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ABSTRACT Object detection with shadow removal is one of the challenging issues in computer vision.
Dynamic shadow resembles a moving object’s properties, so separating this shadow from the object is a
challenging task. This dynamic shadow if not eliminated, distorts the shape of the object. In this paper,
a novel scheme for moving object detection and shadow removal is proposed based on the background
modeling in fused feature space, and these models learn to take care of the scene dynamics. Initially, in KDE
space, temporal modeling of the spatial KDE (TMS-KDE) is carried out and cascaded features of Gabor
and HOG are obtained. Besides, the original video frame is transformed into YCbCr color space and LBP
features are extracted. The LBP and cascaded features are fused probabilistically to generate fused feature
frames which are used in background modeling. The weights for the feature fusion are determined by the
proposed entropy based measure. Background modeling and model learning is a pixel based approach and
the pixel is classified as either background or foreground during the learning process. We have tested our
proposed method on a wide range of datasets which includes ATON-CVRR, LASIESTA, CD-net, Kaggle,
PETS 2006, SGM-RGBD, SBMI 2015, SBMnet 2016 and VIRAT. The proposed scheme is found to take
care of different shadow conditions while detecting the moving object. The performance of the proposed
scheme is found to be superior to that of many existing schemes.

INDEX TERMS Dynamic shadow, TMS-KDE, LBP, cascaded feature, feature fusion.

I. INTRODUCTION

Video object detection is one of the emerging areas in the field
of computer vision and pattern recognition [1], [2]. Detection
of objects in complex videos is difficult due to the presence of
shadow, dynamic movement of background entities, changes
in illumination, noise, motion blur, occlusion, etc. [3], [4],
[51, [6], [7], [8]. Many methods have been proposed in the
literature to address the above challenges [9], [10], [11], [12],
[13]. Out of these factors, shadow detection and removal from
moving video objects is challenging [14]. Different schemes
utilizing specific shadow features have been proposed for

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhongyi Guo

shadow detection and removal [9]. The shadow features
include illumination ratios in different color spaces, texture,
gradient, and morphological features. It is found that a
combination of different features also enhances the detection
capability for shadows [10], [11], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25].

Shadow is formed due to obstruction in the light path
by the object, which may be cast shadow or self shadow.
Self-shadows are the shadows that are on actual physical
objects casting it and cast shadows are the shadows that
the objects cast upon other objects. It is detected along
with the moving object and hence it distorts the object’s
shape. Our proposed work is for video object detection
with shadow removal, which helps retain the object shape.
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Besides, the shadow created due to the background entities
with varying illumination conditions poses a problem. One of
the approaches to video object detection in a complex scene
is to model the complex background and thereafter adhere to
the notion of background separation. These moving and static
cast shadows are modeled by Gaussian mixtures [18], [26].
Martel-Brisson and Zaccarin [26] have proposed Gaussian
mixture shadow models (GMSM) and learned these shadow
distributions for shadow removal. Specifically, the moving
shadows are detected by a scheme comprising support vector
machine and co-training algorithm proposed by Joshi and
Papanikolopoulos [27]. Additionally, the notion of ratio edge
is used to take care of the moving cast shadows for object
detection [24]. Because of the instant illumination changes
and dynamic background entities in a real world scene,
conventional object detection methods may be unable to
detect the object. Hence, Kim et al. [28] have proposed an
accurate and instant background modeling (AIBM) method
which utilizes the spatio-temporal information. Moving
shadow with the foreground object is also modeled by
Dynamic Conditional Random Field (DCRF) model for
moving object detection [23]. Because of the uncertainties
in the real world scene, the above stochastic framework-
based schemes with appropriate learning strategies proved
to be quite effective in detecting the foreground object. It is
also found in the literature [29], [30] that spatio-temporal
modelings with appropriate features could take care of the
static and moving cast shadows. The illumination changes
and moving shadows are also taken care of by the bit
plane method proposed by Lin et al. [31] while detecting the
moving object in a real world scene. This method has used the
color characteristics in spatio-temporal framework. Though
several methods are proposed for handling a wide variety
of shadows, the problem of moving object detection in the
real world and some typical indoor scenes pose a challenge
with different shadow conditions and complex background
conditions [32]. Hence, in this paper, we have addressed the
problem of moving object detection with different shadow
conditions and also used the notion of background modeling
in a stochastic framework exploiting the spatio-temporal
dependencies. These background models learn the scene
dynamics and detect the foreground. Towards this end, a new
scheme is proposed to detect the moving object in video
and remove the shadow occurring either due to foreground
or background. This problem is compounded because of the
varying illumination condition over the scene. The problem is
addressed using background modeling and model learning in
the fused feature space. The proposed scheme is a pixel based
process. Initially, the spatial KDE (S-KDE) of the frames
are determined and using the S-KDE frames, the temporal
modeling is carried out. This modeling is called the TMS-
KDE model of a given frame. This modeling differs from
our previous work, where the spatio-temporal modeling (ST-
KDE) is carried together on the KDE frames. The spatial
KDE will reinforce all the entities in the spatial domain, and
its temporal modeling will preserve the moving object part
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along with its static shadows. From these TMS-KDE modeled
frames; first Gabor features are extracted, and thereafter HOG
features are extracted from the Gabor featured frame. Hence,
the combined feature obtained from the TMS-KDE frame is
viewed as the cascaded feature of a frame. The Gabor feature
is used to remove the dynamic shadow due to the moving
object, while the HOG is used to preserve the object’s shape.
Thus, the cascading of Gabor and HOG will eliminate the
dynamic shadow while maintaining the shape of the object.

Besides, the input frames are transformed into YCbCr
color space, and the LBP features are extracted from this
YCbCr transformed frame. The LBP features thus obtained
are fused with the cascaded features probabilistically to
result in the fused feature frame. The YCbCr color model
is expected to preserve the chromaticity while partially
eliminating the shadow as shadow has a low chromaticity
value. Besides, the LBP feature preserves the textural features
of the entire frame, including that of the moving object.
The entropy based fusion of the cascaded feature attempts to
eliminate shadow while preserving the object’s shape. Thus,
the fused feature space is expected to preserve the object’s
shape in its entirety while removing the static and dynamic
shadows to a great extent.

