL planner,
aiding in its convergence towards solutions that meet all
requirements.

• An event-based replanning strategy (Section IV-C) is
introduced to handle unforeseen UAV failures, making
the method applicable to scenarios with dynamic condi-
tions. Additionally, an extension to the proposed planner
(Section IV) is presented in the form of an energy-aware
planner (Section IV-D). This enhanced planner includes
an energy minimization term to implicitly extend the
endurance of the multi-rotors during the mission.

• Numerical simulations in MATLAB (Sections V) assess
the overall performance of the method in terms of mis-
sion specification fulfillment and the effectiveness of the
novel initialization procedure for the STL optimization.
Furthermore, Gazebo simulations and field experiments
(Section V-D) conducted in a mock-up setting demon-
strate the validity and feasibility of the method for real
scenarios. The Discussion section (Section VI) provides
a critical analysis of the paper’s findings, exploring their
implications, limitations, and potential future exten-
sions. Conclusions are discussed in Section VII.

II. PROBLEM DESCRIPTION
This paper focuses on the problem of installing bird diverters
on power lines using a team of δ UAVs. The work presented
here forms a part of the AERIAL-CORE European project1.
Figure 2 illustrates the scenario setup. The objective is to visit
specific target regions along the upper cables between con-
secutive towers for installation purposes [9]. These regions
serve as simplified representations of 3D spaces where divert-
ers can potentially be installed. Once a UAV reaches a region,
it is assumed that an onboard low-level controller handles
the installation operation, e.g., [8], [10], [12]. The UAVs are
assumed to be multi-rotors, specifically quadrotors, with lim-
ited velocity, acceleration, and payload capacity. Each UAV
may have a different payload capacity, while the velocity
and acceleration constraints remain the same for all UAVs.

1https://aerial-core.eu
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FIGURE 2. Illustration of a bird diverter installation scenario. Blue regions
represent Target Regions (TRs), while the Initial Positions (IPs) of UAVs
and Refilling Stations (RSs) are depicted in magenta and green,
respectively. The red line denotes the upper cables connecting the power
towers.

Ground-based refilling stations are positioned along the
power line, providing safe locations where the multi-rotors
can load new diverters within a known and bounded time
interval to resume their operations. The primary objective
is to plan trajectories for the multi-rotors, ensuring that the
mission is completed within the specified maximum time.
This planning process must account for the vehicle dynam-
ics and capacity constraints, as well as safety requirements
such as obstacle avoidance and maintaining a safe distance
between UAVs. A map of the environment, which includes a
polyhedral representation of obstacles such as power towers
and cables, is assumed to be available prior to the installation
mission.

III. PRELIMINARIES
Let us consider a discrete-time dynamical model of a
multi-rotor system xk+1 = f (xk , uk ), where xk+1, xk ∈

X ∈ Rn represent the next and current states of the system,
respectively, and uk ∈ U ∈ Rm is the control input. Let us
also assume that f : X × U → X is differentiable in both
arguments and locally Lipschitz. Therefore, given an initial
state x0 ∈ X0 ∈ Rn and a time vector t = (t0, . . . , tN )⊤ ∈

RN+1, with N ∈ N>0 being the number of samples that
describe the evolution of the system with the sampling period
Ts ∈ R>0, we can define the finite control input sequence u =

(u0, . . . , uN−1)⊤ ∈ RN as the input to provide the system to
obtain the unique sequence of states x = (x0, . . . , xN )⊤ ∈

RN+1.
Hence, we can define the state sequence x and the control

input sequence u for the d-th multi-rotor, with d ∈ N>0,
as dx = (dp(1), dv(1), dp(2), dv(2), dp(3), dv(3))⊤ and du =

(da(1), da(2), da(3))⊤, where dp(j), dv(j), and da(j), with j =

{1, 2, 3}, represent the sequences of position, velocity, and
acceleration of the vehicle along the j-axis of the world frame,
respectively. The k-th elements of dp(j), dv(j), da(j), and t
are denoted as dp(j)k , dv(j)k , da(j)k , and tk , respectively, where
k ∈ N>0.

The multi-rotor system model xk+1 = f (xk , uk ) employed
in this paper is based on the formulation presented in the
authors’ prior work [47]. In this formulation, motion prim-
itives are represented using splines, offering advantages such

as generating trajectories with arbitrary maneuver durations
and state constraints. The computational burden is man-
ageable, even on standard laptops, handling millions of
motion primitives per second. Splines allow independent
approximation of the multi-rotor’s translational dynamics
along each j-axis [50]. Here, we simply refer to them as
(dp(j)k+1,

dv(j)k+1,
da(j)k+1)

⊤
=

dS(j)(dp(j)k ,
dv(j)k ,

da(j)k ). Through-
out the following discussions, a label will be assigned to
indicate the specific drone associated with the dynamic sys-
tem, while the vector stack containing all drone variables will
not include any explicit labels.

A. SIGNAL TEMPORAL LOGIC
Definition 1 (Signal Temporal Logic): STL was intro-

duced for the first time in [17] to monitor the behavior of
real-valued signals. STL provides a concise and unambiguous
representation of complex system behaviors by encoding all
mission specifications within a single formula ϕ [17]. For
instance, it can express requirements such as ‘‘at least two
vehicles need to survey regions A and B, one must visit
region C within the time interval [t1, t2], while all vehicles
must comply with safety requirements’’. A comprehensive
explanation of the STL syntax and semantics can be found
in [15] and [17], but is omitted here for brevity. In short,
an STL formula ϕ is defined based on a set of predicates
pi, with i ∈ N0, which are atomic prepositions representing
simple operations such as belonging to a region or compar-
isons of real values. These predicates can be combined using
Boolean operators such as negation (¬), conjunction (∧),
disjunction (∨), and implication (H⇒), as well as temporal
operators including eventually (♢), always (□), until (U), and
next (⃝). The resulting STL formula ϕ is considered valid if
the expression evaluates to true (⊤), and invalid (⊥) other-
wise. For instance, informally, the expression ϕ1UIϕ2 implies
that predicate ϕ2 must hold at some point within the time
interval I , and until then, predicate ϕ1 must remain contin-
uously satisfied.

