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ABSTRACT Medical image classification is critical, where reliability and transparency are crucial for
the safe and accurate diagnosis of diseases. Deep Convolutional Neural Networks (DCNNs) are widely
used in medical image classification due to their high performance. However, they are often considered
black-boxes because they offer little insight into decision-making. Therefore, improving the interpretability
of DCNNs is crucial for their adoption in medical diagnoses. This paper proposes a novel three-tier self-
interpretable DCNN (TS-CNN) architecture for multi-region medical image classification, which improves
classification performance while being inherently interpretable. The proposed TS-CNN architecture is well-
suited for medical images with multiple regions, such as images with scattered and randomly shaped lesions.
The proposed architecture has three branches: a global branch that learns the relevant patterns from the
raw input image; an attention branch that selects the important regions and discards the irrelevant parts
for the local branch to learn; and a fusion branch that distills knowledge from both the global and local
branches for classification. The proposed architecture is flexible in terms of the backbone CNNs used for
classification and post-hoc interpretability methods used for attention capture.We demonstrate the flexibility
and generalization of the architecture through a series of experiments involvingmultiple state-of-the-art CNN
architectures such as DenseNet-121, Inception, Xception, and ResNet-50 as the global/local branches, each
paired with GradCAM and Saliency maps as attention modules. The proposed architecture outperformed the
backbone model in classification tasks on two datasets: a custom-made blob dataset and a publicly available
skin lesion PAD-UFES-20 dataset, demonstrating its potential for improving accuracy in medical image
classification tasks. The code related to this work can be found at: https://github.com/sikha2552/TS-CNN-
A-Three-Tier-Self-Interpretable-CNN-for-Medical-Image-Classification-Empowered-with-Post-hoc.git.

INDEX TERMS Explainable AI, interpretable CNN, medical image classification.

I. INTRODUCTION
Deep neural networks (DNNs), specifically deep convolu-
tional neural networks (DCNNs) [1] are a powerful class
of machine learning models that have been widely used in
medical image classification and segmentation [2], [3] owing
to their exceptional performance. DCNNs are capable of
automatically learning complex representations and patterns
from input images. This has led to their increasing adoption
in the diagnosis of various diseases such as cancer [4],
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alzheimer’s [5], and cardiovascular diseases [6] etc. Despite
their high accuracy, one of the most significant challenges
in using DCNNs for medical diagnose is their lack of
interpretability [7]. They often act as black-boxes, because
it is difficult to understand how they attain their predictions.
This canmake it challenging formedical professionals to trust
and rely on the results produced by these models, as they
may not be able to understand the reasoning behind the
model’s output. Interpretability is particularly important in
the medical field, where decisions based on machine learning
models can have serious consequences [8]. Understanding
how a model arrives at its conclusion can help medical

78402
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-3499-8062
https://orcid.org/0000-0002-8782-9406


V. A. Ashwath et al.: TS-CNN: A Three-Tier Self-Interpretable CNN

professionals identify potential errors, biases, or limitations
in the model’s design or training [9]. This knowledge can
inform the development of more accurate and reliable models
and help medical professionals make informed decisions.
Efforts are currently underway to address the challenge of
interpretability in DCNNs [10], [11]. Researchers have devel-
oped several post-hoc techniques to visualize and understand
the internal workings of DCNNs [12], [13], such as saliency
maps [14], class activation maps [15], layer activations [16],
feature maps [16] or attention mechanisms [17].
The saliency map [14] uses the activation values of

different layers to identify regions of interest. These regions
are identified by computing the gradient of the output with
respect to the input image. The magnitude of this gradient
indicates the importance of each pixel in the image for
the output prediction. Class Activation Maps (CAM) were
introduced to identify the localized attention of the DCNNs
by creating a spatial map of the regions that contribute to
the most to a given prediction [15]. It operates by adding a
global average pooling layer on top of the final convolutional
layer of the DCNN. The weights learned by this layer were
used to compute the class activation map. The Gradient
Class ActivationMapping (GradCAM) builds upon the CAM
technique using gradient information to compute the class
activation map [18]. The gradient computed from the final
convolutional block was used to weight the feature maps,
producing a visual explanation of the regions that were
most relevant to the prediction. Multiple modifications have
been made to these methods, including approaches that
use multiple layers to compute the saliency map [19] and
techniques that use guided backpropagation to improve the
interpretability of the saliency map [20]. Some researchers
have also explored the use of other visualization techniques,
such as occlusion-based methods, which involve masking
parts of the input image to observe their effect on the output of
the DCNN. Despite the usefulness of post-hoc interpretation
methods as detailed above, there have been few efforts to
integrate them directly into model architecture design to
enhance the interpretability of the model [21].
This paper proposes a novel three-tier, self-interpretable

deep neural network architecture for disease classification
using post-hoc interpretation models, such as GradCAM or
saliency maps, as attention modules to enhance the prediction
accuracy of the base model. The proposed classification
model consists of three branches: global, attention, and a
local. The global branch serves as the initial stage of learning,
where it learns and extracts high-level features from the input
data. It focuses on capturing overall patterns and characteris-
tics relevant to the classification task. The attention branch
acts as an unsupervised segmentation module, leveraging
post-hoc attention maps generated from the learned global
branch. The attention maps highlight important regions in
the input data that contribute to the classification decision.
Finally, the local branch utilizes the attention branch to refine
the knowledge gained from the global branch. It leverages
the highlighted regions identified by the attention branch

to obtain more fine-grained information about the disease
being classified. The local branch aims to capture intricate
details and nuances that may be crucial for accurate disease
classification. By embodying the knowledge gained by
the global branch and focusing on specific regions of
interest, the local branch is equipped to achieve better
classification accuracy. Thus, the proposed methodology can
help improve the classification performance after the model
reaches a training plateau. The proposed architecture not
only improves the accuracy of the model, but also provides
an opportunity for researchers and practitioners to better
understand how the model arrives at its predictions. This
level of interpretability can be particularly valuable in fields
such as healthcare, where both accuracy and transparency are
equally critical. The primary contributions of this paper are as
follows:

