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ABSTRACT Wild-type transthyretin amyloid cardiomyopathy is an under-recognized cause of heart
failure. Pfizer previously developed a machine learning model that performed well in identifying wild-type
transthyretin amyloid cardiomyopathy vs. nonamyloid heart failure. However, challenges exist when intro-
ducing machine learning applications into healthcare, mainly due to restrictions on sharing patient data.
This requires the triggering and execution of the model outside the developer’s infrastructure using hosts
with diverse information technology capabilities. With these barriers in mind, we investigated architectural
designs to facilitate the delivery of the model to the customer. We considered manageability and scalability
of the model, the host’s information technology maturity, maintenance of patient data privacy, and protection
of Pfizer’s intellectual property. A container-based design, wherein the application is shipped as a container
image to a third-party platform, fulfilled these criteria and was piloted on a platform hosted by Philips.
Objectives of this pilot included defining and testing the architectural design and technical parameters for
sharing the container image, creating a scalable and modular framework to manage multiple applications on
different third-party platforms, and exploring a communication pattern based on clinical decision support
Hooks/Cards and representational state transfer calls within the Philips platform. Implementing the model
may enable earlier identification and treatment of wild-type transthyretin amyloid cardiomyopathy, and
learnings from this pilot may lead to improved delivery of other machine learning models to healthcare
providers, thereby increasing utilization. This article also presents an overview of architectural designs that
may help others adopt new methodologies and ideas for machine learning model commercialization.

INDEX TERMS Artificial intelligence, commercialization, data privacy, machine learning, transthyretin
amyloid cardiomyopathy.

I. INTRODUCTION
Transthyretin amyloid cardiomyopathy (ATTR-CM) is a
fatal disease caused by the deposition of transthyretin
(TTR)-derived amyloid fibrils in the myocardium [1], [2].
ATTR-CM is becoming increasingly recognized as a cause of
heart failure, and the wild-type form (ATTRwt-CM) appears
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to be more common than the hereditary type [3]. However,
ATTR-CM is often misdiagnosed or diagnosed late in the dis-
ease course due to low disease awareness, fragmented knowl-
edge among different specialists and subspecialists, and the
multisystemic nature of the disease [4], [5], [6], [7], [8].
Furthermore, whereas the hereditary form can be confirmed
by genotyping, there is no method of systematic identifica-
tion available for ATTRwt-CM [9]. Treatments that slow or
halt disease progression, by suppressing the expression of,
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or stabilizing, the TTR protein, have recently been made
available [10], [11]. Therefore, early identification of
ATTR-CM has become an important goal, to facilitate inter-
vention before irreversible heart failure develops.

Pfizer recently developed a random forest machine learn-
ing (ML) model that provides a systematic framework
for the screening and identification of patients at risk
for ATTRwt-CM [12]. The ATTRwt-CM ML model was
derived using the medical claims data of 1071 patients with
ATTRwt-CM and 1071 nonamyloid heart failure controls;
all data were from individuals aged ≥50 years. The model
successfully identified ATTRwt-CM vs. nonamyloid heart
failure with high sensitivity, specificity, and accuracy in US
medical claims data (87%, 87%, and 87%, respectively) from
IQVIA, Inc. (Durham, NC, USA) and in US electronic health
record (EHR) data (90%, 79%, and 84%, respectively) from
Optum, Inc. (Eden Prairie, MN, USA) [12].
Artificial intelligence (AI) and ML have been used to sup-

port the delivery of imaging decision support systems [13].
This paper proposes an ML implementation that covers a
clinical decision support (CDS) architecture for non-imaging
ML cases in clinical practice. For example, deployment of the
ATTRwt-CM ML model within EHR systems of healthcare
facilities may lead to improved testing and earlier confirma-
tion of ATTRwt-CM in at-risk patients by raising suspicion
of diagnosis in patients with heart failure. This could result in
earlier treatment and, consequently, improved outcomes [12].
However, successful implementation of ML models relies on
the minimization of barriers that may affect their utilization.
For example, an essential outcome is that patient privacy is
maintained; therefore, to ensure no patient data are trans-
ferred to the model’s developer (in this example, Pfizer),
the model can be run inside the firewalls of a third-party
host.

