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ABSTRACT Motion segmentation is a formidable computer vision task, aiming to segment moving targets
from a dynamic scene. In this paper, we choose to introduce an additional modality to bolster the robustness.
The event camera is a bio-inspired sensor that accurately detects and captures intensity changes with
exceptional temporal resolution and dynamic range, which is an optimal choice for motion segmentation.
Therefore, we present a novel framework for event-based motion segmentation and propose Multi-Scale
Recurrent Neural Network (MSRNN) to fuse temporal information efficiently. To our best knowledge, it is
the first time that a multi-scale recurrent architecture is implemented in event-based motion segmentation.
The proposed framework is evaluated through experiments conducted on the EV-IMO dataset. Our method
achieves a mean Intersection-over-Union (mloU) of 82.0%, which sets a new state-of-the-art in motion
segmentation. To further validate our approach in arduous real-world scenarios, we introduce the Event
Challenging Motion dataset, consisting of 350 images and corresponding events, in which our method

outperforms the other methods by 1.5% in Intersection-over-Union (IoU).

INDEX TERMS Motion segmentation, event cameras.

I. INTRODUCTION

Motion segmentation aims to predict motion masks to under-
stand scene dynamics. Motion segmentation allows applica-
tions such as robotics to focus on moving objects or ignore
them based on task requirements. While image-based motion
segmentation has advanced rapidly in recent years [1], [2],
motion segmentation is still hindered by the drawbacks of
frame-based cameras, which inevitably introduce motion blur
and image degradation, as well as image information defects
resulting from high dynamic range.

Event cameras [3], [4], [5], offer high temporal resolution
and dynamic range, are widely applied in optical flow estima-
tion [6], [7], [8], [9], [10], [11], [12], image deblurring [13],
[14], [15], [16], [17], [18], frame reconstruction [19],
video frame interpolation [20], human pose estimation [21],
fast auto-focus [22], and other computer vision tasks.
Distinct from traditional image sensors such as CMOS and
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CCD, event cameras function as bionic technology by cap-
turing asynchronous temporal intensity changes of a scene as
a continuous events stream. Thus, event cameras can detect
both moving objects in a dynamic scene along with the
background’s motion caused by the inevitable movement of
cameras. Moreover, they exhibit exceptional temporal reso-
lution and dynamic range, making them suitable for handling
complex and challenging scenarios in motion segmentation.
Motion segmentation is to distinguish between moving
objects and the background. Given a dynamic scene, the tar-
get of motion segmentation is to tell the moving objects from
the whole scene. It can be implemented in a drone or a walk-
ing robot. These machines need to accurately perceive and
respond to rapidly moving objects in the scene, especially in
extreme conditions. Thus, we desire to design a more robust
framework for motion segmentation that can be adapted to a
fast or low-illumination scene. Temporal information plays an
important role in this task. Most learning-based methods take
multiple image frames or additional data for motion segmen-
tation [1], [23], [24], [25]. Meunier et al. utilize only optical
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flow information for motion segmentation [26]. However,
the drawbacks of images and low-quality additional infor-
mation will reduce the accuracy. Instead, we utilize events
for motion segmentation due to the extraordinary property of
event cameras.

Recent learning-based motion segmentation networks like
[25], [26], and [27] are simply based on UNet [28]. It is first
implemented in biomedical segmentation and is found to be
useful in current universal segmentation. In the UNet, the
encoder extracts the overall and local information from the
event frames to estimate the pose of the moving object, and
the decoder aims to fuse the features from the encoder and
reconstruct the contour and position of the moving object.
The multi-scaled features from each stage of the encoder
contain information of the image from different levels. Large-
scale features provide more edge and contour information,
while small-scale features contain richer semantic informa-
tion about the moving object and background. However, This
framework does not utilize long-range temporal informa-
tion for motion segmentation, which causes less temporal
consistency.

Based on the previous work, our method, Multi-Scale
Recurrent Neural Network (MSRNN), focuses on the tem-
poral consistency of a dynamic scene. MSRNN fuses
multi-scaled features from the previous time step to get more
accurate motion estimation. Besides, the iterative recurrent
architecture provides no extra learnable parameters and is
easy to train.

