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ABSTRACT Biomedical Named Entity Recognition (NER) is a crucial task in Natural Language
Processing (NLP) and can help mine knowledge from massive clinical and diagnostic records. However,
the biomedical NER task often undergoes a low-resource training setting due to the high cost of human
annotation, limiting the capability of traditional NER models. In this study, we propose a two-stage learning
pipeline to tackle the oncological NER task in Chinese language, which is a typical task lacking training
resources. In the first stage, two base models pre-trained by Word to Vector (Word2Vec) and Bidirectional
Embeddings Representations from Transformer (BERT) are fine tuned to obtain domains-specific word
embeddings that serve as the input for the downstream NER task. In the second stage, we feed the
word embeddings into a neural network that consists of a Bidirectional Long and Short Time Memory
Recurrent Neural Network (BiLSTM) and Linear-chain Conditional Random Field (CRF) for end task
training. Meanwhile, we utilize a substitution-based generative model for data augmentation (DA), aiming
to enhance the quantity and diversity of the training data. Experiments show that our proposed learning
pipeline demonstrates superior performance compared to other model alternatives under a low-resource
setting. Specifically, results show that the proposed fine-tuning strategy, when conducted on an augmented
domain resource, can effectively incorporate rich domain knowledge into the final NER model, presenting
a great potential in boosting a model’s predictive power with limited training data.

INDEX TERMS BERT, cancer, deep learning, named entity recognition, oncology, osteosarcoma,
Word2Vec.

I. INTRODUCTION
Conception and knowledge extraction is crucial for the
automation of clinical research. To obtain the actionable
information and discard the unstructured clinical data [2],
researchers have developed a wide spectrum of learning
models using natural language processing (NLP) techniques.
NLP models depend heavily on supervised machine learn-
ing (ML) that requires numerous annotated data [5] for
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training. To train a computer to better understand a natu-
ral language, several dimensions in the real world textual
resources, such as dialects, topics, languages, and genres,
have been considered and exploited in the literature [31].
On the other hand, the availability of training resources play
a significant role in the performance of any ML-based sys-
tem, especially for a system designed for a specific domain.
Depending on the amount of available domain resources,
there are three scenarios for training an NLPmodel, including
(i) High- or rich- resource settings with a large quantity of
annotated data, (ii) Low-resource or Resource-poor settings
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with limited annotated data, and (iii) Zero-resource settings
with no annotated data [21]. Despite being more challenging,
scenarios (ii) and (iii) are more common in the real world,
especially for a narrow domain. The lack of annotated domain
resources brings difficulty for most downstream NLP tasks,
including Named Entity Recognition (NER), which which
aims to recognize rigid designators such as Person, Location,
and Organizations that belong to predefined semantic cate-
gories. Obtaining high-quality annotated data in the biomed-
ical field is difficult since it requires experts with domain
knowledge to assign the biomedical entities appearing in the
texts into different categories, making crowdsourcing [16],
which is a general solution to massive annotation tasks, less
likely. Therefore, it is imperative to develop novel method-
ology to resolve the performance degradation caused by the
insufficiency of annotated medical resources.

Recent advances have witnessed the power of transfer
learning that has significantly improved the performance of
numerous ML tasks [29]. Transfer learning can be either
supervised or unsupervised and allows pre-trained models
with incorporated domain knowledge to be fine-tuned in a
low-resource setting. The fine tuning process can help trans-
fer knowledge from the source to the destination domain. The
benefits of transfer learning are twofold, namely reducing the
required amount of annotated data and training time. In NLP,
a variety of pre-training techniques and models have been
investigated. TheWord to Vector (Word2Vec) model can con-
vert words in a vocabulary to numerical representations, i.e.,
word embeddings, while maintaining the words’ semantic
meanings. Trained by Word2Vec, words with similar mean-
ings will receive similar numeric embeddings, making it
easier to calculate the distance between words. Bidirectional
Encoder Representations from Transformers (BERT) [11]
utilizes Transformer as a core building block and employs two
self-supervised pre-training techniques, including masked
language model (MLM) and next sentence prediction (NSP).
The MLM is a fill-in-the-blank task that aims to predict
the most probable word to fill a mask token position given
the context. On the other hand, NSP is trained to predict
whether a pair of sentences present a before-after relation,
which is useful for tasks such as question answering that
require an understanding of the semantic relation between
two sentences. Combining MLM and NSP, BERT produces
a robust language model that can support a wide range of
downstream tasks, including NER. Transfer learning offers
an path towards domain knowledge incorporation, effectively
reducing the required amount of training data and the number
of training epochs. Meanwhile, ensemble learning has been
widely adopted at the feature level [39], [45]. However, less
efforts have paid attention on the ensemble effect of two or
multiple pre-trained models.

Although transfer learning saves training efforts, it does
not increase the amount of annotated training data. Generative
models can help enhance the size and diversity of the training
set by generating synthetic samples that do not appear in
the original training set. Popular models such as Generative

Pre-trained Transformer 2 (GPT-2), Generative Adversarial
Network (GAN), and Variational Autoencoder (VAE) have
been used for DA in numerous learning tasks. However,
in a domain-specific NER task under a low-resource setting,
generative DA methods have not been extensively studied.