The primary objective of this paper is to present an
overview of potential architectural patterns that can bring AI
or ML models closer to the consumer (i.e., patients), thereby
increasing model utilization. We discuss these architectural
patterns using the specific example of our ATTRwt-CM
ML model. The secondary objective is to describe a scal-
able and modular architectural framework that adopts a
container-based implementation of the ATTRwt-CM ML
model on a third-party platform for use by healthcare
providers (HCPs). Both objectives leverage Fast Healthcare
Interoperability Resources (FHIR) CDS Cards/Hooks com-
munication protocols to enable interoperable and scalable
solutions [14], [15]. Furthermore, we found that adapting the
model to FHIR standards required the use of adaptors that are
defined in Section III.

By discussing solutions for potential challenges to model
commercialization, we aim to enhance understanding of the
potential for increased AI or ML model utilization in health-
care. Our proposed solution provides valuable insights and
repeatable patterns for use in clinical practice.

A preliminary version of this work has been reported [16].

TABLE 1. Conceptual architectural designs for delivery of ML models.

II. CONCEPTUAL ARCHITECTURAL DESIGNS FOR
DELIVERY OF AI OR ML MODELS
There were four required characteristics of the architectural
design for delivery of the ATTRwt-CM model to HCPs.
First, the design needed to be manageable and scalable so
that it could be applied to future ML or AI applications.
Secondly, the application needed to consider the information
technology (IT) maturity of the third-party host to allow
for varying levels of IT capabilities. Thirdly, patient data
needed to remain on the host’s platform and not be shared
with Pfizer to adhere to local or regional privacy regulations
such as General Data Protection Regulation guidelines [17]
or the Health Insurance Portability and Accountability Act
of 1996 [18]. Finally, Pfizer’s intellectual property needed
to be protected by limiting code exposure to third parties.
The development team weighed six conceptual architectural
designs to deliver the model, based on whether or not they
met these four requirements (Table 1).
The first two architectural designs followed a similar phi-

losophy of shipping themodel to the host, either as a container
image or a media file. A container is defined as the software
package that holds all necessary elements and dependencies
to run in any environment. In designs 1 and 2, the host
is assumed to have moderate-to-high IT maturity, and the
ATTRwt-CM ML application is packaged and shipped as a
container image (Figure 1) ormedia file (Figure 2). Following
the logic presented in the figures, the host downloads the
container image to a docker or deploys the media file; in both
cases, the application runs within the host’s domain. These
designs ensure that patient data remain with the host and
can facilitate both single-patient and bulk implementation.
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FIGURE 1. Conceptual architectural design of shipping the container to an external host as a container image. ATTR = transthyretin amyloidosis,
ATTRwt-CM = wild-type transthyretin amyloid cardiomyopathy, CSV = comma-separated values, ML = machine learning, OS = operating system, POB =

point of business, UI = user interface.

FIGURE 2. Conceptual architectural design of shipping the container to an external host as a media file. ATTRwt-CM = wild-type transthyretin amyloid
cardiomyopathy, CSV = comma-separated values, ISO = International Organization for Standardization, ML = machine learning, OS = operating system.

Drawbacks of these designs include that management of the
application is complex (e.g., it involves artifact image updates
and communication with the host for every update) and the
host is required to have the IT infrastructure for hosting the

container. As illustrated in the figures, the overall process
of these designs is similar, with the main difference being
that the container-based design (Figure 1) assumes that a
container can run in the docker environment of the host,
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FIGURE 3. Conceptual architectural design of deploying the container in Pfizer’s Kubernetes environment. ATTRwt-CM = wild-type transthyretin amyloid
cardiomyopathy, CSV = comma-separated values, DMZ = demilitarized zone, ML = machine learning, POB = point of business, UI = user interface.

whereas the media file design (Figure 2) may add complexity
as the host must run the executable file in different computing
machines.

In designs 3 and 4, the customer is assumed to have low
IT maturity and to be unable to host or manage the appli-
cation. In these designs, Pfizer hosts the application either
in their Kubernetes environment, exposing the service to
a reverse proxy server (Figure 3) or in their microservice
environment (Figure 4). These designs are easily manageable
and scalable and ensure the protection of Pfizer’s intellectual
property; however, a disadvantage is that patient data are
shared with Pfizer, thereby requiring systems to de-identify
and re-identify data (e.g., through allocation of patient iden-
tification numbers).