• A three-tier, self-interpretable CNN architecture for
medical image classification (TS-CNN) which can
effectively capture attention regions that are discon-
nected and dispersed throughout the image. By incor-
porating the global, attention, and local branches, the
model can extract relevant features and refine its
classification knowledge.

• The incorporation of the attention branch into the
TS-CNN architecture: which serves as an unsupervised
ROI extraction module, a critical component in enhanc-
ing classification accuracy. The attention branch uses the
global branch’s information to find attention areas or
regions of interest. This approach aids in directing the
model’s attention to essential regions while filtering out
irrelevant information.

• Extensive validation experiments were performed using
both a synthetic dataset with random blobs and a
real-world skin lesion dataset for disease classification.
The experimental results show that the proposed model
outperforms the state-of-the-art generic CNN classifi-
cation models, specifically when dealing with diverse
image qualities. The model shows remarkable efficacy
in handling both low-quality images obtained from
sources like smartphones (skin lesion dataset ) and high-
quality (custom blob dataset) medical images

• Analysis of Noise Impact: The study investigates
the effect of noise on the proposed architecture.
By subjecting the model to different types and noise
levels, the research explores the model’s robustness and
performance degradation in the presence of noise. This
analysis provides insights into the model’s limitations
and areas for improvement.

II. RELATED WORKS
Several efforts have been made to incorporate attention
models and interpretability methods to improve medical
image analysis and classification tasks. Guan et al. [22]
proposed an attention-driven model for thoracic disease clas-
sification using chest X-rays. The proposed method, called
attention guided convolution neural network (AG-CNN), uses
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a three-branch approach that learns from disease-specific
regions to avoid noise and improve alignment. It also
integrates a global branch to compensate for the lost
discriminative cues from the local branch. The global branch
produces an attention heatmap, and identifies distinct and
informative areas within the image. This localized region
was then utilized to train a separate local CNN branch.
Finally, to fine-tune the fusion branch, the last pooling
layers of both the global and local branches were combined
by concatenation. The proposed method is evaluated using
the ChestX-ray14 dataset. It achieved a new state-of-the-art
performance in thorax disease classification with an average
AUC of 0.871 using DenseNet-121 as a backbone. The major
drawback of this study is that the proposed architecture can
not consider regions of interest that are disconnected and
dispersed throughout the image, such as cells in microscopy
images. Shen et al. [23] proposed an interpretable classifier
for high-resolution breast cancer screening. The model uses
a low-capacity network to identify informative regions and a
high-capacity network to collect details from these regions.
A fusion module was introduced to aggregate global and
local information to make a final prediction. The model
was trained using image-level labels and pixel-level saliency
maps were generated. The model outperforms ResNet-34
and Faster R-CNN in classifying breasts with malignant
findings on the NYU Breast Cancer Screening Dataset, and
achieves performance on par with state-of-the-art approaches
on the CBIS-DDSM dataset. An attention-guided CNN for
breast can histopathology image classification was proposed
by Yang et al. [24]. The authors proposed a supervised
attention mechanism to localize the region of interest. This
attention mechanism generates class activation maps that
align well with the expectations of expert pathologists. The
proposed method has shown promising results on the BACH
microscopy test dataset (part A) [25], outperforming the state-
of-the-art methods by a significant margin. A novel attention
gate mechanism was proposed by Schlempe et al. [26],
specifically for medical image analysis. The proposed
attention gate (AG) suppresses the irrelevant part of the
image under consideration and highlights the region of
interest. Liu et al. [27] combined an attention module with
a multi-scale latent representation network to identify a
specific region of interest, which was then used to construct
an accurate attention map. The attention module is used to
determine the channel weights. Pacheco et al. stated that
the aggregation of clinical data with image data improved
the accuracy and interpretability of a DCNN-based skin
cancer detection model [28]. The authors claimed that the
classification accuracy improved by 7% for most of the state-
of-the-art CNNs reported in the literature when combined
with the clinical data. Yeh et al. [29] introduced a visual
attention learning module to refine feature maps generated by
any CNN architecture. The proposed attention module learns
a weighting coefficient map to highlight the essential features
by suppressing irrelevant pixels. Arshiya et al. [30] proposed

