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ABSTRACT Deep models’ feature learning capabilities have gained traction in recent years, driving sig-
nificant progress in various Artificial Intelligence (AI) domains. The use of Deep Neural Networks (DNNs)
has expanded the scope of Computer Vision (CV) and revealed their vulnerability to deliberate adversarial
attacks. These attacks involve the careful introduction of perturbations crafted through complex optimization
problems. Exploiting vulnerabilities in advanced deep neural network algorithms present security concerns,
particularly in practical applications with high stakes like unmanned aerial vehicles (UAVs) and satellite
imagery in computer vision. Adversarial attacks, both in digital and physical dimensions, pose a serious
threat in the field. This research provides a comprehensive examination of state-of-the-art adversarial attacks
specific to aerial imagery using autonomous platforms such as UAVs and satellites. This review covers
fundamental concepts, techniques, and the latest advancements, identifying research gaps and suggesting
future directions. It aims to deepen researchers’ understanding of the challenges and threats related to
adversarial attacks on aerial imagery, serving as a valuable resource to guide future research and enhance
the security of computer vision systems in aerial environments.

INDEX TERMS Aerial imagery, adversarial attacks, adversarial perturbations, autonomous systems, remote
sensing, Al-applications.

I. INTRODUCTION most state-of-the-art methodologies where they demonstrated

Owing to the ongoing technological advancements in aerial
imagery, its viability has experienced a notable upsurge
in obtaining a substantial quantity of exceptional and
high-resolution aerial images. The utilization of technol-
ogy has presented significant prospects in the domain of
imagery [1], [2], [3], [4] and remote-sensing [5], [6], [7].
These advancements have contributed to the creation of
several crucial applications including critical infrastructure
resilience [8], defense systems [9] and public safety [10].
Deep learning models have significantly contributed to
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noteworthy success across various domains [11], [12], [13],
[14], [15], [16], [17]. Typically, these models obtain a hier-
archical representation of attributes and features. Moreover,
empirical studies have indicated that the effectiveness of
DNNss exhibits a positive correlation in terms of their archi-
tecture. Computer Vision (CV) has become increasingly
important in various applications. Image segmentation [18],
[19] and object detection [20], [21], [22] are among the most
commonly used CV techniques that play a crucial role in
these applications.

In 2014, Szegedy et al. [23] made a novel discovery, which
they referred to as adversarial samples. This phenomenon
has the capacity to fool deep neural networks (DNN),
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leading to erroneous predictions and significant deterioration
in the performance of state-of-the-art deep learning tech-
niques. Adversarial samples manifest as imperceptible per-
turbations or noise within images, which have the potential
to introduce bias in Convolutional Neural Networks (CNNs).
This pioneering research has illustrated the vulnerability of
Deep Neural Networks. Subsequent to this work, various
approaches have been investigated by researchers to produce
adversarial examples, as documented in the literature [24],
[25],[26], [27], [28]. In response to the emergence of security
breaches, scholars have endeavored to safeguard deep neural
networks against such vulnerabilities by devising defensive
techniques and formulating countermeasures, which are com-
monly referred to as adversarial defenses [29], [30], [31],
[32]. Whereby, defense mechanisms have been proposed at
the same time work on adversarial training of DNN also
caught attention. These two lines of work surged and went
side by side providing a defense mechanism for each attack,
researchers have enhanced Deep Neural Networks (DNNs)
by incorporating resistive phenomena during the training
phase through adversarial training techniques [33], [34], [35].
Therefore, deep neural networks (DNNs) have undergone an
evolutionary process as depicted in Figure 1, involving adver-
sarial attacks, countermeasures, and ultimately adversarial
training, in order to enhance their resilience against such
attacks. Adversarial attacks are utilized during the deploy-
ment stage of the deep neural network (DNN) model life
cycle. The occurrence of such attacks has instigated the cre-
ation of adversarial defense mechanisms, whereby model’s
training phase is embedded with adversarial training.
Machine learning models can be subjected to adversarial
attacks in two distinct ways, namely digital [36] and physical
attacks. Evasion attacks [37] and poisoning attacks [38] are
frequently observed in the context of digital attacks. Eva-
sion attacks pertain to the act of manipulating input data
in order to fool the model’s predictions, whereas poisoning
attacks involve the introduction of malevolent data during
the training process to undermine the model’s integrity.
The aforementioned attacks have the potential to result in
mis-classifications and erroneous patterns acquired by the
model. Conversely, physical attacks [27] are centered on
the manipulation of tangible entities in the physical realm.
Adversarial images are generated through the introduction
of slight modifications or patterns to physical objects, with
the aim of misleading computer vision systems. Adversarial
inputs pertaining to the manipulation of sensor readings or the
introduction of noise to impede the decision-making process
of the model. Both forms of attacks pose a challenge to
the durability and dependability of machine learning models,
necessitating continued research into defense mechanisms to
bolster their resilience against these adversarial threats.
Distinguishing between digital and physical adversarial
attacks in computer vision can be achieved based on the tim-
ing of their execution. Digital attacks are defined as attacks
that are carried out solely within the digital realm, occurring
only after the camera has captured an image. Conversely,
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FIGURE 1. The evolutionary progression of adversarial and counter
techniques during DNN's life-cycle. Illustration explains the instance of
attacks and countermeasures; where attacks are carried out during the
model deployment stage and adversarial training is incorporated during
the training phase of DNN model. The region surrounded by the
yellow-box emphasizes the review’s central theme.

physical attacks involve the manipulation or alteration of
tangible objects prior to their capture by the camera. Although
DNN models have been successfully attacked digitally by
various methods [35], [39], [40], [41]; implementing these
attacks in the physical world presents a significantly greater
challenge. Although digital perturbations are generally both
universal and imperceptible, accurately recording them with
sensors can be challenging. The presence of these drawbacks
serves as a driving force for researchers to investigate novel,
practical methods of carrying out attacks in actual settings.
Notwithstanding, physical attacks are associated with signif-
icant difficulties [42].

The adversary instance in practical scenarios must pos-
sess the capacity to endure the impacts of imaging devices,
which are predominantly determined by the sensors and pro-
cessing devices. Furthermore, the physical adversary must
exhibit resilience towards multiple modifications, encom-
passing fluctuations in shot distance, perspective, and por-
trayal. The adversary’s physical manifestation should possess
an unobtrusive quality. The manipulation of digital images
occurs at the level of individual pixels, rendering them chal-
lenging to detect. Nevertheless, the concealment of physical
attacks poses a challenge. Wei et al. [42] have demonstrated
the utilization of physical and digital attacks at different
stages of a conventional CV pipeline. This is exemplified
through the use of a traffic-sign example, as depicted in
Figure 2.

Prior research has predominantly concentrated on
terrestrial-based scenarios and applications, such as person
detection [43], [44], [45], [46], [47], facial recognition [48],
[49], [50], [51], security surveillance [52], [53], [54] and
autonomous vehicles [55], [56], [57], [58], [59]. The lit-
erature preceding this study has provided broader insights
into the potential of adversarial attacks, as demonstrated by
the works of Wei et al. [42], Wang et al. [60], Akhtar and
Mian [61], and Akhtar et al. [62]. The focus of this study
is solely on adversarial attacks that are directed towards
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aerial-based imagery captured from larger distances, specif-
ically those obtained through the utilization of drones and
satellites, as opposed to scenarios and use cases that take
place on the ground.

A. MOTIVATION FOR REVIEW PUBLICATION

The field of computer vision has witnessed significant mat-
uration in this direction in recent years. Since the inception
of adversarial concept by [23], numerous surveys and review
papers on adversarial attacks have been published in both
digital and physical disciplines of adversarial attacks as well
as defenses. The majority of the reviews exhibit a wider scope
of applicability [42], [61], [62], [63], [64], [65], [66], [67],
[68], [69], [70], [71], some are tailored to specific computer
vision tasks [72], [73], [74], [75], while others are geared
towards particular problems [76], [77], [78], or type of attacks
[79]. Based on already published reviews and cited articles,
it is found that this study exhibits several distinctions from the
previously conducted reviews. This review article possesses
a distinctive quality as it serves as a follow-up to our previous
work [80], which happens to be the first-ever and only peer-
reviewed literature survey conducted on this specific topic.
Drawing upon the seminal work of [80] and subsequent
research pursuits, we have provided more refined concep-
tualizations of the specialized vocabulary pertaining to this
rapidly evolving field. As a consequence, a more cohesive and
systematic review framework has been established, wherein
we present succinct discussions grounded on the contem-
porary comprehension of terminologies within the research
community. Additionally, our attention is directed towards
scholarly articles that have undergone peer-review and have
been published in esteemed research outlets. By concentrat-
ing on the primary contributions, we have been able to offer
a more lucid perspective of this area for academicians and
researchers. Moreover, the necessity of conducting research
in this domain is underscored by several significant factors
and driven by various motivations:

o The utilization of aerial imagery is prevalent in cru-
cial domains such as military defense, monitoring,
emergency management, and infrastructure strategiz-
ing. Comprehending and mitigating the susceptibilities
and hazards linked with adversarial attacks is impera-
tive in upholding the dependability, confidentiality, and
efficacy of said applications. Moreover, the potential
repercussions of adversarial attacks on aerial imagery
can be substantial in practical applications.

o The manipulation or deception of machine learning
models that analyze aerial imagery has the potential
to cause disruption or compromise of critical opera-
tions, thereby posing a threat to human lives and prop-
erty. Through the implementation of research endeavors
in this domain, proficient professionals can formulate
sturdy defensive strategies to safeguard against such
malevolent attacks, thereby augmenting the tenacity of
aerial imagery systems.
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o In general, investigation and dissemination of knowl-
edge regarding vulnerabilities of aerial imaging are
imperative for guaranteeing the dependability and safety
of its implementations in critical and diverse sectors.