In design 5, an ATTRwt-CM application is developed
for release on the Epic App Orchard (Verona, WI, USA)
marketplace (Table 1). In this case, Pfizer creates a repre-
sentational state transfer RESTful application programming
interface (API) for the model that aligns with FHIR, whereas
the model itself runs on Pfizer’s platform (Figure 5). Data are
sent through FHIR to the model and the ATTRwt-CM API
pushes the results to the Epic EHR user interface. Although
this design provides a simple user experience, one down-
side is the requirement for information exchange between
the customer and Pfizer. In addition, expanding the deliv-
ery of the application to HCPs who do not use the Epic
App Orchard marketplace may add complexity. The advan-
tage is that the design follows FHIR data exchange stan-
dards, making it expandable to EHR systems and promoting
interoperability.

Design 6 sees the ATTRwt-CM ML model being trained
and run in the HCP’s environment using privacy-preserving
and federated learning AI principles, such as those from
OpenMined [19], [20], [21] (Table 1; Figure 6). The main
principle of this design is to revert the process of ML model
training (i.e., the model is sent for partial training to datasets
that are not in the administrative domain of the model pro-
ducer). As illustrated in Figure 6, all information stays with
the customer, and models can be trained on a dataset outside
Pfizer’s administrative domain. This design maximizes the
potential data outreach of the model; however, OpenMined
and federated learning are new concepts and technologies and
require further exploration before applying in this context.

Other designs were considered, but they failed to meet
the required outcomes and were not pursued further. These
included an open-access option, where Pfizer offers the
model’s source code at GitHub as open access and requests
that users either reference Pfizer or improve or comment
on the model. Another design that was not pursued was the
utilization of dedicated hardware at customers’ premises.
For this method, the container is deployed and hosted on
an edge hardware device, such as Raspberry Pi, and resides
within the customers’ physical environment and network;
however, this process creates scalability and manageability
problems.

The team opted to pilot the application using design 1
(Figure 1)—shipping it to a third-party host as a standalone
container. This approach would be manageable, scalable, and
easily deployed. It would also protect the privacy of patient
data by keeping the data with the customer and would protect
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FIGURE 4. Conceptual architectural design of running the application in Pfizer’s microservice environment. API = application programming interface,
ATTRwt-CM = wild-type transthyretin amyloid cardiomyopathy, CSV = comma-separated values, ML = machine learning.

FIGURE 5. Conceptual architectural design of releasing an application on the Epic App Orchard Marketplace. API = application programming interface,
ATTR = transthyretin amyloidosis, ATTRwt-CM = wild-type transthyretin amyloid cardiomyopathy, CDS = clinical decision support, EHR = electronic health
record, FHIR = Fast Healthcare Interoperability Resources, ICD = International Classification of Diseases, ML = machine learning.

the intellectual property of the model using encryption. The
container would be a single image or be based on a microser-
vice architecture, depending on the number and complexity
of the delivered services.

III. PILOTING THE ATTRwt-CM ML MODEL ON THE
PHILIPS PLATFORM
This section presents the proposed implementation that
requires a connection of the ML operations of the model

84434 VOLUME 11, 2023



G. Koutitas et al.: Technical Feasibility of Implementing and Commercializing a ML Model

FIGURE 6. Conceptual architectural design of running the model locally using OpenMined privacy-preserving principles. ATTRwt-CM = wild-type
transthyretin amyloid cardiomyopathy, ML = machine learning.

producer with an external platform (the host) that employs
an FHIR-based communication protocol.

The first implementation of Pfizer’s ATTRwt-CM ML
model was with the Philips HealthSuite Diagnostics (HSD);
the architectural design of the pilot is illustrated in Figure 7.
The Philips platform was chosen for the pilot because their
existing solutions are used by hospitals and include dash-
boards called Care Orchestrators, which aggregate patient
data for the application of CDS [22] and provide a natural
landing spot for consumption and testing of the model. Fur-
thermore, due to data restrictions, any cloud infrastructure in
the administrative domain of Pfizer was not an option, and the
Philips HSD platform provided the required infrastructure to
host the service.

The primary objectives of the pilot study were to (i) define
and test the architectural design and technical parameters
for sharing the container image; (ii) capture metrics, includ-
ing engagement and performance data, after running the
container image in a test environment; (iii) create a scal-
able framework to manage multiple applications on different
third-party platforms; (iv) explore security and intellectual
property problems when running the application in a third-
party environment; (v) understand the effort and validity of
the integration of container images on third-party platforms;
and (vi) employ a standards-based approach utilizing CDS
Hooks specifications, to enable scaling up. Pilot engage-
ment data and post pilot results will be reported in a future
publication.

