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ABSTRACT Within natural language processing, multi-label classification is an important but challenging
task. It is more complex than single-label classification since the document representations need to cover
fine-grained label information, while the labels predicted by the model are often related. Recently, large pre-
trained language models have achieved great performance on multi-label classification tasks, typically using
embedding of [CLS] vector as the semantic representation of entire document and matching it with candidate
labels. However, existing methods tend to ignore label semantics, and the relationships between labels and
documents are not effectively mined. In addition, the linear layers used for fine-tuning do not take the
correlations between labels into account. In this work, we propose a Multi-Label Guided Network (MLGN)
capable to guide document representation with multi-label semantic information. Furthermore, we utilize
correlation knowledge to enhance the original label prediction in downstream tasks. The extensive experi-
mental trials show that MLGN transcends previous works on several publicly available datasets. Our source
code is available at https://github.com/L199Q/MLGN.

INDEX TERMS Multi-label text classification, document representation, label semantics, contrastive
learning, label correlation.

I. INTRODUCTION
Multi-label text classification [1], [2] is one of the funda-
mental tasks in natural language processing (NLP) with a
wide range of applications [3], [4]. In text classification,
a document can belong to multiple topics and be labeled
with multiple tags. For example, in an NLP application in
the field of metal materials, the document can be associ-
ated with tags such as ‘‘computer’’, ‘‘knowledge graph’’,
and ‘‘materials science’’. In fine-grained sentiment analysis,
a negative label can be further refined into labels such as
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‘‘depression’’, ‘‘anger’’, ‘‘pain’’, and ‘‘fear’’. Multi-label text
classification can provide a more refined and comprehensive
representation of text content, which is better aligned with the
practical needs of the real world and has gradually become the
mainstream research direction in text classification.

Multi-label text classification can be classified into two
categories: traditional machine learning methods and deep
learning methods. To classify text, traditional machine learn-
ing methods require text features, which are usually extracted
by counting word frequency or using bag-of-words features.
These features are then used as input for a classifier, such as
decision trees [5], Bayesian [6], SVM [7], or KNN [8], [9].
However, traditional machine learning methods often have
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limitations in representing text, as they use discrete repre-
sentations that are high-dimensional and sparse, and don’t
capture the semantic relationships between text sequences or
contexts. This can make it difficult to learn the meaning of
the text, which leads to limited representation ability when
building classifier models.

One of the core problems in multi-label text classification
is to learn good representations for each input document.
In order to capture the semantic features of documents related
to labels, research in multi-label text classification has grad-
ually turned to deep learning methods, benefiting from the
more powerful ability of deep learning models in text repre-
sentation and complex feature extraction, as well as further
improve the accuracy of text classification. CNN-based deep
learning methods have the ability of representation learn-
ing [10], [11], but the fixed-size convolutional kernels can
only extract local document features and cannot focus on
the semantic information of the document context. RNN
treats the text as a sequence of words [12], [13], which can
capture the correlations between words and learn contextual
features. However, due to the sequential processing of text,
the computational cost increases with the length of the sen-
tence, which is not instrumental to solving long text problems.
Owning to the superiority of Transformer [14] in semantic
feature extraction, Google proposed a pre-trained language
model called BERT [15], which is based on the encoder
structure of Transformer. The model is trained through MLM
(Masked Language Modeling) and NSP (Next Sentence Pre-
diction) tasks to obtain excellent text representations, and has
achieved the best performance in various natural language
processing tasks. This has led to widespread research on
pre-trained models by scholars [16], [17]. However, most of
them only focus on the feature representations of documents,
without explicitly establishing a connection between docu-
ments and labels.

In recent years, the semantic information of labels has
attracted great attentions of scholars. Guo et al. [18] replaced
the original one-hot label encoding with better label distribu-
tion generated by label semantic information to improve the
final classification performance. Xiong et al. [19] improved
the performance of BERT in text classification by utilizing
label semantic information. However, they have limitations
on the total number of labels, and cannot effectively mine the
potential connections between labels and text in large-scale
multi-label text classification tasks. To address this issue,
HGCLR [20] used the label hierarchy usingGraphormer [21],
and fused label information with document information to
obtain positive samples. GUDN [22] used label semantics
to help BERT extract high-quality document features. How-
ever, their downstream task fine-tuning only uses a single
fully connected layer and does not consider the correlation
between labels.