B. RESEARCH CONTRIBUTIONS

This study presents a noteworthy research contribution
through a comprehensive examination and analysis of the
landscape of adversarial attacks that are directed toward
aerial imagery. The manuscript encompasses multiple pivotal
aspects, furnishing a thorough comprehension of the topic.
To the best of our knowledge, it is the first-ever effort till date
consolidating adversarial attacks targeting aerial imagery.
This paper consolidates the various components of research
conducted by researchers, thereby establishing a cohesive
framework for researchers interested in pursuing this domain
of study. Our endeavor involves addressing the deficiencies
and presenting a strategic plan that would be advantageous to
scholars aspiring to undertake research on adversarial attacks
focusing on imagery through satellites, drones, and UAVs.
This review has made specific contributions, which are out-
lined as follows:

« Provision of Terminologies, Key-Concepts and Defi-
nitions: To insure cohesion in literature, it is considered
important to furnish precise depictions of the recurring
and particular terminologies that are present in this
paper. The present study also provides an exposition
of the frequently used terminologies in the pertinent
literature, as construed by the research community. The
section II provides an overview of key definitions, ter-
minologies, and concepts.

« Emphasis on Vulnerabilities of Deep Neural Net-
works (DNNs): Deep Neural Networks (DNNs) have
become ubiquitous in a variety of industries, including
healthcare, finance, and transportation. These models
have been developed to learn intricate patterns and make
precise predictions on new data, which has resulted in
their pervasive acceptance. DNNs are vulnerable to an
array of adversarial attacks and understanding these vul-
nerabilities is essential for constructing improved mod-
els and securing DNN-based systems. In this context,
the section III will address a few of the most preva-
lent vulnerabilities of DNNs to adversarial attacks and
emphasize certain approaches utilized to take advantage
of these vulnerabilities.

« Perspective-Based Distinction of Adversarial Attack
Methodologies: This study provides a succinct
overview of the two adversarial attack domains, digital
and physical, that are utilized to impede the function-
ality of machine learning models. The emergence of
innovative technologies and methodologies in machine
learning models has resulted in concurrent progress in
attack techniques, which present multifaceted risks. The
section IV presents a succinct and consolidated analysis
of both attack domains. This section will also discuss
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FIGURE 2. An illustration of traditional framework of digital adversarial attacks leading to physical manufacturing and incorporating perturbations

in physical space [63].

fundamentals which are the most impactful contribu-
tions serving as a source of influence for a multitude
of the latest techniques.

« Insights of Adversarial Attacks on Computer Vision
Tasks pertaining to Aerial Imagery: The authors
have comprehensively incorporated a variety of view-
points related to the field of adversarial attacks, with
a specific focus on their implications for computer
vision applications including object detection, image
segmentation, and image classification; that are linked
to aerial imagery. This paper showcases the vulnera-
bilities and challenges posed by adversarial attacks in
aerial image analysis systems by integrating existing
literature. Section V delves into the various techniques
and methodologies proposed for generating adversarial
examples in aerial imagery, providing a thorough evalu-
ation of their effectiveness and limitations.

o Constraints, Challenges and Future Directions: The
present analysis examines the constraints of prior stud-
ies and suggests potential directions for future inquiry
in this domain. The authors have duly acknowledged
the limitations and challenges associated with this
research domain. The constraints are related to the
insufficiency of annotated adversarial datasets that are
specifically designed for aerial imagery, the complex-
ity of developing effective defense mechanisms, and
the need for standardized evaluation metrics to assess
the impact of attacks. Furthermore, the authors high-
light the importance of collaborative endeavors and the
adoption of shared standards among researchers to facil-
itate the progress and evaluation of protective measures.
Section VI highlights the limitations and way forward is
discussed in Section VII.

The remaining article is organized in the following manner.
Section II of this paper presents definitions and concepts per-
taining to recurring terminologies of this field. In section III,
we will examine some of the primary susceptibilities of deep
neural networks (DNNSs) to adversarial attacks and highlight
specific methods employed to exploit these vulnerabilities.
Section IV provides a concise and integrated examination of
the two attack domains. In Section V, an in-depth analysis
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is presented on the different techniques and methodolo-
gies proposed so far for producing adversarial examples in
aerial imagery. The effectiveness and limitations of these
approaches are thoroughly evaluated. Section VI and VII
presents a thorough examination of constraints, recommen-
dations, and prospects for future research. In conclusion, this
review is summarized in Section VIIL

Il. TERMINOLOGIES, KEY-CONCEPTS, AND DEFINITIONS
In order to insure cohesion in literature, it is consid-
ered important to furnish precise depictions of the recur-
ring and particular terminologies that are present in this
paper. The present section presents interpretations of recur-
ring terms in related literature, generally perceived by the
research-community:

o Any change that is introduced into an original input
of DNN model, resulting in an inaccurate prediction,
is commonly referred to as an adversarial perturba-
tion. Frequently, it exhibits a configuration akin to that
of minimal & subtle noise.

« An adversarial example or image refers to an image
that has been intentionally altered to yield an erroneous
prediction by a model. Typically, the process involves
introducing disruptive noise to an authentic image in
order to calculate it. The antithesis of an adversarial
example is frequently characterized by a unique image
or original visual representation.

o The term adversarial medium is used to describe an
object that contains an adversarial perturbation. The
presence of an adversarial medium is a prerequisite for
executing an attack in the physical domain.

o The phenomenon of utilizing adversarial samples to
launch an attack on DNN-based models is commonly
referred to as adversarial attacks.

o The concept of a digital attack assumes that the attacker
possesses adequate knowledge of the actual digital input
of the model. The attacker in the digital domain has the
ability to manipulate the pixel values of target image.

o The availability of the digitized version of the model’s
input is not always a prerequisite for the occurrence
of physical attacks. The perpetuation of these attacks
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FIGURE 3. Outlook of survey’s framework.

is predominantly executed by means of modifying the o Within the framework of adversarial attacks, the term

intended image via tangible means, such as affixing
adhesive labels or positioning patches onto or in the
vicinity of the intended image.

The term white-box adversarial attacks pertains to a
situation wherein an attacker possesses full awareness
of the target model’s structure, parameters, and training
data. In the given context, the attacker is capable of
obtaining unrestricted access to all internal information
about the model and subsequently utilizing it to con-
struct adversarial examples.

Black-box attacks pertain to a situation in which the
attacker possesses prohibited or negligible accessibility
to the intricacies of the target model, which includes
its structure, settings, or data used for training. Within
this context, the attacker is limited to engaging with
the target model solely through the provision of input
samples and subsequent observation of the outputs
that correspond to those samples. The methodology
of black-box attacks frequently encompasses transfer
attacks, which entail the training of a substitute model
on a distinct dataset by the attacker, who subsequently
utilizes it as a proxy to produce adversarial exam-
ples. It is commonly assumed that the transferability
of adversarial examples to the target model is facili-
tated by the shared output-input association between
the substitute model and the target model. Black-box
attacks are typically considered more challenging due
to the attacker’s limited knowledge regarding the target
model.

Grey-box adversarial attacks fall in the intermediate
position between white-box and black-box attacks. The
grey-box scenario refers to a situation where the adver-
sary possesses only partial information or limited access
to the target model and its parameters, which is insuf-
ficient compared to the comprehensive knowledge that
is available in a white-box attack. Incomplete knowl-
edge may encompass details such as the structure of
the model, while excluding specific model parameters
or training data. Grey-box attacks involve situations
where the attacker possesses a surrogate model or a
substitute model that provides an approximation of the
target model’s behavior. The surrogate model is trained
on a distinct dataset and exhibits resemblances with the
target model. The utilization of surrogate models by the
attacker enables the creation of adversarial examples
that can be transferred to the target model, thereby tak-
ing advantage of shared characteristics in the way they
function.
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target image denotes a particular image that the attacker
endeavors to alter or mislead the target model into an
incorrect prediction. The selection of the target image
is a deliberate act by the attacker, often driven by a
particular aim or purpose. The process of choosing the
target image holds significant importance in the context
of adversarial attacks, as it plays a pivotal role in defin-
ing the precise objective of the attacker’s manipulations.
Within the discipline of adversarial attacks, the term
target model pertains to a particular machine learning
model or system that an attacker endeavors to manipu-
late or deceive. The commonly held assumption is that
the target model is a carefully trained model which has
been implemented for practical purposes. The aim of
the attacker is to circumvent or deceive the model’s
protective measures and capitalize on its vulnerabilities
to influence the model’s predictive process.

Target label denotes the intended misclassification
assigned to a malicious entity’s sample. Stated differ-
ently, it denotes the classification that the attacker aims
for the targeted model to anticipate. The aforementioned
notion assumes particular significance in the context of
targeted attacks, wherein the objective is to influence the
model’s output towards a specific category or identifica-
tion as per the attacker’s preference.