In this work, we explore the potential of events for motion
segmentation and propose Multi-Scale Recurrent Neural Net-
work (MSRNN) that effectively fuses long-range temporal
information from the previous time steps. To our best knowl-
edge, it is the first time that a recurrent architecture is imple-
mented in event-based motion segmentation. To improve the
robustness of motion prediction on both large and small
scales, we propose a multi-scale recurrent architecture that
incorporates a recurrent block at every encoder stage. Specif-
ically, the spatial size of the feature maps is halved after each
block, which helps improve the prediction of large motion
and small motion, respectively. We conduct experiments and
compare our method with state-of-the-art motion segmen-
tation methods on the EV-IMO dataset [27], and prove its
effectiveness through a detailed ablation study. Next, we col-
lect a new event motion segmentation dataset named Event
Challenging Motion (ECMotion) in a laboratory setting with
a SEEMI1 event camera. Our dataset contains 350 frames
in total, under varying light conditions, and 150 frames
are annotated with ground-truth. Furthermore, we perform
extensive comparisons against an image-based framework
and other competitive methods on the ECMotion dataset,
demonstrating the superiority of our event-based motion seg-
mentation framework.

In summary, our contributions are as followings:

1) We utilize events to improve motion segmentation

and propose Multi-Scale Recurrent Neural Network
(MSRNN) for event-based motion segmentation.
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2) Our motion segmentation model achieves the new
state-of-the-art for motion segmentation on the EV-
IMO dataset.

3) A novel dataset for evaluation on real-world high-speed
motion segmentation is proposed. Several methods are
evaluated on the proposed dataset.

Both the code and ECMotion dataset are available at
https://github.com/shaobo007/msrnn.

Il. RELATED WORK

A. IMAGE-BASED MOTION SEGMENTATION

Motion segmentation is a fundamental computer vision task.
Hand-crafted algorithms such as [29], [30], and [31] sep-
arate the optical flow into ‘layers’ modeled by an affine
motion, in which the robustness depends on the perfor-
mance of the optical flow algorithms. Following researches
utilize Bayesian treatment [32] to enhance multi-body fac-
torization [33]. Brox et.al propose to integrate the motion
segmentation into the variation formulation of the optical
flow estimation with level sets [34]. Before the advent of
deep learning, several more notable methods appear. And
most of them build upon previous ideas, including advanced
trajectory-based methods [35], and a Conditional Random
Field (CRF) based approach [36]. Nevertheless, the speed,
robustness, and performance of all the above algorithms can-
not compete with modern learning approaches.

In recent years, motion segmentation has made significant
progress through the utilization of the Convolution Neural
Network (CNN). Tokmakov et al. extract the feature map
of each frame and then incorporate the features of adjacent
frames to establish motion masks [23]. Shen et al. pre-
dict motion masks using a lightweight UNet [28] in their
pipline [25]. The community has witnessed several innovative
components and methods, including multi-fusion architec-
ture [1], [2], [24], [37], partially supervised networks [38],
fully unsupervised network [26], and Recurrent Neural Net-
work [39]. Despite their extraordinary effect on motion seg-
mentation, image-based methods still struggle when facing
real-world scenarios, particularly in extreme conditions such
as high-speed motion, and low-illumination conditions.

B. EVENT-BASED MOTION SEGMENTATION

Recently, a number of event-based motion segmentation
algorithms appears. Lagoree et al. [40] propose a kernel
function-based method for segmenting moving objects.
In another work, Mitrokhin et al. [41] propose a motion
detection and tracking algorithm using time images, com-
pensating for camera motion while tracking moving objects.
Moreover, they propose a challenging event-based dataset
called EED, which contains five different scenes and bound-
ing boxes of moving objects. Zhou et al. create a space-time
event graph and pass it to an iterative clustering algorithm
to predict scene motion [42]. Chen et al. propose a mutually
reinforced framework both for motion estimation and event
denoising [43]. However, these conventional approaches
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FIGURE 1. The proposed framework for motion segmentation using the representation of voxel grid. The
raw events are first converted into a voxel grid. A pack of adjacent frames is then input into the MSRNN to
generate motion masks for each time step. We compare the masks with their ground truths respectively.