adding an attention network as an additional branch to any
generic CNN to highlight the region of interest for prediction.
They used the learned feature maps from the convolutional
blocks to construct an attention map, which was then
multiplied by the feature maps for prediction. The authors
reported an enhanced accuracy for skin cancer detection using
the proposed attention network. In [31], Wang et al. presented
a novel ConvNet architecture for glaucoma diagnosis that
is clinically interpretable and capable of highlighting the
distinct regions recognized by the network. The architecture
employs M-LAP, a scheme that aggregates features from
multiple scales, to enhance the diagnosis accuracy and
generate glaucoma activations that provide a link between
global semantic diagnosis and precise location. The method
achieved superior performance compared to state-of-the-
art approaches, with an AUC of 0.88, and demonstrated
effectiveness in optic disc segmentation and local disease
focus localization. Xing et al. [32]proposed a two-branch
attention guided deformation network (AGDN) to improve
the accuracy of WCE image classification. The AGDN
utilizes attention maps to identify and amplify the regions
of interest, specifically lesions, and also incorporates Third-
order Long-range Feature Aggregation (TLFA) modules to
capture long-range dependencies and contextual features.
To refine the attention maps and promote interaction
between the two branches, the authors introduced a novel
Deformation-based Attention Consistency (DAC) loss. The
global feature embeddings obtained from both branches were
merged to predict image labels. With an overall classification
accuracy of 91.29% on two publicly available WCE datasets,
the proposed AGDN model outperformed the other state-of-
the-art methods. This study addresses the challenge of limited
CNN capacity in WCE image classification owing to small
lesions and background interference.

In summary, several studies have proposed attention-driven
models and interpretability methods to improve medical
image analysis and classification. Most models use attention
mechanisms to highlight important features and regions of
interest in medical images, resulting in improved accuracy
and interpretability. However, some models have limitations
in considering disconnected and dispersed regions of interest.
The current study aims to address these limitations and
advance the field of medical image analysis and classification
by developing novel attention mechanisms using post-hoc
interpretability methods. By specifically focusing on discon-
nected and dispersed regions of interest, the proposed model
seeks to capture important details that may be missed by tra-
ditional approaches. In addition to addressing the limitations
of disconnected and dispersed regions of interest, the current
study also focuses on improving the classification of medical
images obtained from low-quality sources such as mobile
devices. By incorporating advanced attention mechanisms
using post-hoc interpretability methods, the model seeks to
identify and leverage relevant features and regions of interest.
This allows the model to extract meaningful information
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and make accurate predictions despite the limitations of
low-quality images.

III. PROPOSED MODEL
The proposed three-tiered architecture, consisting of a global
branch, an attention branch, and a local branch is detailed in
this section. The global branch can be any custom or pre-
trained CNN, responsible for extracting high-level features
from the input data. During the initial training, the global
branch was trained using the classification loss for few
epochs. The weights of the global module were then frozen
to ensure that the knowledge gained during the initial training
was retained during the training of the local and fusion
modules. To engage with the knowledge gained by the
global branch, attention maps are generated by the attention
branch, using post-hoc methods such as GradCAM and
Saliency maps. The attention branch highlights the region
of interest by suppressing irrelevant pixels from the feature
map learned by the global branch. The interpretability map
was then binarized and applied as a mask on the original
input image, with a pre-defined threshold value τ and an ROI
window size � to retain only the significant pixels and their
local neighborhood. The threshold value and ROI window
size should be established with respect to the backbone
architecture, attention strategy, and the dataset. A threshold
value of τ = 0.75 for GradCAM and τ = 0.6 for the Saliency
map were used and found to be a good fit for the experiments
detailed in this work. An ROI window� of size 30×30 pixels
was found to be optimal in terms of information capture.
A detailed explanation on selecting the optimal values for τ

and� is detailed in Section.IV-A5. The masked image is then
fed into the local module, which uses the same architecture
as that of the global model. Unlike cropping the input image,
as in [22], using a mask allows for capturing disjoint regions
of interest, making it suitable for detecting a broader range of
pathologies. The masked input approach removed noise from
the image, enabling the local module to focus on the most
critical regions of the image. This feature is especially useful
in lesion detection applications, where the region of interest is
small and sparsely distributed compared with the usual object
detection problems.

Finally, the pooling layer outputs from the global and local
layers are concatenated and fed into the fusion module, which
is a fully connected classification network. This architecture
allows the localmodule to learn from the knowledge extracted
by the global module, thereby enhancing classification
accuracy. To demonstrate the flexibility of the proposed
architecture, it is shown that diverse global and local
module architectures can be utilized interchangeably in
conjunction with various post-hoc interpretability models in
the attention branch. In conclusion, the proposed architecture
not only enhances classification accuracy, but also provides
interpretability, making it useful in medical image analysis
and decision-making, where transparency and accuracy are
critical. Figure. 1 shows the architecture of the proposed
model and further detailed description is as follows.