The main objective of an attacker in targeted attacks
is to influence the model’s prediction by causing it to
recognize a preconceived target class or label, regardless
of the authentic label associated with the input data.
The attacker employs perturbations on the input data,
exploiting the model’s vulnerabilities to manipulate its
decision-making mechanism.

Untargeted attacks are a type of attacks where the
attacker intentionally selects adversarial instances to
cause the target model to produce inaccurate predictions
that deviate from the actual data. The primary aim of the
adversary is to increase the prediction error of the model,
rather than focusing on a particular target label.

The utilization of adversarial training is a technique
implemented to enhance the resilience of machine learn-
ing models in the face of adversarial attacks. During the
training phase, the integration of adversarial examples is
implemented to improve the model’s resilience against
adversarial attacks.

The domain of adversarial defense is currently a sub-
ject of active research, given the persistent emergence
of novel attack strategies by attackers and the corre-
sponding efforts by defenders to enhance the resilience
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of their models. The objective of adversarial defense
is to develop machine learning models that exhibit not
only high accuracy and efficiency but also robustness
against adversarial attacks, thereby guaranteeing their
dependability and safety in practical scenarios.

« Physical world attacks, also known as real-world
attacks, refer to attacks that occur in the tangible domain
rather than the digital or virtual domain.

Ill. VULNERABILITIES OF DEEP NEURAL NETWORKS
Deep Neural Networks (DNNs) have become an omnipresent
tool in many industries, ranging from healthcare to finance to
transportation. These models are designed to learn complex
patterns and make accurate predictions on new data, which
has led to their widespread adoption. DNNSs are not impervi-
ous to attacks, though, and new studies have revealed that they
are susceptible to a variety of adversarial attacks [81]. Adver-
sarial attacks are intended to cause the model to anticipate
incorrectly, frequently by introducing undetectable perturba-
tion to the input data [26]. Understanding these vulnerabilities
is crucial to building more robust models and ensuring the
security of DNN-based systems. In this context, this section
will discuss some of the most common vulnerabilities of
DNNs to adversarial attacks [82], and highlight some of the
techniques being used to exploit these vulnerabilities.

o Adversarial attacks often use gradient-based optimiza-
tion techniques to find the most effective perturbations.
These methods identify the ways that the model is most
susceptible to input changes by using the variations of
the DNN’s loss function. Examples of methods that take
benefit of such weakness include the Projected Gradient
Descent (PGD) [35] and the Fast Gradient Sign Method
(FGSM) [26].

o DNNs are trained on large datasets with millions of
examples. These datasets often contain non-robust fea-
tures that are highly correlated with the class labels,
but not necessarily indicative of the underlying data
distribution. Adversarial attacks take advantage of these
non-robust features to create perturbations that cause
the DNN to make incorrect predictions. For example,
in [23], the authors show that DNNs trained on ImageNet
dataset are vulnerable to adversarial attacks that exploit
non-robust features such as high-frequency components.

« High model complexity DNNs are more susceptible to
overfitting to training data, which can reduce their resis-
tance to adversarial attacks. This overfitting is exploited
by adversarial attacks to produce perturbations that lead
to inaccurate predictions from the model. For instance,
in [31], the authors demonstrate that DNNs with a high
complexity are more susceptible to adversarial attacks
than models with a lower complexity.

« DNNs are sensitive to small perturbations in the input
data. Adversarial attacks take advantage of this vulner-
ability by adding small, imperceptible perturbations to
the input data, which can cause the model to misclassify
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the input. For example, in [83], the authors show that
even small perturbations can cause DNNs to misclassify
images.

o To target another model, it is often sufficient to use
adversarial instances originally created for a different
model. This is a potential weakness in DNNs and is
referred to as transferability. The authors of [28], for
instance, demonstrate that adversarial examples created
for one model can be used to effectively target other
models.

o DNNSs are often trained on limited amounts of data,
which can make them less robust to adversarial attacks.
For example, in [40], the authors show that DNNs
trained on a small subset of the MNIST dataset are more
vulnerable to adversarial attacks than DNNs trained on
the full dataset.

« Some components of DNNs, such as activation func-
tions, are non-differentiable. This can make it diffi-
cult to compute gradients and find effective adversarial
examples. For example, in [84], the authors show that
DNNs with ReLU activation functions are more vul-
nerable to adversarial attacks than DNNs with sigmoid
activation functions.

« While adversarial training can make DNNs more resis-
tant to adversarial attacks, it is not a solution. Adver-
sarial training can result in overfitting and may not
generalize effectively to new adversarial examples. For
instance, the authors of [27] demonstrate that adversarial
training can enhance the robustness of DNNs, but it
is still possible to generate adversarial examples that
deceive these models.

« DNNs are typically trained on a limited input domain,
such as images or text. Adversarial attacks that exploit
properties of the input domain, such as the spatial struc-
ture of images, may be particularly effective. For exam-
ple, in [85], the authors show that adversarial attacks
on image recognition systems can be significantly more
effective than attacks on text-based systems.

o DNNS can also be vulnerable to adversarial attacks that
compromise the privacy of users. For example, in [86],
the authors show that DNNs used for facial recognition
can be vulnerable to attacks that extract sensitive infor-
mation from facial images. This can include gender, age,
and other demographic information.

IV. DOMAIN OF ADVERSARIAL ATTACKS: A
PERSPECTIVE ANALYSIS

Since its inception as proposed by [23], scholars predom-
inantly concentrated on safeguarding DNN-based models
against adversarial attacks. Yet, the advent of recent research
has led to the proposal of diverse methods for carrying
out these attacks in both the digital and physical worlds.
Most digital attack strategies utilize methods that introduce
small perturbations into the input data, resulting in inaccurate
predictions generated by the model. The physical adversar-
ial attack is distinguished by its focus on the established
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FIGURE 4. Visual segregation of classification, detection and
segmentation tasks [87].

Image Classification

DNN algorithms in the real world, which presents a more
formidable undertaking owing to the intricate physical envi-
ronment. In order to be deemed acceptable in real world,
physical attacks must effectively acquire three fundamen-
tal targets: resilience, imperception and effectiveness. In a
dynamic context, the adversarial medium is required to
sustain its attack capability, which encompasses resistance
to various factors such as cross-models, cross-scenes, and
measurable limits. The technique employed must possess
effectiveness in impeding the victim model’s performance
and should be simple for implementation within the physical
environment. The medium in question must possess a level
of difficulty in its detection or remain imperceptible to the
naked human eye. Table 1 and Table. 2 provide a compre-
hensive overview of the most impactful contributions and
advancements in digital attack techniques (categorized by
methodologies) and physical attack techniques (categorized
by adversarial medium), respectively.

A. ADVERSARIAL ATTACKS IN THE REALM

OF COMPUTER VISION

Adpversarial attacks have been found to be applicable to var-
ious domains within computer vision [60] including but not
limited to image classification, object detection, and semantic
segmentation, which fall within the purview of this review
article:

o The task of categorizing an image into a specific class is
a conventional problem in the field of computer vision,
commonly referred to as image classification. Given
an input x as image and a proficiently trained classifier
f, the output is represented by f(x) = yqs where y.s
denotes the anticipated category of the input image.
The categorization of visual information through image
classification is a crucial element in the field of com-
puter vision, providing a foundational framework for
machines to comprehend and classify visual data. Deep
learning models possess the ability to acquire complex
visual features from unprocessed pixel data, leading to
the development of image classification systems that are
both highly precise and adaptable.

o Object detection refers to the procedure of identify-
ing the location of an object within an image while
simultaneously categorizing it. Given an input image x,
a proficient deep neural network (DNN) object detection
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TABLE 1. A summary of representative publications on physical
adversarial attacks (Categorized by adversarial medium).

Physical Adversarial Attacks
Adversarial Attack Medium [ Reference Works

Patch [46], [85], [88]-[94]
Sticker [95]-[105]
Makeup [51]

3D Printed Object [106]
Clothing [45], [104], [107]-[111]
Eye Glasses [112]

Image [27], [113]-[117]
Light [118]-[122]

Bulb [43]

Camera [123], [124]

model denoted as f produces an output denoted as
f(x) = Yobjecr Which comprises three distinct compo-
nents: objectness, classification, and boundary. Object
detection has undergone significant advancements over
time, with the incorporation of deep neural networks that
enable the acquisition of resilient representations and
precise localization of objects. As a result, object detec-
tion has become a crucial undertaking in both computer
vision research and practical applications.

o The primary aim of semantic segmentation is to catego-
rize each individual pixel into a pre-established group of
classes. Given an image as input denoted by x and a deep
neural network based semantic-segmentation model that
has been properly trained, the output is represented
as f(X) = yseqr Where, ygeo refers to the output that
defines the various components, including case cate-
gorization along with semantic-segmentation masking.
Every visual element identified by mask incorporates
unique color scheme. In contrast to the process of image
classification, which involves assigning a solitary label
to the entirety of an image, semantic segmentation offers
a more comprehensive comprehension of an image by
assigning a label to each individual pixel based on its
corresponding class or category. The process of semantic
segmentation furnishes machines with comprehensive
and intricate data regarding the scene, thereby enabling
them to comprehend the spatial arrangement and inter-
connections among diverse objects or regions.

Figure 4 visually illustrates the distinction between aforesaid
CV tasks.