To tackle the medical NER task in a low resource
setting, we propose a two-stage transfer learning frame-
work with two performance boosters. In the first stage,
we fine-tune WordVec and BERT separately on the prepared
domain resources in a self-supervised manner. Meanwhile,
we develop a substitution-based generative model (the first
booster) for DA, which can generate synthetic and anno-
tated data to enhance the original training set. In the second
stage, we employ an ensemble of the tuned WordVec and
BERT models (the second booster) to generate word embed-
dings, which are fed into an NER model that consists of
a Bidirectional Long Short-term Memory (BiLSTM) layer
and a Conditional Random Field (CRF) layer to output
a prediction. In summary, this study makes the following
contributions:

1) We propose a two-stage transfer learning pipeline
for the biomedical NER task under a low resource
setting, which is resulted from a oncological NER
dataset in Chinese. The novelty of the learning pipeline
mainly lies in the two performance boosters, includ-
ing a substitution-based generative model for DA and
an ensemble model of both Word2Vec and BERT for
embedding generation. In addition, both Word2Vec
and BERT are further pre-traind on domain resources
to further incorporate oncological knowledge into the
models. These joint efforts can benefit the downstream
NER model even with a small annotated corpus in the
original dataset.

2) We conduct extensive experiments a) to demonstrate
the validity of using an ensemble of both Word2Vec
and BERT for embedding generation since both mod-
els contribute to the performance improvement, b) to
show the efficacy of the substitution-based generative
DA method, verifying the importance of both quantity
and diversity for an augmented training set. Results
show that under the same hyper-parameter setting, our
best model outperforms the state of the art (SOTA)
by 4.64%, and thus can serve a new baseline for subse-
quent studies.

The rest of the paper is organized as follows. Section II
describes the related work. Section III provides a description
of the database in use. Section IV presents the core building
blocks of the proposed learning pipeline. Section V reports
the experimental results and offers some insights. Section VI
summarizes the whole work.

II. RELATED WORK
This section reviews a collection of related studies from three
aspects, including domain-specific NER, sequence model,
and data augmentation in NLP.
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A. DOMAIN-SPECIFIC NER
Lack of sufficient annotated data is the primary challenge for
domain-specific NER tasks. There is a prohibitive annotation
cost in the biomedical field due to the required expertise and
domain knowledge, making crowdsourcing-based annotation
infeasible. To overcome these challenges, prior studies have
explored various methods that are summarized as follows:

• Cross-lingual knowledge transfer aims to transfer
knowledge learned from one or more source languages
to a low-resource target language. Cotterell and Duh [8]
trained character-level neural CRFs to predict named
entities for both high-resource languages and low-
resource languages jointly. Feng et al. [15] employed
bilingual lexicons to bridge cross-lingual semantic map-
ping and design a lexicon extension strategy to alleviate
the out-of-lexicon issue. Their study also considered
entity type distribution as language-independent fea-
tures andmodeled them in the neural architecture, which
became a performance booster.

• Domain-adaptive approaches allow models trained
from easily obtained resources to be applied to the
NER task in a target domain. Yu et al. [43] pro-
posed a domain-adaptive approach that fine-tuned a
general-domain pre-trained language model on in-
domain corpora. A bootstrapping process was then
started to obtain an initial NER model trained on the
small fully-annotated seed data. The NER model was
fine-tuned on an unannotated corpus iteratively until
convergence.

• Distantly supervised learning (DSL) [36, 30, 17, 41]
employs domain-specific dictionaries and knowledge
bases like WikiData and YAGO to produce massive
weakly annotated data, which are used to train NER
models.

• Domain-specific pre-training [4], [25] leverages unsu-
pervised pre-training on a large domain-specific corpus
to improve performance on downstream NLP tasks such
as NER.

In summary, there are two lines of mainstream research
to address the difficulties of low-resource NER tasks. The
first direction relies on transfer learning to apply knowl-
edge learned from rich-resource domains/languages to low-
resource ones. The second tries to reduce human annotation
efforts through automatic annotation by utilizing existing
domain-specific knowledge bases. Our work belongs to the
first category. In particular, we customize a transfer learning
pipeline that suits the task under investigation.

B. SEQUENCE MODEL
As an encoder-decoder RNN, the sequence-to-sequence
model has similarities with the conception of end-to-end,
which is extensively applied in NLP and the text labeling
task. After the input of a sentence required to be translated,
understood, and analyzed, the text will be divided into uni-
tary words before being converted into word vectors via

word embedding and contextual word embedding. In this
stage, an encoder network is first established. Built as an
RNN, it could be a GRU, or an LSTM RNN [35]. LSTM is
considered an effective approach in dealing with sequence
labeling problems, combining the past and future contexts
together [1]. While the unidirectional LSTM is not adequate
and the appearance of bidirectional LSTM (BiLSTM) can
utilize the historic and the future information together to
label a token [28]. One word is input to feed the network
every time and after ingesting the input sequence extracted
by the words in the text. A decode network is built for the
output sequence, which is designed according to the wanted
function. The output sequence can be constructed to cluster
the words with similar meanings in a text for pre-training and
training the dataset. It is difficult to correlate the words in
the current label and the neighbor label, and a meaning loss
and the error in NER will occur for a loss in the correlation
between two seemingly unrelated labels [38]. Linear-chain
Conditional Random Field (CRF) is cultivated to mitigate
such a problem by controlling the structure prediction [32].
A series of potential functions is applied to approximate the
conditional probability of the output label based on the input
word sequence. The decoder sequence can be finished at the
end word or the end sentence token. The introduction of
the sequence model in our work can provide convenience to
recognize the words, first, with the similar meaning according
to context; second, the similarity comparison results can be
obtained only in one stage algorithm realized by sequence-
to-sequence model.