For feature fusion, the weights of the respective features are
determined using the proposed entropy based measure which
is different from our previous work, [33] which is based
on the similarity measure of the distributions. Additionally,
the cascaded feature extraction and its fusion differs from
our previous work where the individual feature is extracted
and fused with another feature. Background modeling and
learning is carried out for every pixel of the fused feature
frame. The model learning removes the residual shadow
components and classifies the object, thus segmenting the
moving object. For a given pixel, model histograms are
obtained considering a few fused feature frames. These model
histograms serve as the background model that learns the
information from the new input frame and then classifies
the pixel as either background or foreground. Model learning
happens with the bin level updation of the histograms together
with the updation of the weights of these model histograms.
The proposed scheme is tested with eight different data
sets with different conditions and is found to possess better
shadow detection and discrimination ability as compared to
other existing algorithms. The proposed algorithm could also
remove the shadow due to the moving object and dynamic
entities of the background besides the static shadows. The
proposed scheme demonstrates improved performance as
compared to other existing algorithms.

Il. RELATED WORK

The scene complexity is increasing daily in computer vision,
making object detection a difficult task. Shadow of the
moving object is one of the complex entities in any video
scene. It gets detected along with the object hampering
the shape of the object. Work in this direction has been
in continual progress. Initially, Pratietal. [9] have given

80057



IEEE Access

S. Sahoo, P. Kumar Nanda: KDE-Based Simultaneous Background Model Learning and Entropy-Based Fusion

a comparative evaluation of the different algorithms for
shadow detection and removal in video scenes. They have
classified the methods into deterministic (both model and
non model based) and statistical approaches (parametric and
non parametric). Deterministic approaches work based on a
certain decision making mechanism but statistical approaches
work on the basis of probabilistic models for deciding
membership of a class.

A. MODEL AND NON-MODEL BASED SHADOW
DETECTION

Onoguchi [34] has proposed a deterministic model based
method where the height of the shadow is captured using
a set of two cameras and then a simple background
subtraction technique is utilized for shadow removal. Model
based methods are usually complex and time taking for
complicated scenes, hence non-model based methods were
also considered by many researchers. Deterministic non
model based method was used by Jiang and Ward [35]
where shadow parameters like shadow intensity and shadow
geometry are utilized for shadow removal. Probabilistic
models can better analyze complex scenes, hence statistical
models became the next area of research. One of the
statistical parametric based methods is used in the form
of an incremental version of EM algorithm in combination
with a mixture of Gaussians for shadow pixel removal in
traffic scenes [36]. Model parameter selection is an issue in
these models, hence many research works are pursued using
nonparametric statistical models. Statistical non parametric
approach was used by Horprasert et al. [37] in the form
of a computational color model for separating brightness
from the chromaticity component in the shadow pixels.
Although these methods coud remove the shadow from
video scenes, their performance deteriorated with increase
in the scene complexity. This happened because none of
the shadow properties are utilized during shadow removal.
Shadow properties are different from the object properties;
hence they provided a separate classification method.

B. FEATURE BASED SHADOW DETECTION

Another broad way of classifying shadow detection
and removal in video object scenes is presented by
Sanin et al. [38], [39]. They have provided the feature based
taxonomy for shadow. The specific shadow features used are
intensity, chromaticity, and physical properties [40], [41],
[42], [43], [44]. Shadow is always darker than the object
and hence this property is used for its detection but this
method fails in complex scenarios. Zhang et al. [45] used
normalized coefficients of the image block to differentiate
shadow from object. But the system complexity is increased
due to computation of the coefficients; hence other properties
were considered. Chromaticity implies the color component,
but the scene shadow is devoid of this. This property is used
in conjunction with many color models for shadow detection
and removal [10], [11], [15], [16]. Similarly, different
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physical attributes are utilized for detecting, learning, and
removing the shadow pixels [26], [27], [46], [47], [48], [49].
Different geometry based methods like shadow orientation,
shape, and size of the shadows are also helpful in detecting
and removing shadows from video objects [17], [18], [19],
[20], [21]. Textural properties of the shadow also help in its
detection because usually shadow has no textural attribute.
This can be utilized in video object scenes where object and
background have their inherent textures [22], [23], [24], [25].

C. SHADOW DETECTION IN REMOTE SENSING IMAGES
Shadow removal has wide applications in the field of aerial
image processing and remote sensing. Extensive research
has been carried out in aerial remote sensing images where
shadow creates a hindrance. In this regard, Luo et al. [S0] have
proposed a novel edge-aware spatial pyramid fusion network
(ESPFNet) along with a multitask learning framework for
salient shadow detection in aerial remote sensing images.
Shadow in the case of the multitemporal data is also a
concern and is taken care of by the surface reflectance
based cloud shadow detection algorithm (SRCSD) proposed
by Sun et al. [51]. Shadows cause flaws in object detection
by aerial images. Statistical descriptors are extracted from
the image for effective shadow removal and are used for
shadow detection [52]. Specifically for VideoSAR data,
shadow of the moving object is detected using background
reconstruction [53]. A scheme based on semantic background
subtraction in real-time mode is found to perform well for
most of the generalized video scenes, including scenes with
shadows [54]. All the above methods are concerned with
removing shadows from the static scenes.