B. DIGITAL ADVERSARIAL ATTACKS

Digital adversarial attacks refer to a category of attacks on
machine learning models that exploit their vulnerabilities
to manipulate the output of the model. These attacks entail
the introduction of minute perturbations to the input data,
which can result in the model producing inaccurate outputs
with a significant degree of certainty. Numerous machine
learning models have been demonstrated to be vulnerable to
adversarial attacks, encompassing those utilized for image
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recognition, speech recognition, and natural language pro-
cessing, as evidenced by various studies [23], [26], [31].
Whilst the effects of these attacks on machine learning mod-
els can be detrimental, there exist techniques to combat them,
including adversarial training [35] and input preliminary pro-
cessing [84]. Researchers in the fields of machine learning
and computer security are currently engaged in efforts to
comprehend and forestall adversarial attacks. The ensuing
discourse presents details pertaining to frequently employed
digital adversarial attacks in CV tasks.

o Szegedy et al. [23] introduced the earliest adversarial
attack technique known as Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS), which involved
creating adversarial perturbations through the max-
imization of prediction error of the network. The
L-BFGS algorithm aims to detect subtle alterations in
images that result in incorrect classification by a neural
network. By formulating the underlying issue as an
optimization problem, the primary aim is to identify
the perturbation that minimizes the discrepancy between
the network’s output on the modified image and the
desired classification. The L-BFGS method employs
a restricted-memory technique to estimate the inverse
Hessian matrix, which encodes the second-order deriva-
tive details of the objective function. The L-BFGS
method circumvents the requirement of explicitly calcu-
lating and retaining the complete Hessian matrix, which
can be both computationally and memory intensive for
optimization problems of significant scale, by estimat-
ing its inverse. The L-BFGS optimization algorithm
integrates the first-order gradient information with the
estimate of the second-order inverse Hessian matrix to
incrementally update the variables, thereby achieving
the minimization of the objective function. During each
iteration, the descending direction is calculated utilizing
the estimated inverse Hessian, followed by a line search
to ascertain a suitable step size. The iterative process of
the algorithm persists until it attains convergence, which
usually occurs when the gradient reaches a sufficiently
diminutive value. However, the optimization process
in L-BFGS presents challenges in practical situations
as it necessitates the optimization of parameters in a
layer-wise manner across numerous layers.

« In order to enhance the efficiency of adversarial attacks,
Goodfellow et al. [26] introduced the Fast Gradient
Sign Method (FGSM). The concept of adversarial train-
ing was motivated by the initial observation made by
Szegedy et al. [23] that the robustness of classifiers to
adversarial examples can be improved through their
training with adversarial images. Nevertheless, the com-
putational cost of resolving the optimization problem for
a considerable quantity of images is high. The Fast Gra-
dient Sign Method (FGSM) was proposed as a proficient
approach to calculate adversarial perturbations, in order
to tackle the aforementioned issue. The Fast Gradi-
ent Sign Method (FGSM) computes perturbations by
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leveraging the gradient of the cost function of the model
in relation to the input image. This technique generates
perturbations that are bounded by a norm. The authors,
employed the Fast Gradient Sign Method (FGSM) to
substantiate their linearity hypothesis. This hypothesis
posits that the susceptibility of neural networks to adver-
sarial perturbations is a result of their linear conduct
in high-dimensional spaces, which is induced by acti-
vation functions such as ReL.Us. The aforementioned
hypothesis presents a divergent perspective from the
dominant notion of the era, which posited non-linearity
as the primary factor contributing to susceptibility in
intricate networks. Fast Gradient Sign Method (FGSM)
was further extended through integration of L, [140] and
Lo [34] norms into the produced perturbation. Kurakin
et al. The authors of [34] introduced the Iterative Fast
Gradient Sign Method (I-FGSM), which is an itera-
tive variant of FGSM. Dong et al., through Momentum
Iterative-FGSM [39], subsequently improved the opti-
mization process by incorporating momentum.

The Basic Iterative Method (BIM) [34]represents a
notable advancement in the discipline of adversarial
attacks and is founded upon the principles of the Fast
Gradient Sign Method (FGSM). The iterative process of
creating an adversarial image using BIM entails modify-
ing an initial image through the incorporation of scaled
gradient direction additions or subtractions. Kurakin et
al. demonstrated the effectiveness of BIM by utilizing
printed adversarial images in real-world environments
to mislead the ImageNet inception model. The advent of
BIM has also acted as a stimulant for the progression of
physical world attacks. In addition, it has incorporated
the premise of targeted attacks, whereby the algorithm
boosts the model’s confidence on a specific target clas-
sification through modification of the iterative process.
The iterative process culminates when the the intended
number of iterations has been attained. BIM is also men-
tioned as Iterative Least-likely Class Method (ILCM).
An untargeted attack called DeepFool repeatedly cre-
ates minor image perturbations in the direction of the
closest decision boundary [41]. The objective of this
framework is to identify the least amount of perturba-
tions necessary to manipulate a deep neural network into
incorrectly classifying an input sample. The DeepFool
algorithm was developed on the premise of decision
boundaries within spaces of high dimensionality. The
process involves an iterative computation of the dis-
tance between the input sample along with the decision
boundaries of the neural network, followed by the deter-
mination of the optimal direction where the sample
needs to be perturbed to successfully cross the boundary.
The iterative procedure persists until the sample is erro-
neously classified or attains a predetermined threshold
of iterations.

The Projected Gradient Descent (PGD) method
employs an iterative technique to generate perturbations
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TABLE 2. A summary of most impactful publications and advance techniques in the field of digital adversarial attacks.

Authors & Reference ‘ Year ‘ Contribution Methodology Attack Type
Szegedy et al. [23] 2013 Limited-Memory Broyden- Fletcher-Goldfarb-Shanno (L-BFGS) Gradient-based Attack ‘White Box
Goodfellow et al. [26] 2014 Fast Gradient Sign Method (FGSM) Gradient-based Attack White Box
Moosavi-Dezfooli et al. [41] 2016 Deepfool Gradient-based Attack White Box
Goodfellow et al. [34] 2016 Basic Iterative Method (BIM) Gradient-based Attack White Box
Papernot et al. [81] 2016 Jacobian-based Saliency Map Attack (JSMA) Gradient-based Attack White Box
Madry et al. [35] 2017 Projected Gradient Descent (PGD) Gradient-based Attack ‘White Box
Moosavi-Dezfooli et al. [125] 2017 Universal Adversarial Perturbations (UAP) Optimization-based Attack ‘White Box
Carlini, N. et al. [40] 2017 Carlini and Wagner (C&W) Optimization-based Attack ‘White Box
Kurakin et al. [27] 2018 Iterative-Fast Gradient Sign Method (I-FGSM) Gradient-based Attack White Box
Dong et al. [39] 2018 Momentum Iterative-Fast Gradient SIgn Method (MI-FGSM) Gradient-based Attack White Box
Rony et al. [126] 2019 Decoupled Direction and Norm (DDN) attack Gradient-based Attack White Box
Yao et al. [127] 2019 Trust Region based Adversarial Attack Gradient-based Attack White Box
Dong et al. [128] 2020 Robust Superpixel-Guided Attentional Adversarial Attack Gradient-based Attack White Box
Guo et al. [129] 2020 Linear Backpropagation (LinBP) Gradient-based Attack ‘White Box
Dong et al. [129] 2020 Greedyfool: Distortion-aware Sparse Adversarial Attack Gradient-based Attack White Box
Sriramanan et al. [130] 2020 Guided Adversarial Margin Attack (GAMA) Gradient-based Attack White Box
Rahmati et al. [131] 2020 Geometric Decision-based (GeoDA) Attack Query-based Attack Black Box
Shi et al. [132] 2020 Customized Adversarial Boundary (CAB) Attack Query-based Attack Black Box
Lietal. [133] 2020 Projection & Probability-Driven Black-box (PPBA) Attack Query-based Attack Black Box
Lietal. [134] 2020 Query-efficient Boundary-based Blackbox Attack (QEBA) Query-based Attack Black Box
Ruetal. [135] 2020 Bayesian Optimisation-based Attack Query-based Attack Black Box
Wei et al. [136] 2021 Transferable Adversarial Attack Query-based Attack Black Box
Wei et al. [137] 2022 Meaningful Printable Adversarial Attack Query-based Attack Black Box
He et al. [138] 2023 Point Cloud Adversarial Perturbation GAN-based Attack White Box
Shi et al. [139] 2023 Customized Iteration and Sampling Attack (CISA) Query-based Attack Black Box

in incremental stages, while simultaneously ensuring
that the modified image remains within a pre-defined
epsilon-ball centered around the original image [35].
The PGD algorithm begins by initializing an initial input
example, and then iteratively modifies the input through
incremental adjustments in the direction of the gradient
of a selected loss function. The implementation of a
loss function is a method utilized to achieve a particular
goal, which may involve either optimizing the estimated
error of the model or reducing the level of confidence
linked with a particular category. After each iteration,
the modified input is mapped onto a group of viable
solutions. The customary characterization of this com-
bination entails a sphere of radius epsilon centered at the
initial input. The objective of this cartographic represen-
tation is to ensure that any disturbances remain confined
within the specified boundaries. The projection process
functions to limit the magnitude of disturbances, ensur-
ing that they do not exceed a predetermined threshold
and preserving the visual similarity between the original
and modified versions.