One problem that RNN is confronting is that the compu-
tation of the output is hard to parallel, which can result in
undesired results when there are several relations between
the input. If the parallelism in the neural network cannot be
realized, the poor performance of learning will appear [28].
It is noted that a self-attention algorithm is introduced in
the transformer, which is known as an unsupervised learning
method. Without adding an algorithm related to attention,
a self-attention in the transformer can be realized by three
transformations for further computation, q(query) to match
others, k(key) to be matched by q, and v as information to be
extracted. The q of each input will undergo a computation
with every k value of the input. After accomplishing the
computation, processing, and another computation with the
v of every input, the output b will be finally obtained. Such
a transformer can be parallel to conventional RNN to get
better performance, especially in text recognition when the
contextual features should be a key point for NER.

Named entity recognition (NER) focuses on identifying
mentions featured on rigid designators from text belong-
ings to predefined semantic types such as person, location,
organization, etc. Known as the foundation in NLP tasks
such as question answering, text summarization, andmachine
translation, NER has achieved good performance to reduce
manual work in NLP. While when coping with corpus with
low available resources, new models and algorithms should
be added in NER [26].
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BERT is known as an advanced tool in NLP that can realize
bidirectional word recognition. The Transformer mentioned
before is known as a signature algorithm in BERT for better
contextual information extraction. Apart from Transformer,
a ‘‘masked language model’’ (MLM) can mask the original
meaning of the vocabulary and obtain the meaning informa-
tion of input words and text based on the context. Besides,
different from the traditional unidirectional encoder, a bidi-
rectional decoder can be generated with the assistance of the
MLM, so it can be known that MLM is also contributive for
contextual recognition in NER [11]. BERT is the encoder part
of our sequence model. Correspondingly there is a decoder
model called generative pre-training (GPT-2). Unsupervised
learning is often applied in pre-training for clustering. Gener-
ally, rich-resource without annotation form a language model
with several clusters in the first stage of GPT-2 [20]. Position
embedding will be initialized randomly in this stage, and the
model is expected to learn without supervision. In the second
stage, the algorithm will be fine-tuning for transferring into
NLP question. The objective of GPT-2 is text recognition
and deal with annotated tasks, which is more suitable in
NER in our work. Also, recent study has also combined
sequence models with graph models to solve the NER task.
For instance, Fu et al. stacked BiLSTM encoder and a GCN
to model the relations of entities. The proposed model can be
used to jointly extract named entities and relations [50].

C. DATA AUGMENTATION IN NLP
DA in machine refers to a collection of methods that aim to
increase the quantity and diversity of training data, reducing
the efforts of human annotation [13]. Most methods work
by manipulating existing samples or create synthetic data to
enrich the training set, acting as a regularizer to prevent over-
fitting. DA has been extensively used in computer vision [37]
with a wide spectrum of methods developed. DA is not that
straightforward when it comes to NLP due to the discrete
input space and highly unstructured and dynamic semantics
in texts. DA in NLP can be roughly divided into the following
three categories:
• Rule-based DA refers to a class of DA methods that
use predefined transforms sans model. For example,Wei
and Zou [40] develop easy DA that employs a set of
token-level operations such as insertion, delection, and
swap, that are randomly applied to texts for perturbation.
Chen et al. [6] propose to build a graph over text data.
The graph can be used to infer augmented sentence pairs
based on balance theory. Sahin et al. propose depen-
dency treemorphingDA that employs sentence cropping
and rotating for siblings in the tree [34].

• Example interpolation-based DA is a class of methods
that works by interpolating the inputs and labels of
real samples to generate synthetic samples. However,
mixing sentence elements between different samples
without guidance breaks the semantic meaning. Several
strategies have been proposed to achieve more effective
interpolation [7], [19].

• The models in model-based DA usually refer to
sequence-to-sequence and language models. Yang et al.
propose a DAmethod that uses a pre-trained transformer
language model to generate synthetic examples [42].
Feng et al. [14] propose semantic text exchange, which
aims to adjusting the semantics of a sentence to fit the
context of a newly inserted word or phrase. Generative
models such as GPT-2 have also been used. Anaby-
Tavor et al. fine-tune a label-conditioned GPT-2 for DA
(3). Other impactful methods include document-level
paraphrasing [18], controlled paraphrasing [22], and
misclassified example augmentation [12].

The proposed substitution-based generative DA is model-
based and designed for NER. Prior efforts for DA in NER are
sparse. One relevant work is by Dai and Adel [9], where syn-
onym and mention replacements have been the most effective
strategies in their experiments. However, their method does
not utilize a generative model, while ours employs GPT-2
combined with entity mention substitution, which allows the
model to generate high-quality synthetic samples.

D. PRE-TRAINING FOR NER
Pre-training has been an influential technique that leverages
unsupervised or self-supervised learning to gain semantic
knowledge from a large corpus at a scale [47]. A well-
pre-trained model can be fine-tuned to suit various down-
stream tasks, including NER [48], [49], [50], [51], [52], [53].
Xue et al. proposed an NER-specific pre-training framework
to inject entity knowledge into pre-trained models [48]; a
similar idea was implemented by Jia et al. [50], who inte-
grated entity information into BERT using Char-Entity-
Transformer. Trewartha et al. built a domain-specific model
in material science that showed superior performance in the
NER task [49]. Gao et al. adopted a pipeline that consists
of pre-training, fine-tuning, and self-training to boost model
performance [51]. In summary, fine-tuning is an essential
step that allows pre-training models to handle NER. Before
fine-tuning, a second round of pre-training can be adopted,
either to inject domain knowledge, like the proposed method,
or to inject entity knowledge to pre-train a more entity-aware
model [48], [50].