B. ROBUST SIGNAL TEMPORAL LOGIC
Definition 2 (STL Robustness): The presence of system

uncertainties, a dynamic environment, and unforeseen events
can affect the satisfaction of an STL formula ϕ. To account
for a margin of maneuverability in meeting ϕ, measuring how
well (poorly) a given specification is satisfied, the concept of
robust semantics for STL formulae has been proposed [15],
[17], [51]. This robustness, denoted as ρ, is a quantitative
metric that guides the optimization problem derived towards
the best feasible solution to achieve mission satisfaction.
This value can be formally described by using the following
formulae in a recursive manner:

ρpi (x, tk ) = µi(x, tk ),

ρ¬ϕ(x, tk ) = −ρϕ(x, tk ),

ρϕ1∧ϕ2 (x, tk ) = min
(
ρϕ1 (x, tk ), ρϕ2 (x, tk )

)
,

ρϕ1∨ϕ2 (x, tk ) = max
(
ρϕ1 (x, tk ), ρϕ2 (x, tk )

)
,
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ρ□Iϕ(x, tk ) = min
t ′k∈[tk+I ]

ρϕ(x, t ′k ),

ρ♢Iϕ(x, tk ) = max
t ′k∈[tk+I ]

ρϕ(x, t ′k ),

ρ⃝Iϕ(x, tk ) = ρϕ(x, t ′k ),with t
′
k ∈ [tk + I ],

ρϕ1UIϕ2 (x, tk ) = max
t ′k∈[tk+I ]

(
min

(
ρϕ2 (x, t

′
k )

)
,

min
t ′′k ∈[tk ,t ′k ]

(
ρϕ1 (x, t

′′
k
))
,

where tk + I represents the Minkowski sum of the scalar tk
and the time interval I . The formulae described above consist
of a set of predicates, denoted as pi, along with their corre-
sponding real-valued functionsµi(x, tk ). These predicates are
considered true if their robustness value is greater than zero,
and false otherwise.

The entire formula operates as a logical expression, where
it evaluates to false if at least one predicate is false. The
evaluation follows the application of logical and temporal
operators (such as always, eventually, conjunction, etc.) from
the innermost part to the outermost part of the formula. For
instance, an example could involve being inside a target
region or outside an obstacle region, with the regions being
defined by a specific number of predicates. Further details
can be found in [15], [17], and [52]. In this case, we say that
x satisfies the STL formula ϕ at time tk if ρϕ(x, tk ) > 0 (in
short, denoted as x(tk ) |H ϕ), and x violates ϕ if ρϕ(x, tk ) ≤ 0.
To simplify notation, we will use ρϕ(x) instead of ρϕ(x, 0)
when tk = 0.

Thus, we can compute the control inputs u that maximize
the robustness ρϕ(x) over a set of finite state and input
sequences x and u, respectively. An optimal sequence u⋆ is
considered valid if ρϕ(x⋆) is positive, where x⋆ and u⋆ obey
the dynamical system. A higher value of ρϕ(x⋆) indicates
a more robust behavior of the system against disturbances,
enabling the system to tolerate higher levels of disruption
without violating the STL specification.
Definition 3 (Smooth Approximation [42]): Let us con-

sider λ ∈ R>0 as a tunable parameter. The smooth approx-
imation of the min and max operators with β-predicate
arguments is:

max(ρϕ1 , . . . , ρϕβ ) ≈

∑β

i=1 ρϕie
λρϕi∑β

i=1 e
λρϕi

,

min(ρϕ1 , . . . , ρϕβ ) ≈ −
1
λ
log

 β∑
i=1

e−λρϕi

 .

In this paper, we introduce an improved approximation
approach compared to our previous work [47]. This new
method possesses the properties of being asymptotically com-
plete and smooth everywhere, similar to the well-known Log-
Sum-Exponential (LSE) approximation [15]. Furthermore,
it guarantees soundness by ensuring that an optimal sequence
u⋆ with strictly positive smooth robustness (ρ̃ϕ(x) > 0)
satisfies the specification ϕ, while an optimal sequence u⋆

with negative smooth robustness (ρ̃ϕ(x) ≤ 0) violates it. The

property of asymptotical completeness indicates that as the
parameter λ tends towards infinity, the approximation of the
final smooth robustness formula ρ̃ϕ(x) can be arbitrarily close
to the true robustness ρϕ(x). By achieving smoothness every-
where, the approximation is infinitely differentiable, enabling
the utilization of gradient-based optimization algorithms to
find solutions to the problem at hand [42].
Definition 4 (STL Motion Planner [47]): Starting from

mission specifications encoded as STL formula ϕ, and replac-
ing its robustness ρϕ(x) with the smooth approximation2

ρ̃ϕ(x) (Def.3), the generation of multi-rotor trajectories can
be cast as an optimization problem:

maximize
p(j), v(j), a(j)

d∈D

ρ̃ϕ(p(j), v(j))

s.t. dv(j) ≤
dv(j)k ≤

d v̄(j),
da(j) ≤

da(j)k ≤
d ā(j),

ρ̃ϕ(p(j), v(j)) ≥ ε,

dS(j),∀k = {0, 1, . . . ,N − 1}, (1)

where d v̄(j) and d ā(j) represent the desired maximum values
for velocity and acceleration, respectively, of drone d along
each j-axis of the world frame. The set of drones is denoted
as D. The lower bound on robustness, ρ̃ϕ(p(j), v(j)) ≥ ε,
provides a safety margin for satisfying the STL formula ϕ
in the presence of disturbances. As demonstrated in [53],
disturbances with magnitudes smaller than ε do not lead to a
violation of the formula. The value of ε can be computed such
that |ρϕ(x) − ρ̃ϕ(x)| ≤ ε. Finally, dS(j) refers to the motion
primitives employed to describe the motion of drone d along
each j-axis, as previously mentioned in the Preliminaries.

IV. PROBLEM SOLUTION
In this section, we utilize the STL framework presented in
Section III to formulate the optimization problem outlined
in Section II. This formulation results in a nonlinear non-
convex max-min problem, which we represent as a Nonlinear
Programming (NLP) formulation and solve using dynamic
programming techniques (Section IV-A). Solving this type
of nonlinear problem within a reasonable time frame is chal-
lenging due to the propensity of solvers to converge to local
optima [48], [49]. To address this issue, we compute an initial
guess using a simplified MILP formulation in Section IV-B,
which does not consider obstacle avoidance, safety require-
ments, vehicle dynamics, and time mission specifications.
This simplification facilitates the search for a global solution.
Additionally, our proposed framework includes a mecha-
nism for mission replanning in the event of UAV failures
(Section IV-C). Finally, we enhance the original motion

2The computation of ρϕ (x) involves non-differentiable functions such as
min andmax. To address the computational complexity associated with these
non-differentiable functions, it is beneficial to employ a smooth approxi-
mation, denoted as ρ̃ϕ (x), of the robustness function ρϕ (x). This smooth
approximation provides a more tractable and computationally efficient alter-
native.
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planner by minimizing energy consumption, leading to
implicit savings in multi-rotor flight time (Section IV-D).