For this specific test implementation, Pfizer containerized
the application as a single image and delivered the container
to a Philips repository. Philips downloaded the container
image to host on their HSD (the container is considered the

CDS service). This process ensures that Pfizer cannot access
the patient data; however, they will eventually be able to
retrieve data on engagement (e.g., usage and number of calls)
and performance (e.g., execution time and accuracy), as gen-
erated by the instrumentation engine, as well as information
from quality checks (e.g., data format errors).

The Philips HSD contains three main components relevant
for implementing the model; namely, the Care Orchestrator
web application, which houses the user interface for the
end user and acts as the CDS Client; the Care Orchestrator
backend, which, upon request, executes the model by means
of a CDS Hooks mechanism; and a clinical data repository
(CDR), a database that stores all relevant patient-specific
data.

The process for execution of the application is provided in
Figure 8. Our design utilizes algorithm wrappers to adapt the
execution of themodel outside Pfizer’s administrative domain
and in an FHIR-based system and provides a reproducible
framework for implementation that can be further studied
and explored. When the user opens a patient encounter in
the Care Orchestrator Web Application, this automatically
triggers a CDSHook to perform data prefetching, and a REST
call invokes the algorithm in the container image. Patient
data prefetched from the CDR include a unique identifier;
age in years; sex; International Classification of Diseases,
Tenth Revision (ICD-10) diagnosis codes; the dates of the
ICD-10 diagnosis codes; and the dates of encounter visits.
The application checks that data are in the proper format
and, if required, maps diagnostic codes to the correct ICD-10
version on which the model was trained. An HTTP 400 error
reply is returned for data that fail this initial quality check,
ICD-10 code mapping, or data validation. When patient data
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FIGURE 7. Architectural design of the Pfizer/Philips pilot study. (1) Pfizer develops the ATTRwt-CM application; (2) Pfizer containerizes the application;
(3) the application images are stored within a container registry that helps with the management of multiple versions of the application with several
different hosts (for the collaboration with Philips, a single image of the application was shipped to the Philips repository); (4) the container runs within
Philips’ HSP and is considered the CDS Service following the CDS Hooks, FHIR HL7 specification; (5) data prefetching information is shared between the
Care Orchestrator and application in the form of a CDS Hook, which invokes the data prefetching template form to collect data from the Care Orchestrator
(the CDS Client) and the FHIR server, which is represented as the CDR; (6) the CDR calls the FHIR EHR server and retrieves the required information to be
available at the Care Orchestrator; (7) the user launches the web application when opening a patient encounter; (8) the CDS Hook triggers an event at the
orchestration tool; (9) the orchestration tool calls the CDR to prefetch data for the ATTRwt-CM application; (10) the orchestration tool triggers the
ATTRwt-CM algorithm using REST; (11) the ATTRwt-CM algorithm runs and returns the results as a CDS Card for visualization; (12) the user can access the
visualization at the web application; (13) utilization results may be captured by the instrumentation engine and posted to the billing system; it should be
noted that for the Philips implementation, the instrumentation engine was not considered and the HSP platform periodically shares usage analytics data
with Pfizer. ATTRwt-CM = wild-type transthyretin amyloid cardiomyopathy, CDR = clinical data repository, CDS = clinical decision support, FHIR = Fast
Healthcare Interoperability Resources, HSP = HealthSuite Platform, REST = representational state transfer.

FIGURE 8. Execution of the ATTRwt-CM application. (1) Upon opening a patient encounter, a CDS Hook performs data prefetching; (2) a REST call invokes
the algorithm in the container image and the data undergo formatting and a quality check; (3) diagnostic codes are mapped to the correct format,
if needed; (4) data are validated; (5) an error message is returned if data are not valid; (6) eligibility is assessed; (7) if a patient is not eligible, a CDS Card
is returned stating ‘‘not eligible’’; (8) data are entered into the model code; (9) the model code produces a result; (10) the result is returned as a CDS Card
for visualization at the web application. ATTRwt-CM = wild-type transthyretin amyloid cardiomyopathy, CDS = clinical decision support, ICD =

International Classification of Diseases, REST = representational state transfer.