Notably, the current step ¢, is used for inference.

perform in event space and can be extremely impacted by the
event noise.

Mitrokhin et al. [27] introduce the first event-based motion
segmentation dataset called EV-IMO which contains depth
maps, motion masks, camera, and object motion information.
They also present a deep convolution neural network based on
UNet [28] to predict motion masks for applications with lim-
ited scenes, such as robotics. This method utilizes early fusion
by concatenating the input feature maps of adjacent frames,
however, it doesn’t take full advantage of long-range temporal
information because the events utilized in their work are near
the timestamp of the target time, which discards previous and
future events for long-range temporal information. In another
work, they propose a method using event surface and a Graph
Neural Network (GNN) [44]. Though this approach treats
each event as a node in the GNN, resulting in improved
training and inference times. However, GNN-based methods
still struggle with training instability.

Most recent image-based methods like multi-fusion [1],
[23], [24], [25] take additional information like optical flow
or depth as input, thus, it takes more effort to accomplish
the motion segmentation pipeline and low-quality optical
flow can deteriorate the segmentation result. The RNN-based
method [39] does not utilize multi-scaled information and
still takes additional optical flow as input. Our method is most
similar to UNet [28] or SfM-Net [38], which are image-based
networks. However, we utilize voxel grid [6] as input which is
perfectly compatible with these image-based methods. More-
over, we design a novel multi-scaled recurrent architecture
to fuse long-range temporal information from adjacent time
steps for analyzing the relative pose change to learn the
motion mask. The multi-scale architecture extracts local and
global features, helping alleviate the noise influence of the
event camera.

ill. METHOD

A. FRAMEWORK

Event cameras [5] respond only to changes in brightness in
the log domain of the photocurrent intensity, i.e. L = log(J).
If the brightness change AL(X;, t;) comparing the previous
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event at pixel x; = (x, yi)T exceeds the threshold C, the
i-th event ¢;, = (x;,1,p;) is triggered at time #; by the
brightness increase (polarity p; = 1) or decrease (polarity
pi=—1)

AL(X;, 1;) = L(X;, t;) — L(X;, t; — Aty), (D

+1,if AL(x;,t;) > C,
pi= . (2)
—1,if AL(x;, t;) < —C,

where Af; denotes the time gap since the previous event at
the same pixel Xx;, and p; indicates the polarity of brightness
change. The inherent characteristics of event cameras make
them suitable for capturing dynamic and fast scenes, particu-
larly under challenging light conditions.

In our work, we explore the potential of events for motion
segmentation. Due to their high temporal resolution without
motion blur, event cameras are ideal for motion segmentation
in dynamic scenes. Fig. 1 shows the proposed event-based
motion segmentation framework. We first convert an event
stream with a time interval of T into a voxel grid [6] with
channel dimension. Each channel consists of the accumulated
events within a 7/C time frame, thus partially maintaining
the raw data’s temporal information. Subsequently, we pro-
cess this voxel grid using a CNN-based network to predict
motion masks. Each prediction can be used to predict the
consecutive frame.

Our pipeline can be expressed as (3). Here ZtT:,k e; indi-
cates the events for time #;, V represents the transformation
of voxel grid, and Cy_; and Hy_ represents the multi-scale
features from the previous frames. Furthermore, F, repre-
sents the encoder’s transformation, with ®1 representing its
learnable parameters, and F; is the decoder’s transformation,
with ®; representing its learnable parameters.