The global branch fg and the local branch fl are DCNNs
that learn to reduce a classification loss L defined as

argmin
W

Nim∑
i=1

L
(
ω̂i, ωi

)
for each Ii, (1)

where Ii is the ith input image, ωi is the corresponding ground
truth classification label, ω̂i is the predicted label from the
branch, L is the classification loss function (categorical cross
entropy, binary cross-entropy, etc.), Nim is the total number
of images in the dataset, and W are the learned weights
of the CNN model along with their respective classification
layers. The input image I is first passed to the global branch
feature extractor fg. poolg are the deep features extracted by
the learned global branch and hg are the activation output an
input image I , defined as

poolg, hg = fg(I ). (2)

The global branch is trained for k epochs, after that the
weights are frozen. For every input image processed by the
learned and frozen global branch, the corresponding attention
map, denoted as mapI , is generated using the attention
module A as

mapI = A(hg), (3)

where A represents the chosen post-hoc interpretability
method (GradCAM, Saliency Maps, Occulsion-Sensitivity,
etc.). A binarized mask maskI is then generated by clipping
the values in the map according to a fixed threshold τ . For
each pixel that is significant, the mask also includes all
neighboring pixels within a set window. The attention mask
is calculated as

maskI = R�(Tτ (mapI )), (4)

where Tτ represents a hard thresholding with threshold τ and
R� applies a max-pooling operation within a local neigh-
bourhood �. In the following experiments, we demonstrate
that the optimal � is a 30× 30 neighbourhood. The attention
mask is then multiplied pixel-wise with the input image I to
get the filter input Il to the local branch

Il = I ⊙ maskI . (5)

The masked input image Il is then fed to the local branch fl
to obtain the corresponding pooling output pooll

pooll = fl(Il). (6)

Finally, the fusion branch combines the features extracted by
the global and local branch poolg and pooll and sequentially
applies max-pooling, fully connected and activation layers to
generate a final prediction ω̂f as represented in Figure. 1.

A. TRAINING STRATEGY
A two-stage training strategy was employed to train the
proposed three-tier architecture. During the initial stage of
training, the global branch was trained on the raw input
images to minimize the classification loss. We used binary
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FIGURE 1. Proposed 3-tier Architecture. The global branch is a base CNN model. The attention module provides localization of relevant
structures to the local branch using a post-hoc visual explainability method. The fusion of the global and local branches obtains the final
prediction. Red dashed lines represent the major process flow in the order 1, 2 and 3.

cross-entropy (for the skin lesion’s dataset) and categorical
cross-entropy (for the custom blob dataset) to optimize
the weight parameters of the global branch. The following
subsections detail the training of all the branches in the
architecture.

1) GLOBAL BRANCH
The global branch was trained on the dataset in a completely
supervised manner by minimizing the classification loss
between the final dense layer output with sigmoid activation
and the ground truth labels. The final sigmoid normalization
of the output vector p(c|I ) is given by

p̃(c|I ) =
1

1 + e−p(c|I )
, (7)

where I denote the input image and p̃(c|I ) represents the
probability score of I that belongs to class c ∈ {1, 2, . . . ,C}.
The global branch was trained by minimizing the categorical
cross entropy (CCE) loss defined as

CCE =

Nim∑
i=1

C∑
j=1

ωij log(pij), (8)

where ωij is a one-hot encoded class label corresponding to
the ground truth of the ith image with respect to the jth class
and pij represent the posterior probability score of the ith

image belonging to the jth class. The global branch is trained
for k epochs, after which the validation loss increases, and
the weights Wg are frozen. In the present study, we fixed k
as 30 epochs for the synthetic blob classification, and for the
skin lesion classification, we fixed k as 120, 60, 80 and 60 for

FIGURE 2. Accuracy trend during training of Xception backbone and
GradCAM on the skin lesions dataset.

different backbones DenseNet-121, InceptionV3, Xception
and ResNet50, respectively.

2) LOCAL AND FUSION BRANCHES
The local branch is fed with Il , which is the masked image
produced by the global and attention branches for the input
image I and a set threshold τ . The local branch is trained
for fewer epochs than the global branch as it refines the
knowledge gained by the global branch. The results from
the local and global branches were then fed into the fusion
module for the final classification. Algorithm 1 summarizes
the proposed two-stage training strategy. Figure.2 shows
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the training curve for global (stage 1) and fusion branches
(stage 2) of Xception on the skin lesions dataset. The figure
indicates that the global branch plateaued after 70 epochs,
as evidenced by the minimal variation in the accuracy curve.
On the other hand, the local branch (stage 2) demonstrates a
noteworthy improvement in accuracy of, approximately 5%,
over the global branch.

Algorithm 1 Two-Stage Training Algorithm
Input: I (input image), Ground truth label vector ω,
Threshold τ

Output: Probability score p̃f (c|[I , Il])
Initialization: Initialize the weights of the global and local
branches.

Step 1: Train global branch
Learn Wg using Image I
Compute pg(c|I ), and optimize using Categorical Cross-

Entropy (CCE) for k epochs

Step 2: Obtain attention map
Compute the attention map mapI using the convolu-

tional outputs of the global branch.
Compute the maskmaskI and the masked image Il using

threshold τ .

Step 3: Train local branch
Learn Wl with Il
Compute pl(c|Il) and optimize using CCE with the

frozenWg.

Step 4: Model fusion:
Concatenate poolg and pooll ,
Learn Wf (Weights of fusion network)
Compute p̃f (c|[I , Il]), optimize by CCE.

Output the Probability score

IV. EXPERIMENTS, RESULTS AND ANALYSIS
This section describes an evaluation of the proposed TS-CNN
architecture. This paper presents two sets of experiments.

1) Experiment 1 (Synthetic blobs): The first set uses a
custom shallow CNN as the backbone for both the
global and local branches and employedGradCAMand
saliency maps as the attention modules.