III. DATASET AND LEARNING TASK
This section provides a description of the Yidu-S4k dataset
followed by a definition of the NER task.

A. DATASET
This work utilized the Yidu-S4k dataset created for biomed-
ical NER from the Chinese electronic biomedical records
(CEMRs) dataset. The task was one of the six tasks in
CCKS 2019. In particular, this task requires locating named
entities and classifying them into six pre-defined categories:

• Disease and diagnosis: biomedically defined diseases
and the judgments made by physicians in their clinical
work regarding etiology, pathophysiology, and staging.
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Examples of this entity type include ‘‘Endogenous chon-
droma of left humerus’’, ‘‘Synovitis’’, ‘‘Osteosarcoma’’,
‘‘Ewing Sarcoma’’, etc.

• Image examination: imaging examinations (X-ray, CT,
MR, PETCT, etc.), not avoiding too many conflicts
between examination operations and surgical opera-
tions. Examples include ‘‘Ultrasound of the abdomen’’,
‘‘Electrocardiogram’’, ‘‘Knee CT’’, etc.

• Lab testing: physical or chemical tests performed in
the laboratory, referring specifically to laboratory tests
performed by the laboratory department in clinical work,
excluding broad laboratory tests such as immunohis-
tochemistry. Examples include ‘‘CER13.97NG/ML’’,
‘‘83.96NG/ML’’, ‘‘4.02 × 1012/L’’, etc.

• Surgery: the main surgical treatment is excision and
suturing performed locally by the doctor on the patient’s
body. Examples include ‘‘Right ilium incision biopsy’’,
‘‘Left fibula mass resection’’, etc.

• Medication: specific chemical substances used for dis-
ease treatment. Examples include ‘‘Paracetamol and
oxycodone’’, ‘‘Tegafur’’, ‘‘Sodium Aescinate’’, etc.

• Anatomical site: the anatomical part of the body where
the disease, signs and symptoms occur. Examples
include ‘‘Left ilium outer plate’’, ‘‘Gastric base’’, ‘‘Left
lateral femoral condyle’’, etc.

The training set consists of a total of 2,000 diagnostic records
with 1,000 annotated records and another 1,000 unannotated.
Each record contains multiple named entities. The validation
set has a total of 400 records. Table 1 displays the stats infor-
mation of the six categories across the training and validation
set.

TABLE 1. Entity quantity of the NER task in the Yidu-S4k dataset.

We provide a short sample record from the dataset as
follows. ‘‘After the patient was admitted to the hospital, the
relevant examinations were perfected, preoperative prepa-
rations were performed, and no surgical contraindications
were found. Resection of the right middle tibial mass was
scheduled for 2020- 08-31 under general anesthesia. The
procedure went smoothly and returned to the ward after
the operation. Prevent infection, relieve pain, strengthen
bones and other symptomatic treatments. The patient is now
recovering well after the operation and is required to be

discharged from the hospital. The pathological results sug-
gest: osteoid osteoma.’’. In this example, multiple named
entities of different types can be identified.

B. NER LEARNING TASK
Given a sentence as an input, an NER model can locate
and classify the entity mentions in the input into a set of
pre-defined categories. The learning task can be formally
defined as follows. Suppose s is a sentence with n word
tokens, where s = [t1, t2, . . . ,tn], an NER model takes s as
input, and outputs a collection of entity mentions, each of
which is denoted by a three-tuple < Is, Ie, k >, where Is
and Ie are the indices of the first and last tokens of the entity
mention, and k is one of the pre-defined classes. In this study,
k ∈ {‘‘Disease and diagnosis’’, ‘‘Image examination’’, ‘‘Lab
testing’’, ‘‘Surgery’’, ‘‘Medication’’, ‘‘Anatomical site’’ }.

IV. A TWO-STAGE TRANSFER LEARNING PIPELINE
In this section, we describe the design details of the building
blocks of the proposed learning pipeline.

A. SYSTEM OVERVIEW
Figure 1 shows the proposed learning pipeline. Before train-
ing an NER model, we adopt a substitutionbased generative
model for data augmentation, aiming to enhance the quantity
and diversity of the training data by adding a collection of
synthetic samples into the original training set. The learning
pipeline includes two stages. In the first stage, a pre-trained
base language model is taken for fine tuning on biomedical
domain resources to incorporate more domain knowledge
into the model. The outcome of the first stage is a model that
can generate word embeddings, which are fed into the next
stage. The fine tuning step is crucial since it allows the model
to capture domain information, which improves the accuracy
of the downstream NER task and reduces the amount of
required annotated data. In the second stage, word embed-
dings flow through a BiLSTM sequence model to further
capture context information. At last, the output of BiLSTM is
sent to a CRF layer that maximizes the log-probability of the
NER sequence to encourage the network to produce a valid
sequence of entity types.

B. SUBSTITUTION-BASED GENERATIVE MODEL
FOR DATA AUGMENTATION
Figure 2 depicts the GPT-2-based data augmentation mech-
anism, aiming to alleviate the low-resource problem for the
learning task. The process includes the following steps.