Considering the semantic information of multi-label is not
fully utilized to enhance document representation, we pro-
pose the LabelInfo module, which employs BERT to extract
label semantic information to guide document encoding.

Since the documents and labels of each instance are cor-
responding, they are considered to be close in the latent
space. Therefore, by using contrastive learning to reduce
the distance between document and label vectors, we obtain
high-quality document representations to improve classifica-
tion accuracy. In order to effectively utilize label relevance,
we propose a new network architecture called LabelNet. The
LabelNet architecture is used as an additional enhancement
module for existing multi-label text classification architec-
tures to form a new end-to-end model. Our work is summa-
rized as follows:

1) The LabelInfo module we proposed combines BERT
and contrastive learning loss function of document-
label pairs to extract features, which could further guide
document representation while obtaining label seman-
tic information, and more effectively to find the latent
space between text and labels.

2) We propose the LabelNet module, which enhances the
original label prediction by utilizing relevance knowl-
edge. This module obtains label relevance predictions
by deeply exploring the potential connections between
related labels.

3) We fuse the LabelInfo and LabelNet modules to pro-
pose an end-to-endmulti-label guidance network called
MLGN. We conducted experiments on two benchmark
datasets and achieved state-of-the-art (SOTA) results.
Our results demonstrate that MLGN is helpful for
multi-label text classification tasks.

II. RELATED WORK
A. DOCUMENT REPRESENTATION
XMLCNN [11] uses dynamic pooling to pool each fea-
ture map into multiple features before concatenating them
to obtain the document representation. AttentionXML [13]
captures long-distance dependencies between words using
BiLSTM and uses a multi-label attention mechanism to
capture the most relevant parts of the text for each label.
LightXML [23] integrates BERT, RoBERTa [16], and
XLNet [17] models and concatenates the [cls] vectors from
the last 5 layers as the text representation. Zhang et al. [24]
argue that a global feature vector may not be sufficient to rep-
resent semantic information at different levels of granularity
in a document and propose to use word-level local features to
supplement it for additional gains.

B. LABEL SEMANTICS
Guo et al. [18] address the problem of one-hot encoding for
most text classification labels, which ignores the relation-
ships among text, labels and the semantic information of
labels, by integrating document representation information
into label representation. LSAN [25] constructs label-specific
document representation using label semantic information.
Xiong et al. [19] use label embedding technology to improve
the performance of BERT in text classification. The model
trains the document and label information together and
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FIGURE 1. The overall framework of the MLGN network.

achieves good results while maintaining almost the same
computational cost. GUDN [22] introduces label semantic
information to help fine-tune pre-training language models.

C. LABEL CORRELATION
Seq2Seq architecture transformsMLTC into a label sequence
generation problem by encoding the input text sequence and
decoding the label sequence [26], [27]. This method heavily
relies on the predefined label order and is sensitive to the
order of the labels [28]. Cornet [29] obtains label relevance
by using a linear transformation layer to connect the predicted
text results with their original output. However, the linear
transformation layer is not enough to deeply explore the
internal connections between related labels.

D. CONTRASTIVE LEARNING
In recent years, contrastive learning has been widely used
in NLP tasks. Many works have applied it to pre-training
language models [30], [31]. SimCSE [32] uses dropout as
data augmentation to obtain positive samples and improves
the ability of sentence representation. Su et al. [33] help the
model obtain text representation that is closer to samples with
similar labels by using contrastive learning, thereby improv-
ing the quality of KNN retrieval. Suresh et al. [34] propose
a label-aware contrastive loss function for fine-grained text
classification.