The Carlini and Wagner (C&W) attack is a method
that aims to detect the most minimal perturbation that
can cause an image to be misclassified as a specific
target category. The attack strategy is expressed in the
form of an optimization problem, wherein an objective
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function is established to encompass both the objec-
tive of misclassification and a component that gauges
the perceptibility of the perturbations [40]. The uti-
lization of the misclassification component fosters the
adversarial example to be categorized as either the
intended target class or an alternative class, other than
its actual class. The inclusion of a perturbation com-
ponent serves to impose a penalty on significant per-
turbations, thereby preserving the imperceptibility of
the resulting adversarial example. The C&W attack
approach presents the optimization problem in a man-
ner that permits adaptability in the specification of
the distance measure between the initial and modified
instances. Various distance metrics, including the Ly,
L>, or Lo, norm, can be selected. The selection of a
distance metric has a significant impact on both the
properties of the resulting adversarial examples and the
computational intricacy of the optimization procedure.
The C&W attack strategy utilizes optimization methods,
including gradient descent and binary search, to pro-
gressively modify perturbations until the intended mis-
classification and perceptibility standards are achieved.
The attack methodology alters the objective function
and optimization procedure to achieve a suitable equilib-
rium between the effectiveness and perceptibility of the
attack.
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« The One-Pixel targeted attack, involve the manipula-
tion of a single pixel within an input image, resulting
in an incorrect classification outcome [141]. The opti-
mization procedure commonly entails the selection of
the target class for misclassification, the development
of an objective function that quantifies the extent of
the misclassification error, and the imposition of con-
straints on the positioning and strength of the pixels.
Constraints may be imposed on the pixel location and
color value thresholds to ensure that the perturbation
remains undetected. It is crucial to understand that the
effectiveness of the One Pixel Attack technique may
depend on various factors, including the complexity of
the model, the dataset used, and the choice of optimiza-
tion algorithm. In addition, countermeasures that target
minimizing the impact of adversarial attacks, such as
input transformations or adversarial training, possess
the capability to alleviate the impacts of the One Pixel
Attack.

o The objective of Universal Adversarial Perturbations
is to generate perturbations that are independent of the
image content and can deceive an intended model on
any given image. The transfer-ability of these perturba-
tions across diverse images renders them efficacious in
deceiving multiple models. The perturbations adhere to
a constraint whereby the likelihood of the target model
incorrectly classifying an image that has undergone per-
turbation is equal to or exceeds a predetermined scalar
value §. Additionally, the perturbation must remain
within a specific norm-bound 7. An iterative algorithm
is utilized to calculate the perturbations, which dis-
place data points from their respective class regions.
This process results in the accumulation of perturbations
that alter the labels, while adhering to a predetermined
norm-bound.

C. PHYSICAL ADVERSARIAL ATTACKS

The creation of physical adversarial attacks involves the con-
version of digital adversarial attacks into physical forms.
The act of deceiving an object identification system in the
physical world is commonly achieved through the presenta-
tion of a digital adversarial example, either through printing
or projection. Physical adversarial attacks involve the cre-
ation of an adversarial image through digital adversarial
attack techniques, which are subsequently reproduced to pro-
duce an adversarial medium that can be utilized in the real
world. Generating physical adversarial attacks poses several
challenges that must be addressed to achieve effectiveness.
Several methodologies have been developed to address them:

o The challenge of accurately capturing subtle value
differences between neighboring pixels poses a signif-
icant obstacle in the field of adversarial image genera-
tion. The integration of the total variation loss concept
[106] into the objective function has been proposed by
researchers as a means of addressing this challenge. The
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regularization term of total variation loss is utilized to
measure the degree of variation in the pixel intensities
of an image. The optimization process is enhanced by
integrating total variation, resulting in the production
of adversarial images that demonstrate seamless pixel
transitions in their visual appearance. The utilization of
this regularization technique is of utmost importance in
generating authentic and visually credible adversarial
examples, thereby amplifying their efficacy in practical
situations.

« In the domain of physical adversarial attacks, a notable
barrier emerges as a result of the possible divergence
of hues present in the printed adversarial patches when
compared to their intended manifestation in the physical
environment. In order to address this issue, Sharif et al.
in their work [112] incorporated non-printability score
into the objective function to evaluate the printability
of colors in the adversarial patch within the physical
domain. The assessment of the non-printability score
pertains to the accuracy of color reproduction during
the printing procedure, which is a crucial aspect in the
development of a potent physical adversarial attack.
The aforementioned scoring mechanism functions as a
means of quantifying the precision of color replication,
thereby guaranteeing the development of robust and
dependable physical adversarial attacks.

« The Expectation over Transformations (EoT) [142]
concept is frequently utilized to bolster the resilience
of adversarial attacks against a range of real-world
variations. EoT involves the utilization of a adversarial
dataset that undergoes various transformations such as
rotations, translations, and scale changes. These trans-
formations are applied to simulate the inherent variabil-
ity that is encountered in the physical world, and the
attack is optimized using this dataset. Through exposure
to such variations, the attack proficiency is enhanced.

D. ADVERSARIAL MEDIUM IN CONTEXT OF PHYSICAL
ADVERSARIAL ATTACKS

The term adversarial medium pertains to the physical mate-
rial or medium utilized for conducting physical adversarial
attacks. The medium utilized in physical adversarial attacks
may encompass a diverse range of media or objects, including
but not limited to printed images, stickers, 3D-printed objects,
or physical changes created on the external appearance of an
object. These media are specifically engineered or adapted to
capitalize on the susceptibilities of machine learning systems
during their interactions with the real environment. Physical
adversarial mediums encompass a range of techniques that
can be employed to deceive computer vision systems. These
may include the use of printed images with meticulously
designed patterns [27], the placement of stickers on objects
in a strategic manner to induce misclassification [95], or the
physical alteration of traffic signals or stop signs to mislead
autonomous vehicles [85].
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Stickers [95], [96], [97], [98], [99], [100], [101], [102],
[103], [104], and [105] or patches [46], [85], [88], [89],
[90], [91], [92], [93], [94] are placed on objects or clothing
to obscure or distort their features, making them difficult
for recognition systems to identify. These stickers can be
designed to contain adversarial perturbations that can cause
recognition systems to misclassify the object. Clothing [45],
[107], [108] is designed with patterns or designs that can fool
recognition systems. These patterns can be used to create
false positives or negatives in the recognition system. 3D
printed objects based attacks [106] are designed to contain
adversarial perturbations that can fool object recognition sys-
tems. These objects can be designed to look similar to real
objects, but contain subtle changes that can cause recogni-
tion systems to misclassify them. Similarly in image-based
attacks [27], digital images are manipulated to produce phys-
ical effects when printed or displayed. For example, certain
patterns or colors can be used to create optical illusions
or distortions that can make it difficult for recognition sys-
tems to identify objects or people. Eyeglasses [112] and
makeup [51] have also been used as a medium to perform
physical attacks on face recognition systems. Light [118],
[119], [120], [121], [122], bulbs [43] and direct manipulation
of sensor [123], [124] have also been used as adversarial
mediums in real-world scenarios.

V. ADVERSARIAL ATTACKS ON AERIAL IMAGERY

The rapid advancement of machine learning models
employed in the examination of aerial imagery has enabled
the investigation of new territories in significant fields
such as urban planning [144], environmental surveil-
lance [145], emergency management [146], and other
emerging areas [147]. The vulnerability of these models to
adversarial attacks poses a significant challenge to the reli-
ability and accuracy of their outcomes. Adversarial attacks
targeting aerial imagery employ advanced techniques. The
aforementioned techniques involve the incorporation of sub-
tle perturbations into input data with the express purpose of
misleading the underlying algorithms. The possible conse-
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quences of such attacks can be considered severe, leading
to erroneous classification, inaccurate recognition of entities,
or compromised decision-making in circumstances where
safety is of utmost importance. Therefore, there is an urgent
requirement for a thorough examination and robust protective
strategies to effectively mitigate this emerging hazard.

The challenges posed in the aerial dimensions of physical
world attacks are inherently demanding and require careful
consideration. The challenges encompass concerns pertain-
ing to atmospheric impacts, illumination, sensor resolution,
fluctuations in lighting conditions, diverse fields of views and
distances. The aforementioned factors introduce intricacies
that have a substantial influence on the efficacy of adversarial
attacks within the aerial domain. As a result, the majority of
extant research in this domain has primarily concentrated on
visual tasks conducted on the ground, wherein the difficulties
pertaining to the aerial dimension are comparatively less
pronounced. The study of vision tasks that are conducted on
the ground has been the subject of extensive research. As a
result, models that are highly resilient and effective defense
mechanisms have been created to counteract adversarial
attacks.

This section provides insights into research work related
to adversarial attacks on aerial imagery primarily focusing
on three CV tasks such as classification, segmentation, and
object detection. Table 3 presents an overview of research
conducted in the areas of detection, classification, and seg-
mentation within the field of computer vision. The table is
organized chronologically, allowing researchers to categorize
the research based on various factors such as the com-
puter vision tasks involved, the targeted model or network,
the attack setting, the adversarial medium, and the datasets
evaluated.

