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ABSTRACT As each day passes by the world’s NT requirements increase due to increasing population and
technological advancements. Currently, traditional technologies are inadequate to support the requirement.
It is vital to investigate cost-effective and suitable green environmental technologies as a response. Future
connectivity(5G, 6G), programming, artificial intelligence and new technologies might be a resolution to
this resource crisis in this setting. Now, choosing amongst the most suitable option present itself as a
Multi-Criteria Decision Making (MCDM) challenge in which a judgment must be made in terms of a wide
variety of characteristics. In this paper, the extended MCDM strategies are proposed to optimizing new
technologies implementation. The novelty of the Fuzzy Hypersoft (FHS) set is discussed, which can deal
with uncertainties, vagueness, and unclear data. This framework is more flexible than the structures found in
literature as it can deal with the information where the attributes can be further sub-partitioned into attribute
values for a better understanding. It may not always be possible to analyze these criteria using precise figures;
instead, an assessment must be made using human and expert judgments for a more adaptable and sensitive
review. The adaptiveMCDMdesign with fuzzy edges incorporates Entropy (EN), SimilarityMeasure (SIM),
and TOPSIS techniques rely on FHS. The conveyed frameworks are better for probing NT issues because
they analyze a more expansive range of attributes, which can handle a component with multiple different
sub-attribute values. Expert ratings are used to demonstrate a practical application to highlight the relevance
of the proposed approach. In addition, a sensitivity analysis is done to investigate the impact of primary
criterion weights in sorting.

INDEX TERMS New technologies (NT), risk factors (RF), planning and development, multi-criteria
decision making (MCDM), entropy (EN), similarity measures (SIM), fuzzy hypersoft set (FHS).

I. INTRODUCTION
Implementing new technologies in organizations presents
both opportunities and risks. To ensure a smooth transition
and maximize the benefits, it is essential to prioritize and
address potential risk factors. Identifying and managing these
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risks early on significantly improves the likelihood of a suc-
cessful and effective implementation. The prioritization of
risk factors plays a crucial role in this context. It involves
evaluating and ranking potential risks based on their potential
impact and likelihood of occurrence. By focusing on the most
critical risk factors, organizations can allocate resources effi-
ciently, develop appropriate mitigation strategies, and mini-
mize the negative consequences associated with technology
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implementation. Effectively prioritizing risk factors requires
a comprehensive understanding of the organization’s goals,
objectives, and specific context [13].

It involves considering various aspects, such as techni-
cal challenges, organizational readiness, stakeholder engage-
ment, and potential disruptions to existing processes.
Additionally, recognizing that the significance of risk factors
may vary across industries highlights the need for a tailored
approach. Organizations can employ different frameworks
and methodologies to prioritize risk factors. These include
risk assessment matrices, risk scoring techniques, or qual-
itative assessments based on expert judgment. By utilizing
these approaches, organizations can systematically evalu-
ate and rank risks, enabling decision-makers to allocate
resources, establish appropriate risk management strategies,
and make informed choices throughout the implementation
process.

The ineptitude of parametrization initiatives could precipi-
tate these side effects [17]. Molodtsov [40] indicated the soft
set (SS) supposition as a computational intelligence strategy
for interacting with unpredictability or uncertainty that does
not apply to the previously stated troubles. SS pertains to
primitive systems in close proximity [41] and is an excellent
explanation of attempting to set deferential FS, as mentioned
by Thielle [42]. Bymerging SS and FS,Maji et al. [43] devel-
oped the concept of the fuzzy soft set (FSS). Maji et al. [44]
pioneered the use of FSS theory in object recognition misgiv-
ings. Maji et al. [43] conceptualized FSS by merging SS and
FS. Yang et al. [45] proposed an FSS principle by blending
the FS and SS and incorporating it in the decision-making
problems. The fuzzy event’s possibility indexes have sig-
nificantly contributed to FS and their premixed paradigms
discussed in [46]. De Luca and Termini [47] proposed a spe-
cific configuration of suppositions for fuzzy EN. On the other
hand, EN has received increasing attention than SIM, a pow-
erful skill for estimating the concentration of SIM between
two factors. The EN and SIM for diverse sorts, such as
interval-valued fuzzy set (IVFS) [48], FSS [53], and intuition-
istic fuzzy soft set (IFSS) [50], have been comprehensively
used in resolving decision making, sensory perception, and
spectrum sensing concerns.