D. NEURAL NETWORK BASED SHADOW DETECTION

In the recent past, Convolutional Neural Network (CNN) has
also been used for shadow detection [55]. In this regard,
adeep-learning method for shadow detection at the pixel level
is proposed by Mohajerani and Saeedi [56] that is suitable for
single RGB images. This CNN-based method utilizes a novel
architecture through which global and local shadow attributes
are identified using an efficient mapping scheme. Training of
a Kernel Least Square Support Vector Machine (LSSVM) is
used for labeling the regions separating the shadow and non
shadow portions [57]. Also Support Vector Machine (SVM)
based on color saliency space and gradient field is used for
shadow detection and removal for on-road visual inspection,
where the nonlinear SVM classifier analyzes its color
saliency space and gradient information, and in the sequel,
reconstructs road shadow descriptor to distinguish shadowed
regions [58]. Shadow detection is also achieved by an atten-
tive feedback feature pyramid network (AFFPN) proposed by
Kim and Kim [59], and a novel deep neural network named
Mask-ShadowNet is proposed for shadow removal [60].
A different deep learning motion architecture with multi cue
autoencoder is proposed by Rahmon et al. [61] which detects
motion and change cues using multi-modal background
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subtraction. Spatio-Temporal data augmentations for video-
agnostic supervised background subtraction is proposed by
Tezcan et al. [62]. Contour optimizer, a different supervised
learning algorithm also helps remove shadow in complex
scenes [63]. A novel compact end-to-end convolutional
neural network architecture with motion saliency foreground
network (MSFgNet), is proposed by Patil and Murala [64] to
estimate the background and to extract the foreground from
video frames. A universal background subtraction framework
using Arithmetic Distribution Neural Network (ADNN) for
learning the distributions of temporal pixels is proposed by
Zhao et al. [65]. But all these deep learning methods require
a large dataset for training. Our proposed research work is
novel and different in the sense that we are modeling the
background, learning these models and classifying the pixel
simultaneously in an online mode. Although the problem of
shadow detection for single image cases has widely been
addressed in literature, our work is based upon detecting
and removing shadows from video images during object
extraction.

E. FUSION BASED SHADOW DETECTION

Wang et al. [66] have presented an effective framework
for moving cast shadows. They have used multiple ratio
techniques to justify shadow type along with feature fusion
strategy for detecting shadow. Moving object segmenta-
tion (MOS) using a Recurrent Edge Aggregation Module
(REAM) has also been proposed [67]. Zhao and Basu have
proposed a dynamic deep pixel distribution learning for
background subtraction [68]. Real time pixel classification
along with parameter updation using an adaptive 3 phase
background model is proposed by Roy and Ghosh [69].
Zhang et al. [70] have proposed a moving shadow elimination
method using the fusion of multiple features. They fused
a dual-channel HSV color space feature and a uniform
extended scale invariant local ternary pattern (UESILTP)
texture feature to eliminate shadow. Other deep learning
and convolutional neural network architectures are also
helpful in accurately defining the shadow boundary and its
removal [71], [72], [73], [74], [75], [76].

llIl. PROPOSED SCHEME

The block diagrammatic representation of the proposed
scheme is shown in Fig.1. This is based on background
modeling and model learning in the fused feature space to
detect the moving object by removing the shadow. In this
framework, the objective is to develop a background model
which will have the attribute of taking care of the shadow
of the moving object and the background in a given frame
and simultaneously discriminating the foreground from the
background. As observed from Fig. 1, two different spaces
based on different features are created from the raw image
space. In the first case, the original image is transformed into
YCbCr color space to embed the attribute of shadow removal
and the local texture features of the raw space are extracted
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FIGURE 1. Block diagrammatic representation of the proposed approach.

using LBP. In the second case, a spatio-temporal modeling
is proposed in the KDE space. S-KDE of the original frame
is computed and thereafter temporal modeling of the S-KDE
frames is carried out which is shown in Fig. 2. Therefore this
model is named TMS-KDE. In order to embed the shadow
removal attribute and extract local features from the TMS-
KDE modeled frame, the Gabor features are extracted and
in the sequel, HOG features are extracted from the Gabor
filtered version of the TMS-KDE frames. This can be viewed
as transforming the TMS-KDE space to cascaded feature
space.

The cascaded features thus extracted are fused with the
LBP feature extracted from the raw image space. Feature
fusion happens in a probabilistic framework where the
weights for fusing the features are determined based on
the notion of entropy. Background modeling and model
learning happen in fused feature space. The modeling and
model learning is pixel based where the model histograms
correspond to the pixel in the fused feature frame. Learning of
these model histograms takes place with the input histogram
of a pixel of the new frame. In learning, both the model
histograms and the associated weights of the histograms are
adapted. Classification of the pixel as either background
or foreground takes place after learning. Learning and
classification of all the frames result in the detection of the
moving object in the frame while removing the associated
shadow of the moving object and the background.

IV. TEMPORAL BACKGROUND MODELING OF SPATIAL
KDE FRAMES

In this section, the background modeling in the KDE
framework is presented. In the scene, the shadow due to the
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FIGURE 2. Spatial and temporal modeling of the pixels in KDE framework.

moving object moves along with the object while the shadow
due to background remains stationary. To take care of the
moving object, shadow, and, the background, a new spatio-
temporal modeling is proposed in the KDE framework.
Initially, the S-KDE of the video frames are computed. Here,
the S-KDE implies that the probability density of a given
pixel is computed using its spatial neighborhood pixels. Let
x; denote the pixel in consideration of " frame and Xy, denote
the k™ pixel of the neighborhood structure. The Gaussian
kernel is used to compute the density which is given as,

Ny,
Plx) = —

% k=127 O—spatial

where Ny, denotes the number of neighborhood pixels around
X; and Opariqr is the bandwidth of the Gaussian kernel. This
spatial neighborhood structure is shown in Fig. 2. This spatial
KDE modeling is expected to preserve the boundary of the
object. In order to model the object in different frames,
temporal KDE modeling of the S-KDE frames is carried out.
The modeling in the temporal direction will take care of the
moving object in different frames as well as the dynamic
shadow arising out of the moving object. As shown in Fig.2,
we consider the S-KDE frames in the temporal direction
numbered as 1,2,3 ...... N.

Let y,, denote the S-KDE value of i site of the S-KDE
frame. Let us consider the corresponding values of r™ site
of N number of S-KDE frames in the temporal direction
which are denoted as Vi > Y250 Vg eeeee YN, - The probability
density of Vi, at the r'” site of the first frame can be computed
as,

1 1, X=Xt 2
-3 -
e Ospatial , ( 1 )

1 N 1 1, Visg 7y(lSk —q) 2

Pl = D e © T ()
g=1 AV, 27TO’1‘emporal

where N is the number of corresponding sites considered in
the temporal direction. Thus, (1) and (2) together correspond
to the spatio-temporal modeling of the given pixel of the
video frame. Similar process is carried out for all the
pixels of a frame to obtain the Temporal Modeling of the
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(d)

FIGURE 3. TMS-KDE modeling of LASIESTA 2016 dataset (352 x 288).
(a) Original image (frame 200), (b) S-KDE, (c) TMS-KDE, (d) Original image
(frame 300) (e) S-KDE, (f) TMS-KDE.