III. PROPOSED METHOD
This work proposes a multi-label guided network (MLGN)
that consists of two main modules: the LabelInfo module,
which guides document representation with label informa-
tion, and the LabelNet module, which uses correlation knowl-
edge to enhance original label predictions. Firstly, we use

BERT as a feature extractor to obtain the semantic features
of both the document and labels. These semantic features are
then input into the LabelInfo module, where label informa-
tion is treated as positive samples of document information.
By using contrastive learning, we can fully explore the rela-
tionships between the document and labels. Secondly, the
original label prediction output from LabelInfo is used as the
input to the Labelmodel, where the combination of the two
parts is called LabelNet. This module mainly obtains relevant
combinations of original tag predictions by training multiple
weight matrices. Finally,MLGNutilizes label semantic infor-
mation and label correlation to achieve accurate multi-label
classification results. The overall framework of this network
is shown in Figure 1.

A. PRELIMINARIES
Let Dataset = {(xi, yi)}Ni=1, where xi is the original document
and the i-th text is represented as xi = {w1,w2, · · ·wT },
T represents the input length of the document, wi is the i-th
word of the document. yi ∈ {0, 1}L is the corresponding
label set for xi, L is the label set of the dataset, and N is
the total number of examples in the dataset. The classifier
computes the probability pi of each label being true, where
pi = {p1, p2, · · · pL}. The binary cross entropy (BCE) loss
between pi and yi is calculated as follows:

LBCE (pi, yi) = −
1
L

∑
l∈L

[
yl log pl + (1 − yl) log (1 − pl)

]
.

(1)

Before being input to the BERT model, the document xi
is typically prepended with a special [CLS] token. For a
Transformer model with n layers, the hidden representations

80394 VOLUME 11, 2023



Q. Liu et al.: MLGN for Improving Text Classification

of the n-th layer is denoted as:

φ
(n)
bert (xi) =

{
h(n)cls , h(n)1 , · · · , h(n)T

}
. (2)

B. LabelInfo
The [CLS] token in BERT utilizes a self-attention mechanism
to obtain sentence-level information representation, which
can capture contextual information representations in differ-
ent contexts. We use the embedded [CLS] in BERT as the
semantic feature of the document and label. However, using
only the [CLS] of the last layer is insufficient for exploring
the relationships between the semantic features of the docu-
ment and the label. This is mainly because there are issues
with obtaining the feature information of the label: (1) The
label information is composed of related words and does
not contain contextual semantic information. (2) The label
information is usually shorter than document information and
is only provided by multiple labels corresponding to each
document. To address these issues, we concatenate the [CLS]
of the last five layers of BERT as its feature representation to
obtain hierarchically rich semantic information. Additionally,
the label and text share the same BERT, which significantly
reduces the model size and complexity, accelerating con-
vergence. During the training phase, document features and
label features are asynchronously extracted. The text feature
expression is as follows:

h = concat
(
h(−1)
cls , h(−2)

cls , h(−3)
cls , h(−4)

cls , h(−5)
cls

)
. (3)

Simply relying on a simple fully connected layer to link
the semantic information of the text and the label to the
one-hot label is unstable and uncertain. An effective and
simplemethod to solve this problem is to create an association
mechanism between the label information and the document
information. Therefore, we propose a document-label con-
trastive learning loss function to solve the above problem.
We guide the encoding of K document features, thus using the
features of K multi-label sets associated with the document,
so the total number of samples is 2K, I = {1, . . . , 2 K}.
We represent the index of the multi-label set corresponding
to the i-th document as the label(i), and the negative sample
is the remaining sample in I. The document-label contrastive
learning loss function expression is as follows:

LEncoder =

2k∑
i=1

− log
exp

(
hi · hlabel(i)/τ

)∑
k∈I/i exp (hi · hk/τ)

. (4)

where τ is the temperature coefficient, which helps to better
distinguish between positive and negative samples. hi is the
concatenated vector of the last 5 layers of [CLS] obtained
from h to obtain xi, which is the normalized document rep-
resentation vector.

The success of LabelInfo can be attributed to two main
factors. First, it utilizes the semantic information of the label
to guide BERT in extracting features related to the label from
the document information, resulting in a document repre-
sentation with label information guidance. Second, it creates

an association mechanism between the semantic information
of the label and the document information, using the label
feature encoding as a positive sample of the document fea-
ture. Through the document-label contrastive learning loss
function, it brings the projection space distance between the
document feature and the associated label feature closer,
while also guiding dissimilar instances to distance themselves
further apart in the projection space.