The decomposition of influential factors and generalized
divergence-based decision making method can be achieved
through brainstorming or checklist techniques. These factors
can then be evaluated using fuzzy reasoning membership
functions and prioritized using the analytic hierarchy pro-
cess (AHP) [1], [3], [5], [79]. AHP is a widely recognized
decision-making technique for prioritizing alternatives based
on multiple criteria and attributes. The use of AHP does
not necessarily require complex mathematics but involves
decomposing the problem, making pair-wise comparisons,
and creating priority vectors. However, the current AHP
method has a limitation in dealing with uncertain scales in
real-world construction problems, which are often complex
and involve significant uncertainties and subjective judg-
ments. To address this limitation, a modified AHP method

is proposed to enhance its applicability in construction risk
analysis.

A comprehensive risk analysis should encompass all
aspects of risks involved in the construction process and
outline measures to minimize these risks. It should provide
sufficient details to identify and evaluate hazards that could
potentially lead to project failure, along with demonstrat-
ing the implementation of appropriate measures to reduce
risks to As Low As Reasonably Practicable (ALARP) [1],
[4]. A typical risk assessment framework consists of four
stages: risk identification, risk assessment, risk response, and
risk monitoring and review [6], [7]. However, the nature of
construction introduces considerable uncertainties and sub-
jectivities, which pose challenges to the applicability of many
commonly used risk assessment methods in the construction
industry. Fuzzy reasoning techniques have proven valuable in
addressing ambiguous and complex problems encountered in
construction projects, enabling reliable decision-making [8].
For ease of understanding, the attributes are separated

into sub-amounts in different adoption and implementation
ranges. Smarandache [54] met this criterion by improving the
FHS set (FHSS) as an outgrowth of the SS. He enlarged this
standpoint by re-envisioning SS as a multi-attribute frame-
work and concluding it to the FHSS. Saeed et al. [49], [55],
[72] presented some concepts such as Hypersoft (HS) and
used SIM methodologies for a medical situation in a neutro-
sophic atmosphere. Saeed et al. [55], [63], [63], [71], [72],
[73], [74], [75], [76], [77] several implementations of SS,
intuitionistic set, and intuitionistic HSS in machine vision,
biomaterials, discernment, and defined mapping in an HSS
concept. Abbas et al. [70] looked at hypersoft points in a wide
assortment of distorted contexts. Please see Table 1 for clear
comprehension.

A. MOTIVATIONS
As it is complicated to discern specialized data of NT
approaches employed prior around the globe, existing under-
standing and data treatments [39], [40], [43], [51], and [52]
are restricted to obtain configuration settings, the purpose of
this study is to forecast plausible contexts for NT schemes,
as well as their effectual recognizing treatment. The strate-
gies described in [39], [40], [43], [51], [52], and [78] are
unsatisfactory for a meticulous analysis of the data to have a
better insight and make sound decisions. These assumptions
fail to maintain when the characteristics have sub-parameters
with different types of individuals, as shown in [39], [40],
[43], [51], [52], and [78]. The extended MCDM strategies
are based on evaluating NT choices in Turkey. To accomplish
this goal, these methodologies are consolidated into an FHSS
comprised entirely by merging FS and HSS. The adaptive
fuzzy MCDM model incorporates EN, SIM, and TOPSIS
techniques that rely on FHSS.

B. CONTRIBUTIONS
The presented structures are suitable options for exploring
NT involved because it facilitates a broader spectrum of
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TABLE 1. Research gap, advantages and disadvantages.

membership grades, which can deal with situations where an
attribute has numerous sub-attributed values. Experts ratings
are used to demonstrate the useful applications and highlight
the proposed approach’s relevance. In addition, a sensitivity
analysis is done to investigate the impact of primary crite-
rion weights in sorting. The recommendations involved NT
approaches primarily on Accessibility, Technical character-
istics, Environmental factors, Technological stability, Instal-
lation and performance, Factors influencing the economy,
Political and Social influences variables. When applied in
combination with scientific modeling, these assumptions are
essential for accomplishing any plausible option.