A. CLASSIFICATION AND SEMANTIC-SEGMENTATION IN
CONTEXT OF AERIAL IMAGERY ADVERSARIAL ATTACKS
Czaja et al. [149] presented a novel technique in classification
of aerial images, wherein they generated adversarial instances
to classify satellite images. Their approach involved targeting
smaller regions of the image for inducing an incorrect predic-
tion by the classifier, which was successfully demonstrated.
The utilization of a deep convolutional neural network (CNN)
for object detection and the generation of adversarial exam-
ples through a variant of the fast gradient sign method
(FGSM) is employed by the authors. Adversarial examples
are produced through the manipulation of input images,
resulting in the misclassification of objects depicted within
said images. The authors employ the Functional Map of the
World (fMoW) dataset [150] to assess the efficacy of the
adversarial examples. This dataset comprises high-resolution
satellite images that are accompanied by ground truth object
labels. The study conducted by the authors demonstrates
the efficacy of their adversarial examples in misleading the
object detection CNN, resulting in the misclassification of
objects within the fMoW dataset. The study conducted by
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Chen et al. [152] centered on investigating the performance
of Remote Sensing Image (RSI) recognition models when
subjected to adversarial examples. The FGSM [26] and BIM
[34] algorithms were employed to launch attacks on various
converged RSI recognition models across diverse datasets.
The study conducted experiments on various convolutional
neural network models, including ResNet50 [177] and Incep-
tionV1 [178], which were trained on diverse datasets. The
classifiers were successfully manipulated to exhibit erro-
neous predictions. Authors further discussed the classifica-
tion problem in aerial imagery, particularly in the domains of
military and autonomous driving, posing a significant secu-
rity threat. The potential ramifications can be quite severe.
The authors also explain that within the military domain,
an attacker has the capability to produce adversarial pertur-
bations aimed at a specific target, such as an aircraft, and
conceal the object by means of a physical obstruction.

Yin et al. [148] conducted a study on various classi-
fier models, namely VGG-16 & 19 [179], ResNet34 [177],
and ResNetl01 [180], that were trained on PatternNet
dataset [170]. The authors demonstrated that the Universal
Adpversarial Perturbation (UAP) framework has the potential
to cause misclassification in these models. The authors pre-
sented a novel approach to deceive classifiers by enhancing
the universal adversarial perturbation framework using an
encoder-decoder network fusion. The flow chart depicted
in Figure 6 illustrate the process of generating UAP. Dur-
ing the training phase, the input is a random noise z that
follows a normal distribution with mean O and variance 1,
denoted as N(0, 1). The generator incorporates multi-layer
convolution, pooling, and upsampling procedures, thereby

VOLUME 11, 2023

ensuring improved extraction of high-dimensional features.
The process of generating an adversarial example involves
the introduction of perturbation to a given clean example,
followed by the application of a clipping operation. Sub-
sequently, the designated model is employed to make a
prediction. In the context of a target model denoted as Cy(x),
which is characterized by a parameter 6, it is possible to
accurately classify a given clean example x when the output
of the model, Cy(x), matches the correct label ¢ associated
with the example in question. In the event that perturbation
8 is introduced to the example, the model will inaccurately
classify the example provided that C(x 4 §) does not equal c.
The objective of the UAP is to identify a perturbation v that
satisfies the formula C(x + v) # c for a significant number of
clean examples. The intent is to identify a perturbation v that
results in the misclassification of a majority of the examples.

Similarly, Xu et al. [159] conducted a comparative anal-
ysis of various targeted classifiers and semantic segmen-
tation models. To achieve this, they employed black box
attacks, namely Mixup and Mixcut attacks, and identified
vulnerabilities that were shared across multiple networks.
The study presents a novel approach for generating ubiqui-
tous adversarial perturbations and evaluates its effectiveness
on diverse datasets and models, with the aim of enhancing
the dependability of remote sensing image recognition sys-
tems. Mixup-Attack approach, as proposed, is illustrated in
Figure 11. The central idea pertains to generating a mixup
image by employing a linear synthesis of training images
derived from disparate categories. The aforementioned com-
posite image is subsequently utilized to carry out adversarial
attacks at the level of features on the input image. Upon
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TABLE 3. Publications summary on aerial imagery in context of adversarial attacks & respective scenarios.

Authors & Year Task Targeted Network / Architecture Attack Con- | Attack Evaluated Dataset Evaluation
Reference figuration Scenario Metric
Czaja et al. [149] 2018 Classification CNN-I ‘White-box Digital-patch fMoW [150] Attack Success
attack Rate, Total Er-
ror Rate
Hollander et al. 2020 Detection Yolo-V2 ‘White-box Digital-patch DOTA [151] Average Preci-
[143] attack sion
Chen, L. etal. [152] 2019 Classification ResNet-50, Inception-V1 ‘White-box Digital NWPU [153], Fooling Rate
adversarial UCM [154], CLRS
attack [155]
Luetal. [156] 2021 Detection Yolo-V3, Yolo-V5, FasterR-CNN White-box Digital-patch NWPU-VHR10 Average Preci-
attack [157], DOTA [151], sion
RSOD [158]
Xuetal. [159] 2022 «Classification *Classification Black-box Digital *Classification Attack Success
*Semantic (AlexNet, VGGI16, InceptionV3, adversarial (AID [160], UCM Rate
segmentation ResNet-18, ResNet-101, DenseNet- attack [154])
121, DenseNet-201, RegNet- *Semantic
X400MF, RegNet-X16GF) segmentation
*Semantic Segmentation (Zurich-Summer
(FCN32s, FCNS8s, DeepLabV2, [161],  Vaihingen
UNet, Seg-Net, PSP-Net, SQ-Net, [162])
Link-Net, FRRNetA)
Du et al. [163] 2022 Detection Yolo-V3 White-box Physical-patch COWC(M) [164], Average
attack COCO [165] Objectness
Reduction Rate,
Objectness
Score Ratio
Zhang et al. [166] 2022 Detection Yolo-V3, Yolo-V5 ‘White-box Physical-patch VisDrone2019 Attack Success
attack [167] Rate
Van et al. [168] 2022 Detection Yolo-V3, Yolt-V4 ‘White-box Digital-patch VisDrone2019 Mean-F1
attack [167]
Wise et al. [169] 2022 Detection FasterR-CNN White-box Digital-patch COCO [165] Mean Average
attack Precision
Yin et al. [148] 2022 Classification VGG16, VGGI19, ResNet-34, White-box Digital-patch Pattern-Net [170] Attack Success
ResNet-101 attack Rate
Lian et al. [171] 2022 Detection YOLO-v2, YOLO-v3, YOLO-v5s, White-box Digital-patch RSOD [158], Average Preci-
YOLO-v5n, YOLO-vS5m, YOLO- attack & DOTA [151] sion
v5x, YOLO-v5l, FasterR-CNN, Physical-patch
SSD, Swin-Transformer Attack on
image-based
scaled scenario
Sun et al. [172] 2023 Detection FCOS, FasterR-CNN, YOLO-v4, White-Box Digital-patch DIOR [173], DOTA Mean Average
RetinaNet attack [151] Precision
Lian et al. [174] 2023 Detection YOLO-v2, YOLO-v3, YOLO-v5, White-Box Physical- RSOD [158], Average Preci-
SSD, FasterR-CNN |, Swin- Contextual DOTA [151] sion
Transformer, CascadeR-CNN, background
RetinaNet, MaskR-CNN, Fovea- attack
Box, Free-Anchor, FSAF, Rep-
Points, TOOD, ATSS, Varifocal-Net
Liu et al. [175] 2023 Detection ROI-transformer, Gliding Vertex White-Box Digital DOTA [151] Mean Average
adversarial Precision,
attack Vanishing Rate
Tang et al. [176] 2023 Detection Yolo-V2, Yolo-V3, Yolo-V4 White-Box Digital-patch NWPU-VHR10 Attack Success
attack [157], DOTA [151], Rate
RSOD [158]

encountering a surrogate model that is parameterized by
65, authors move on with extracting the superficial features
of both the original input image x alongside the mixup
image x. The function L, which pertains to the mixing
of images, is formulated by minimizing the KL divergence
that exists among the features of the mixup image and also
the input image. The application of cross-entropy loss L.
is utilized to facilitate the attack, as the limitation of Ly
does not incorporate the network’s predictions. The calcula-
tion of L., involves the comparison between the predicted
logits pertaining to the target image and the corresponding
true label. Therefore, the all-encompassing objective func-
tion £ is the combination of L. and L, with suitable
weighting. The creation of universal adversarial examples can
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be accomplished by integrating the gradients, also known
as adversarial perturbation, of the all-encompassing objec-
tive function L into the original unmodified image. The
mixup attack methodology also integrates the momentum
mechanism to augment the consistency of update directions
throughout the iterations.