2) Experiment 2 (Skin lesions’ database): The sec-
ond experiment adopted transfer learning, leveraging
cutting-edge convolutional neural networks (CNNs)
as the foundation for both global and local branches.
It also integrates the GradCAM and saliency maps
as attention modules. This approach is employed in
response to the scarcity of data in many medical
image classification tasks, which often require transfer
learning. These models typically achieve near-optimal

TABLE 1. CNN models used as the global and the local branches for the
experiments (1 & 2).

FIGURE 3. Sample images from the custom blob dataset.

performance, and the experiment aims to improve this
ceiling.

Table.1 tabulates the details of different CNN architectures
considered in the experiments detailed above. All the
experiments described in this paper were conducted using
a machine with the following configuration: 16 GB RAM,
an RTX GeForce 3060 Laptop GPU with 6 GB VRAM, and
a Ryzen 7 CPU. This hardware setup provided the necessary
computational resources to effectively train and evaluate the
proposed model.

A. SYNTHETIC BLOBS
This experiment used a synthetic blob dataset of three classes
to evaluate the proposed TS-CNN model. The dataset was
designed such that each class was represented equally in the
dataset. Furthermore, the complexity of the patterns in the
synthetic dataset was carefully controlled to ensure that they
were neither too simple nor too complex. This is important
because if the images are too simple, the model may overfit
and perform poorly on real-world images. However, if the
patterns are too complicated, the model may struggle to learn
the relevant features and perform poorly on synthetic and
real-world images.

1) DATASET DESCRIPTION
The blob dataset was constructed as a representative of a wide
variety of medical and biological images with scattered ROIs.
The custom blob dataset consists of 6000, 64×64 imageswith
random blob-like structures of three different types. Images
of class 2 consist of small blobs that cover 20% of the image,
with an average area fraction of approximately 0.36% of the
image area. Class 1 images are similar to Class 2, but it adds
four large circular blobs with a radius of 5 pixels to the image.
Class 0 differs from Class 1 in that one of the large circular
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TABLE 2. Train Test split of the synthetic blob dataset.

blobs is replaced by a large elliptical blob that is randomly
oriented with amajor axis length of 13 pixels and aminor axis
length of 3 pixels. The dataset was balanced between the three
classes to ensure that the evaluation was fair and unbiased.
Figure. 3 shows sample images from the three classes (class
0,1,2 respectively) and Table. 2 shows the data distribution
across all three classes.

2) GLOBAL AND LOCAL CNN ARCHITECTURE
A custom, 8-layered shallow CNN was used to classify the
custom blob dataset by employing alternating convolutional
and max-pooling layers. This model was selected because
of the simplicity of the dataset in terms of classification
complexity. The aim of using a simple model is to facilitate
the interpretation of predictions and reduce the computational
complexity. Employing a straightforward model allows for
an easier analysis of the attention mechanism and its impact
on the classification output, leading to a better understanding
of the behavior of the model and the factors influencing its
predictions. The simplified model also facilitates efficient
training and testing, leading to a more effective evaluation
of its performance.

3) ATTENTION MODULE
The attention branch of the proposed model was designed
to be adaptable to various post-hoc interpretability methods.
To demonstrate this adaptability, two widely used inter-
pretability techniques were utilized in the experiment: Grad-
CAM [18] and saliency map [14]. GradCAM, or Gradient
Class Activation Mapping, employs gradients to determine
the region of interest in the model for making classification
decisions. This technique provides accurate but coarse
localization of the model’s attention and closely resembles
human attention in various tasks. On the other hand, the
saliency map is a basic method for capturing the attention
of the model by providing pixel-wise importance of image
regions in classification. This method uses feature maps to
generate attention maps, making them more computationally
efficient.

4) TRAINING, RESULTS AND ANALYSIS
The custom shallow CNN, as detailed in Section IV-A2,
was trained using the custom blob dataset outlined in
Section IV-A1, employing an end-to-end training strategy.
The custom CNN that forms the global branch was

TABLE 3. Results from the classification of blob dataset with custom CNN
and GradCAM.

TABLE 4. Results from the classification of blob dataset with custom CNN
and saliency map.

FIGURE 4. Outputs with custom CNN as backbone and GradCAM as the
attention module.

pre-trained for 60 epochs with an Adam optimizer to
minimize a categorical cross-entropy loss function. The
learning rate was initially set to 0.001 and decreased by a
factor of 0.2 upon reaching a plateau. The weights and biases
obtained from the global branch were used to initialize the
local model, which helped expedite the training process of the
entire architecture. Subsequently, the complete architecture
was trained for 30 epochs using an Adam optimizer with a
learning rate of 0.001. Table. 3, tabulates the results obtained
from the proposed TS-CNN architecture with the custom
shallow CNN as the backbone for global and local branches
and GradCAM as the attention module. The table shows that
the local module slightly improves the classification accuracy
with respect to the global reference model (97% to 97.33%).
Indeed, the local model is trained on the relevant regions,
as shown in Figure. 4. The fusion model further improves
accuracy (97% to 98.33%) because it considers the patterns
learned by both the local and the global modules to make
predictions. The same trend can be observed in all the other
evaluation metrics considered for the study (Precision: an
increment of 1.15% between global and fusion, Recall: an
increment of 1.33%).