Spatial KDE frames (TMS-KDE). The TMS-KDE models
of the original frames of Fig. 3(a) and 3(d) are shown in
Fig.3(c) and 3(f) respectively. As observed from these two
figures, the boundary of the object and the object itself are
preserved. Thus, this modeling has the attribute of taking care
of the static and dynamic shadows as well. Further, it may be
observed from Fig.3(b) and Fig.3(e) that the S-KDE modeling
preserves the object boundaries of a frame.

After obtaining the TMS-KDE of a frame, cascaded
features are extracted and are fused with the LBP features
obtained from the original frame and the background mod-
eling is carried out in the fused feature space. Background
modeling is a pixel based approach and is performed in the
stochastic framework. For a given pixel at the ™ site of the
frame, a window of a given size (wxw) is considered around
the given pixel. The histogram of this window is considered
as the model histogram for the given pixel of the frame.
To have a set of k model histograms for the given pixel, the
corresponding k sites of the previous k TMS-KDE frames are
considered. Windows of the same size are considered around
these sites. The histogram of each site is a model histogram
and hence k such sites result in k model histograms. These are
shown in Fig.4 and these histograms of the feature space are
considered as the background model of the given pixel. For
example, if we consider k to be 3, then three such histograms
are considered as the model histograms of a given pixel. The
updation of the model happens with each incoming frame.
The corresponding pixel is considered and the same size of
window is taken around the pixel. The histogram in the 2nd
row of Fig. 4 is the input histogram of the pixel and the model
histograms learn this input histogram.

V. CASCADING OF LOCAL FEATURES AND ENTROPY
BASED FEATURE FUSION

A. CASCADING OF LOCAL FEATURES

It is known from the previous section that the TMS-KDE is
able to preserve the object boundary and the object, but along
with these the moving shadow is also preserved. To further
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FIGURE 4. Learning of the model histograms for a given pixel of a frame
with the input histogram of a given pixel.
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FIGURE 5. Results obtained for cascaded feature in LASIESTA

2016 dataset (352 x 288). (a) Original image (frame 200), (b) TMS-KDE,
(c) GTMS-KDE, (d) HGTMS-KDE, (e) Original image (frame 300) (f)
TMS-KDE, (g) GTMS-KDE (h) HGTMS-KDE.

improve the attributes of the model with a view to reducing
the moving shadow, we have used Gabor’s 90° feature thus
making the model GTMS-KDE model. These are shown in
Fig. 5(c) and 5(g) where it may be observed that the shadow
is eliminated to a great extent but some of the local features
of the background are also present. To further preserve the
shape of the object, we have applied the HOG feature on
this GTMS-KDE model thus making it HGTMS-KDE model
which is the cascaded feature model. The cascading of these
two features is expected to model the object while preserving
the local attributes. The HOG feature applied on the GTMS-
KDE model reinforces the oriented gradients of the extracted
local features by the GTMS-KDE model. Because of HOG,
many finer details of the background are also preserved
together with the object. Fig. 5(d) and 5(h) show the frames
obtained with HGTMS-KDE model and as expected, too
many details of the background are also retained. This will
be taken care of by the fusion of the features and the learning
of the background model in the fused feature space.

B. ENTROPY BASED FUSION
We have attempted to build the background model on feature
space and particularly in the fused feature space. The features

VOLUME 11, 2023

LBP of YchCr color
space

HGTMS-KDE Feature

\

hcoI “ || hcas
\ / g(n)

g(n)

Probabilistic Fusion
of histograms

h

cf

g(n)

FIGURE 6. Probabilistic fusion of features using corresponding
histograms.

of the frame extracted due to the cascaded feature are fused
with the LBP feature of the YCbCr color space. These
features of the HGTMS-KDE model are fused with the LBP
features of the color model of the raw data of the original
frame. In this process, the local features of the original image
space are fused with the cascaded features of the TMS-
KDE image space. The features are fused in the probabilistic
framework. The fusion process is also a pixel based approach.
Let us consider x(i,j) site in the LBP color frame and also the
corresponding site in the cascaded featured frame.

Consider a window of size (w x w) around both the pixels
of the corresponding frames as shown in Fig.6. The two
features of the pixel are fused as follows. Let h., denote
the histogram of the LBP of the YCbCr color space and A4
denote the histogram of the cascaded feature of the HGTMS-
KDE frame. These two features are fused probabilistically as
follows,

— — —

hcf = Weol X Neol + Weas X Reas, 3)

— .

where Ay denotes the casca_df,d featir)e histogram, wee;
and wcgs are the weights of k., and h.,s respectively. The
histogram of the fused feature A is used as the background
model. The above weights are determined based on the
entropy which varies based on the features. Let the entropy
over a window of the original frame be denoted as E, and
E.o; be the entropy over the window of the LBP feature of
the YCbCr color frame. Let E.,; denotes the entropy over the

window of the cascaded feature frame. The entropy over a
given window is computed as,

S = Z —P; x log(P;), “)

i

where i indicates the gray level that varies from 0 to 255 and
S denotes the entropy over the window.
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FIGURE 7. Learning of the model histograms for a given pixel with the
new input histogram of a given pixel.

The two weights are determined as,

Eca,
Weol = EC,ZY s (5)
Ecol
= . 6
Weas E, (6)

Thus, the computed weights are scene dependent. Since the
conditions of the background and foreground change over
the entire frame, the entropy will also vary over the entire
frame. Similar findings are also expected in the two feature
frames. Thus the appropriate degree of both the features will
be fused to result in a fused feature for a given pixel. This
feature fusion happens while learning the background model.