pass these checks, the application determines whether the
patient fulfills the model’s inclusion/exclusion criteria (previ-
ously published [12]) prior to executing the model code. The
application returns the results as one of six CDS Cards: (i) no

available data due to the patient not having ICD-10 codes
for evaluation, in which case the model code is not executed;
(ii) the patient does not meet eligibility criteria, another sit-
uation in which the model code is not executed; (iii) high
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suspicion of ATTRwt-CM (risk score ≥ 47.5%), with the
actual risk score shown; (iv) low suspicion of ATTRwt-CM
(risk score < 47.5%), with the actual risk score shown);
(v) no prediction because the data entered the model but
did not return a valid response due to an unhandled error;
or (vi) no prediction because not enough patient data were
available to assign a risk score. The CDS Cards are rendered
for visualization at Philips on the Care Orchestrator. The user
accesses the visualizations at the web application, and the
instrumentation engine posts utilization metrics to the billing
system.

System end-to-end delays are to be minimized to provide
an acceptable user experience, defined as < 1 s to 2 s from
entering a patient’s name in the dashboard to retrieving a
result. Any Philips platform-related delays involving data
retrieval, internal data queries, and triggering functions on
the platform are not to exceed 3 s, and these delays are to
be controlled with precise database searches. The execution
time of the ATTRwt-CM algorithm for one user, assuming
all required inputs are delivered in the REST triggering call,
is to be no more than 500 ms and is controlled by use of
a code-efficient algorithm. Communication delays, which
include the CDS Hooks and REST calls between the Care
Orchestrator, CDR, and ATTRwt-CM application, are not to
exceed 500 ms; and the presentation of results is to take no
longer than 1 s.

IV. DISCUSSION
Pfizer’s ATTRwt-CM ML model has previously performed
well in identifying ATTRwt-CM vs. nonamyloid heart fail-
ure [12]. Utilization of the model in the clinical setting can
facilitate earlier identification of patients with heart failure
at risk for ATTRwt-CM and, subsequently, earlier treatment,
which is associated with improved outcomes [23]. This pilot
project with Philips presents an architectural solution for
delivery of the model to HCPs by using a container-based
design and communication patterns based on CDS Hooks,
CDS Cards, and REST calls. A major concern with the use
of any ML application in healthcare is the privacy of patient
data. In this pilot, the application was hosted on a third-party
platform, and patient data remained with the customer/host.
Overall, this project represents a breakthrough achievement
in the field of ML solutions in healthcare by delivering
advanced technology to HCPs in a simple, user-friendly
application without compromising patient confidentiality.

ML and AI in healthcare is a rapidly progressing field and
represents a unique opportunity for improving the early iden-
tification of diseases and supporting clinical decisionmaking.
In addition to the ATTRwt-CM ML model described here,
other models that predict risk and/or outcomes for conditions
such as kidney disease, type 2 diabetes, myocardial infarc-
tion, chronic obstructive pulmonary disease, and coronary
artery disease have been developed [24], [25], [26], [27], [28].
However, a research gap remains between the development
of predictive models and the technical implementation of
these models in the clinical setting [29].While the technology

to facilitate the implementation of these ML or AI mod-
els exists (e.g., FHIR and CDS Hooks; see example uses
in [30], [31], and [32]), research into how these technologies
can be integrated in a manageable and scalable way to deliver
these models to the consumer is limited. Our paper bridges
the gap between model development and implementation by
presenting potential architectural solutions formodel delivery
and providing a concrete example of model implementation
at a third-party host. Our solution not only demonstrates how
this advanced technology can be delivered to different clinical
settings for use by HCPs, but it also provides the specifi-
cations needed for continued diligence of the algorithm and
easy deployment.

A limitation of this pilot is that it tested only the com-
ponents that were needed to deploy the application and the
technical feasibility of the design; model drift and perfor-
mance were not tested. Another limitation was that syn-
thetic data were used to test technical feasibility. Although
these data were intended to simulate real-world data, they
are not actual data. Future studies will assess the clini-
cal feasibility of the design prior to deployment and will
examine external validation. Further implementation research
and post-implementation evaluations will also be conducted,
as well as assessment of the model as Software as a Medical
Device through the appropriate healthcare authorities.

V. CONCLUSION
This article presents a container-based design for the imple-
mentation of the ATTRwt-CM ML model on a third-party
platform, which may enable earlier identification and treat-
ment of this fatal disease and lead to improved outcomes.
Learnings from this pilot may also inform the delivery of
other related ML models to HCPs, thereby increasing uti-
lization and potentially improving identification andmanage-
ment of other diseases.
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