Figure. 4 visually shows the region of interest considered
by the global and local branches to make predictions. The
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FIGURE 5. Outputs with customCNN backbone and saliency map.

first column represents the image input into the global
branch, and the GradCAM heat map generated from the
final convolutional block of the global branch is shown in
the second column. The heat map illustrates that the global
branch focuses on elliptical structures to determine class 0
(refer to the first row of the second column), larger blobs
to detect class 1 (refer to the second row of the second
column), and relatively larger blobs (less in number compared
to class 1) to determine the class 2. As in the third column,
a 30 × 30 neighborhood was generated from the pixels
of the obtained ROI (regions with high intensity in the
heatmaps) as the attention masks. The neighborhood was
fixed at 30 × 30 experimentally. The attention masks are
applied to the original image to remove noisy pixels that do
not contribute to disease identification and to highlight the
region of interest, as in column.4. The noise-free enhanced
images were then fed into the local branch for further
classification. The local branch only considers the relevant
image regions for prediction, making it more accurate
and less complex. The same trend was observed visually
and quantitatively for the model with custom CNN as
the backbone and saliency map in the attention module,
as shown in Figure. 5 and Table. 4, respectively. Remarkably,
although saliency maps provide poorer localization of the
relevant structures, the proposed architecture still provides
an improved classification accuracy, thus indicating that the
approach is robust under different attention strategies.

5) HYPERPARAMETER TUNING
The selection of hyperparameters plays a crucial role in the
performance of the proposed model. In this study, two key
hyperparameters were investigated:

• Threshold value (τ ): This hyperparameter is used
to threshold the heatmap generated by the attention
module. It determines the number of pixels retained
to construct the mask (maskI ) from the attention
map (mapI ).

FIGURE 6. Accuracy vs Threshold plot for the Blob dataset classification
using custom CNN. The red line shows the effect of thresholding on the
global branch, and blue line represents that of the local branch.

• Neighbourhood size (�):This hyperparameter deter-
mines the size of the relevant neighbourhood selected
from the mask (maskI ) generated.

A series of experiments were conducted to determine the
optimal value for Threshold (τ ) and the neighbourhood �.
Selection of Threshold value (τ ): The threshold value
determines the number of pixels retained to construct the
mask (maskI ) from the generated attention map (mapI ). The
proposed model was trained for various threshold values in
intervals of 0.25 in the range [0,1]. To avoid passing the
exact input image (threshold = 0) or obtaining a completely
blank image (threshold = 1), the endpoints of the range were
replaced with 0.1 and 0.9, respectively. The results, as shown
in Figure.6, demonstrated the model’s performance across
different threshold values. Notably, a threshold value of
0.75 emerged as the best-performing hyperparameter setting.

Selection of Neighbourhood size (�): The optimal neigh-
bourhood size is determined by experimenting with window
sizes from (10 × 10) up until (50 × 50). The aim was to
determine the optimal size for capturing relevant information
from the original image. As depicted in Figure.7, the
experimental results showcased the model’s performance
under different neighbourhood sizes. Among the tested sizes,
a neighbourhood size of (30 × 30)was observed to be the
most suitable fit, as it yielded the best results in terms of
classification accuracy.

B. SKIN LESIONS’ DATASET
The primary objective of this experiment was to demonstrate
the generalizability and adaptability of the proposed TS-CNN
architecture for real-world image classification tasks. A real-
world skin lesion dataset and state-of-the-art deep CNN
architectures were used for evaluation. The results show that
the proposed architecture is a suitable solution for real-world
problems and can be used on top of any generic classification
frameworks.
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FIGURE 7. Accuracy vs Neighbourhood size plot for the Blob dataset
classification using custom CNN. The red line shows the effect of
neighbourhood on the global branch, and the blue line represents that of
the local branch.

FIGURE 8. Sample Images from the PAD-UFES-20 dataset corresponding
of six different types of lesion.

1) DATASET DESCRIPTION
PAD-UFES-20 [28], [33] is a collection of patient data and
clinical images of skin lesions collected using smartphones.
It was developed by the Universidade Federal do Espirito
Santo (UFES) in Brazil specifically to develop and evaluate
algorithms for automated classification of skin lesions. The
dataset includes images of six types of skin lesions, namely
Basal Cell Carcinoma (BCC), Actinic Keratosis (ACK),
Nevus (NEV), Seborrheic Keratosis (SEK), Squamous Cell
Carcinoma (SCC), Melanoma (MEL) and among which 3 are
cancerous (BCC, MEL, and SCC). The lesions are from
over 120 anatomical regions of the body and thus provide a
rather representative collection. The images were collected
from 160 patients; each patient contributed between 1 and
11 images. Figure. 8 represents sample images from the
dataset and Table. 5 represents the data distribution. Table. 5
tabulates the train/test split up for each class. It is worth
noting that the base reference paper [28] utilized a subset of

TABLE 5. Train Test split of PAD-UFES-20 dataset.

the PAD-UFES-20 dataset, which comprised 1612 samples.
In contrast, this study employs the complete dataset of
2298 skin lesion samples. The selection of this dataset was
motivated by its inclusion of low-quality images, enabling an
investigation into the effectiveness of the proposed model in
handling such challenging image conditions.