VI. SIMULTANEOUS LEARNING OF BACKGROUND
MODEL AND FEATURE FUSION WITH PIXEL
CLASSIFICATION

The background feature fusion happens while learning the
background model. Learning is a pixel based approach.
For a given pixel, initially few frames are chosen and the
fused feature histo lograms are obtainil). These histograms are
denoted as h’” hf}z hg‘%, ....... " er, where k denotes the
number of hlstograms chosen. These histograms are the
background model histograms of that given pixel. They are
as shown in Fig.7.

Learning of the model histograms takes place as follows.
With the arrival of a new input frame, the corresponding pixel
is chosen and a window is considered around the pixi) For
that window, the cascaded fused feature histogram A" is

obtained. The model histograms h’”f ......... h_g’; are updated
based on the input histogram of the cascaded feature. These
model histograms are assigned with random initial weights
from O to 1. Let these weights be de_n)oted as qi1,q2 ... qk.
The new input model histogram ﬂ‘f is compared with

each of these model histograms hcf1 ......... i?’? and the
similarity measures between the new histogram and the
model histograms are computed. The similarity measure
is obtained as the histogram intersection between two
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histograms and is given as,

m(thk’ Cf) - Z(thk’ Cf )

If the proximity value is found to be less than a preselected
threshold T for all the model histograms, the histogram with
the lowest weight is replaced with the new histogram and the
replaced histogram is assigned with a low value of weight of
0.01. If proximity measures of some of the model histograms
with that of the new histogram are found to be above the
threshold T, then the new histogram is considered to match
with the model histograms. In this case, the best matched
model histogram with the highﬂ proximity value is adapted
with the new fused histogram A’ o, A8,

e s e
M = okl + (1 — )l ®)

CJk
H
where hg’}k denotes the best match fused feature model
histogram and «; is chosen between O to 1. Besides the
bin updation of the histogram, the weights of the model
histograms are updated as,

wr = a6k + (1 — a)wy, 9

where a is the learning rate. The value of 6 is 1 for the best
matched histogram and O for others. o] and « are the learning
rates which are user-defined parameters and the adaptation
of the model histogram is controlled by these learning rate
parameters. Each of the model histograms represent either
the background or the foreground depending on the assigned
weights. After updation, the weights of the adapted model
histograms are arranged in decreasing order and the first B
model histograms are considered as the background model
histograms if the following condition is satisfied.

wotw———————— +wp—1 =T  (10)

where T is chosen to be between 0 and 1.

A. CLASSIFICATION OF BACKGROUND AND
FOREGROUND

Classification of foreground or background of a pixel is
accomplished before updation of the model histograms
and the weights. The proximity of the new fused feature

histogram h_g) is determined with each of the background
model histograms and if at least one of the model histograms’
proximity is higher than the selected 7),, the pixel is classified
as background. If proximity of none of the model histograms
with that of the new input histograms are above the threshold
T), then the pixel is classified as foreground.

VII. EXPERIMENTAL CONDITIONS, BENCHMARK
DATASETS AND PERFORMANCE METRICS

In this section, various benchmark datasets used in our pro-
posed method are presented. Besides, different performance
metrics used in our experiment as quantitative measures are
also presented.
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A. BENCHMARK DATASETS

The objective is to test the efficacy of the proposed method
over different scenarios with a wide variety of conditions of
shadows and to perform the quantitative analysis to validate
the results. In this regard, we have used the following
datasets: Scene Background Modeling and Initialization
(SBMI 2015) [77], Scene Background Modeling (SBMnet
2016) [78], Scene Background Modeling (SBM-RGBD
2017) [79], PETS 2006, LASIESTA (Labeled dataset for
integral evaluation of moving object detection algorithms
2016), Change Detection dataset (CDnet 2014) and ATON-
CVRR 2000 [77], [80], [81], Kaggle UCF crime dataset 2019,
VIRAT 2020. The overall details of the datasets including
brief description, type of shadow, length of the shadow and
the class of object are presented in Table 1. Simulation is
carried out in Linux platform with coding in C-language
using the Machine Specifications which is specified as HP
Presario CQ62 model with Intel Core i3- 380M Processor,
2GB DDR3 RAM, 2.5 GHz CPU, and 64 bit OS.

The sources of the above datasets can be obtained
at the following URLs https://www.kaggle.com/mission-ai/
ucfdatasetforanomaly (kaggle UCF crime), http://rgbd2017.
na.icar.cnr.it/SBM-RGBDdataset.html (SGM-RGBD 2017)
[79], http://scenebackgroundmodeling.net/ (SBMnet 2016),
http://sbmi2015.na.icar.cnr.it/ (SBMI 2015), http://www.cvg.
reading.ac.uk/PETS2006/data.htmI(PETS 2006) https://virat
data.org/(VIRAT 2020 version) https://www.gti.ssr.upm.es/
data/lasiesta_database.html (LASIESTA) [80], http://change
detection.net(CDnet) [81], http://cvrr.ucsd.edu/aton/shadow
(ATON CVRR) [77].

B. PERFORMANCE METRICS

We have used the following quantitative measures for
analyzing our data and evaluating the efficacy of our proposed
scheme.

Recall(Re) = —F (1)
ecall(Re) = ————.
Tp + Fn
. Tp
Precision(Pr) = ———. (12)
Tp + Fp
Ty
Specificity(Sp) = ———. 13
pecificity(Sp) v t Fr (13)
2PrRe
Fmeasure(F — score) = ——. (14)
Pr + Re
Fp
FPR= ————. (15)
Fp+ Ty
F
FNR = —2~ (16)
Ty + Fp
F F 100
pwe = N T Ep) X (17)

Tp+Fy+Fp+ Ty’

where Tp is the number of true positives, Ty is the number of
true negatives, Fy is the number of false negatives, and Fp is
the number of false positives, FPR is the false positive rate,
FNR is the false negative rate and PWC is the percentage of
wrong classifications.
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In order to evaluate the shadow detection ability of the
proposed algorithm, the shadow detection and removal rate
(n) and shadow discrimination rate (§) are used. These are
expressed as,

TPS
n=—-——", (18)
Tps+ Fng
T
f=— (19)
Tpr + Fny

where TP and FN indicate true positive and false negative
pixels with respect to either shadow or foreground objects.
Tpy indicates TP with respect to shadow and Tpy indicates
TP with respect to foreground. Similarly, Fy indicates FN
with respect to shadow and Fy ¢ indicates FN with respect to
foreground.