A. STL MOTION PLANNER
In this section, we extract the mission specifications for
the problem discussed in Section II to obtain the corre-
sponding STL formula, ϕ. The successful installation of bird
diverters requires a collaborative team of UAVs that can
effectively respond to unforeseen events, cover large-scale
scenario andminimize operation time. Themission specifica-
tions can be categorized into two types: safety requirements
and task requirements. The safety requirements ensure the
overall safety of the operation throughout the entire mission
time TN . These requirements include constraints such as
the UAVs staying within the designated workspace (dϕws),
avoiding collisions with obstacles in the environment (dϕobs),
and maintaining a safe distance from other UAVs (dϕdis).
On the other hand, the task requirements focus on achieving
specific tasks at predefined time intervals during the mission.
These requirements involve ensuring that all target regions
are visited by at least one UAV (dϕtr) and that each UAV
remains in a target region for the designated installation time
Tins. Considering the limited payload capacity of the UAVs,
they are required to visit a refilling station and remain there
for a refilling time Trs once they run out of onboard diverters
(dϕrs). Notably, we do not explicitly specify the number or
sequence of target regions that a single drone must visit.
Rather, we grant the framework the flexibility to determine
the most convenient number and sequence of targets for each
vehicle, while still allowing for the possibility of visiting all
targets if needed. Finally, after completing their installation
operations, eachUAV should fly to the closest refilling station
(dϕhm). By incorporating all these mission specifications,
the STL formula can be formulated as follows:

ϕ =

∧
d∈D

□[0,TN ](
dϕws ∧

dϕobs ∧
dϕdis)

∧

tr∧
q=1

♢[0,TN−Tins]

∨
d∈D

□[0,Tins]

(
dc(tk ) > 0

)
dϕtr,q

∧

∧
d∈D

♢[0,TN−Trs]

rs∨
q=1

□[0,Trs]

×

(
dc(tk ) = 0 H⇒

dp(tk ) |H
dϕrs,q

)
∧

∧
d∈D

□[1,TN−1]

(
dp(tk ) |HdϕhmH⇒

dp(tk+1) |Hdϕhm

)
.

(2)

The STL formula ϕ consists of six specifications (dϕws,
dϕobs, dϕdis, dϕtr, dϕrs, and dϕhm) and three time intervals
(TN , Tins, and Trs). The following equations describe each of
these specifications:

dϕws =
∧3

j=1 p
(j)

∈ (p(j)
ws
, p̄(j)ws), (3a)

dϕobs =
∧3

j=1
∧obs

q=1 p
(j)

̸∈ (p(j)obs,q, p̄
(j)
obs,q), (3b)

dϕdis =
∧

{d,m}∈D,d ̸=m ∥
dp −

mp∥ ≥ 0dis, (3c)
dϕhm =

∧3
j=1 p

(j)
∈ (p(j)hm, p̄

(j)
hm), (3d)

dϕtr,q =
∧3

j=1
dp(j)∈ (p(j)

tr,q
, p̄(j)tr,q)∧

∧ ⃝Tins
(
dc(tk ) =

dc(tk − 1) − 1
)
, (3e)

dϕrs,q =
∧3

j=1 p
(j)

∈ (p(j)
rs,q
, p̄(j)rs,q)∧

∧ ⃝Trs
(
dc(tk ) =

d c̄
)
, (3f)

where (3a) constrains the position of each UAV to remain
within the designated workspace, with p(j)

ws
and p̄(j)ws repre-

senting the working space limits. Obstacle avoidance and
mission completion operation are defined in (3b) and (3d),
respectively. Rectangular regions with vertices denoted by
p(j)obs,q, p

(j)
hm, p̄

(j)
obs,q, and p̄(j)hm define obstacle and drone’s

final position (closest refilling station) areas. The safety
distance requirement is encoded in (3c), where 0dis ∈

R>0 represents the threshold value for the mutual distance
between UAVs. Finally, visiting target areas and refilling sta-
tions are described by (3e) and (3f), respectively. The vertices
p(j)
tr,q

, p(j)
rs,q

, p̄(j)tr,q, and p̄
(j)
rs,q identify the target and refilling areas.

In (3e) and (3f), the payload capacity dc(tk ) ∈ N0 is used to
represent the number of remaining and loaded diverters for
each UAV, respectively. The payload capacity is constrained
to the interval dc(tk ) ∈ [0, d c̄], where d c̄ corresponds to the
nominal payload capacity. The always operators (□) guaran-
tee the fulfillment of the time requirements Tins and Trs, which
correspond to the durations of the installation and refilling
operations, respectively. On the other hand, the next operators
(⃝) ensure that changes in the payload capacity will occur
only following those time intervals Additionally, the eventu-
ally operators (♢) ensure that the mission requirements will
ultimately be fulfilled within the designated mission time TN .
Using the specifications described in (2), the optimiza-

tion problem defined in Def.4 is formulated to compute
feasible trajectories that maximize the smooth robustness
ρ̃ϕ(x) with respect to (w.r.t.) the given mission specifica-
tions ϕ. To achieve this, it is necessary to compute the
robustness score for each predicate. The STL formula (2)
comprises two types of predicates. The first type evaluates
whether the UAV position belongs or does not belong to a
specific region, as depicted in (3a), (3b), (3d), (3e), and (3f).
The second type evaluates the distance betweenUAVs, as rep-
resented by the safety requirement in (3c). The robustness
values are quantified based on the Euclidean distance. For
predicates belonging to the first group, a positive robustness
indicates that the UAV lies within the designated region. The
robustness increases as the minimum Euclidean distance to
the boundaries of the region along the trajectory becomes
larger. However, in the case of (3b), the inverse applies,
where being within the obstacle region corresponds to a
negative robustness. In the safety distance predicate (3c),
the robustness is positive when the distance between UAVs
exceeds the threshold 0dis. The robustness value increases as
the minimum Euclidean distance between UAVs along the
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FIGURE 3. Instance of the graph G assuming two target regions (solid
round nodes), two refilling stations (double round nodes), and two
vehicles. The paths of the UAVs are represented by arcs with
corresponding weights wij |d . The depots are depicted as dashed round
nodes.

trajectory becomes larger. To illustrate this concept further,
we can consider the dϕws predicate (3a) as an example:

dρϕws = min
p(j)

(
min(dρϕ̄(1) ,

dρϕ(1) ,
dρϕ̄(2) ,

dρϕ(2) ,
dρϕ̄(3) ,

dρϕ(3) )
)
, (4)

with
dρϕ̄(j) = p̄(j)ws −

dp(j)k ,
dρϕ(j) =

dp(j)k − p(j)
ws
.

