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ABSTRACT The daylily (Hemerocallis citrina Baroni) is rich in not only nutrition ingredients but also
functional components, and the edible part is the flower, not containing its pedicel. The primary challenge
in developing a robotic daylily harvester is recognizing mature bud in the unstructured and uncertain
environment. The objective of this study is to propose an accurate detection model. Hemerocallis citrina cv.
‘DatongHuanghua’ variety is used in this study. We initially adopt VGG16, VGG19, ResNet50, ResNet101
and ResNet152 as the backbones of Faster R-CNN respectively to build different detection models. The
experimental results show that VGG19 and ResNet50 are two best-performing models in the corresponding
VGGNet and ResNet, and the Average Precision (AP) of VGG19 is 90.18%, while ResNet50 is 88.35%.
Based on these, we further integrate Convolutional Block Attention Module (CBAM) in Faster R-CNN with
three different integration modes: plugging CBAM behind Conv5_x of VGG19 and ResNet50 respectively,
as well as between every two ‘‘bottleneck’’ blocks of ResNet50. The comparison demonstrate plugging
CBAM between every two blocks of ResNet50 is the best integration mode, and the corresponding detection
model has a 2.22% highest increase in AP. Therefore, we empirically validate the performance of detection
model for daylily mature bud based on Faster R-CNN integrated with CBAM.

INDEX TERMS Daylily, faster R-CNN, detection, attention mechanism, CBAM.

I. INTRODUCTION
The daylily (Hemerocallis citrina Baroni) is a perennial
herb and belongs to Liliaceae Hemerocallis [1]. It is rich in
not only nutrition ingredients such as carbohydrate, protein,
vitamin and carotene [2], but also functional components
such as polyphenols, polysaccharides and flavonoids, which
have the activities of preventing cardiovascular disease, anti-
hyperlipidemia, anti-diabetics, anti-tumor, anti-depression,
anti-aging and improving immunity [3]. At present, the
daylily is commercially produced in China, Malaysia, Japan,
Indonesia and Madagascar, while China accounts for more
than 98% of the overall daylily planting areas. The daylily
harvesting is a labor-intensive operation. Taking the daylily
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in the Datong County, Shanxi Province (Hemerocallis citrina
cv. ‘DatongHuanghua’) as an example, which has continu-
ously won various awards at provincial, national and interna-
tional agricultural products fairs, the daylily harvest season
lasts from late June to early August, and during the peak sea-
son, the harvesting takes 10 to 12 hours every day and should
be accomplished before 8:00 in the morning [4]. Considering
the poor harvest conditions, the heavy labor intensity, the low
production efficiency and the high labor cost, it is necessary
to increase the mechanization in daylily harvest. In fact, our
research team have developed 4HF-6 hanging and 4HF-2
crawling auxiliary daylily harvesters, which are shown in
Figure1. Although the auxiliary daylily harvester can improve
the working conditions and reduce labor intensity, it does
not change the status quo of manual harvesting. Therefore,
we aim to further develop a robotic daylily harvester.
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FIGURE 1. The 4HF-6 hanging (left) and 4HF-2 crawling (right) auxiliary
daylily harvesters developed by our research team.

FIGURE 2. The flower structure of Hemerocallis citrina cv.
‘DatongHuanghua.’

As is known, a typical fruit or vegetable harvesting robot
contains vision system, harvesting manipulator, end-effector
and motion system [5]. The vision system plays an important
role in autonomous harvesting and makes mature fruits or
vegetables recognization intelligently possible [6].
In the daylily harvest period, the buds are randomly located

on the stalk, and the weather conditions continuously change
due to clouds, sun direction and the wind that moves plants.
This paper aims to address all these issues and achieve accu-
rate and robust detection of daylily.

The daylily flower consists of gynoecium, androecium,
perianth, receptacle and pedicel [7]. In the daylily family, dif-
ferent varieties have different forms in terms of color, shape
and size. Figure 2 shows the flower structure ofHemerocallis
citrina cv. ‘DatongHuanghua’. The pedicel’s length is 0.2cm-
0.5cm. The receptacle is a small pad swelled at the pedicel’s
tip. The perianth is composed of one perianth tube and six
perianth lopes. The length of perianth tube is 3cm-4cm, and
perianth lope is 9cm-12cm. The gynoecium is one pistil,
which consists of stigma, style and ovary. The androecium
is composed of six stamens, which consists of filament and
anther.