VIIl. RESULTS AND DISCUSSION
A. EXPERIMENTAL RESULTS AND ANALYSIS ON VARIOUS
DATASETS
In this section, we analyze the performance of our proposed
method on different datasets both qualitatively and quantita-
tively. The quantitative measures are evaluated over twenty
frames in all examples and the average values are presented
in different tables. The qualitative results are post processed
using different morphological operations like erosion and
dilation to obtain the final results. The first dataset considered
is the LASIESTA database and the three video scenes
considered are O_SU_01 and O_SU_02 and I_IL_02 which
are as shown in Fig. 8. The second row of Fig. 8 corresponds
to the ground truth and the segmented results of the proposed
scheme are shown in the third row of Fig. 8. As observed, the
static and dynamic shadows corresponding to the background
and foreground are removed and the object is also detected
except a few misclassified pixels of the background. This is
because of the presence of shadow in the indoor scene of Fig.8
(c) while the light is fading away from the brighter side of
the room. However, the average parameters for quantitative
measures over 20 frames are presented in Table 2 where it
may be observed that the precision is high as well as the F
score besides other parameters. The shadow detection rate
n is of a high value indicating that the proposed algorithm
could detect the shadow with a high degree and discriminate
it from the foreground. The values of other parameters are
appreciable in their respective merits. This may be attributed
to our feature fusion strategy with the cascaded features
and learning the background models in feature space. The
performance of the proposed scheme is also compared with
other algorithms in the context of the average F score and
the different scores are presented in Table 3. It is found that
the proposed method yielded the highest F score in two cases
and for O_SU_02, our previously proposed method produced
the highest one. This demonstrates the superiority of our
proposed algorithm over others.

The second example video is considered from ATON-
CVRR [77] dataset and the frames are shown in Fig. 9.
Though the average quantitative measure parameters are
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TABLE 1. Indoor Outdoor sequences in various datasets.

Dataset and Identifier ~ Sequence_Type Brief Description and Issues ~ Shadow Length Shadow Type Object Class

LASIESTA 2016 Outdoor Dynamic Medium Hard People
background with
hard shadows

SBM-RGBD 2017 Indoor Illumination changes Medium Hard People and Object
with soft and hard
shadows

CDnet 2014 Outdoor Dynamic Large Hard People and Object

background with
hard shadows

ATON-CVRR 2000 Indoor, Outdoor Illumination changes Medium Hard People
with hard and soft
shadows
UCF Crime Kaggle Outdoor Dynamic Medium Hard People
2019 background with
hard shadows
VIRAT 2020 Outdoor Dynamic Medium Hard People
background,

illumination changes
with hard shadows
PETS 2006 Outdoor Hard shadows Medium Hard People
SBMnet 2016 Outdoor Dynamic Medium Hard People
background with
hard shadows
SBMI 2015 Indoor Illumination changes Medium Hard People
with hard shadows

TABLE 2. Quantitative analysis on different datasets based on average performance measures.

Datasets Pr Re F-score  Sp FPR  FNR PWC 17 13
LASIESTA dataset

0_SU_01 97.68 85.80 91.44 99.96 0.63 31.18 1.07 96.99  85.80
0_SU_02 97.78  86.60  91.85 99.94 0.05 1339 042 98.04  86.60
1.IL_02 87.81 90.03 8891 98.37 1.62 12.18 1.21 98.69  90.03
SGM-RGB dataset

Fall01Cam 93.11 9425 93.67 99.44  0.65 1261 1.65 96.64  94.25
Genseq2 92.65 9422 9342 99.75 0.74 6.43 1.61 93.54 9422
Shadow_ds 89.72 9522 92.38 99.81 125 7.65 1.67 93.59 95.22
Shadows1 77.41 9423 8499 95.12 285 1339 3.31 90.76  94.23
CD-net dataset

Bunglow 91.53  92.89 92.05 99.68 031 8.10 0.53 99.80 92.89
Busstation 81.38 91.89 86.18 9479 520 8.43 5.84 99.81 91.89
Pedestrian 97.75 9820 97.23 99.28 0.71 3.14 0.75 98.91  98.20
ATON-CVRR dataset

Campus 91.53 92.89 92.05 99.68 031 8.10 0.53 99.80 92.89
Laboratory_ds 9291 95.80 94.21 96.31 3.68 17.19 4.33 95.13  95.80
Hallway 86.93 90.20 88.53 97.21 378 1839 8.31 93.98 90.20
UCF-Crime Kaggle dataset

N1 82.53 85.89 84.17 9440 559 34.60 8.20 7691  85.89
N2_ds 80.81 85.07 82.88 99.74 025 3192 1.01 98.46  85.07
N5 85.72 9395 89.64 9492 507 6.04 5.14 95.09 93.95
VIRAT dataset

Virat 01 83.60 86.63 85.09 99.42 057 1543  0.69 88.79  86.63
PETS 2006 dataset

PETS 85.72 88.51 87.09 97.19 2.80 20.77 472 87.62 88.51
SBMnet 2016 dataset

SBMnet 83.57 9136 87.29 99.89 0.10 28.63 0.31 89.92 91.36
SBMI 2015 dataset

Human Body 9275 89.70  91.20 98.99 1.00 10.29 2.17 99.67  89.70

TABLE 3. Average F-score on LASIESTA database [80].

Method —  Wren [1]  Stauffer [2]  Zivkovik [3] Maddalena 1 [4] Maddalena 2 [5]  Cuevas 1 [6] Haines [7] Cuevas2[8] REAM[67] STKDE [33] Proposed
0O_SU_01I 0.6808 0.6177 0.5426 0.7467 0.8742 0.6527 0.8115 0.6774 0.9402 0.8928 0.914
0_SU_02 0.8304 0.8304 0.8775 0.8562 0.883 0.8074 0.9021 0.7669 0.9411 0.934 0.918
1_IL_02 0.4568 0.2392 0.3135 0.3750 0.2312 0.7864 0.8122 0.6523 0.9479 0.8345 0.889
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FIGURE 8. LASIESTA data set: 1st row indicates the original image frames (a) 0_SU_02
(200, 250), (b) O_SU_01 (130, 180), (c) I_IL_02 (125,350), 2nd row (d)-(f) corresponds to
the ground truth and, 3rd row (g)-(i) are the results by the proposed approach.