Similarly, the robustness score of the non-belonging pred-
icate dϕobs (3b) can be computed by taking the inverse of
each minimum distance for each sample along the trajectory.
In other words, we can express this as:

dρϕobs = min
p(j)

(
−min(dρϕ̄(1) ,

dρϕ(1) ,
dρϕ̄(2) ,

dρϕ(2) ,
dρϕ̄(3) ,

dρϕ(3) )
)
, (5)

where dρϕ̄(j) and
dρϕ(j) , with j = {1, 2, 3}, can be computed by

replacing p̄(j)ws and p(j)ws in (4) with p̄(j)obs and p
(j)
obs, respectively.

On the contrary, the robustness score of the safety require-
ment predicate dϕdis (3c) can be expressed as:

dρϕdis = min
p(j)

(
min

{d,m}∈D, d ̸=m
(∥dp −

mp∥ − 0dis)
)
, (6)

where the minimum distance between UAVs is computed for
each time step (tk ) in the trajectory, and then the min value of
that vector of minimum distances.

It is important to emphasize that the interdependence
of mission requirements necessitates the joint planning of
all UAV trajectories through a unified optimization problem.

B. INITIAL GUESS
To ensure optimal solutions within a reasonable time and pre-
vent the solver from becoming trapped, it is essential to have
an appropriate initial guess for the STL motion planner. The
key concept behind obtaining this initial guess is to simplify
the original diverter installation problem by abstracting it into
an optimization with fewer constraints. Specifically, the ini-
tial guess focuses on fulfilling mission requirements related
to visiting target regions, considering refilling and mission
completition operations (dϕtr, dϕrs, and dϕhm). It omits obsta-
cle avoidance, workspace, and safety distance requirements

(dϕobs, dϕws, and dϕdis), and the mission time intervals
(TN , Tins, and Trs) since these constraints introduce com-
plex nonlinearities and motion discontinuities in the problem.
To generate the initial guess, a graph-based representation is
employed, establishing connections between target regions
and refilling stations. This formulation is modeled as a variant
of the Vehicle Routing Problem (VRP) using Mixed-Integer
Linear Programming. Assigning target regions to vehicles
and providing navigation sequences for each UAV are the
objectives of the MILP solution.

Figure 3 illustrates the graph used in our approach, which
is an undirected weighted multigraph denoted by the tuple
G = (V, E,W,D, C). The set of vertices, V , consists of
locations that encompass target regions, refilling stations, and
depots where each UAV is initially positioned at time t0.
Specifically, V = T ∪ R ∪ O, with |T | = τ representing
the target regions, |R| = r representing the refilling stations,
and |O| = δ including the depots. The set of edges, E , and
their corresponding weights,W , define the connectivity and
distances between the vertices, respectively. Additionally,
as said before, D represents the set of UAVs, with |D| = δ,
and C = {

1c̄, . . . , δ c̄} denotes their respective maximum
payload capacities.

Regarding the graph connectivity, all vertices in T are fully
connected to each other and connected to every vertex in the
set R ∪ O. Each connection involves one edge per UAV,
totaling δ edges. More formally, let eij|d ∈ E be the edge that
connects vertices i and j, with {i, j} ∈ V and i ̸= j, using UAV
d ∈ D, where d = {1, . . . , δ}. The weight associated with
eij|d is denoted as wij|d ∈ W . Considering the homogeneous
dynamic constraints for UAVs, such as maximum velocities
d v̄(j) and maximum accelerations d ā(j), and assuming similar
flight durations for each UAV, the mission operation con-
straint can be expressed as a maximum distance traveled by
each individual UAV. As a result, we model the edge weights
using Euclidean distances, resulting in wij|d = wji|d .
For each edge eij|d ∈ E , we introduce an integer variable

zij|d ∈ Z0. This variable represents the number of times the
corresponding edge is selected in the solution of the MILP.
Thus, for a given UAV d ∈ D, we have zij|d ∈ {0, 1} for all
{i, j} ∈ {T ,O}, and zij|d ∈ {0, 1, 2} if i ∈ R and j ∈ T .
The former ensures that the edge between two target regions
is never covered twice, indicating that the UAV starts from a
depot and never returns to it. The latter allows for round trips
between refilling stations and target regions, in case there
are no other diverters to be installed. Specifically, zij|d =

2 denotes a return trip between a refilling station i and a
target region j of drone d . When the subscript of the variable
zij|d is 0, it indicates that the corresponding vertex i or j is
a depot, depending on the order. Utilizing these variables,
we can formulate the MILP problem as follows:

minimize
zij|d ,yj|d

∑
{i,j}∈V, i̸=j, d∈D

wij|d zij|d (7a)

s.t.
∑

i∈V, i̸=j, d∈D
zij|d = 2, ∀j ∈ T , (7b)
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∑
i∈V, i̸=j

zij|d = 2yj|d , ∀j ∈ T , ∀d ∈ D, (7c)

∑
i∈T

z0i|d = 1, ∀d ∈ D, (7d)∑
i∈T , j̸∈T , d∈D

zij|d ≥ 2 h (T ) . (7e)

In the above formulae, the objective function (7a) quan-
tifies the total distance covered by the multi-UAV team.
Constraints (7b) and (7c) ensure that each target region is
visited exactly once. To achieve this, auxiliary integer vari-
ables yj|d ∈ {0, 1} are introduced, which ensure that if a UAV
d ∈ D reaches target j ∈ T , the same UAV must also
leave the target. Constraint (7d) guarantees that each UAV
starts the mission from its depot and does not return to it.
Constraints (7e) serve two purposes: preventing tours that
exceed the payload capacity of the UAVs and ensuring that
all tours connect to a refilling station, which is commonly
known as the sub-tour elimination constraint [54], [55]. The
lower bound h(T ) represents the minimum number of UAVs
required to visit all target regions T . In practice, h(T ) is often
defined as ⌈

∑
i∈T ci/C⌉, where ci is the number of diverters at

target i and C is the payload capacity of the UAVs. To address
the computational challenges posed by the exponential num-
ber of constraints associated with h(T ) [56], [57], [58],
an adaptive constraint incorporation strategy is employed.
This approach dynamically adds constraints as violations
occur during the optimization process [55]. By incorporating
constraints only when necessary, based on violations iden-
tified during the solution process, the computational burden
is alleviated. This adaptive constraint management strategy
improves the computational efficiency of the solution by
avoiding the exhaustive evaluation of all possible combina-
tions and focusing on constraints that are most relevant or
impactful.

After solving the MILP problem, the optimal assign-
ment of target regions and refilling stations for each UAV
is obtained. To generate dynamically feasible trajectories,
we employ multi-rotor motion primitives [47], as said in
the Preliminaries (Section III). The detailed computation of
these trajectories is provided in [50] and is not presented
here for brevity. In summary, the motion primitives are
computed by assuming rest-to-rest motion between regions,
where the UAV has zero velocity and acceleration. The min-
imum feasible time required to satisfy the desired maximum
values of velocity d v̄(j) and acceleration d ā(j) along the UAV’s
trajectory is imposed. The trajectories also account for the
installation time intervals Tins and refilling time intervals Trs
during which the UAVs remain stationary at the correspond-
ing regions.