T
fo=FaFe(V(Q e), Cio1, Hi1,01), ©2)  (3)

1=ty

In our proposed framework, we utilize two paradigms to
encode the time information: voxel grid representation and
recurrent architecture. The raw events of a specific time
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period > (x, y, t, p) is converted into voxel grid represented
as RE>*WXC wwhere C represents the different time periods.
Raw events are not compatible with CNN-based meth-
ods because of their asynchronous nature. Voxel grid is a
dense representation for events that can be applied to the
CNN-based framework and is widely used in event-based
optical flow estimation task [6], [10], [11], [12] to learn the
scene motion. Compared to other dense event representations
like event frame [45], motion-compensated event image [46]
and time surface [47], voxel grid has variant channels with
finer time information and it sustains the polarity information
within the period of time. Compared to raw events, the time
information is discretized, leading to the loss of accurate
temporal information compared to the raw event stream. The
other paradigm is recurrent architecture. We meticulously
design a novel recurrent network based on UNet [28] that effi-
ciently fuses previous adjacent frame features to predict the
motion masks. Based on these two paradigms, our proposed
recurrent network for event cameras achieves an 82.0% mloU
score on motion segmentation, demonstrating our pipeline’s
feasibility.

B. MODEL ARCHITECTURE

To efficiently feed the features of previous frames to our
network, we employed the UNet as the foundation and
designed a Muti-Scale Recurrent Neural Network (MSRNN)
to improve the accuracy of motion segmentation. Each UNet
unit of our architecture mainly composes an encoder and a
decoder, depicted in Fig. 2. The decoder contains four suc-
cessive decoder blocks and culminates with a Sigmoid output
layer. Table 1 presents comprehensive details of the network
layer’s input and output size and the number of channels. The
encoder block is composed of two consecutive convolutional
layers, a Channel-Wise Attention (CA) block [48], and a
Long Short-Term Memory (LSTM) [49] block, as shown
in Fig. 3.

As illustrated in Fig. 4 (a), the CA block includes a branch
to learn the channel weight and a shortcut to connect the input
feature. This module multiplies the weight with the output
of the network layer. We unfold high-level features f e
RWXHXC anh — lh’th’f?ah’ . ,f(];l], Wherefl-h e RW><H><1
represents the feature of the i-th channel and C is the total
channel number. CA weight " € R is extracted from f"
through the CA network layer. First, each fih is transformed
to a channel-wise feature vector v € RC through average
pooling. Then " € RC is obtained through a Fully Connected
layer (FC) followed by a ReLU activation layer, another FC
layer, and then a Sigmoid activation layer. " € R is the
weight of each channel which is mapped to [0, 1]. Finally,
the module’s output £ is obtained by weighting the original
input feature with " € R°. CA block composes a sequence of
layers that assign a weight to each channel of the original fea-
ture. Through the CA block, the temporal information of the
multi-scale feature of each encoder block can be enhanced,
resulting in the improvement of the accuracy of predicting
more fine-grained mask edges.
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TABLE 1. Detailed structure of proposed network architecture.
(“E": Encoder, “D": Decoder, “conv”: Convolution layer).

Name Input Size Output size Channel (m,n k)

In conv 256 x 336 x 3 256 x 336 x 64 3,64,3
Eblock I 256 x336x64 128 x 168 x 128 64,128, 3
Eblock2 128 x 168 x 128 64 x 84 x 256 128, 256, 3
E block 3 64 x 84 x 256 32x42 %512 256,512,3
E block 4 32 x42 %512 16 x 21 x 1024 512, 1024, 3
Dblock 1  16x21 x 1024 32x42 %512 1024,512,3
Dblock2  32x42x512 64 x 84 x 256 512,256, 3
Dblock3 64 x 84 x 256 128 x 168 x 128 256, 128, 3
Dblock4 128 x 168 x 128 256 x 336 x 64 128, 64,3
Out conv 256 x 336 x 64 256 x 336 x 1 128,64, 1,2

In our MSRNN model, every encoder block consists of an
LSTM block. Figure 4 (b) illustrates the fundamental com-
ponents of LSTM, including a memory cell, an input gate,
an output gate, and a forget gate. The memory cell stores the
previous values of the cell and its states, while the three gates
regulate how much of the previous cell state to ““forget” or
“remember”’ when processing a new input. Through LSTM,
each stage of the encoder can transmit information from
adjacent frames effectively. The LSTM block takes the previ-
ous frames’ state (c}’_;, A}"_;) as input, generating an output
state (c}', hy') to assist with predicting the following frame.
This spatial design of the model accomplishes a multi-scale
recurrent architecture.