The edible part of daylily is the flower, not containing its
pedicel. The time of daylily harvesting comes when its bud
is full, firm and bursting, meanwhile, the three seams, which
are formed by outer three perianth lopes surrounding inner
three perianth lopes, are very conspicuous. These visible
features are the bases of further detection, and we call the
daylily flower ready to be detected or harvested as mature

FIGURE 3. The daylily in different development for Hemerocallis citrina
cv. ‘DatongHuanghua.’

bud. If the harvesting were ahead of time, the bud you got
would be without a full size, and of light weight and poor
quality and color (greenish or greenish-yellow, not golden-
yellow). However, if the harvesting time were delayed, the
flower would open and the pollen grains in anthers would
disseminate, and the daylily would be considered as flowered
one and lose its commodity value. In Figure 3, the daylily in
the red box is the flowered one and it is no need to harvest,
while the daylily in the blue box has not developed into a full
size so it should not be harvested. And, the daylily in the green
box belongs to the mature bud so it is seen as the detection
objective.

The problem of localizing mature bud with a bounding
box and classifying it into a specific category as shown in
Figure 3 belongs to object detection, which is the object level
task. While there is a pixel level task addressing localization
and classification simultaneously, which refers to instance
segmentation [8]. Instance segmentation aims to yield further
instance masks based on pixels. It may provide much more
information about daylily than object detection, such as the
contour of mature bud. However, instance segmentation has
a high requirement for resolution as pixel level information
relies on much more details, while object detection focuses
more on object level features [9]. It is not easy to guarantee
all the images in the daylily image dataset high resolution
ones, let alone those captured during the process of harvesting
by the robotic daylily harvester. Therefore, we applied object
detection instead of instance segmentation to detect mature
bud for daylily.

Object detection based on deep learning uses Convolu-
tional Neural Network (CNN) instead of traditional detec-
tors [10], and can be divided into CNN based on one-stage
detectors and two-stage detectors. One-stage detectors can
detect all objects in a one-step inference, such as YOLO (You
Only Look Once) [11], SSD (Single Shot MultiBox Detec-
tor) [12], RetinaNet [13], CornerNet [14], Center-Net [15],
DETR [16] and so on. While two-stage detectors follow a
coarse-to-fine process and can easily attain a high preci-
sion, such as R-CNN (Region based CNN) [17], SPPNet
(Spatial Pyramid Pooling Networks) [18], Fast R-CNN (Fast
Region based CNN) [19], Faster R-CNN (Faster Region

VOLUME 11, 2023 81647



J. Feng et al.: Detection Mature Bud for Daylily Based on Faster R-CNN Integrated With CBAM

FIGURE 4. The architecture of Faster R-CNN. The backbone of Faster R-CNN is the modified VGG16, which is the typical VGG16
with its last max-pooling layer, fully-connected layers and softmax layer removed.

based CNN) [20], FPN (Feature Pyramid Networks) [21] and
so on.

With the development of modern agriculture, boosting the
performance of precision and efficiency remains a huge chal-
lenge for the fruit or vegetable harvesting robot. The precision
of object detection is primary for the harvesting success rate.
The harvesting efficiency depends on the detection and loca-
tion speed of the vision system, the movement efficiency of
the harvesting manipulator and the complexity of harvesting
action for the end-effector [22], while the latter two are the
key factors that restricts the efficiency of current harvesting
robot. The speed of most object detection models based on
CNN can match to the movement of harvesting manipulator
and the action of the end-effector.

To achieve accurate and robust detection of mature bud
for daylily in the unstructured and uncertain environment, the
object detection method based on Faster R-CNN is applied,
which is a two-stage detector and has a relatively higher
accuracy, moreover, can meet need of the speed of harvesting
manipulator and end-effector.

II. FASTER R-CNN WITH DIFFERENT BACKBONES
We initially use Faster R-CNN as the object detection model
to detect mature bud for daylily.

A. FASTER R-CNN
The architecture of Faster R-CNN is as Figure 4, which can
be divided into three parts: backbone, RPN and RoI (Region
of Interest) Head.

The input image of arbitrary size is isotropically scaled
to a fixed-size image, and then processed through sequential
operations of features extraction, region proposals gener-
ation, features classification and bounding-box regression.
In Figure 4, assuming that the size of the input image is P×Q
and the isotropically-scaled image is M × N , the re-scaling

method is as follows:

scale =

{
t_size

min(P,Q) if t_size·max(P,Q)
min(P,Q) ≤ max_size

max_size
max(P,Q) otherwise

(1){
M = P · scale
N = Q · scale

(2)

where t_size is the target minimum of height and width in the
re-scaled image, max_size is the upper limit of the maximum
for height and width in the re-scaled image, and scale is the
scale factor, therefore im_info in Figure 4 is (M ,N , scale).