• First, each annotated sample in the original training set is
transformed with all entity mentions substituted by spe-
cial tokens representing their corresponding entity types,
as shown in the ‘‘Substitution I’’ module in Figure 2.
For example, a sentence ‘‘The patient underwent radical
resection of rectal cancer.’’ contains two entitymentions,
namely, ‘‘radical resection’’ and ‘‘rectal cancer’’, which
are replaced by the entity type tokens, resulting in a
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FIGURE 1. An overview of the proposed learning framework.

FIGURE 2. Substitution-based generative augmentation.

transformed sample ‘‘The patient underwent [Surgery]
of [Disease and diagnosis].’’ The purpose of substitution
is to facilitate the fine-tuning of GPT-2, which is guided
to focus on the semantic meanings of entity types rather
than specific entity mentions.

• After the substitution, the training samples are used to
fine-tune a pre-trained GPT-2 model. Fine-tuning allows
the GPT-2 model to learn the contextual knowledge in a
domain-specific setting.

• The tuned GPT-2 model is then utilized to generate a
collection of samples that have a similar distribution to
the training set.

• The generated samples are fed into another substitu-
tion module (i.e., Substitution II in Figure 2), which
randomly draw a matching entity from an entity

database (DB) to substitute an type token in a gener-
ated sample. For instance, ‘‘[Disease and diagnosis]’’ is
replaced by ‘‘bone cancer’’ in the sentence ‘‘Was diag-
nosed as [Disease and diagnosis] in our hospital 1 year
before admission.’’, creating an augmented sample that
can be automatically annotated and used to enhance the
training set.

• It is noted that the entity DB specifically designed
for the learning task. The DB contains a collection of
six vocabularies, corresponding to the six entity types,
and each vocabulary is a list of entities belonging to
that category. For example, ‘‘bone cancer’’ is in the
vocabulary of ‘‘Disease and diagnosis’’.

Following this procedure, a total of 1,000 augmented
samples are generated. The statistical information for the
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entity quantity in these augmented samples are shown
in Table 1.

C. STAGE ONE: PRE-TRAINING AND FINE TUNING
The first stage takes pre-trained Word2Vec and BERT lan-
guagemodels to conduct fine tuning on the dataset in use. The
fine tuning is self-supervised, which does not require annota-
tion, and the output model can generate word embeddings in
the biomedical domain.

1) PRE-TRAINING WORD2VEC ON DOMAIN RESOURCES
There are two different learningmodels applied inWord2Vec,
including Continuous Bag-Of-Words (CBOW) and Skip-
gram. CBOW learns a conditional probability of a word given
its context, i.e., the surrounding words within a specified
window size. Specifically, a provided sequence of words will
be received as input a window of C context words by the
model. Then the target word wi is predicted by minimizing
the following objective:

E = − 1
|c|

|c|∑
t=1

logP(wt |wt−c , · · · ,wt−1,wt+1, · · · ,wt+c)

(1)

P(wt
∣∣wt−c,··· ,wt−1,wt+1,···,wt+c) = exp uTt vc∑|V |

i exp uTt vc
(2)

where V depicts the vocabulary size, vc is the sum of the
embeddings vector of the context words wt−c, . . . , wt−1,
wt+1, . . . ,wt+c, and u is the embeddings vector of the target
word.

Skip-gram, on the other hand, can predict the context words
of a given word, which is regarded as the reverse of CBOW.
It works by minimizing the following objective:

E = −
1
|c|

∑|c|

t=1

∑
−c≤j≤c

logP(wt+j |wt ) (3)

P(wt+j |wt ) =
exp uTt+jvt∑|V |
i exp uTi vt

(4)

where u and v are the current and context word embeddings,
respectively.

Either model can learn a distributed representation of
words via a shallow neural network. For our task, we use a
Word2Vec model pre-trained on corpora of generic Chinese
text.1 We further pre-train the Chinese Word2Vec model on
two domain resources, including the training data of the
Yidu-S4k dataset and a question answering dataset [44] with
623,138 medical sentences in Chinese. The adopted training
algorithm is CBOW. This way, the Word2Vec model can cap-
ture the domain knowledge and produce word embeddings
suitable for the NER task in this study.

2) PRE-TRAINING BERT ON DOMAIN RESOURCES
BERT is built on top of a Transformer that has an encoder
to read the text input, which is a sequence of word tokens.

1https://github.com/Embedding/Chinese-Word-Vectors

BERT maps these tokens to vectors (i.e., token embeddings)
and decorates them with some metadata by 1) adding a [CLS]
token to the input at the beginning of a sentence and a [SEP]
token at the end, 2) attaching a Segment embedding to
each word token to indicate the sentence it belongs to, and
3) adding a positional embedding to mark its position in
the sentence. These embeddings can encode rich contextual
information of a word, enabling a bi-directional, or more
precisely, non-directional training to capture the semantic
meaning of a word within a context. Since the goal of BERT
is to generate a language model, two strategies are employed:
1) to train the model using input text with masked tokens,
which allows the model to learn to predict the masked tokens,
and 2) to train the model with sentence pairs, say (A, B),
so that the model can learn to predict whether B is the next
sentence of A. In this study, we adopt the Chinese BERT
wwm,2 which has been pre-trained with the Chinese Wiki.
Similarly, we apply a further pre-training to Chinese BERT
wwm on the Yidu-S4k dataset and the Chinese medical QA
dataset for knowledge transfer.

3) OUTPUT OF STAGE ONE
We obtain two language models of Word2Vec and BERT
through fine tuning the base models. A word token passes
through both models to be mapped to two word embeddings,
representing non-contextual and contextual embeddings. The
system then performs a concatenation of the word embed-
dings as the final word vector, which is sent to the next stage
for NER training.