C. MULTI-SCALE RECURRENT ARCHITECTURE

To utilize long-range temporal information from events,
and make full use of multi-scale features, we design
MSRNN with a multi-scale recurrent architecture, as illus-
trated in Fig. 2. Compared with a traditional RNN, MSRNN
transmits multi-scaled features which offer more sufficient
information from the consecutive time step and the RNN
architecture achieved by LSTM blocks makes it more
trainable. The encoder includes four stages that receive fea-
tures (cx—1, hi—1) from the previous frame, and forward new
features (c, hi) of respective scales of [1/2, 1/4,1/8,1/16]
to the subsequent frame. The scales are chosen based on the
shape of features output from each of the encoder blocks
based on UNet. The input size is 256 x 336 and 1/16 scale
of it is enough for extracting low-level features. Thanks to
the previous feature input of multiple scales, our network
enables more accurate prediction of both large and small
objects. We utilize LSTM units to incorporate long-range
information to enhance the prediction of the present frame
and improve the temporal consistency. As shown in Fig. 3,
each stage of the encoder contains a LSTM block, as a role to
interconnect adjacent time steps. Adjacent frames are highly
correlated on motion segmentation, so the LSTM block can
improve the accuracy of prediction and maintain temporal
consistency. Our proposed multi-scale architecture can pre-
serve multi-scale and multi-level features from preceding
steps, serving as a source of prior knowledge for the ongoing
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FIGURE 2. The architecture of our Multi-Scale Recurrent Neural Network (MISRNN) based on events. (c;(" , hT) represents

the output state from the m-th encoder block at time step #;.
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FIGURE 3. The structure of encoder block. MaxPooling: 2 x 2 MaxPool2d
layer, ConvBlock: a 3 x 3 convolution layer, a batch norm layer, and a
RelLu activation layer. The LSTM unit takes as input the previous state
(ck—1, hx—_1) and generates present state (cy , hy) for the next prediction.
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FIGURE 4. (a) : The structure of Block-CA. FC: fully-connected layer.
(b): The detailed structure of LSTM block. The conv layer takes as input
the current features x; and previous state hy_; and generates four
outputs corresponding to the four gates, respectively.

stage with concentrated information from previous frames
augmenting overall robustness.

IV. EXPERIMENTS

A. DATASET

The EV-IMO dataset [27] serves as the main dataset of
our research, representing the first event-based dataset to
encompass both camera motion and multiple moving objects.
The data is collected from specific scenes captured by the
DAVIS-346C event camera with a resolution of 260 x
346 and a 70° field of view, for around 30 minutes in total.
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Each recorded sequence presents no more than three objects,
with a true mask provided for each object at a rate exceeding
200 frames per second.

EED dataset [41] contains limited samples with annotated
bounding boxes but no motion masks, and it has no train set,
causing it to be not appropriate for our learning framework.
Compare to the synthetic dataset MOD++, EV-IMO contains
only real-world data, which our work focuses on. Therefore,
we only utilize EV-IMO dataset for our research.