The backbone extracts feature maps based on CNN, which
includes a sequence of convolutions, ReLU and pooling oper-
ations. In Figure 4, the CNN adopts VGG16, with its last max-
pooling layer, three fully-connected layers and the softmax
layer removed, therefore, through 13 convolutional layers, 13
ReLU layers and 4 pooling layers, the extracted feature maps
have a fixed-sizeM

/
16 × N

/
16 in 512 channels.

In the RPN, there is an n× n convolutional layer followed
by two sibling 1×1 convolutional layers: a box-classification
layer for estimating each box is object or not-object, and
a box-regression layer for outputting the coordinates of
boxes. Finally, the RPN outputs a set of rectangular region
proposals, each with 2 scores that estimate probability of
object / not-object. Because the box-classification layer and
the box-regression layer are both based on 1× 1 convolution
operation, it is equal to predict k region proposals and output
4 k coordinates of the k boxes at each sliding-window loca-
tion, and the boxes are called anchors.

In the RoI Head, RoI pooling is applied independently
into each RoI in the feature map so that the fixed-size
(pooled_w, pooled_h, 512) feature vectors are produced,
where pooled_w and pooled_h are usually set to 7 respec-
tively. Following this, the 512-d feature vectors are flattened
to 1-d vectors. Through fully connected layers, the network
outputs two vectors per RoI: softmax probabilities and per-
class bounding-box regression offsets [19].
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B. BACKBONE ALGORITHM SELECTION
The function of backbone in the Faster R-CNN is extracting
feature maps. In order to extract dominant visual features of
the mature bud for daylily, backbone algorithm is selected
through detection experiments.

We initially chose the typical CNNs: VGGNet [23]
and ResNet [24] to be the backbone of Faster R-CNN.
VGGNet won the first and the second places in the localiza-
tion and classification tracks respectively on the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) 2014,
and ResNet secured the first place on the ILSVRC 2015 clas-
sification, localization and detection tasks. For VGGNet,
VGG16 and VGG19 are the two best-performing models
on the 1000-category ImageNet dataset [23]. For ResNet,
ResNet50, ResNet101 and ResNet152 are more accurate
than the rest [24]. Therefore, VGG16, VGG19, ResNet50,
ResNet101 and ResNet152 are selected to be the backbone of
Faster R-CNN respectively to build different detection mod-
els. However, these CNNsmust be modified. For VGG16 and
VGG19, the last max-pooling layer, fully-connected layers
and softmax layer are removed. For ResNet50, ResNet101
and ResNet152, the average pooling layer, fully-connected
layer and softmax layer are removed, moreover, the convo-
lutional layer with stride 2 is replaced by the one with stride
1 in the Conv5_x. The modified CNNs are in Figure 5.
Because there are four max-pooling layer with stride 2 in

VGG16 and VGG19, and there are three convolutional layers
with stride 2 and one max-pooling layer with stride 2 in
ResNet50, ResNet101 and ResNet152, these backbones are
trained from input images, which are actually the re-scaled.
(M ,N ).images in Figure 4, to output feature maps with a size
(M

/
16,N

/
16).

C. EXPERIMENTS AND RESULTS
1) DAYLILY IMAGE DATASET
We took 2248 images with multi-angle, multi-scale and
multi-development daylily flowers under different weather
conditions in the daylily harvest season of 2021 and 2022 at
the standardized organic daylily planting base in Yunzhou
District, Datong City, Shanxi Province and Hemerocal-
lis resource garden of Shanxi Agricultural University. The
images have different resolutions, such as 4608×2128 pixels,
3264 × 2448 pixels, 2592 × 1728 pixels, 2338 × 1080 pix-
els, 1280 × 720 pixels, 640 × 480 pixels. Furthermore,
to avoid the overfitting problem, we performed data aug-
mentation [25] through horizontal flip, vertical flip, rotation,
brightness enhancement, brightness reduction, adding Pois-
son noise [26], blurring and sharpening operation, so the
image data increased by 8 times, in other words, the daylily
image dataset contained 20556 images. In addition, we used
LableImg tool for data annotation to build a pre-labelled
daylily image dataset. To validate daylily detection models,
we scattered the images randomly and segmented them into
training sets, verification sets and test sets with a ratio of
6:2:2.

TABLE 1. Hardware and software configurations.