FIGURE 9. ATON-CVRR data set: 1st row indicates the original image frames (a) Hallway
(040, 042), (b) Campus (020, 100), (c) Laboratory (025,038), 2nd row (d)-(f) corresponds to
the ground truth and, 3rd row (g)-(i) are the results by the proposed approach.

determined over 20 frames, for the sake of visual inspection,
two frames from each category of the datasets of Hallway,
Campus and Laboratory are shown in Fig. 9. The second
row and the third row of Fig.9 correspond to the ground
truth and the segmented results respectively. The Laboratory
video is an indoor scene having complex background.
Besides, Fig. 9(a) and 9(b) have multiple moving objects with
shadows. It is found from the visual inspection that the frames
of Campus video could be segmented with accurate shapes of
the moving objects. However, in other two cases, there are
some misclassified pixels despite the object’s shape being
detected. Different average quantitative measures evaluated
over 20 frames are presented in Table 2, where it may be
observed that the precision, recall, and F-score values are
high indicating the fact that the proposed algorithm could
detect the object and remove the shadows. Specifically, the
proposed algorithm’s shadow detection and discrimination
ability is compared with other existing algorithms and are
presented in Table 4, where it is observed that for frames of
the Campus dataset, the shadow detection rate is the highest
for the proposed algorithm. But, for the Laboratory dataset,
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the shadow discrimination ability of the proposed algorithm is
highest among all. This indicates that the proposed algorithm
has better shadow detection and discrimination ability than
other algorithms and therefore it helps in detecting the
moving objects accurately in the complex scene.

The third dataset considered is the change detection dataset
(CDnet dataset) [81] where frames are considered from
Bunglow, Busstation and Pedestrian videos and are shown in
Fig.10. It may be observed from Fig. 10(a) that the frames
from the Bunglow video have moving shadows of the object
in sharp motion which is a challenge. Similarly, the frames of
Busstation video has multiple moving objects with both static
and dynamic shadows. The results obtained by our proposed
method and others are also shown in Fig.10 where it may
be observed that results obtained by our proposed algorithm
are comparable to others and in some cases better than other
algorithms. Different parameters of quantitative measures are
presented in Table 2 while specifically the average n and &
values are compared with other algorithms and are presented
in Table 5. It is found that in all the cases, the shadow
detection rate is highest for the proposed algorithm while
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TABLE 4. Comparisons based on average quantitative measures on the standard datasets of ATON-CVRR adapted from Lin [40].

Benchmark Datasets Metric DNM [35] GBM [39] ICF[16] SNP2[37] CCM [41]

ASE [42] LRT[38] NTM [43] SDM [44] FCN-VGG16 [55] SMPF [40] STKDE [33] Proposed

7 57.00 66.60 5622 6585 62.56 6750 8210 5323 52.00 8632 8638 89.66 99.80

Campus ¢ 50.30 54.80 8274 7536 43.07 7082 9770 8136 97.58 96.97 98.98 94.25 92.89

7 98.90 79.80 0222 9293 91.63 9137 8630 6887 89.17 8334 95.29 82.19 9%5.13

Laboratory ¢ 77.80 67.90 89.69 7271 84.04 9236 97.00  67.66 92.66 76.54 95.79 84.10 95.80

n 96.70 53.00 9532 8393 9646 9009 9465  85.16 8345 8122 94.16 95.07 93.08

Hallway ¢ 77.80 73.80 8302 98.10 68.55 93.19 9802  83.18 99.25 8327 98.58 94.22 90.20
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FIGURE 10. CDnet data set: 1st row indicates the original image frames (a) Bunglow (033,
144), (b) Busstation (385, 1045), (c) Pedestrian (375, 425), 2nd row (d)-(f) corresponds to
the ground truth, (g)-(i) are the results by MUNet1, (j)-(I) are the results by RTSBSv1,
(m)-(o) are the results by Fast BSUVNet 2.0, (p)-(r) are the results by FgSegNet v2 CO and,
(s)-(u) are the results by the proposed approach.

the shadow discrimination is the highest for the example
of Busstation an Pedestrian videos. This is attributed to the
potentialities of the cascaded features and the fused feature.
The results of this example also indicate the superiority of the
proposed algorithm in the context of  and &.

The fourth dataset is the SGM-RGBD dataset [79] where
the frames considered have hard shadows cast by the
foreground objects. Original frames are shown in the first
row of Fig. 11 whereas the second row corresponds to the
ground truth and the third row shows the results obtained by
our proposed algorithm. The average quantitative results are
presented in Table 2 and the comparative results of different
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algorithm with respect to F-score are presented in Table 6. Itis
observed that in this case also the F-scores of the proposed
algorithm are either close or comparable to other existing
algorithms. This example also demonstrates the efficacy of
our proposed algorithm. Here also the shadow detection and
removal capabilities are appreciable.

In order to test the efficacy of the algorithm, we have
considered scenes where dynamism is present in the back-
ground entities with moving shadows that otherwise would
have been static. This apparent moving shadow camouflages
with that of the shadow due to the moving object. Besides,
there are multiple moving objects of different sizes and
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TABLE 5. Comparisons based on average of quantitatives on standard scenes of CDnet dataset.

Benchmark Dataset Metric RTSBSv1 [54] MUNetl [61] Fast BSUVNet 2.0 [62] FgSegNet_v2_CO [63] STKDE [33] Proposed

n 36.1 56.09 76.45 82.76 72.66 99.80
Bunglow 3 89.73 89.01 91.76 92.73 74.56 91.89
n 53.04 98.12 71.48 67.42 84.38 99.81
Busstation 13 84.08 86.48 85.24 85.42 74.63 89.56
n 99.16 99.11 99.02 99.32 99.48 98.91
Pedestrian 13 97.08 97.32 96.97 96.97 97.88 98.20

FIGURE 11. SGM-RGBD dataset: 1st row indicates the original image frames (a) Fallo1Cam (100, 125), (b)
genseq2 (175, 200), (c) shadow_ds (200,250), (d) shadows1 (125,150) 2nd row (e)-(h) corresponds to the ground
truth and, 3rd row (i)-(I) are the results by the proposed approach.