B. OBJECT DETECTION IN CONTEXT OF AERIAL IMAGERY
ADVERSARIAL ATTACKS

Hollander et al. [143] studied and employed adversarial
attacks to deceive the Yolo-V2 object detection model [181]
that had been trained on the DOTA dataset [151]. This was
achieved by strategically placing patches of varying sizes on
specific images, thereby rendering them camouflaged and
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FIGURE 7. Depiction of contextual adversarial patches generated through
CBA to conceal aircraft from object detectors [174].

undetectable from aerial surveillance. The training approach
utilized by authors is based on the methodology proposed
by Thys et al. [46], as depicted in Figure 5. During each
iteration, a batch of images that feature airplanes was utilized
for patch training. The ongoing iteration of the adversar-
ial patch, which commences with a randomly generated
patch, was applied to the airplanes that were originally anno-
tated. Prior to being placed on the planes, the patches went
through a series of transformations, including scaling, rota-
tion, noise corruption, and contrast stretching, in order to
simulate real-life capturing circumstances. The patches also
underwent through an arbitrary rotation of 360 degrees due
to the absence of a pre-established position in aerial imagery.
The outcomes were the trained patches that predominantly
exhibit circular symmetrical designs. The YOLOv2 [181]
neural network was utilized for the purpose of training,
however, weights remained unchanged throughout the back-
propagation process. The patches were optimized through
loss formula i.e., L = aLyps + BLy + Lopj. The Lyyg guar-
antees the production of printable hues within the patch. The
utilization of L, serves to hinder the emergence of a noise
pattern in the patch. The term L, denotes the highest score
of objectness that an image can attain in the YOLO output.
Consequently, this term will diminish the level of confidence
in the detections made in the image. In every iteration that
followed, the patch was modified. The patch attack was found
to be effective in reducing the effectiveness of the model
that was targeted. The study revealed a correlation between
the magnitude of the patch and its ability to deceive object
detection systems. Lu et al. [156] addressed the problem of
physical attacks resulting from differences in size and scale
of the target image. Their study successfully showcased the
effectiveness of adversarial patches in attacking targets of
varying sizes. The aforementioned models, namely Yolo-
V3 [182], Yolo-V5 [183], and FasterR-CNN [184], were
subjected to critical evaluation by the authors across various
benchmark datasets. Their study introduced a novel attack
strategy, termed PatchNoobj, which aimed to enable the
adversarial patch to accommodate the scale variation of an
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Clean Images

Perturbed Images

FIGURE 8. Clean & perturbed images after application of adversarial
patch [166].

aircraft and effectively obscure it from the perception of an
object detector. Figure 9 depicts the framework architecture
of PatchNoobj. The PatchNoobj architecture comprises of
two distinct components, namely a patch applicator & a
detector. The task of affixing adversarial patches to airplanes
of varying dimensions is assigned to the patch applicator,
whereas the detector employs a comprehensive object detec-
tion methodology and is bound for the iterative improvement
of the adversarial patches through the loss function. The
authors initially established the target-ground truth of the
aircraft that required the attachment of the adversarial patch,
as well as the untarget-ground truth of the object not requiring
such attachment. Afterwards image was fed to the detector.
Adversarial patch scaling was determined by utilizing the
target ground-truth, and the mask was created to identify
the precise location for attaching the adversarial patch. The
untargeted ground-truth was utilized in the computation of
loss for optimizing the adversarial patch. The two aforemen-
tioned ground-truths bear resemblance to the ground-truth
pertaining to the bounding-box in object detection, and all
three share the common format of [x, y, w, h]. Subsequently,
the image is fed into the patch applicator, and a predetermined
adversarial patch of fixed dimensions is initialized randomly.
The process involved determining the scaling of the adver-
sarial patch, generating a mask based on the target ground
truth, and subsequently affixing the scaled adversarial patch
onto the aircraft within the image in accordance with the
mask. Finally, adversarial examples containing adversarial
patches were introduced into the detector. The loss between
the detector’s outcome and the untargeted ground-truth was
then computed using a loss function. The adversarial patch
was subsequently updated iteratively by loss optimization.
Van et al. [168] underscored the susceptibility of adver-
sarial patches, specifically with regard to the detection of
said patches by object detectors. The employment opportu-
nity also presented a notion for fabricating semi-transparent
patches that were predominantly detected by object recog-
nition systems. The researchers conducted experiments on
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FIGURE 9. Depiction of PatchNoobj Framework proposed by [156].

YoloV3 [182]and YoloV4 [185] models that were trained
using the Visdrone2019 dataset [167].

Wise et al. [169] introduced an innovative strategy for
producing camouflage patches that possess the ability to
effectively conceal substantial ground assets while remaining
imperceptible. A novel approach was suggested for gener-
ating unnoticeable patches, which involves augmenting the
object detection loss while simultaneously reducing color
perception. The experiments employed a FasterR-CNN [184]
model that had been trained on the COCO-2017 dataset [165].
In accordance with the methodology outlined in [186], a patch
tailored to each image was created. This was achieved by
optimizing the patch to maximize prediction loss, while
simultaneously constraining it within the RGB color space
to ensure its suitability for printing.

Nevertheless, all methodologies cited in the literature
[143], [156], [168], [169] have been validated exclusively
in virtual settings or by means of simulated environments,
without conducting empirical trials in authentic real-world
contexts. Du et al. [163] conducted a groundbreaking demon-
stration of physical world adversarial attacks, wherein they
deceived a Yolo-V3 [182] that had been trained on COCO
[165] and COWC-M [164] datasets by affixing oné&off
patches in physical scenarios. The authors utilized the
method proposed by Thys et al. [46] for optimizing adversar-
ial patches was adapted for use in aerial scenes. The study
also exhibited the effectiveness of patch attacks in various
weather conditions; nevertheless, it failed to address the issue
of weather conditions. Additionally, a novel metric Average
Objectness Reduction Rate (AORR) was introduced for eval-
uating performance in both digital and physical domains for
directly measuring the effect on objectness score. A higher
AORR can be achieved through the implementation of a more
efficient attack strategy.

Zhang et al. [166] were able to effectively deceive object
detection models [182], [183], which are designed to identify
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FIGURE 10. lllustration of results after application of different adversarial
patches on DOTA dataset [176].

multiple objects from diverse perspectives and elevations in
authentic settings. The authors introduced a novel approach
for targeting object detectors through the development of
a composite optimization problem that incorporates both
detection and object loss considerations. The authors first
conducted optimization of adversarial patches, which were
subsequently subjected to scaling and rotation prior to being
applied onto clean images. This process resulted in the cre-
ation of perturbed images through the use of an applicator
function. The iterative optimization process of the adversarial
patch involves updates through the gradient ascent algorithm,
with the aim of minimizing the loss function. This loss
function is composed of four distinct components, namely
object-loss, detection-loss, non-printability-score (NPS) loss,
and total-variation (TV) loss. The application of the apply
function is observed to result in the transfer of clean images to
adversarial examples, as depicted in Figure 8. The dimensions
of the patch correspond with those of the car-roof, and the
orientation of the patch with respect to the car undergoes
variation subsequent to a randomly generated patch rotation.

Lian et al. [171] proposed a novel attack algorithm termed
as adaptive-patch-based physical attack (AP-PA) that is
designed to produce adversarial patches with the objective of
concealing objects from aerial detection systems. Experimen-
tation was performed on multiple detection models including
single stage [182], [183], [187], single shot [188], two stage
[184] and transformer based detectors [189]. DOTA [151]
dataset was used to train object detctors whereas RSOD [158]
dataset was utilized for patch optimization. The iterative
process of the algorithm commences with a randomly gen-
erated patch, which is subsequently modified to achieve an
adversarial outcome. The process involves the application of
amodified patch onto an image, followed by the utilization of
a detector to identify objects within the modified image. The
computational procedure computes detection loss and subse-
quently modifies the patch through the utilization of gradient
descent in order to minimize the loss. The aforementioned
procedure is iteratively executed until the objective function
is minimized and patch is obtained. Objective function is the
sum of three losses i.e., non-printability score, total variation
and objectiveness score, as discussed earlier in IV-C.
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pink blocks, respectively [159].

Lian et al. [174] introduced a novel approach contex-
tual background attack (CBA) with the aim of deceiving
aerial detectors in real-world scenarios through background
adversarial patches. Experimentation was conducted on mul-
tiple models [3] and DOTA [151] datset, whereas patches
were optimized on RSOD [158] dataset. The optimization
of patches was undertaken to ensure adequate coverage of
significant contextual background areas, thereby enhancing
the detection process. The target was effectively concealed
within the image through masking with with patches, thereby
rendering them unnoticeable. The optimization also ensures
that the adversarial patches produced exhibit a high degree
of similarity to the surrounding context, thereby augmenting
their efficacy in misleading the detectors. Figure 7 depicts
various contextual adversarial patches generated by CBA to
attack object detectors.

Liu et al. [175] proposed Sensitive Pixel Localization
C&W (SPL-C&W) vanishing attack algorithm which mod-
ifies the original image through the optimization of patches
within the image. This process generates an adversarial exam-
ple that can effectively deceive the object detector, resulting
in the misclassification of objects present in the image.
The approach involves the utilization of the backpropaga-
tion in conjunction with proposed attack sensitivity mapping
algorithm for the purpose of calculating the perturbations and
subsequently updating the perturbed image on the basis of the
sensitive pixels. RIO-transformers [190] and Gliding vertex
[191] detection models and DOTA [151] dataset were utilized
during the study.

Tang et al. [176] proposed an attack technique based on the
works of [46] and [143]. However, a novel patch optimiza-
tion loss function was introduced. Rather than optimizing
adversarial patch directly through detection confidence score,
authors proposed to use intermediate outputs as loss function.
This proposal was based on the assumption that intermediate
outputs having better degree of freedom than final confidence
score, thereby enabling a more comprehensive representation
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of the inputs’ variability. Yolo-family object detction mod-
els [182], [183], [185] and NWPU-VHRI10 [157], DOTA
[151] and RSOD [158] datasets were utilized during the
study. Results of adversarial patch application on DOTA
dataset are illustrated in Figure 10.

VI. CONSTRAINTS AND POTENTIAL SOLUTIONS

This section will undertake an individual exploration of
the constraints encountered in research field of adversarial
attacks in context of aerial imagery, as well as potential
avenues for their resolution.