C. EVENT-TRIGGERED REPLANNER
The presented motion planner enables the generation of fea-
sible trajectories for a multi-UAV team carrying out a bird
diverter installation mission. However, in real-world scenar-
ios, UAV failures can occur (e.g., due to a battery or technical

fault), resulting in the need for an alternative UAV to take
over the pending tasks to ensure the successful completion of
themission. To address this, an online event-based replanning
procedure is employed.

Whenever a UAV failure event is detected, a new plan
is computed online using the motion planner described in
Sections IV-A and IV-B. The trajectories of the UAVs that are
still operational are not recomputed since they can continue
with their original plans. The replanning process focuses on
generating a new trajectory for the backup UAV that replaces
the faulty one. Assuming the failure event occurs at time
tfail ∈ [t0,TN ], the new trajectory for the backup UAV is
generated within the time interval [tfail + Trep,TN ]. Here,
Trep represents the maximum expected computation time
for replanning, which was estimated by running multiple
instances of the STL optimization problem and varying fac-
tors such as the number and positions of target regions, as well
as the time instance tfail when the failure occurs.

During the replanning process, the motion planner utilizes
the original trajectories of the non-faulty UAVs within the
time interval [tfail + Trep,TN ] as input constraints for the
safety distance requirement (dϕdis). As said before, these
trajectories do not need to be recomputed. Additionally, only
the pending target regions that were previously assigned to
the faulty UAV are considered in the replanning procedure.
However, the order in which these target regions are visited
may change, as the backup UAV may start from a different
position or with a different payload, potentially resulting in a
suboptimal visitation sequence.

It is important to note that the computational effort required
for replanning is significantly lower than that for initial plan-
ning, as it involves only a single UAV and a reduced set of
target regions (those that have not yet been visited). While
exploring alternative re-planning strategies for the routes of
non-faulty drones may potentially yield more optimal solu-
tions in terms of robustness scores, it is essential to emphasize
that our paper focuses on ensuring operational continuity,
minimizing disruptions, and maintaining safety in hazardous
scenarios. Prioritizing the better trajectories solution in these
cases may lead to the drones halting their mission, resulting in
delays and increased costs for the entire operation. Therefore,
our approach offers a rapid and effective solution by replacing
a faulty multi-rotor with a backup vehicle, ensuring seamless
continuation of the mission.

D. ENERGY-AWARE PLANNER
This section introduces an energy-aware extension of the
motion planner presented in Section IV-A, focusing on min-
imizing the energy consumption of the UAVs during the
mission. This results in implicit savings in multi-rotor flight
time. The key concept is to determine the optimal cruis-
ing speed, considering the aerodynamics of the multi-rotors,
to achieve minimal energy usage. The goal is to generate
trajectories for the UAVs that closely align with these optimal
speeds.
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The power required by a multi-rotor decreases as the low
forward speed increases, while it increases significantly at
high speeds due to parasitic losses. This combination of
effects gives rise to an optimal forward speed that minimizes
the energy consumption of the UAV and maximizes its flight
time. This energetically optimal forward speed, denoted as v⋆,
is described in [59, Ch. 5], and defined as:

v⋆ =

√
m
2ϱA

(
4κA
nr f

)1/4

, (8)

where m ∈ R represents the mass of the vehicle, nr ∈ N
denotes the number of rotors, A ∈ R corresponds to the rotor
disk area, f ∈ R represents the equivalent flat plate area of
the fuselage, κ ∈ R is the induced power correction factor,
and ϱ ∈ R denotes the air density.
Hence, the optimization problem (1) can be reformulated

by including an energy term to prioritize solutions where the
forward speed along the trajectory is as close as possible to
the optimal value v⋆ in terms of energy consumption. Namely,
we write:

maximize
p(j), v(j), a(j)

d∈D

ρ̃ϕ(p(j), v(j)) − η
∑
k

(
1 −

dvfor(dvk )
v⋆

)2

s.t. dv(j) ≤
dv(j)k ≤

d v̄(j),
da(j) ≤

da(j)k ≤
d ā(j),

ρ̃ϕ(p(j), v(j)) ≥ ε,

dS(j),∀k = {0, 1, . . . ,N − 1}, (9)

where η ∈ [0, 1] ∈ R serves as a tunable weight for the
energy term in the objective function, which quantifies the
deviation of the forward speed dvfor(dvk ) from the optimal
value v⋆. The forward speed dvfor(dvk ) is computed as the
Euclidean norm of the velocity components of drone d along
the x and y axes:

dvfor(dvk ) =

√(
dv(1)k

)2
+

(
dv(2)k

)2
. (10)

Note that, as demonstrated in [60] and [61], the energy
expended by multi-rotors during ascent, descent, and hov-
ering maneuvers is constant since these operations are per-
formed at a constant speed. Therefore, in the context of the
optimization problem (9), we can simplify the computation
by excluding the dv(3) component from the forward speed
calculation in (10), reducing the computational burden.

It is important to consider the scenario where v⋆ exceeds
the maximum feasible vehicle speed d v̄(j). In such cases,
we can reformulate the optimization problem (9) by replacing
v⋆ with ∥

d v̄(1) + d v̄(2)∥, which represents the feasible forward
speed closest to v⋆ as defined in (8).

The introduction of the new energy term in the objective
function represents a quadratic error that measures the devi-
ation of the vehicle speed along the trajectory from the speed
that minimizes energy consumption. It is worth noting that the
solutions generated by the energy-aware planner still yield
feasible trajectories that satisfy all mission requirements.

However, these trajectories strike a balance between energy
consumption and potential trade-offs in smooth robustness
score ρ̃ϕ(x).

V. EXPERIMENTAL RESULTS
To validate and assess the effectiveness of our proposed
planning approach, we conducted a series of simulations and
experiments. Initially, numerical simulations were carried out
using MATLAB, where the actual vehicle dynamics and tra-
jectory tracking controller were not explicitly modeled. This
allowed us to evaluate the planning algorithm’s performance
and gain valuable insights into its behavior. Subsequently,
to further verify the feasibility of the generated trajectories
and leverage the benefits of software-in-the-loop simula-
tions [62], [63], we conducted additional simulations using
the Gazebo robotics simulator. Finally, field experiments
performed in a mock-up scenario that closely resembles
real-world conditions demonstrated the practical applicability
of the proposed method.