C. LabelNet
LabelNet is composed of raw label predictions and
Labelmodel, which is a computational unit that maps the raw
label predictions to enhanced label predictions based on label
correlations. The building blocks of LabelNet are shown in
Figure 2. Formally, the LabelNet construction is defined as:

Y = y+ Labelmodel(y). (5)

where Y and y are the output and input of the LabelNet
module. Specifically, y is the raw label prediction before
LabelNet, and Y is the enhanced label prediction with cor-
relations learned by the Label model.

FIGURE 2. The framework of the LabelNet network.

The simplest design for the label correlation module is to
add a linear layer after y, similar to Cornet [19], to obtain the
correlated label prediction through additional weight training.
However, a single linear layer is insufficient to deepen the
connection between labels, and the learned label correlations
are shallow. Therefore, we propose to deepen the label cor-
relation layer, where the output of the previous layer serves
as the input of the next layer. This allows us to focus on the
correlation between related labels and improve the learned
label correlation. However, deepening the network layers
may cause the predicted results to diverge. To address this
issue, we use the original label prediction as a constraint
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TABLE 1. Summary of experimental datasets.

for label correlation learning through residual connections.
In multi-label text classification, the total number of labels
can be large, but only a few of them are typically related. The
majority of labels are often unrelated to each other. Therefore,
the length of our label correlation layer can be much smaller
than the total length of the labels, which not only allows us
to focus on learning deep correlations but also reduces the
model parameters and accelerates model convergence. The
label correlation layer is defined as:

corlayer(v) = δ(Wv + b). (6)

where v is the input of the label correlation layer, W and b are
the weight matrix and bias of the label correlation layer, and
δ is the ELU activation function.

Considering that the raw label prediction, as the output
of labelInfo, has already achieved high accuracy and plays
an important guiding role in the label correlation prediction
as the input of LabelNet.We again amplify the effect of the
original label prediction through residual connections.

D. TRAINING AND PREDICTION
1) TRAINING
The MLGN is an end-to-end multi-label classification model
that is made possible by the constructed LabelInfo and Label-
Net. The goal of MLGN is to minimize the target loss
function Lsum , which includes LEncoder , LBCE

(
ptexti , yi

)
, and

LBCE
(
plabeli , yi

)
. The specific formula is defined as:

Lsum = λLEncoder + LBCE
(
ptexti , yi

)
+ LBCE

(
plabeli , yi

)
.

(7)

Here,λ is an adjustable coefficient for the contrastive learning
loss function of document-label, which is used to control the
balance between the losses. ptexti is the final probability of the
i-th document’s semantic information as input, and plabeli is
the final probability of the semantic information of the label
set associated with the i-th document as input.

2) PREDICTION
As we fully utilize the semantic information of the labels
during the training phase, andMLGN is trained when Lsum is
minimized. Even in the prediction phase without the condi-
tion of label semantic information, the MLGN model that
relies only on the semantic information of the document can

obtain guidance for the label semantic information during
document representation and final prediction, and the final
prediction probability of the i-th document is ptexti .

IV. EXPERIMENTS
A. DATASETS
1) EURLex dataset [35] is a collection of documents

related to EU law, containing 3956 topics with
15449 documents in the training set and 3865 in the
test set.

2) AAPD dataset [27] consists of 55840 abstracts and cor-
responding topics from papers in the computer science
field on arXiv, with 54840 in the training set and
1000 in the test set.

For both datasets, the maximum document length is 512,
and if the number of words in a document exceeds 512,
we truncate the document to the maximum number of words.
All methods are trained and tested on the datasets summa-
rized in Table 1.