TABLE 2. Network training hyper-parameters.

2) EXPERIMENTAL SETTINGS
In our study, the experimental hardware and software
configurations are shown in Table 1, and the network
training hyper-parameters [27] are shown in Table 2.
In Table 2, rpn_negative_overlap and rpn_positive_overlap
are the thresholds for training RPN to estimate that the anchor
is positive, negative, or neither positive nor negative, and the
estimation method is as follows:

anchor =

{
positive if IoU>rpn_positive_overlap
negative if IoU<rpn_negative_overlap

(3)

IoU =
anchor ∩ ground truth
anchor ∪ ground truth

(4)

where ground truth is the labeled objective through data
annotation [28].

3) EVALUATION CRITERIA
Object detection model can be evaluated by the criteria of
Precision (P), Recall (R), Precision-Recall curve (P-R curve),
Average Precision (AP) and so on, the formulas are as shown
in Equations (5)-(7) respectively:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

AP =

∫ 1

0
P(R)dR ≈

N∑
k=1

P(k)1R(k) (7)

where, TP is the amount of daylily mature bud regions which
are actually true and properly classified, FP is the amount
of image regions which are classified as daylily mature bud
but actually not, FN is the amount of image regions which
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FIGURE 5. Different backbones of Faster R-CNN.

are actually true daylily mature bud but not be classified cor-
rectly. P indicates the proportion of accurate detection results
in the total detection results. R indicates the proportion of
properly detected mature bud regions in all the actual mature
bud regions. AP is a comprehensive evaluation criterion about
Precision and Recall, furthermore, AP is the area under P-R
curve, which is drawn with P as the vertical axis and R as the
horizontal axis.

We adopted AP as the primary criterion and R as the
auxiliary to quantitatively evaluate detection model and made
a qualitative analysis with P-R curve.

4) RESULTS AND DISCUSSION
The modified VGG16, VGG19, ResNet50, ResNet101 and
ResNet152 are applied as backbones of Faster R-CNN
respectively to build different detection models. The test
results are observed and analyzed as shown in Table 3 and
Figure 6. To describe briefly, Faster R-CNN with VGG16 as
backbone will be shortened to VGG16 later, and the rest will
be in the same manner. For VGGNet, VGG19 outperforms

FIGURE 6. P-R curves in experiments for Faster R-CNN with different
backbones.

VGG16 on both AP and R; with Recall changing in the
P-R curves, Precision of VGG19 is almost always better
than VGG16. While for ResNet, ResNet50, ResNet101 and
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TABLE 3. Detection results in experiments for Faster R-CNN with
different backbones.

ResNet152 have an increasing order of R, but a decreasing
order of AP, and a decreasing order of Precision when Recall
changes from about 20% to 95% in the P-R curves. In term
of primary evaluation criterion AP, VGG19 and ResNet50
are optimal and selected to be integrated with dual attention
mechanisms afterwards.

To thoroughly show the performance of different detection
models, both parameters and rate are listed in Table 3.

On the basis of Faster R-CNN with different backbones,
the visualization results are shown in Figure 7.

III. FASTER R-CNN INTEGRATED WITH CBAM
In the computer vision, attention mechanism imitates human
attention property to selectively focus on salient parts in
the image and ignore those irrelative. There are four kinds
of attention mechanisms: channel attention, spatial atten-
tion, temporal attention and branch attention [29]. Channel
attention is applied to select the channels of CNN which
can efficiently extract primary features of the image ( e.g.,
SENet [30]). Spatial attention focuses on the selection of
spatial region in the image which is helpful to extract import
regions of the image (e.g., STN [31]). Temporal attention is
used for dynamic temporal selection in the video processing
(e.g., GLTR [32]). Branch attention is utilized for branch
selection in themulti-branch structure (e.g., SKN [33]). In our
study, channel attention and spatial attention will be inte-
grated with Faster R-CNN to enhance the detection accuracy
of mature bud for daylily.

A. CBAM
Convolutional Block Attention Module (CBAM) is a simple
yet effective attention module for feed-forward CNNs, which
is a channel and spatial attention hybrid proposed by Woo et
al. in 2018 [34]. Its architecture is shown in Figure 8.