The EV-IMO dataset includes 34 high-quality sequences
for training, featuring main scenes of boxes, floor, table,
tabletop, and wall. It also includes 21 sequences for val-
idation, encompassing the main scenes of the boxes, fast,
floor, table, tabletop, and wall. The original sequences of the
EV-IMO dataset are recorded in seconds or minutes, render-
ing them inadequate for training. Consequently, we divide the
data into multiple time slices with ground-truth correspond-
ing to each slice, respectively serving as training samples.
With image-based ground-truth being generated at 40 frames
per second, the interval between any two adjacent ground-
truth’ timestamps is roughly 25 ws. The true mask (ground-
truth) of each moving object is saved in image form, marked
with its corresponding timestamp. We take each timestamp
corresponding to the ground-truth image as the slice center,
with a length of 0.03 s. Each slice is represented as an event
matrix of N x 4, where N indicates the number of events
in 0.03 s. Then, the matrix is converted into a voxel grid
format, creating an image-like matrix of 3 x 260 x 346.
We further adjust the shape to 3 x 256 x 336 by center cutting.
The 0-th dimension holds the total event integral within a
given time interval. Given a time span of 0.03 s, we have a
channel of 3, and thus, t = T /3 = 0.01 s represents each
channel’s timespan. By this representation of events, we can
extract features from events and treat each slice as an image
to train a convolutional neural network and learn the motion
mask.

Eventually, we yield around 15,000 samples for training
and 5,300 samples for validation.

B. IMPLEMENTATION DETAIL
To address the data imbalance in the dataset, we employ
a hybrid loss function that combines Focal Loss [50]
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FIGURE 5. Qualitative results from our experiments. The contours marked in green represent the moving object.
Compared to other methods, our method achieves better edge segmentation of moving objects.

TABLE 2. mloU (%) results of motion segmentation methods on each
scene of the EV-IMO dataset [27]. The results of EV-IMO method and
GConv are from [44]. “mloU”: mean loU value of moving objects and the
background. “Swin-UNet™": an updated version of Swin-UNet with a
multi-scale recurrent architecture.

Model Boxes Fast Floor Table Tabletop Wall
EV-IMO method [27] 70.0  67.0 59.0 79.0 n/a 78.0
GConv [44] 60.0 39.0 550 57.0 n/a 51.0
SwiftNet [52] 735 699 80.0 773 79.9 71.8
SODModel [48] 715 759 841 83.6 85.2 823
Swin-UNet [53] 595 579 660 61.6 57.0 65.6
Swin-UNet™ [53] 69.7 684 745 721 68.5 74.6
P2T [54] 748 716 790 793 78.6 78.8
MSRNN (Ours) 792 756 851 845 87.1 82.3

TABLE 3. Comparison of motion segmentation methods on EV-IMO
dataset [27] (1o0U>50% and 10U>60%). “loU": the loU value of moving
objects.

Model IoU>50% IoU>60% Runtime (ms)
SwiftNet [52] 0.739 0.579 8.0
SODModel [48] 0.883 0.772 7.4
Swin-UNet [53] 0.175 0.046 16.5
Swin-UNet™ [53] 0.571 0.342 17.0
P2T [54] 0.789 0.620 26.4
MSRNN (Ours) 0.894 0.787 6.5

and Dice Loss [51], which is defined as:

2% XY
DX+ 2y
where { = £5(3_xi, 2 yi) is the BCEloss, and x; and y;

denote the prediction and ground-truth respectively. Based
on the spatial architecture design (Fig. 2), we propose

C=tp+tp=a,1—e by 041— (4)

80110

a multi-frame loss that summarizes four adjacent frames’
losses as a batch loss to supervise the training.

We train our network for 15 epochs using the NVIDIA
Titan XP with a batch size of 4, for approximately
10 hours. We implement the Root Mean Square Propagation
(RMSprop) optimizer with a Warm-Up scheduler. We set the
initial learning rate to 1 x 107>, and implement a Warm-Up
scheduler for 10 epochs.

C. RESULTS

For each validation dataset scenario, we evaluate the accuracy
of the samples by measuring the Intersection over Union
(IoU) and the mean IoU (mloU) for segmentation.