2) GLOBAL AND LOCAL CNN ARCHITECTURE
To demonstrate the generalizability of the proposed 3-tier
architecture, various state-of-the-art DCNNs were tested for
global and local branches, including DenseNet-121 [34],
InceptionV3 [35], Xception [36], and ResNet-50 [37].
DenseNet-121 is a dense convolutional network that connects
each layer to every other layer in a feed-forward manner.
It is known to be one of the most accurate models while
being computationally light. InceptionV3 is a faster and
less computationally expensive model than its ancestors.
It has a deeper network than its predecessors without
compromising on speed. Xception network is inspired by
the Inception network architecture, but it replaces the
Inception modules with depthwise separable convolutions,
which help outperform it in classification tasks while having
the same number of parameters. ResNet-50 uses residual
connections to train much deeper neural networks effectively.
The residual connections allowed the model to perform
better by protecting it from the vanishing gradient problem
common in DCNNs. The CNNs mentioned above utilize
transfer learning using ImageNet weights. This involves
the addition of a global max pooling layer, followed by a
dense layer, batch normalization, leaky ReLU activation, and
finally, a dense layer with softmax activation. This approach
facilitates a comprehensive evaluation of the performance of
different CNN architectures on the same dataset, providing
insights into the most effective models for the task at
hand. By employing multiple models, we can assess the
robustness and transferability of the proposed architecture,
thus expanding its potential applications to a broader range
of tasks. GradCAM and saliency maps were employed as
attention modules, as described in the previous experiment.

3) TRAINING, RESULTS AND ANALYSIS
For each of the CNN backbones, namely DenseNet-121,
InceptionV3, Xception, and ResNet-50, both GradCAM
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FIGURE 9. Outputs with DenseNet backbone and GradCAM.

FIGURE 10. Outputs with DenseNet backbone and saliency map.

and saliency maps were used, and their respective out-
puts are shown in Figure.9, through Figure.14 respec-
tively. The figures show various images, each displaying
a different type of lesion. This intentional selection of

various lesion types serves two purposes. Firstly, it allows
for a comprehensive evaluation of the proposed models’
performance across different categories, assessing their
ability to classify diverse skin lesions accurately. Secondly,
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FIGURE 11. Outputs with InceptionV3 backbone and GradCAM.

FIGURE 12. Outputs with InceptionV3 backbone and saliency map.

it demonstrates the generalizability of the models, as they
are expected to perform well on the specific lesion types
present in the training data and unseen lesion categories
also.

Similar to custom CNNs, the outputs of the three different
models exhibited comparable outcomes. Additionally, the
local model integrates attention maps to eliminate image
noise, enabling a more precise focus on the relevant regions.
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FIGURE 13. Outputs with Xception backbone and GradCAM.

FIGURE 14. Outputs with Xception backbone and saliency map.

As a result, the classification performance of the fusionmodel
was enhanced, as shown in Table. 7 and Table. 8. Most
of the images have a single centralized region of interest.
This is especially seen in Figure. 9 through Figure. 16.

Both GradCAM and the saliency maps captured the region
of interest. However, the advantage of using pixel-wise
attentionmaps such asGradCAMand saliencymaps becomes
more relevant when the images present disjoint regions
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FIGURE 15. Outputs with ResNet-50 backbone and GradCAM.

FIGURE 16. Outputs with ResNet-50 backbone and saliency map.

of interest, as in the examples shown in Figure. 10 (first
column, class ACK), Figure.14 (columns 2 and 5, classes
BCC and SCC) and Figure.16 (columns 1 and 4, classes ACK
and NEV). In these examples, the attention maps captured

disjoint regions of interest, making the approach versatile
and applicable to various datasets. Comparing the results in
Table 6 and Table. 7, it is evident that the proposed model
using DenseNet-121 as its backbone is able to outperform
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TABLE 6. Results from the classification of PAD-UFES 20 dataset with the
previous state-of-the-art model [28].

the existing state-of-the-art classification performance by
a margin of 2.13% in terms of accuracy. Although the
fusion branch significantly improves classification accuracy,
we observe that the local branch experiences a decline
compared to the global branch, as shown in Table. 7 and
Table. 8. We interpret this observation by noting that the
local model contains less information than the global branch,
since the attention module removes some regions that could
aid in accurate classification. However, the purpose of the
local model in this architecture is not to outperform the
global model, but to complement the global model to achieve
better classification results in the final fusion branch. This
phenomenon is not observed in the blob dataset reported
in the previous section because the regions of interest are
too simple, and almost everything removed by the attention
module is just noise. It is also notable from Table. 8 that
the drop in performance of the local model is larger when
using saliency maps to generate the mask as compared to the
GradCAM version, which is consistent with the fact that a
poorer localization of the structures provides less meaningful
information to the local branch. It is known that GradCAM
captures the model’s attention better than the saliency
map [38]. However, it is worth noting that the saliency map
version performs better than the GradCAM version when
using the InceptionV3 backbone (69.56% with GradCAM
vs 70.65% with Saliency), demonstrating the adaptability
of the architecture to different backbone CNN models and
attention capture methods. Additionally, this suggests that
the architecture can improve on the global branch even with
less effective interpretability techniques. Table. 9 summarizes
the performance gain of the proposed TS-CNN model over
different backbones (DenseNet-121, InceptionV3, Xception,
and ResNet-50) and post-hoc methods (GradCAM and
Saliency) on the PAD-UFES-2 skin lesion dataset. The results
show that it consistently improves the performance of all the
underlying classification frameworks by a high margin across
all evaluation metrics (accuracy, precision, recall, F1 score,
and AUC). The InceptionV3 backbone with the saliency
map version achieved the highest overall performance gain
with the highest increase in accuracy, precision, recall, F1
score, and AUC compared with other backbone CNNs and
attention capture methods. These results demonstrated the
adaptability and effectiveness of the proposed TS-CNN
architecture with different backbone CNNs and attention
mechanisms.