D. STAGE TWO: CHINESE BIOMEDICAL NER
In stage two, the ensemble embedding is used as an input
token for the subsequent network to train a NER tagger. The
downstream NER tagger consists of two layers, a BiLSTM
layer and a CRF layer, which has been a popular choice for
NER tasks since developed in [24].

The BiLSTM layer takes as input the word embeddings
obtained from stage one. A BiLSTM operates on sequential
data and returns another sequence that captures bi-directional
context information through a forward and backward LSTM
pair. The output corresponding to the input word vector is a
concatenation of the left and right context representations.
Specifically, a sentence is depicted by (w1, · · · ,wn) and
its contextindependent word representations is depicted by
(ṽ1, · · · , ṽn). The language model can be formalized as

P = (wi |w1 , · · · ,wi−1) =
1
Z
exp(wwi ⃗hi−1 + bwi ) (5)

where Z =
∑

w exp
(
ww ⃗hi−1 + bw

)
is the normaliza-

tion term and h⃗i is the last output of the forward context
representation function ⃗LSTM (ṽ1, · · · , ṽn). The same defi-
nition is used for backward language modeling. A character-
level CNN for the context-independent representation is
also use by [33] where ṽi = CNN(wi). The utilization of

2https://github.com/ymcui/Chinese-BERT-wwm
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a character-level CNN to represent words can help embed-
ding from language model (ELMo) to output reasonable
context-independent word embeddings for arbitrary words.
Multi-layer LSTMs with skip connections are also proposed
to parameterize ⃗LSTM and

←

LSTM . The iteratively multi-layer
mechanism can be depicted as

h⃗i
(k)
= ⃗LSTM

()
(
h⃗1

()
, · · · , h⃗i

()
)

(6)

where the initial values of h⃗i
(k)

and
←

h i
(k)

are set as: h⃗i
(0)
=

←

h i
(0)
= Ṽi, for k = 0. The final contextualized embeddings

are computed by weighted pooling of the activations of L+ 1
different layers as ELMoi = λ

∑L
k=0 sk •

(
h⃗i

⊕
hi

)
. The

learning objective is a summation of each word’s log prob-
abilities of two directions, given as follows:

E =
∑n

i−1
(log p(wi |w1 , · · · ,wi−1)

+ (log p(wi |wi+1 , · · · ,wn)) (7)

BiLSTM, consisting of two hidden states, h⃗ and
←

h , can
describe each sequence in the forward and reverse directions
to two separate layers. The two hidden layers are then con-
catenated to represent the final output. Let (x1, x2, . . . , xn)
be an input sequence with n words, and h⃗t and

←

h t be the
representations of word t given by the forward and backward
layers, respectively. The final representation of a word t is
yielded by BiLSTM via concatenating the outputs of both its
left and right contexts, i.e., ht =

[
h⃗t ,

←

h t
]
.

The BiLSTM layer’s output serves as the features of the
subsequent CRF layer. During training, the CRF maximizes
the log-probability of the NER sequence to encourage the net-
work to produce a valid sequence of entity types. Specifically,
assume that x= (x1, x2, . . . , xn) is an input sequence, where xi
is the input vector of the i-th word. Also, y= (y1, y2, . . . , yn)
means a sequence of predicted labels for input x. All yi of y
will range over a set L(x), a possible labeling sequence for x.
F(y, x), the summation of CRF’s local feature vectorF(y, x, i),
is the global feature of CRF for input sequence xand label
sequence y, and i ranges over input positions. A conditional
probability p(y|x, λ ) is defined by the probabilistic model for
the CRF covering all possible sequences of labels y, given x
and weight vector λ in the following form:

p(y|x, λ ) =
1

Z (x)
exp

(
C· •θ̈(y, x)

)
(8)

in which Z (x)=
∑

y′∈L(x) exp
(
C· •θ̈(y′, x)

)
is a normalization

factor.
Throughout the learning pipeline, the key is to preserve

contextual information, which is featured byBERT, BiLSTM,
and CRF.

V. EVALUATION
The section provides the details of the experiments, includ-
ing the hardware, training configuration, evaluated mod-
els, performance metrics, generated samples used for data

augmentation, embedding quality analysis, hyper-parameter
tuning, and a presentation of the results.

A. EXPERIMENT CONFIGURATION
The experiments have been conducted using Python 3.6 and
Pytorch 1.4 on an Ubuntu 18.04 system with an i7-10875h
CPU and a Tesla V100 16G GPU. We choose BERT base,
which has 12 layers of encoders with 768 hidden layers,
12 attention heads, and 110M trainable parameters.

B. MODELS
We have evaluated the following models for a comparative
study.

• CRF [23]is used as a baseline to compare with other
models. Using CRF alone does not preserve much con-
textual knowledge from the input, limiting its perfor-
mance.

• W2V+BiLSTM+CRF [27] adds Word2Vec (W2V for
short when used in the model name) and BiLSTM to
encode semantic information, which turns out to be an
effective strategy.

• BERT+BiLSTM+CRF [10] replaces Word2Vec with
BERT, adopting a transformer-based deep neural net-
work for contextual encoding. Therefore, this model is
considered as the SOTA.

• W2V+BERT+BiLSTM+CRF ensembles both
Word2Vec and BERT embeddings to form a more
diverse representation for each word.