In this subsection, we compare our MSRNN with state-
of-the-art models or network architectures, namely the
pyramid feature attention network (SODModel) [48] and
SwiftNet [52], Swin-UNet [53] and P2T [54] on the EV-IMO
dataset. We compare our method with the results of EV-IMO
method [27] and GConv [44] which are given by [44]. We do
not provide the results of [41] and [42]. They perform in
event space and utilize the metrics in the form of success
rate, which is different from the metrics we use in the paper.
Thus, we can not obtain the same form of quantitative results
as our pipeline. We present motion segmentation results in
Table 2. It is evident from the results that our MSRNN out-
performs the other methods in most of the scenarios set on the
EV-IMO dataset, resulting in a mean improvement of 0.9%
in mloU compared to SODModel. In addition, we improve
Swin-UNet and create a multi-scale recurrent version, named
Swin-UNet™. The result shows that the multi-scale recurrent
architecture can be applied to the transformer and make con-
siderable improvement.
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gt e
0.39 0.32
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FIGURE 6. The visualization of results on the ECMotion dataset. The contours marked in green represent the
moving object. The loU score marked in red in each row represents the best result. MSRNN-i denotes the MSRNN
model trained on gray images only on the EV-IMO dataset, while the others are trained with events. Each row is
from different light conditions (Proper: 1, 2, 3, 4; Poor: row 7; HDR: Row 5, 6, 8).

TABLE 4. Ablation study of various factors of our method on the EV-IMO
dataset [27]. We halve the channel numbers of each convolution layer to
conduct the ablation study. “loU”: loU value of moving objects.

Input CA Recurrent Multi-scale Recurrent block IoU (%) mloU (%)

Events X X v LSTM 63.6 79.6
Events X v v LSTM 65.8 81.0
Events X 4 X LSTM 24.8 55.5
Events X v v GRU 63.2 79.5
Images v v v LSTM 70.8 83.8
Events v v v LSTM 65.9 81.0
Number
0 [ images
[ 1abeled images
120
60
0
Poor HDR proper

FIGURE 7. Data categories distribution of the proposed ECMotion dataset.

Additionally, We evaluate the models based on the propor-
tion of samples with IoU values greater than 50% and 60%.
This metric denotes the accuracy of successful prediction,
where the predicted mask overlaps the ground-truth by at
least 50% and 60%, respectively. The quantitative results
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TABLE 5. loU (%) results of motion segmentation methods on our
proposed ECMotion dataset. “loU”: the loU value of moving objects.
MSRNN™ represents our MSRNN without the RNN architecture.

Model Poor HDR Proper All

SwiftNet(Events) [52] 40.7 27.5 27.7 35.6
SODModel(Events) [48] 37.1 25.1 7.8 30.8
Swin-UNet(Events) [53] 335 20.2 18.3 29.7
Swin-UNet* (Events) [53] 30.5 2.3 30.5 24.5
P2T(Events) [54] 39.2 384 394 39.0
MSRNN (Images) 0.0 0.2 0.1 0.1

MSRNN™ (Events) 37.6 15.9 11.2 30.0
MSRNN (Events) 40.7 28.2 34.8 37.1

TABLE 6. The results of the image-based and event-based MSRNN on
ECMotion dataset after fine-tuning on the train set of ECMotion dataset.

Model ToU mloU
MSRNN(Image) 87.1 93.1
MSRNN(Event) 91.2 95.2

including runtime are illustrated in Table 3, indicating that
our method performs better than the others. However, we are
more concerned with accuracy than speed in this vision task.

We further provide a visual comparison of our MSRNN
and the other models, illustrated in Fig. 5, demonstrating
that MSRNN exhibits the best segmentation results. For
instance, for the segmentation of a drone wing contour, our
model yields astounding results, accurately segmenting the
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intricate details of the object, while the other models struggle.
Moreover, our proposed model shows better robustness than
the other models when dealing with multiple objects.

D. ABLATION STUDY

We have conducted additional experiments to investigate the
impact of various factors on our network’s performance,
including the model input, the CA module, the presence of
recurrent architecture, multi-scale architecture, and the type
of recurrent unit. As shown in table 4, by simply introduc-
ing a multi-scale recurrent architecture for fusing adjacent
frames, an improvement of 2.2% in IoU over the base model
was achieved, confirming the critical role of the structure.
Without multi-scale features, which means we use the same
scale for every layer of MSRNN, the results show the per-
formance downgrades, as illustrated in Table 4. Furthermore,
encoders with integrated CA modules improve the robustness
of our model. Moreover, we find that the recurrent block of
“LSTM” outperforms that of “GRU” [55].