B. EVALUATION METRICS
Considering that in multi-label text classification datasets,
the number of labels per sample is sparse with respect to
the total set of labels. For this reason in the evaluation
phase, we provide a short ranked list of potentially rele-
vant labels for each instance and evaluate the quality of
these ranked lists, focusing on the scores at the top of each
list. Therefore, this study uses two evaluation metrics to
verify the validity of MLGN: the top k precision (p@k)
and the normalized discounted cumulative gain (nDCG@k).
We calculate p@k and nDCG@k using the following
equations:

p@k =
1
k

∑
t∈rankk (ŷ)

yt . (8)

DCG@k =
1
k

∑
t∈rankk (ŷ)

yt
log(t + 1)

. (9)

IDCG@k =
1
k
6

min(k,∥y∥0)
t=1

1
log(t + 1)

. (10)

nDCG@k =
DCG@k
IDCG@k

. (11)

where ŷ is the predicted score vector, rankk (ŷ) is the indices
of the top k scores in ŷ, y is the true label vector, y ∈ {0, 1}L ,
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and ∥y∥0 is the number of relevant labels in y, that is, the
number of 1 in y.

C. BASELINE MODELS
To fully validate the effectiveness of the MLGN model, this
work compares it with state-of-the-art models for multi-label
text classification tasks in recent years, with parameters either
adopted from their original papers or determined through
experiments. The baseline models are as follows:

1) XMLCNN [11]: This model uses a convolutional neu-
ral network to represent text and dynamically extracts
hierarchically rich semantic features from text using
dynamic pooling.

2) AttentionXML [13]: A model based on label trees
that leverages the advantages of BiLSTM networks
to obtain contextual semantic information and obtains
document representation related to label information
through a label attention mechanism.

3) CornetAttentionXML [29]: An architecture that uses
AttentionXML as the text encoder and can leverage
the correlation information between different labels by
attaching a Cornet network module.

4) LightXML [23]: A lightweight deep framework with
dynamic negative label sampling. To ensure experi-
mental fairness, we use a BERT model to reproduce it.

5) GUDN [22]: A multi-label classification model that
utilizes label semantic information, which is the most
similar work to MLGN because they both use label
semantic information as guidance. However, it does not
effectively establish a mechanism for the association
between labels and documents, and lacks work on label
correlation.

D. PARAMETER SETTINGS
All of our experiments were conducted on a computer with
a Tesla V100 GPU and Intel Xeon 4210 (2.4G, 10C) CPU.
Our models used the pre-trained bert-base-uncased version as
a feature extractor, which consists of 12 Transformer blocks
with 12 self-attention heads and a hidden size of 768. The text
representation had a dropout rate of 0.5, and the adjustable
coefficient was set to 0.01. For the EURlex dataset, we set the
learning rate to 5e-5, the label Encoder input to the semantic
information of multiple labels corresponding to each sample,
the temperature coefficient was set to 5, the dimension of the
label correlation layer in LabelNet was set to 600, and the
number of training rounds was set to 40, with the training
batch size of 8 and the testing batch size of 16. For the
AAPD dataset, we set the learning rate to 5e-6, the label
Encoder input to the augmented label semantics (arXiv labels
with complete semantics as shown in Table 2) + the first
48 words of the document, the temperature coefficient was set
to 1, the dimension of the label correlation layer in LabelNet
was set to 30, and the number of training rounds was set
to 20, with the training batch size of 16 and the testing batch
size of 16.

TABLE 2. Labels and enhanced labels.

E. PERFORMANCE COMPARISON
We evaluated the performance advantage of our proposed
MLGN model over existing models using the p@k and
nDCG@k evaluation metrics. The best results are shown in
bold in Table 3. It can be seen that our proposed MLGN
model transcends current state-of-the-art multi-label text
classification models on every metric. However, XMLCNN
performs the worst, mainly because the text representation
obtained through CNN lacks contextual semantic relation-
ships. AttentionXML improves upon XMLCNN with the
attention mechanism, but it only focuses on document rep-
resentation and does not consider the work of label rele-
vance. This is why CornetAttentionXML surpasses it. The
Transformer model relies on its powerful feature extraction
ability to obtain high-quality text representations, and its
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TABLE 3. Comparison of different models.

classification performance is generally better than that of
traditional neural networks. GUDN enhances document rep-
resentation with label semantic information and performs
better than LightXML on the AAPD dataset. However, it is
inferior on the EURLex dataset as the documents in this
dataset are not traditional English words and do not fully
explore the relationships between labels and documents.