V. ROBUSTNESS TO NOISE
The ablation studies conducted in this research aim to assess
the model’s robustness in the presence of noise in the input
images. Two types of noise were chosen for testing purposes:

TABLE 7. Results from the classification of PAD-UFES 20 dataset with
Transfer-learned SOTA CNNs and GradCAM.

TABLE 8. Results from the classification of PAD-UFES 20 dataset with
Transfer-learned SOTA CNNs and Saliency.

TABLE 9. Improvement of performance in Fusion branch over Global
branch for each backbone and posthoc method combination.

TABLE 10. Results on the robustness of the proposed TSCNN architecture
with DenseNet-121 as the back bone on PAD-UFES-20 datase.

• Salt and Pepper noise: A fixed amount of random
pixels are set to white or black. The experiment utilized
three noise levels, namely 1%, 5%, and 10%.

• Gaussian noise: Gaussian noise introduces random
variations to each pixel by sampling from a normal
distribution. The distribution’s mean(µ) is set to 0, and
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FIGURE 17. Outputs of ablation study with Denset-121 and GradCAM.

FIGURE 18. Effect of Global Model Accuracy on Fusion Model Performance: Analysis of accuracy achieved by the fusion model in relation to varying
levels of accuracy of the global model on the skin lesion dataset.

the variance(σ ) is varied between the values of 0.01,
0.05, and 0.10.

To evaluate the impact of noise on the TSCNN architecture,
the DenseNet-121 backbone was selected for experimen-
tation on the PAD-UFES-20 dataset. The choice of using
DenseNet as the backbone was based on its superior
performance in terms of accuracy when integrated into the
TSCNN model for skin lesion classification. By examining
the behavior of TSCNN with the DenseNet-121 backbone
under noisy conditions, the study aims to understand how
the architecture’s robustness is affected by the presence of

noise in the input images. The classification accuracy of the
DenseNet-121 model on the noisy PAD-UFES-20 dataset
is shown in Figure.10. It is evident that even with small
amounts of noise, the model fails to classify the skin lesions
properly. Moreover, the model’s performance deteriorates
proportionally as the noise level increases. The decline in
the performance of the global model has a cascading effect
on the fusion branch, since both the local and fusion models
heavily rely on the activations and attention of the global
model to make decisions. This dependency is expected,
as the loss of proper localization in the global model’s
attention can be observed in Figure.17, where an increase

78416 VOLUME 11, 2023



V. A. Ashwath et al.: TS-CNN: A Three-Tier Self-Interpretable CNN

in noise results in a loss of focus on the correct regions of
interest. This vulnerability in the architecture represents a
potential weak point. The performance of the fusion model is
highly contingent upon the accurate localization of the global
model’s attention. Therefore, as noise levels increase, leading
to compromised attention localization, the model’s ability
to make accurate classifications is significantly impacted.
In order to gain a deeper understanding of the impact
of the global model on the overall TSCNN architecture,
an experiment was conducted where the global model was
trained to achieve varying levels of accuracy on the skin lesion
dataset. The resulting fusion model’s accuracy was then
analyzed and plotted in Figure.18. The findings demonstrate
that the fusion model consistently achieves high accuracy
levels compared to the global model. However, it is also
observed that when the accuracy of the global model is lower,
it has a detrimental effect on the performance of the final
fusion model. This emphasizes the crucial role of the global
model in influencing the overall accuracy of the TSCNN
architecture.

VI. CONCLUSION
In this paper, we introduce a three-tier self-interpretable
deep CNN architecture that is highly flexible in terms of its
backbone models and post-hoc interpretability techniques.
Through several experiments utilizing multiple backbone
models and two interpretability techniques (GradCAM and
saliency maps), we demonstrate the architecture’s adaptabil-
ity and potential for improving classification metrics while
enhancing interpretability. Our findings show that the pro-
posed architecture outperforms the backbone model in terms
of classification metrics and offers a significant improvement
over traditional black-box models. Moreover, it provides
interpretable visualizations that shed light on the model’s
decision-making process, enhancing our understanding of
its reasoning. Furthermore, the flexibility of the proposed
architecture is demonstrated through its generalization across
two different datasets, indicating its potential for wide
applicability and versatility in various domains. Overall,
the proposed architecture offers a promising solution to the
ongoing challenge of balancing accuracy and interpretability
in deep learning models. Its flexibility in both backbone
models and interpretability techniques makes it an attractive
option for researchers and practitioners seeking to optimize
performance and transparency in their deep learning models.
The major drawbacks of the proposed model include
its vulnerability to noise and the heavy reliance on the
effectiveness of the global branch for accurate classification.
The experiments conducted with salt and pepper noise and
Gaussian noise demonstrated a decline in performance as
the noise levels increased, indicating a limitation in handling
noisy input images. One potential future direction is to
investigate techniques that enhance the model’s robustness to
noise, such as data augmentation methods or noise reduction
algorithms. Additionally, exploring alternative architectures
or modifications to the existing model could be valuable.
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