The model trained on images in the dataset outperforms
that trained on event data. The primary reason behind the
improved performance is that frames contain more compre-
hensive texture information of objects. To address this issue,
we propose a novel dataset for event-based motion segmenta-
tion of various moving objects under challenging conditions.

E. EXPERIMENTS ON ECMotion DATASET

We introduce a novel dataset with ground-truth annotations
for motion segmentation, named Event Challenging Motion
(ECMotion), to validate the effectiveness of our event-based
framework. Specifically, we collect data in real-world set-
tings with challenging indoor scenarios using a SEEM1 event
camera with a resolution of 262 x 320.

These scenarios consisted of low light, high dynamic range
(HDR), and proper light conditions, including moving objects
different from EV-IMO, to broadly validate our method’s
robustness. Our dataset includes 350 frames with 150 anno-
tated with ground-truth, and the distribution of different scene
categories is detailed in Fig. 7.

Distinct from the EV-IMO dataset, the ECMotion dataset
contains a limited amount of samples mainly captured under
challenging scenarios. As our model has considerable param-
eters, the dataset is too small to train or fine-tune the model.
If we pre-train a model on the EV-IMO dataset and fine-
tune on our divided ECMotion dataset, the model including
the image-based model can work or perform better on the
ECMotion dataset because of overfitting. Thus, we prefer to
use this dataset only for testing. All the models are trained on
the EV-IMO dataset and evaluated on our ECMotion dataset.

The evaluation results of different methods on ECMotion
are illustrated in Table 5. Notably, Our event-based MSRNN
model outperforms the others with an IoU improvement
of 1.5% over SwiftNet. Notably, the image-based MSRNN
achieves an IoU of 0 and almost fails in every prediction,
indicating that this image-based method is difficult to adapt
to challenging scenes. The performance of MSRNN™ drops
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by 7.1% in IoU compared to the original one, indicating the
effectiveness of the RNN architecture in utilizing long-range
information.

The visualized results obtained from various methods are
shown in Fig. 6. Compared with the image-based approach,
we note that event-based methods show greater robustness
in challenging conditions, which shows that event cameras
are more effective in motion segmentation, especially under
challenging conditions. Moreover, our MSRNN shows better
segmentation performance than MSRNN™, indicating that
the RNN component is crucial for utilizing long-range tempo-
ral information for the prediction of current frame, resulting
in higher accuracy. Our model also achieves better segmen-
tation results than SODmodel, SwiftNet, Swin-UNet+, and
Swin-UNet, as evidenced by IoU scores. P2T model performs
well on the ECMotion dataset by the IoU metric. However,
it learns to segment wrong objects in most of the scenes,
as illustrated in Figure 6, while MSRNN shows more robust-
ness due to its multi-scale recurrent architecture which can
sustain temporal consistency.

Furthermore, we split our ECMotion to 3:2 for training
and validation respectively and we fine-tune our MSRNN
model on the ECMotion dataset. Table 6 illustrates the com-
parison of image-based and event-based frameworks. The
results indicate that event-based MSRNN still performs better
than image-based MSRNN after fine-tuning, demonstrating
that events perform better than images in extreme condi-
tions. The image-based method is limited to the poor quality
of images because in extreme scenes the object becomes

blurry.

V. CONCLUSION

In summary, we investigate the potential of events for motion
segmentation through comprehensive experiments. Specif-
ically, we have introduced MSRNN, a novel motion seg-
mentation network with a multi-scale recurrent architecture
that effectively fuses features of adjacent frames, achieving
considerable improvement. In addition, we introduce a real-
scene dataset, ECMotion, which contains several instances
of challenging conditions. Our method notably outperforms
other existing methods for motion segmentation, both on the
EV-IMO and our ECMotion datasets. We believe that our
work will inspire further research into the intrinsic properties
of events, and we intend to investigate the applicability of
events for other visual tasks under dynamic scenes.
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