These experiments aimed to showcase several aspects:
(i) the adherence of the planned trajectories to the mission
requirements, (ii) the necessity of the STL motion planner in
meeting the mission specifications, as the MILP formulation
alone is insufficient, (iii) the capability of our approach to
handle UAV failures and perform mission replanning, (iv) a
comparison of the solutions obtained with and without the
energy-aware feature, and (v) the feasibility of our method in
real-world scenarios.

The optimization algorithm was implemented using MAT-
LAB R2019b, with the MILP formulated using the CVX
framework,3 and the STL motion planner implemented using
the CasADi library4 with IPOPT5 as the solver. Within
CVX, the choice of heuristic for solving the MILP problem
was left to the framework itself. All numerical simulations
and experiments were conducted on a computer equipped
with an i7-8565U processor (1.80GHz) and 32GB of RAM,
running on the Ubuntu 20.04 operating system. For more
detailed information and visual demonstrations of the exper-
imental results, we provide videos that can be accessed at
http://mrs.felk.cvut.cz/bird-diverter-ar.

A. BIRD DIVERTERS INSTALLATION
The proposed planning strategy was tested in a bird diverter
installation scenario with two UAVs operating in a mock-up
scenario (50m×20m×15m). The scenario had seven target
regions and four refilling stations, as shown in Figure 2.
The parameters used for the optimization problem are listed
in Table 1. To avoid long waiting periods, symbolic values
were used for the installation time Tins and refilling time Trs.
Heading angles were adjusted to align the UAVs with the
displacement direction or the cables during installation. It is
assumed that an onboard low-level controller, e.g. [8], [10],

3http://cvxr.com/cvx/
4https://web.casadi.org/
5https://coin-or.github.io/Ipopt/
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TABLE 1. Parameter values for the optimization problem.

FIGURE 4. Bird diverter installation: planned trajectories for two UAVs,
seven target regions, and four refilling stations. The arrows indicate the
paths followed by the UAVs throughout the mission.

[12], handles the installation operation once the UAV reaches
a region.

Figure 4 illustrates the planned trajectories, depicting the
power towers, cables, target regions, refilling stations, and
vehicles’ initial position. The towers have a height of 15m
and are spaced 40m apart. The optimization problem required
14min to solve and 37 s to find an initial guess solution.
Real-world experiments demonstrate the compliance of the
planned trajectories with mission requirements, as shown
in Figure 6. The figure confirms that the distance between
vehicles always exceeds the threshold value 0dis, the velocity
and acceleration of the vehicles remain within the allowable
bounds ([dv(j), d v̄(j)] and [da(j), d ā(j)]), and the vehicles never
visit a target region when they run out of diverters. Note
that, for simplicity, the velocity and acceleration bounds are
assumed to be symmetric, i.e., |

dv(j)| = |
d v̄(j)| and |

da(j)| =

|
d ā(j)|. Lastly, for comparative purposes, Figure 5 displays the
planned trajectories for a more complex scenario involving
four UAVs and eleven target regions. In this case, the opti-
mization problem required 22min to solve and 57 s to find an
initial guess solution. This scenario offers an initial glimpse
into the scalability and performance of the proposed approach
with increased complexity and clutter.

B. COMPARISON WITH THE INITIAL GUESS SOLUTION
As outlined in Section IV, the MILP formulation serves as
an initial seed for the STL optimization problem, enabling
the generation of feasible trajectories for the bird diverter
installation mission. While the MILP solution is compu-
tationally efficient, it is insufficient on its own due to
the omission of critical nonlinear aspects such as obstacle

FIGURE 5. Bird diverter installation: planned trajectories for four UAVs,
eleven target regions, and four refilling stations. The arrows indicate the
paths followed by the UAVs throughout the mission.

FIGURE 6. Position, velocity, acceleration, safety mutual distance, and
payload capacity for ‘‘UAV1’’ and ‘‘UAV2’’ from real-word experiments.
The installation and refilling time windows are highlighted in blue and
green, respectively.

avoidance, safety distance requirements, and time con-
straints. It is important to note that the STL optimization
problem, when not seeded with the MILP initial guess, does
not converge to a feasible solution. Therefore, a direct com-
parison between the STL (1) and the MILP (7) solutions
cannot be made. Nonetheless, we evaluate the compliance
of both solutions with the mission requirements and assess
how the proposed hierarchical planner addresses nonlinear
complexities such as obstacle avoidance, safety distance, and
time requirements, which the MILP alone cannot handle.
Furthermore, we demonstrate how the subsequent STL opti-
mization refines the initial solution obtained from the MILP
formulation, striving for maximum robustness and satisfying
all mission specifications. Figure 7 illustrates the dynamically
feasible trajectories obtained using multi-rotor motion primi-
tives [47], along with the sequences of waypoints assigned to
each UAV by the MILP solution.
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FIGURE 7. Bird diverter installation utilizing only the trajectories obtained
from solving the MILP formulation, without employing the STL planner.

Upon initial examination, it is evident that the MILP
formulation does not explicitly consider time, resulting in
trajectories that may exceed the specified time limit TN and
become impractical for real-world applications. This limita-
tion also impacts the trajectory quality, as the MILP approach
does not control the vehicles’ motion through accelerations
da(j), but rather sets waypoint sequences for the UAVs to
follow, leading to sharp corners and spikes that are challeng-
ing to execute in practice. Such abrupt changes in direction
can strain the actuators and compromise trajectory tracking,
potentially causing deviations from mission specifications
and safety requirements, including the risk of collisions with
power towers or cables. Additionally, this approach can result
in high energy consumption, adversely affecting the mission
objectives. Another crucial distinction lies in the treatment of
the mutual safety distance constraint (dϕdis). While the STL
optimization problem incorporates this constraint by regu-
lating velocities and accelerations, and thus the vehicles’
positions, without compromising the optimal region visita-
tion sequence, the MILP formulation does not account for
vehicle dynamics tomitigate computational complexity. Con-
sequently, adjusting the value of0dis (3c)may require entirely
different optimal sequences (outputs of the MILP solver) to
obtain a feasible solution for the problem.