• W2NER [46] is a novel alternative approach for uni-
fied named entity recognition. It models the uni-
fied NER task as word-word relation classification,
offering a unique perspective. By effectively captur-
ing neighboring relations between entity words using
Next-Neighboring-Word (NNW) and Tail-Head-Word-
∗ (THW-∗) relations, W2NER overcomes the kernel
bottleneck of unified NER. The model utilizes a neu-
ral framework that represents the unified NER as a
2D grid of word pairs. It further incorporates multi-
granularity 2D convolutions to refine the grid represen-
tations, enhancing performance. Additionally, W2NER
employs a co-predictor to reason the word-word rela-
tions comprehensively. Through extensive experiments
on various benchmark datasets, W2NER outperforms
current top-performing baselines across flat, overlapped,
and discontinuous NER tasks, pushing the boundaries of
state-of-the-art NER performance.

Both Word2Vec and BERT in the above three models have
been pre-trained but not fine-tuned on domain resources.
To incorporate domain knowledge, we have also evalu-
ated six additional models to form a complete ablation
study:

• W2V+BiLSTM+CRF with fine tuning (F.T.)
• BERT+BiLSTM+CRF with F.T.
• W2V+BiLSTM+CRF with F.T. and data augmentation
(D.A.)
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• BERT+BiLSTM+CRF with F.T. and D.A.
• W2V+BERT+BiLSTM+CRF with F.T.
• W2V+BERT+BiLSTM+CRF with F.T. and D.A.

The domain resources used for fine tuning include the
original Yidu-S4k dataset and an enhanced question &
answer corpus [44] with 623,138 biomedical sentences in
Chinese. The data augmentation strategy has been described
in Section IV-B.

C. PERFORMANCE METRICS
Using accuracy as the sole performance metric is not suffi-
cient to evaluate a mature and reliable model, especially in
the case of imbalanced categories. For our dataset, the quan-
tities of different entity instances are unbalanced, as shown
in Table 1. To this end, we employ six indicators to present
the experimental results for a complete comparison, including
precision (Pre), recall (Rec), and the F1 score. Since our
NER task is a multi-class classification problem, we take
a macro-average on all six entity types to obtain a single
value for each metric. Equations 9-11 show the definitions
of precision, recall, and F1.

Pre =
TP

TP+ FP
(9)

Rec =
TP

TP+ PN
(10)

F1 = 2×
Pre× Rec
Pre+ Rec

(11)

where TP, FP, and FN stand for true positive, false positive,
and false negative, respectively.

D. GENERATING SYNTHETIC SAMPLES
Based on the augmenting strategy described in Section IV-B,
we have fine-tuned a GPT-2 model using the following
set of hyper-parameters: {‘‘number of training epochs’’: 5,
‘‘batch size’’: 8, ‘‘evaluation steps’’: 400, ‘‘warm up steps’’:
300}. The tuned GPT-2 is able to generate samples similar
to the ones appearing in the training set but with entity
placeholders. For instance, a synthetic sample is provided:
‘‘It was due to the [Disease and Diagnosis], a [Surgery] was
performed in our hospital more than a month ago. The opera-
tion went well. Postoperative pathology (pathology number:
201607041) showed [Disease and Diagnosis], which invaded
the adventitia. There was no cancer infiltration at the double
cut ends of the surgical specimen. One [Anatomical site]
was found, and no cancer metastasis was found. . . . ’’ In this
example, there are two, one, and one entity mentions (place-
holders for now) for the categories of Disease and Diagnosis,
Surgery, and Anatomical Site, respectively. Next, the entity
placeholders will be substituted with actual entities, which
generates a sample that can be added into the augmented
data set. It is noted that these synthetic samples are similar
but different from the ones in the original training set. Also,
the entity database used for substitution II can be prepared
offline with more and new entities that never appear in the
original dataset, which can also enhance the diversity of the

TABLE 2. Comparison results of different models on the Yidu-S4k
validation set.

augmented set, potentially benefiting the NER performance.
In this study, we generated 1000 augmented samples, and the
number 1000 was an empirical value that achieved a decent
trade-off between set size and the overall performance.

In addition to quantity, the quality of synthetic samples is
essential; after all, GPT-2 may generate sentences that could
be misleading or unreadable. A round of manual screening on
all generated samples was conducted to ensure the quality of
the augmented data used for training.

E. EMBEDDING QUALITY ANALYSIS
The quality of word embeddings produced by Word2Vec
and BERT is an important factor of the model performance.
We perform the T-Stochastic Neighbor Embedding (T-SNE)
analysis on the word embeddings and plot the results for
the six entity types of our task in Figure 3. It is observed
that after fine-tuning on the domain resource, the entities
are better clustered for both BERT and Word2Vec, meaning
that a second round of pre-training using domain-specific
texts allows a model to better capture contextual information;
thus, entities with similar semantic meanings get closer in the
embedding space, leading to a better cluster effect, as shown
in Figure 3.
In addition, we select a collection of ten related words for

embedding analysis. Specifically, the ten selected words are
compared with the word ‘‘root of superior mesenteric artery’’
in terms of similarity,which is a score between 0 to 1, and
the higher, the more similar between two words. The results
are shown in Figure 4. It is observed that for eight out of
ten words, BERT reports a higher similarity, which indicates
the degree of semantic relatedness between each of those
words and ‘‘root of superior mesenteric artery’’.The only
similarity Word2Vec ranks slightly higher than BERT is the
word pair ‘‘small intestine’’, and‘‘root of superior mesenteric
artery’’. Based on our domain knowledge, BERT presents
better embeddings than Word2Vec in this similarity analysis,
demonstrating a superior ability to encode words’ semantic
and contextual meanings.