There are two sequential sub-modules: channel and spatial.
After channel attention module, the channel-refined feature
map is extracted; further after spatial attention module, the
final refined feature map is achieved. Given the input feature
map F ∈ RC×H×W , max-pooling and average-pooling oper-
ations are simultaneously conducted for aggregating spatial
information, therefore two different spatial context descrip-
tors are generated: Fcmax and F

c
avg. Both descriptors are then

forwarded to a shared multi-layer perceptron (MLP). Fol-
lowing this, element-wise summation is applied to merge
the output feature vectors. Through the sigmoid function,
1D channel attention map Mc (F) (Mc(F) ∈ RC×1×1) is

achieved, which can be computed as:

Mc(F) = σ (MLP(max _pool(F)) + MLP(avg_pool(F)))

= σ (MLP(Fcmax) + MLP(Fcavg)) (8)

where σ denotes the sigmoid function. We calculate the
channel-refined feature map F′ using element-wise multipli-
cation of F andMc (F), which are as follows:

F′
= F⊗Mc(F) (9)

The channel-refined feature map F′ is the input of spatial
attention module. Max-pooling and average-pooling oper-
ations are sequentially applied along the channel axis to
focus on informative regions, therefore two 2D feature maps
are generated: Fsmax and Fsavg. They are then concatenated
to input convolutional layer, whose filter size is 7 × 7.
Through the sigmoid function, 2D spatial attention map
M s (F) (M s(F) ∈ R1×H×W ) is generated, which can be
calculated as:

M s(F) = σ (f 7×7([max _pool(F); avg_pool(F)]))

= σ (f 7×7([Fsmax;F
s
avg])) (10)

M s (F) is element-wisemultipliedwith the channel-refined
feature map F′, so the final refined feature map F′′ is as
follows:

F′′
= F′

⊗M s(F′) (11)

Because CBAM is a lightweight and general attention
module, it can be seamlessly integrated into Faster R-CNN
for pushing more accurate results based on the preceding
detection models.

B. INTEGRATION MODE
The previous chapter has concluded that Faster R-CNN with
VGG19 and ResNet50 as the backbone respectively are two
best-performing models in the corresponding VGGNet and
ResNet, and they will be integrated with CBAM to boost
the accuracy of their base networks in this chaper. However,
integration modes may affect the overall performance.

Woo et al. [34] integrated CBAM with ResBlocks in
ResNet50 for ImageNet-1K classification dataset and they
plugged CBAM between every two ResBlocks. Xu and
Ma [35] designed three CBAM integration modes in the
crack detection model for asphalt pavement based on Faster
R-CNN with ResNet50 as the backbone: plugging CBAM
behind Conv1_x of ResNet50 (as depicted in Figure 4),
behind Conv5_x, and behind both Conv1_x and Conv5_x,
and the experiments showed that plugging CBAM behind
Conv5_x of ResNet50 performed best. She et al. [36] pro-
posed CBAM Faster R-CNN with VGG16 as the backbone
to detect esophageal cancer in the barium meal angiogra-
phy, and tested seven CBAM integration modes: plugging
CBAM behind Conv3_x of VGG16, behind Conv4_x, behind
Conv5_x, behind Conv3_x and Conv4_x, behind Conv3_x
and Conv5_x, behind Conv4_x and Conv5_x, and behind
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FIGURE 7. Detection results based on Faster R-CNN with different backbones. The five columns are sequentially based on VGG16, VGG19,
ResNet50, ResNet101 and ResNet152 from left to right. For the input image in the first row, there are three mature buds in fact, and all the
detection models with different backbones detect correctly. For the input image in the second row, there are only one mature bud actually,
the models of VGG16 and VGG19 detect correctly, however, the model of ResNet50 detects an extra flowered daylily, the model of
ResNet101 detects two extra perianth tubes, and the model of ResNet152 detects one extra perianth tube.

FIGURE 8. The architecture of CBAM. The Channel Attention Module and Spatial Attention Module are in order.

Conv3_x, Conv4_x and Conv5_x, and eventually the exper-
iments concluded that plugging CBAM behind Conv5_x of
VGG16 performed best.

Different integration modes of CBAM have different
effects on the feature extraction by CNN in the channel
dimension and spatial dimension. Therefore, we compare
three integration modes for the two detection models: plug-
ging CBAM behind Conv5_x of VGG19, behind Conv5_x
of ResNet50, and between every two ‘‘bottleneck’’ blocks of
ResNet50. The daylily image dataset, experimental settings
and evaluation criteria remain the same with the previous
chapter.

C. EXPERIMENTS AND RESULTS
The VGG19 plugged CBAM behind Conv5_x, ResNet50
plugged CBAM behind Conv5_x and ResNet50 plugged
CBAM between every two ‘‘bottleneck’’ blocks are applied
as backbones of Faster R-CNN respectively to build dif-
ferent detection models, which are respectively shortened
to VGG19-CBAM5, ResNet50-CBAM5 and ResNet50-

TABLE 4. Comparison of different CBAM integrated modes.