Figure 8 provides a visual comparison between the solu-
tions obtained by solely solving the MILP formulation and
the complete STL optimization problem. The figure clearly
illustrates how the STL formulation refines the initial guess
solution from the MILP, resulting in trajectories that satisfy
obstacle avoidance, safety distance requirements, and other
mission specifications. Notably, the trajectories are signifi-
cantly rearranged to achieve higher robustness values ρ̃ϕ(x).
Moreover, it is important to highlight that the differ-

ences between the STL and MILP solutions extend beyond
the trajectory shape and also encompass the sequence of
target regions to visit. Figure 9 demonstrates this distinc-
tion in a simple scenario involving two UAVs (located at
‘‘IP1’’ and ‘‘IP2’’) with identical dynamic constraints. The
objective is for the UAVs to visit a set of target regions
(‘‘TR1’’, ‘‘TR2’’, ‘‘TR3’’, and ‘‘TR4’’) within the time inter-
val [0,TN ], while adhering to workspace constraints (dϕws),

FIGURE 8. Comparison of trajectories obtained from the complete STL
optimization problem (8(a)) and the sole MILP formulation (8(b)).

avoiding obstacles (dϕobs), and maintaining a safe distance
from each other (dϕdis). In Figure 9(b), the initial guess
solution from the MILP formulation assigns target regions
based on workload balancing and minimizing travel distance,
without considering obstacle avoidance. In contrast, the com-
plete STL planner (Figure 9(a)) reassigns the targets to satisfy
all mission specifications. This example highlights the inde-
pendence of the final STL optimization from the MILP initial
guess solution, providing added flexibility to the hierarchical
planner. However, it is essential to note that as the problem
complexity increases, a significant deviation between the
initial guess and the global solution may hinder the STL
optimizer, resulting in convergence to local optima.

C. ENERGY-AWARE AND REPLANNING STRATEGY
This section demonstrates the effectiveness of the energy-
aware planner and event-triggered replanner, discussed in
Sections IV-D and IV-C, respectively, in reducing energy con-
sumption by the UAVs and ensuring mission continuity in the
event of UAV failures. The results of numerical simulations
conducted in MATLAB are presented in Figures 10 and 12.

Regarding the energy-aware planner, the trajectories incor-
porating the forward speed term v⋆ (Figure 10) exhibit longer
paths and abrupt changes in direction compared to the tra-
jectories without energy requirements (Figures 4 and 5).
This is due to the UAVs needing to approach the energeti-
cally optimal forward speed v⋆ while satisfying the mission
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FIGURE 9. Simple scenario showing the independence of the final STL
solution (9(a)) from the MILP initial guess (9(b)).

FIGURE 10. Bird diverter installation with trajectories obtained using the
energy-aware planner.

specifications ϕ (eq. (2)) during the installation of diverters.
As a result, the optimization problem (9) restricts the range
of allowable velocities more than the standard planner (1),
where velocity values can be adjusted over a wider range
to maximize robustness. Figure 11 provides a comparison
of the forward speed dvfor and robustness values ρ̃ϕ(x) for
the standard and energy-aware planners. The plot illustrates
that higher velocities are associated with a slight decrease in
smooth robustness values.

FIGURE 11. From left to right: comparison of forward speed d vfor(d vk )
and normalized smooth robustness values ρ̃ϕ (x) for the standard and
energy-aware planners.

FIGURE 12. Bird diverter installation in the event of a ‘‘UAV2’’ failure,
with the backup vehicle ‘‘UAV3’’ following the green path.

To demonstrate the event-triggered replanner, we con-
ducted a scenario with a pair of UAVs involved in the
installation of bird diverters. Initially, bothUAVs followed the
trajectories shown in Figure 4. Subsequently, we simulated
a failure event when ‘‘UAV2’’ (Figure 12) visited a refilling
station to replenish diverters. This triggered the execution of
the optimization problem (1) and the correspondingMILP (7)
for the backup UAV, ‘‘UAV3’’, stationed at the refilling
station ‘‘RSA’’. The optimization problem considered the
remaining unvisited regions from UAV’s mission, ‘‘UAV2’’,
and the trajectory of the non-faulty UAV, ‘‘UAV1’’. The
resulting trajectories are depicted in Figure 12. In this partic-
ular scenario, the order of visiting the target regions remained
the same, with slight variations observed in the trajectory
connecting ‘‘TR5’’ and ‘‘RSC’’ (Figure 4). These trajectory
changes were driven by the optimization problem to ensure
compliance with safety and obstacle avoidance requirements.
The optimization process took approximately 2 s to solve
the entire problem, while the MILP solver took only a few
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FIGURE 13. System Architecture. The STL Motion Planner on the ground
station generates trajectories (1x⋆, 1u⋆, . . . , δx⋆, δu⋆) and heading angles
(1ψ, . . . , δψ) for the multi-rotors. These trajectories and heading angles
are used as inputs to the Tracking Controller, which computes thrust
(1Td , . . . ,

δTd ) and angular velocities (1ωd , . . . ,
δωd ) for the UAV

Plant [47].

tenths of a second. The failure event was detected at Tfail =

9 s, considering a maximum expected computation time
of Trep = 10 s.

D. FIELD EXPERIMENTS
Experiments were conducted to evaluate the practical appli-
cation of the proposed motion planning approach using DJI
F450 quadrotors [64], [65] in a mock-up scenario. The sce-
nario, shown in Figure 4, involved two UAVs operating in
a workspace that included power towers, cables, and refill-
ing stations. To facilitate experimentation and consider the
safety-critical nature of the power line environment, we simu-
lated these objects in MATLAB and validated the trajectories
in Gazebo. Videos showcasing simulated and experi-
mental results can be accessed at http://mrs.felk.cvut.cz/
bird-diverter-ar.

The system architecture, depicted in Figure 13, incorpo-
rates the STL motion planner, which solves the optimization
problem (1) to generate trajectories (dx⋆, du⋆) and heading
angles (dψ) for the multi-rotors. The trajectory generation
process is performed as a one-shot computation at time t0,
and the resulting trajectories serve as references for the UAV
trajectory tracking controller [62]. The UAVs were equipped
with an Intel NUC computer (i7-8559U processor with 16GB
of RAM) and the Pixhawk flight controller. The software
stack utilized the Noetic Ninjemys release of ROS running on
Ubuntu 20.04. Further details can be found in [64] and [65].
During the real flight experiments, we were able to verify

the successful completion of the installation mission defined
by the STL formula (2). The flights also demonstrated com-
pliance with physical constraints and safety requirements,
including maximum velocity (d v̄), maximum acceleration
(d ā), and the minimum safety distance (0dis), as well as the
payload capacity of the vehicles, d c̄ (Table 1). Figure 14
shows snapshots of the experiments, where the proximity of
the UAVs to themechanical infrastructure (cables and towers)
and refilling locations can be observed. To provide this visual
representation, we used a ROS package to project 3D mesh

files, which were originally used in MATLAB and Gazebo to
represent the scenario, onto the camera frames of the UAVs.

VI. DISCUSSION
In this discussion section, we aim to provide a comprehensive
analysis and insights into our proposed planning approach
in the context of installing bird diverters. The work pre-
sented here forms a part of the AERIAL-CORE European
project1. While we acknowledge the existence of estab-
lished approaches in the literature, such as the kinodynamic
RRT⋆ [20] and the Capacitated Vehicle Routing Problem
(CVRP) formulation [66], whichwere not originally designed
for multi-robot systems and do not explicitly consider time
requirements like STL, it is important to clarify that our
objective is not to challenge or claim superiority over these
approaches. Rather, our focus is on leveraging TL techniques
and applying them to a real-world use-case scenario.