The MLGN successfully overcomes the limitations of
the previously mentioned models for three main reasons:
(1) it employs pre-trained language models for complex fea-
ture extraction, obtaining rich text representations through
the [CLS] vector of the last 5 layers; (2) it utilizes label
semantic information to enhance document representation
and fully capitalizes on the contrastive learning loss function
of document-label pairs to establish a connection between
the potential space of documents and labels; (3) it takes label
relevance into account for downstream tasks by utilizing the
depth of the label relevance layer to improve original label
prediction and capture relevant knowledge.

F. ABLATION EXPERIMENTS
In this section, we evaluated the efficacy of LabelInfo and
LabelNet in the MLGN by comparing the performance of
a single BERT module, a BERT+LabelInfo module, and a
BERT+LabelNet module. To ensure the fairness of the exper-
iments, we used the [CLS] vector of the last 5 layers of BERT
as the text representation for all three modules. Notably, the
input to the single BERT module was the document, the
input to the BERT+LabelInfo module was the document plus
the semantic information of the label, and the input to the
BERT+LabelNet module was the document only. The impact
of different modules is shown in Tables 4 and 5.
In the LabelInfo module, the BERT+LabelInfo module

outperformed the single BERT module on both the p@k and
nDCG@kmetrics on both datasets, which fully demonstrated
the feasibility of using label semantic information to guide
document representation. Moreover, to investigate the impact
of label information input in LabelInfo on model perfor-
mance, we found that the LabelInfo module had a greater

TABLE 4. Comparison of the ablation results of each module on the
EURLex dataset.

TABLE 5. Comparison of the ablation results of each module on the
AAPD dataset.

performance improvement on the EURLex dataset than on
the AAPD dataset. This can be attributed to the fact that the
EURLex dataset has a higher average number of labels per
sample than the AAPD dataset (as shown in Table 1), and the
semantic information of the labels in the EURLex dataset is
more abundant, while the semantic information of the labels
in the AAPD dataset needs to be obtained from external
knowledge (as shown in Table 2). This finding highlights the
direct impact of the quantity and quality of label information
on improving model performance.

In the LabelNet module, the performance of the single
BERT module was inferior to that of the BERT+LabelNet
module on both the EURLex dataset and the AAPD dataset,
which demonstrated the feasibility of exploring the relevance
of original label prediction. This can be attributed to the
fact that the single BERT module, which fine-tunes the last
5 layers’ [CLS] vectors using a linear layer to obtain label
probabilities in downstream tasks, often ignores the relevance
between labels. However, the LabelNet module can solve this
problem by learning the potential connections between labels.
This is particularly evident on the EURLex dataset, which has
a large number of total labels (3956 in total), most of which
are often unrelated. LabelNet can exclude irrelevant label
interference by obtaining a few relevant labels to improve the
model’s performance.
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G. DOCUMENT REPRESENTATION EXPERIMENTS
This section presents further experiments to explore the
effectiveness of the contrastive learning loss function for
document representations in comparison to label information,
as shown in Table 6. The MLGN network with a contrastive
learning loss function that incorporates document-label pairs
demonstrated the best performance on the nDCG@3 and
nDCG@5 metrics, confirming the effectiveness of the con-
trastive learning loss function in fully exploring the potential
space between document and label semantics. This success-
fully establishes a bridge between the semantic information
of documents and labels, enabling label information to effec-
tively guide and enhance document representations.

TABLE 6. Comparison of the role of the associated mechanism based on
the document-label contrastive learning loss function.

The MLGN utilizes the [CLS] vectors of the last 5 layers
of BERT and concatenates them to obtain feature representa-
tions, aiming to obtain higher-level and more hierarchically
rich semantic features to improve the effectiveness of the
model. To analyze howmulti-layer text representations affect
model performance, we compared it with only using the last
layer’s [CLS] vector as the text representation on the EURLex
dataset. The experimental results are shown in Figure 3,
where the multi-layer [CLS] has higher accuracy, indicating
that multi-layer text representations can extract higher-level
semantic features, and multiple layers can achieve the same
performance as a single layer using less time. For the final
metrics, multi-layers improved p@5 and nDCG@5 by 0.2%
and 0.35%, respectively.