CBAM-blocks. The test results are summarized as shown
in Table 4, in which the statistics of VGG19 and ResNet50
in Table3 are listed to compare the performance between
detection models integrated with CBAM and the baselines.

In Table 4, we observe that the detection models with
CBAM outperform all the baselines on AP, although their R s
are not improved. Compared with VGG19, VGG19-CBAM5
has an equal R and a 0.25% increase in AP. In addition,
Figure 9 depicts their P-R curves, where when Recall changes
from 10% to 97.87%,VGG19-CBAM5 has a higher Precision
than VGG19. In term of ResNet50, ResNet50-CBAM5 has
a 0.28% decrease in R and a 0.34% increase in AP, while
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FIGURE 9. P-R curves in experiments for VGG19 integrated with CBAM or
not in Faster R-CNN.

FIGURE 10. P-R curves in experiments for ResNet50 integrated with
CBAM or not in Faster R-CNN.

ResNet50-CBAM-blocks has a 1.04% decrease in R and a
2.22% increase in AP. As depicted in Figure 10, with Recall
changing in the P-R curves, ResNet50-CBAM-blocks has
almost always the best Precision.

Given the qualitative analysis of different CBAM inte-
gration modes, we present the P-R curves of VGG19-
CBAM5, ResNet50-CBAM5 and ResNet50-CBAM-blocks
in Figure 11. It’s clear that ResNet50-CBAM-blocks out-
perform than the other two on Precision during most of
Recall varying period. What is more important, the AP of
ResNet50-CBAM-blocks is the best. Therefore, plugging
CBAM between every two ‘‘bottleneck’’ blocks of ResNet50
is the best integration mode.

Based on VGG19-CBAM5, ResNet50-CBAM5 and
ResNet50-blocks, the visualization results are shown in
Figure 12.

We consequently propose the model of detection mature
bud for daylily based on Faster R-CNN integrated with
CBAM, whose backbone is ResNet50 plugged CBAM
between every two ‘‘bottleneck’’ blocks. On the basis of
detection model, the gathered images and results of daylily
are shown in Figure 13. In addition, the average detection
time of our model is 0.595s per image, which is not partic-

FIGURE 11. P-R curves in experiments for different integration modes of
CBAM in Faster R-CNN.

FIGURE 12. Detection results based on different CBAM integrated modes.
The three columns are sequentially based on VGG19-CBAM5,
ResNet50-CBAM5, and ResNet50-CBAM-blocks from left to right. The
input images are the same with Figure 7. For the first row, all the
detection results are correct. In the second row, the models of
VGG19-CBAM5 and ResNet50-CBAM-blocks detect correctly, however, the
model of ResNet50-CBAM5 detects an extra flowered daylily, which is the
same error in the model of ResNet50 in the second row of Figure 7.

TABLE 5. Comparison of different object detection methods.

ularly fast, but can match sufficiently the speed of harvesting
manipulator and end-effector.

We further perform experiments based on YOLOv3 and
YOLOv4 to compare with our method. Using Average Preci-
sion as the evaluation criterion, the experimental results are
summarized in Table 5. We can clearly see that the AP of
our methods is obviously higher than YOLOv3 with Darknet-
53 as backbone, YOLOv4 with ResNet50 as backbone and
YOLOv4 with CSPDarknet-53 as backbone.
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FIGURE 13. Detection results. We select some daylily images taken under different weather conditions, with
different shooting angles and different resolutions, and some images generated through data augmentation.

IV. CONCLUSION
To achieve excellent accuracy of mature bud detection
for daylily in the unstructured field environment, VGG16,
VGG19, ResNet50, ResNet101 and ResNet152 with high
recognition accuracy in the VGGNet and ResNet are mod-
ified to be the backbones of Faster R-CNN respectively
to build different detection models, and the results show
that VGG19 and ResNet50 are two best-performing mod-
els in the corresponding VGGNet and ResNet. Furthermore,
we integrated CBAM with VGG19 and ResNet50 in three
modes: plugging CBAM behind Conv5_x of VGG19, behind
Conv5_x of ResNet50, and between every two ‘‘bottleneck’’
blocks of ResNet50, and empirically verify that the detection
models with CBAM outperform all the baselines on AP, and
plugging CBAM between every two blocks of ResNet50 is
the best integration mode.
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