F. OVERALL PERFORMANCE
To make the models aforementioned in Section V-B compa-
rable, we have employed the same hyperparameter setting,
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FIGURE 3. T-SNE analysis for the embeddings generated by BERT and Word2Vec.

FIGURE 4. Visualization of similarities for words in BERT and Word2Vec. Ten
words/phrases were selected with embeddings from both BERT and Word2Vec.
A similarity score was calculated between each of these word/phrase and the phrase
‘‘root of superior mesenteric artery’’.

with a word vector dimension of 400, a learning rate of 1e-5,
an LSTM layer number of 1, an LSTM hidden size of 200.
We report the results in Table 2 and provide our observations
below.

• Without any pre-training, model CRF performs the
worst with an F1 score of 0.263, mainly because of the
small quantity of annotated data utilized for training in
our task.
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TABLE 3. Ablation study.

• Pre-training has significantly improved the perfor-
mance. In particular, the Word2Vec base model (i.e.,
W2V + BiLSTM + CRF) achieves an F1 of 0.5871,
while the BERT base model (i.e., BERT + BiLSTM +
CRF) posts an F1 of 0.7746. It also shows that the
ensemble of Word2Vec and BERT embeddings boosts
the F1 score to 0.7853, which demonstrates the use-
fulness of introducing diversity in word representation.
In addition, W2NER performed well with an F1 score
of 0.7828, showing its powerful NER capability via the
strategy of word-word relation classification.

• Fine tuning the Word2Vec and BERT base models on
the domain resources have shown effectiveness. Specif-
ically, with fine tuning, the W2V+BiLSTM+CRF and
BERT+BiLSTM+CRF models have improved the F1
scores by 2.66% and 1.56%, respectively. It is observed
that although Word2Vec presents a higher percentage
improvement than BERT (2.66% vs. 1.56%), BERT
shows dominant performance in F1 (0.7902 vs. 0.6137).
Similar effect has been observed in the ensemble model
W2V+BERT+BiLSTM+CR, which presents an F1
of 0.8084 with a gain of 2.53%. The results show that the
evaluated models have achieved consistent performance
gainswhen fine-tuned on domain resources, which allow
oncological knowledge to be injected into the models
during training.

• When fine-tuned on the augmented domain resources,
the performance of the evaluated models have been fur-
ther elevated. Specifically, theWord2Vec, BERT, and the
ensemble model have posted a gain of 2.46%, 1.77%,
and 1.24%, respectively. The demonstrated improve-
ment shows that our data augmentation strategy has
been effective in generating synthetic samples that have
enhanced the quality and diversity of the dataset used
for training, allowing the models to learn more domain
knowledge even in a low-resource setting.

The results in Table 3 serves a complete ablation study,
demonstrating the necessity of each performance boosting
strategy utilized in our learning framework, including embed-
ding ensemble, fine tuning, and data augmentation. It is noted
that each strategy has achieved consistent performance gains
on each evaluated model, and a combination of the three

boosters has led to the best F1 (0.821), a gain of 4.6%
compared to the SOTA.

G. HYPER-PARAMETER TUNING
We perform hyper-parameter tuning on the best ensemble
model obtained from the previous section. The tuned three
hyper-parameters include the learning rate, the number of
LSTM layers, and the number of LSTM hidden units. For
the learning rate, we consider three values including 1.0E-03,
1.0E-04, and 1.0E-05. For the number of LSTM layers,
we have evaluated 1 layer and 2 layers. For the number
of LSTM hidden units, values in the set {64, 256, 384}
have been considered. We have conducted a grid search
that explores a total of 18 experiments in the search space
and obtained the optimal setting, namely, a learning rate of
1.0E-03, the number of LSTM layers being 1, and the number
of LSTM hidden units being 64. This optimal setting has
yielded a model with a Pre of 0.8365, a Rec of 0.8281, and
an F1 of 0.8317.

VI. DISCUSSION
In this work, we proposed and verified a two-stage strat-
egy to cope with the low-resource NER in the Chinese
biomedical domain. Specifically, we fine-tuned two base lan-
guage models, Word2Vec and BERT, on domain resources
to generate word embeddings, which were supplied to the
downstream NER task realized by BiLSTM and CRF. Exper-
iment results demonstrated that the proposed strategy can
effectively reduce the amount of annotated data required
for training while achieve superior performance. The best
performing model, W2V+BERT+BiLSTM+CRF with F.T.
and D.A., is promising in solving other low-resource NER
problems.

This study has the following limitations, which also point
out future directions we would pursue. First, the current
study only considers two word embedding models, namely,
Word2Vec and BERT, while there are other options to be
explored. Second, BERT in this work only serves as an
embedding model, while its capability in building a predic-
tive model for the NER task has not been fully released.
A promising direction is to fine-tune BERT on a domain-
specific NER task without using BiLSTM and CRF. Lastly,
recent advances have witnessed the prosperity of large
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language models (LLMs) and their powerfulness in NLP
and human-computer interaction. LLMs can be fine-tuned
with domain knowledge without losing the base language
capability so as to suit a specific learning task such as NER.
Several studies have been conducted to verify the ability of an
LLM for knowledge extraction. It is appealing to pursue the
direction and examine how well LLM can handle the NER
task.
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