TABLE 6. Average F-score on SGM-RGBD database [79].

Method — RGBD-SOBS [48] SRPCA [21] SCAD [49] cwisardH+ [71] MFECN [82] BSABU [83] STKDE [33] Proposed

Fall01Cam 0.92 0.76 0.91 0.91 0.97 0.91 0.89 0.87
genseq2  0.93 0.77 0.94 0.92 0.98 0.90 0.91 0.91
shadow_ds 0.95 0.75 0.97 0.90 0.98 0.95 0.90 0.95
shadowsl 0.95 0.75 0.94 0.92 0.98 0.95 0.90 0.96

FIGURE 12. Different datasets: 1st row indicates the original image frames (a) SBMnet-2016 Fall (200, 300), (b)
Pets 2006 (385, 1015), (c) SBMInet 2015 Humanbody (275,300), (d) VIRAT1 (16, 22), 2nd row (e)-(h) corresponds
to the ground truth and, 3rd row (i)-(l) are the results by the proposed approach.

hence the moving shadows are also of different sizes. Some and multiple, could be detected with different scenes and
of these frames are shown in the first row of Fig. 12. shadow conditions. Different average quantitative measures
It may be observed from the third row that objects, single for these datasets are presented in Table 2 where it may
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FIGURE 13. Kaggle UCF crime datasets: 1st row indicates the original image frames
(a) N1 (50,71), (b) N2 (17, 36), (c) N5 (12, 15), 2nd row (d)-(f) corresponds to the
ground truth and, 3rd row (g)-(i) are the results by the proposed approach.

I
(h)

FIGURE 14. Non Shadow cases of the algorithm: (a) Camouflage
(LASIESTA), (b) Ground truth, (c) Segmented result, (d) Pedestrian (CDnet),
(e) Ground truth, (f) Segmented result, (g) genseq2 (SGM-RGBD), (h)
Ground truth, (i) Segmented result, (j) IPPR2 (SBMnet), (k) Ground truth,
(I) Segmented result.

be observed that the values of n and & are appreciable
thus indicating the fact that the proposed algorithm has
been embedded with these two attributes as it could handle
different shadow conditions. There are appreciable values of
precision, recall, and F-score which demonstrate the object
detection attribute. The proposed background model learning
in the feature space together with the feature fusion takes care
of this. Similar observations are also made for the frames of
Kaggle UCF crime dataset as shown in Fig. 13. The object
detection and shadow removal attribute is reflected in the
quantitative measures tabulated in Table 2. Thus, in all the
cases, the proposed algorithm demonstrated superior shadow
handling and object detection capability as compared to
others. Besides, to validate the proposed scheme for both
cases of images with and without shadows, the proposed
scheme is tested with non shadow images from four databases
and the segmented results are provided in the Fig. 14. The
average value of different quantitative measures are provided
in Table 7. As observed from Table 7, the F-score measures
are above 90% and are comparable to the values of Table 2
for shadow cases. Similar observations are also made for
precision and recall measures. Hence the proposed scheme
works well for detecting moving video objects in both the
environments having shadow and non shadow images.
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TABLE 7. Quantitative analysis on different non shadow datasets.

Identifier LASIESTA  CDnet SGM-RGBD SBMnet
F-score 93.45 92.49 91.05 90.49
Precision 95.69 97.81 96.45 92.23
Recall 89.11 87.73 86.14 83.23

B. TIME COMPLEXITY

The proposed method is a pixel based approach and hence the
computational time per pixel with the given machine speci-
fications which is provided in subsection A of section VII
is found to be 1.43 milliseconds per pixel. For example, for
a frame of size (100 x 100), the execution time will be
14.3 seconds. The execution time can further be reduced with
the help of a machine with enhanced specifications. It is
found that the execution time per pixel remains same for
all the examples as the window size considered around the
pixel is constant for all the cases. Hence, the computational
burden per frame is proportional to the frame size. For
example, in case of the considered datasets of LASIESTA
and ATON CVRR datasets with frame size of (352 x 288)
and (320 x 240), the execution times are 144.96 seconds and
109.82 seconds respectively.

IX. CONCLUSION

In this paper, attempts have been made to detect moving
video object with dynamic and static shadow conditions. The
dynamic shadow which occurs due to the moving object is
hard to separate from the object itself. Besides, the shadow
caused due to dynamic entities of the background makes the
problem more challenging. The proposed scheme is found to
take care of the different types of shadows while detecting
the moving object. Specifically, it is also found to take care
of the moving shadow of the background. This could be
achieved because of the fusion of cascaded features with
the LBP features. The cascaded features are extracted from
the TMS-KDE model of the frame which helps preserve the
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boundary of the object and the object itself. The cascaded
feature could eliminate the shadow to some extent. Learning
of the model histograms takes place in the fused feature space,
and it occurs in online mode as opposed to usual offline mode
of training in deep learning network models. Feature fusion,
learning, and classification of foreground and background
pixels happen simultaneously. The weights for feature fusion
are determined considering the scene dynamics and hence
appropriate feature is chosen for modeling the scene. It is also
found that learning could take care of shadow while detecting
the object.

In our experiments, we have considered eight different
and diverse datasets: LASIESTA, ATON CVRR, CDnet,
SBMnet, SBMI, kaggle, VIRAT, SGM-RGBD datasets.
Besides, these different datasets have different types and
degrees of shadow in their scenes. The proposed algorithm
is found to outperform many existing algorithms as regards
the precision and F-score. However, the other quantitative
measures are also either comparable or better than the
existing algorithms. Additionally, the proposed algorithm
has improved shadow detection and discrimination attribute.
Thus this scheme is suitable for a wide variety of indoor and
outdoor scenes. In future, efficient background modeling and
learning for complex scenes is worth pursuing.
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