One of the distinct advantages of using TLs is its ability
to capture complex temporal constraints and requirements in
a formal and expressive manner. By combining natural lan-
guage commands, temporal and Boolean operators, and task
and motion planning, we can generate trajectories that fulfill
mission objectives while considering the dynamics and con-
straints of the multi-rotor system.While the robustness values
can indeed be computed using functions of the variables, the
use of TLs provides a more concise and intuitive framework
for specifying and addressing these mission specifications.

In our work, we make a deliberate choice to relax cer-
tain constraints in the MILP formulation, including obstacle
avoidance, workspace limits, safety distance requirements,
and mission time intervals (Section IV-B). This decision
was made based on several considerations. Firstly, including
these constraints would introduce complex nonlinearities and
motion discontinuities, making the MILP formulation more
challenging and computationally expensive and leading to
a non-convex optimization problem. Secondly, considering
time constraints would require incorporating motion primi-
tives, further complicating the problem formulation. Adding
excessive complexity in this aspect would not be beneficial,
but rather counterproductive, as our goal is to obtain solutions
as quickly as possible. The MILP formulation serves as a
foundation for the subsequent STL optimization problem,
acting as a stepping stone for the STL motion planner. Its pri-
mary purpose is to enable the avoidance of local optima and
facilitate the refinement of the trajectory generation process.

To highlight the significance of our approach, we compare
the solutions obtained from the MILP formulation and the
complete STL optimization problem. The results, as show-
cased in Figure 8, demonstrate the refinement achieved
by the STL formulation, particularly in addressing mission
requirements such as obstacle avoidance and safety dis-
tance. This comparison serves to illustrate the added value
and effectiveness of our proposed solution in the context
of bird diverter installation. Furthermore, we highlight in
Section V-B and visually depict in Figure 9 a simple scenario
example where we explicitly demonstrate that the differences
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FIGURE 14. Field experiment snapshots showing the system evolution at different time instants tk . The positions of ‘‘UAV1’’ and ‘‘UAV2’’ are
represented by solid and dashed white lines, respectively. Power towers and cables are virtually projected onto the frames for improved
visualization. Target regions, refilling stations, and initial positions of the UAVs are indicated by blue, green, and magenta squares, respectively. The
already visited regions are highlighted by red spheres in each snapshot.

between the STL and MILP solutions extend beyond the
trajectory shape, encompassing the sequence of target regions
to visit.

Regarding the replanning of other vehicles’ routes
(Section IV-C), our focus is on providing a practical solution
that ensures continuity of operations in hazardous scenar-
ios where swift action is crucial. We describe an online
event-based replanning procedure where a new plan is com-
puted for the backupmulti-rotor in the event of a failure, while
the trajectories of operational multi-rotors remain unchanged
to ensure continuity. The replanning process aims to generate
a new trajectory for the backup multi-rotor within a specified
time interval, considering factors such as expected compu-
tation time. While the evaluation of alternative re-planning
strategies for other vehicles’ routes could be an interesting
avenue for future research, it is important to note that our
paper specifically addresses the installation of bird diverters
and prioritizes the practicality and continuity of operations in
this specific context. Although it may not provide the optimal
solution for all vehicles’ routes, it offers a fast and effective
means to replace a faulty multi-rotor with a backup vehicle.

It is important to note that our work is specifically tailored
to the practical context of installing bird diverters, which
introduces unique challenges and constraints. These char-
acteristics make our work novel and unique, as we have
incorporated TL techniques into a problem that has not
been extensively explored from this perspective. While exist-
ing procedures may address similar problems, our focus on
applying TL techniques to this specific real-world scenario
adds a valuable contribution to the field.

A. CHALLENGES OF MULTI-ROBOT BIRD DIVERSION
In this paper, we have explored the advantages and potential
of using a multi-rotors team for bird diversion. However,
it is important to address the drawbacks and considerations
associated with this approach.

Coordination among multiple multi-rotors can be a com-
plex task, requiring sophisticated control algorithms and
communication protocols to ensure proper synchronization
and cooperation. Effective communication is crucial for
coordination and information sharing, but it can be sus-
ceptible to interference, signal loss, or limited bandwidth,
which may disrupt the exchange of critical data. Further-
more, the presence of multi-rotors in the vicinity of birds
may introduce disturbances that can affect their behavior.
The noise and visual presence of the vehicles can cause
stress or alter the natural patterns of bird movement. It is
crucial to assess and mitigate these potential disturbances
to minimize adverse effects on the target birds and their
habitats.

Cost is another important consideration. The scalability
and economic feasibility of employing a multi-rotors team
for bird diversion, especially considering the large number of
power towers, need to be carefully evaluated. Further research
is required to optimize resource allocation and operational
strategies, aiming to minimize costs while maintaining effec-
tiveness. Moreover, the impact of wind and extreme weather
on drone trajectories should be taken into account. Strong
winds can affect the stability and maneuverability of multi-
rotor systems, potentially hindering their effectiveness in bird
diversion tasks. Integrating weather forecasting and real-time
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adaptation mechanisms can enhance safety and performance
under varying environmental conditions.

VII. CONCLUSION
This paper has presented a motion planning framework for
encoding bird diverter installation missions for a team of
multi-rotors with payload capacity limitations and dynamic
constraints. The proposed method utilizes STL specifica-
tions to generate dynamically feasible trajectories that satisfy
mission requirements, including safety and mission time
constraints. The work builds upon a previous motion plan-
ner by adopting an MILP approach to handle the nonlinear
non-convex optimization problem. TheMILP solver provides
an initial guess solution for the STL framework, facilitating
algorithm convergence. Additionally, event-triggered replan-
ning and energy-aware planning techniques are introduced
to address UAV failures and optimize energy consumption,
respectively. MATLAB and Gazebo simulations, along with
field experiments, validate the effectiveness of the proposed
approach in a real-world scenario.

Our analysis reveals that the simplified MILP solver alone
is insufficient for the application, but it serves as a valuable
initial guess for the complete STL planner. The hierarchical
approach allows us to address a broader range of mission
specifications and requirements compared to existing meth-
ods, albeit with increased computational complexity. Future
work will focus on reducing this computational burden and
enhancing scalability by incorporating decentralized feed-
back control laws based on time-varying control barrier
functions. Additionally, exploring conflicting temporal logic
specifications and other temporal logic languages will enable
the application of the framework in dynamically changing
environments.
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