To further explore the interpretability of MLGN’s high-
quality document representations, some visual work was
done on the document representations of MLGN in this
section. As shown in Figure 4, the document representations
in BERT are relatively scattered within each class and close
between classes, while in the MLGN model, each point
within each class is more concentrated, especially at the
boundaries of cs.DS and cs.LG. Although the points of cs.LG
appear at the boundary, they still appear in a concentrated
manner. Additionally, cs.DS and cs.LO are separated by a
relatively long distance in MLGN, while BERT does not
distinguish between these two classes well, with a close and
relatively overlapping distance.

H. LABEL CORRELATION EXPERIMENTS
In this section, we compare the effectiveness of our label
correlation module, BERT+LabelNet, with BERT+Cornet.

FIGURE 3. Effect of multi-layer text representations. Multi-layers
concatenate the [CLS] vectors of the last 5 layers of BERT as the text
representation, and single layer only uses the last layer’s [CLS] vector as
the text representation.

FIGURE 4. tSNE visualization of document representation vectors on the
AAPD test set. The document representation is obtained by concatenating
the last 5 layers’ [CLS] vectors in bert, and the tSNE maps learned on the
cs.DS, cs.LO, cs.LG, and cs.SI categories are shown.

The experimental results are shown in Figure 5. We pro-
pose the BERT+LabelNet module, which outperforms the
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FIGURE 5. Comparison of the LabelNet and Cornet modules.

TABLE 7. Prediction scores of related labels using MLGN on the EURLex
test set.

BERT+Cornet module on both datasets. This indicates
that deepening the label correlation layers and exploring
the potential connections between related labels can help
improve the prediction of original labels and enhance their
correlation.

To further investigate how MLGN leverages correlation
knowledge to enhance the prediction of original labels,
we present the prediction scores of several related labels on
the EURLex test set. As shown in Table 7, MLGN has higher

scores than a single BERT model, and the scores are closer in
each instance. This indicates that MLGN can identify related
labels and improve model performance.

V. CONCLUSION
This study proposes a multi-label guided network called
MLGN that incorporates label semantic information to
enhance document representation and improves label rele-
vance through original label prediction. As shown in Table 3,
our model outperforms prior work on both the AAPD dataset
and the Eurlex dataset on five evaluation metrics includ-
ing p@k and nDCG@k, demonstrating the superiority of
MLGN in multi-label text classification tasks. Our ablation
and analysis experiments reveal two points: (1) labelinfo can
utilize the semantic information of multiple labels to guide
document encoding and obtain high-quality document repre-
sentation. Our proposed document-label contrastive learning
loss function can also fully explore the potential space of
documents and labels. This solves the problem of existing
methods that tend to ignore label semantic information, and
fail to effectively extract the relationship between labels and
documents. (2) labelnet is feasible in acquiring deep label
relevance by deepening the label-related layers. Using the
knowledge of relevance to enhance original label prediction
addresses the issue that the linear layer used in pre-trained
language models for fine-tuning does not consider the rela-
tionship between labels.

We also demonstrate the feasibility of our approach
through label information enhancement on theAAPDdataset,
which has a small amount of label semantic information
that can be utilized. However, this enhanced label informa-
tion is achieved by using subject-specific knowledge, which
has a certain level of specificity. Additionally, as shown
in Table 6, the effect of our document-label contrastive
learning loss function on document representation is not sig-
nificant enough, mainly because the loss function treats each
instance’s label set as a whole, and cannot identify the internal
connections between labels within the label set.

In future work, we aim to explore label information
enhancement strategies for predicting labels efficiently and
accurately in situations where label semantic information is
lacking. We also plan to investigate fine-grained document-
label contrastive learning and focus on fully exploring the
potential relationships between similar documents through
their shared label attributes.
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