A. HOMOGENEITY IN ATTACK SCENARIOS

The constraint of insufficient variety in attack scenarios
pertains to the inclination of attacks on aerial imagery to
primarily focus on particular computer vision tasks, such
as object identification, detection or semantic segmenta-
tion. Although the aforementioned tasks hold significance,
certain crucial tasks pertaining to the analysis of aerial
imagery, such as anomaly detection, target identification,
or scene understanding, have not been given due consider-
ation in conjunction with adversarial attacks. The current
state of aerial imagery research indicates a restricted range
of attack scenarios, thereby limiting the diversity of such
scenarios.

In order to overcome this constraint, upcoming studies
need to work towards examining and scrutinizing adversarial
attacks on varied aerial imaging assignments that extend
beyond common ones. Through the broadening of attack
scenarios, researchers may gain valuable insights into the
existing vulnerability and construct resilient defense tactics
for the purposes of anomaly detection, target identification,
scene comprehension, and other vital applications within the
discipline of aerial imagery analysis. The incorporation of a
wider viewpoint is expected to enhance the general effective-
ness of the defense mechanism against such attacks.
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B. CONSTRAINTS IN PHYSICAL WORLD ATTACK
SCENARIOS
Physical world attacks pose a severe challenge since they
may take advantage of vulnerabilities which are challeng-
ing to predict or counteract solely through software-driven
safeguards. The success of these attacks is contingent upon
the exploitation of the physical characteristics of the sur-
rounding environment, as well as the constraints imposed
by the sensors or cameras integrated into aerial imaging
systems. Unfortunately, studies often impose limitations on
the investigation and understanding of real-world attacks on
aerial imaging systems. Most research efforts focus on digital
attacks, where tampering occurs within the digital version
of aerial imagery. As a result, there could be insufficient
emphasis on the effectiveness of actual physical attacks and
the corresponding strategies employed to mitigate them.
Reducing the vulnerability to physical attacks requires a
comprehensive approach that combines both concrete and
abstract measures of protection. It is imperative that research
efforts encompass the thorough examination and evalua-
tion of practical measures that have been implemented in
real-world scenarios, and their associated impacts on aerial
perception systems. Future research may involve examin-
ing techniques for detecting and mitigating physical attacks,
developing robust sensor fusion algorithms that can func-
tion optimally in challenging conditions, and exploring novel
strategies for protecting the security and reliability of the
aerial imaging systems.

C. LACK OF ATTACK GENERALIZATION AMONG
DISSIMILAR SENSORS

The development of attack strategies that can be effectively
migrated across diverse imaging devices poses a significant
challenge. The effectiveness of adversarial attacks that are
tailored for a particular aerial sensor, like RGB sensors,
may not demonstrate resilience when employed on other
sensor modalities that possess distinct resolutions or types.
for instance, different sensors record distinct scene elements.
Thermal imaging systems detect thermal signatures, RGB
imaging systems detect visible light, and multi-spectral sen-
sors detect a broad spectrum of wavelengths. Based on sensor
modalities, noise patterns, and sensitivities, adversarial per-
turbations affect sensor inputs in a manner that varies.

The assessment of the resilience of aerial imagery systems
in practical situations where various sensor modalities may be
utilized necessitates a comprehension of the transference and
efficacy of attacks across diverse sensor types. This facilitates
the creation of all-encompassing defense mechanisms that
take into consideration the variety of sensors employed in air-
borne platforms. It is imperative for researchers to investigate
the development of attack designs that can effectively exploit
shared vulnerabilities across various sensors, or alternatively,
to devise approaches to attack that are customized to the
distinctive features associated with each sensor modality.
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D. COMPUTATIONAL OVERHEAD OF ATTACK IN
REAL-TIME SCENARIOS

The computational overhead associated with real-time appli-
cations is a crucial factor to consider. In particular, the prompt
evaluation of aerial imagery becomes of utmost importance
for time-sensitive scenarios, such as monitoring or emergency
management. Numerous adversarial attack techniques entail
substantial computational costs, rendering them unfeasible
for real-time installation situations.

To overcome this constraint, it is imperative to devise
computationally efficient adversarial attack techniques that
are customized for applications that operate in real-time. It is
vital for researchers to investigate methods that can lower
the computational cost of current attack methodologies while
maintaining their efficacy. The process of generating attacks
can be expedited by employing approximation techniques or
algorithmic optimizations.

VIl. RECOMMENDATIONS AND FUTURE DIRECTIONS
This section provides a discussion, brief synopsis of recom-
mendations, and potential future directions.

A. OPTIMIZATION OF RANGE-INDEPENDENT
ADVERSARIAL PATCHES

One of the primary challenges currently encountered in this
field pertains to semantic segmentation and object detection
models. When contemplating object detection as a metaphor,
changes in the distance involving the sensor and the target
could significantly influence the efficacy of the adversarial
perturbation. In situations where the adversarial object is in
sensor’s close proximity, the target may appear magnified,
resulting in distinct adversarial features that can effectively
deceive the targeted model. In contrast, in cases where the
adversarial features manifest as indistinct patterns or the tar-
geted object is situated at a considerable distance from the
sensor, the attack is unsuccessful. Therefore, it is crucial to
investigate the techniques utilized in producing and enhanc-
ing adversarial perturbations that are capable of enduring
diverse target sizes and ranges.

B. PATCH IMPERCEPTIBILITY

The objective of employing physical adversarial attacks as a
means of protecting the assets is to substantially improve the
effectiveness of the attack, while simultaneously minimizing
the degree of perceptibility. The visual characteristics of the
adversarial patch are a crucial aspect to take into account,
given the susceptibility of the human visual system to novel
stimuli, which may increase the likelihood of a successful
attack. Therefore, it is considered worthwhile to conduct
additional research aimed at examining the creation of an
adversarial patch that is both more realistic and less notice-
able, while taking into account the limitation of perturbation
magnitude.
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C. ADVERSARIAL ATTACK’S TRANSFERABILITY

The concept of transferability is integral to the phenomenon
of adversarial perturbation, as it pertains to the capacity of
perturbations to mislead models that are both familiar and
unfamiliar. Nevertheless, the present physical attacks utilized
in this area of research have faced impediments. The question
of transfer-ability can be extended by means of ensemble
techniques, which involve the concurrent implementation of
multiple models. Furthermore, the exploration of the applica-
tion of vision transformers for the purpose of attaining model
transfer-ability is a promising avenue for future research.

D. ROBUSTNESS TO REAL-WORLD SCENARIOS

The most significant challenge in aerial imagery is the com-
plex physical conditions, particularly the environmental fac-
tors in real-world situations. The physical environments that
are considered complex encompass a variety of factors, such
as weather phenomena, illumination levels, distortion effects,
range limitations, opacity, and distortions that may arise from
the image sensor system. Contemporary methodologies fre-
quently overlook a significant subset of these variables and
fail to account for real-world environmental factors. Thus,
the optimization of adversarial mediums to accommodate
physical conditions continues to be a significant obstacle to
potential research avenues.

E. ADVERSARIAL ATTACKS ON UNLABELLED DATA

The research area concerning adversarial attacks on unla-
belled data has become a multifaceted field that has gar-
nered significant attention in recent years. Anticipated future
research initiatives in this field are expected to enhance con-
cerns related to adversarial attacks. The study aims to yield
supplementary advantages to the community by enhancing
attack strategies, strengthening the resilience of machine
learning models, evaluating the influence of adversarial
attacks on real-world scenarios, and scrutinizing their ethical
concerns.

F. STANDARDIZING EVALUATION METRICS

The prevailing assessment criteria primarily centers on the
measures of precision and robustness. The current metrics
under use evaluate the efficacy of machine learning mod-
els in accurately classifying images and their capacity to
withstand adversarial manipulation. Nevertheless, in certain
contexts that pertain to aerial imagery, there could exist
alternative metrics that are more pertinent and illuminating
in encapsulating the tangible consequences of adversarial
attacks. The development of standardized evaluation met-
rics that surpass the conventional measures of accuracy and
robustness can enable researchers to acquire a more profound
comprehension of the practical implications and outcomes.
The utilization of standard metrics can aid in the develop-
ment of aerial imagery models that are more robust and
dependable, customized to meet the distinct demands of the
application.
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VIil. CONCLUSION

The research article undertakes a pioneering and compre-
hensive analysis of adversarial attacks on aerial imagery,
leveraging current research in the field. The present inves-
tigation delves into the diverse spectrum of adversarial
attack methodologies employed in both digital and physical
domains. The article centers its focus on the noteworthy
successes observed in adversarial attacks pertaining to three
extensively employed tasks, namely classification, detec-
tion, and segmentation. The current research endeavors to
shed light on instances of adversarial attacks prevalent in
the applied discipline of aerial imagery. The overarching
goal of this review is to invigorate further investigations
by furnishing researchers by foundational understanding and
valuable resource enabling to devise more assertive attacks.
The aforementioned evaluation underscores the pressing need
for deeper research initiatives aimed at devising more robust
defensive tactics against these specific attack modalities.
In light of the ongoing advancements witnessed in aerial
imaging technology, it is of paramount importance to accord
priority to the protection of data integrity and confidentiality.
The significance of this technology assumes particular criti-
cality due to its multifarious benefits in the critical domain.
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