C. THE DEMONSTRATION OF THE PAPER
Section II focuses on some of the paper’s fundamental pre-
cepts and terminologies. In Section III , IV , a proverbial
relevance of EN and SIM for FHSS, respectively, is supported
by examples. In Section V , TOPSIS is used to demonstrate
a practical application to highlight the relevance of the pro-
posed approach. In addition, a sensitivity analysis is done to
investigate the impact of primary criterion weights in sorting.
Section VI concludes the paper, please see Fig 1 for frame
diagram to clarify the working of the algorithms.

II. PRELIMINARIES
Numerous origins are described in this section of the article,
along with FS, SS, EN, SIM, and FHSS.
Definition 1: The FS, R = {(c, ϑ(c))| c ∈ K } in such a

way

ϑ : K → [0, 1],

where K personifies collection of objects and ϑ(c) exempli-
fies the membership level of c ∈ K . FS have been developed
by Zadeh [39].
Definition 2: SS is the pair (ϑ, J ) over K , where ϑ is a

mechanism that looks something like this:

ϑ : J → P(K ),

for o ∈ J , ϑ(o) can be anticipated as o mathematical abstrac-
tions of the SS aspects (ϑ, J ). This theory have been presented
by Molodtsov [40].
Definition 3: An EN is a factual map φ from FS(ϑ, J ) to

[0,∞) for FSS if φ fulfill the minimum necessities,
1) φ(ϑ, J ) = 0 if (ϑ, J ) is a SS,

2) φ(ϑ, J ) = 1 if ϑ(w) = 0.5, forw ∈ J , where [0.5] is the
FS is the level of membership function [0.5](b) = 0.5,
for every b ∈ K ,

3) Suppose (ϑ, J ) be crisper as compare to (ψ,K ) which
is, for w ∈ J and b ∈ K , ϑ(w)(b) ≤ ψ(w)(b) if
ψ(w)(b) ≤ 0.5 and ϑ(w)(b) ≥ ψ(w)(b) if ψ(w)(b) ≥

0.5. Then φ(ϑ, J ) ≤ φ(ψ,K ),
4) φ(ϑ, J ) = φ(ϑc, J ), where (ϑc, J ) is the complement

of FSS (ϑ, J ), which can be displayed as ϑc(w) =

(ϑ(w))c, for every w ∈ J . Liu et al. [53] developed the
EN which is popular weighting approach to evaluating
value disparity in selection.

Definition 4: AmapW fromFS(K ,R)×FS(K ,R) to [0, 1]
fulfils the quality requirements, it is labelled as an SIM for
FSS.

1) W (XK ,8K ) = 0, for any K ∈ R, and
W ((ϑ, J ), (ϑ, J )) = 1 for any (ϑ, J ) ∈ FS(K ,R),

2) W ((ϑ, J ), (ψ,K )) = W ((ψ,K ), (ϑ, J )), for any
(ϑ, J ), (ψ,K ) ∈ FS(K ,R),

3) For any (ϑ, J ), (ψ,K ), (K ,L) ∈ FS(K ,R) if
(ϑ, J ) ⊆ (ψ,K ) ⊆ (K ,L), then W ((K ,L), (ϑ, J )) =

min(W ((K ,L), (ψ,K )),W ((ψ,K ), (ϑ, J ))). Liu et al.
[53] developed the SIM which means that how closely
connected or identical datasets are to one another.

Definition 5: Suppose that K and ϑ(K ) are the acquisi-
tion as well as all ambiguous subsets of K respectively, let
t1, t2, t3, · · · , tn be determining factors with character traits
that match up to the sets G1,G2,G3, . . . ,Gn, respectively.
where Gi ∩Gj = 8 for i ̸= j and i, j refers to {1, 2, 3, . . . , n}.
The FHSS is the pair (6L ,L) over K categorised by a map
6L : L → ϑ(K ), where L = G1 × G2 × G3 × . . . × Gn.
Smarandache [54] met this criterion by improving the FHSS
as an outgrowth of the SS.

III. THE EN-BASED FHSS OFFERED WITH
IMPLEMENTATION
EN is amongst the most pertinent characteristics of FS
because it manages critical FS regulatory frameworks.How
can one calculate the degree of uncertainty in an FS? EN
is a method for estimating FS uncertainties. This section
augmented the construct of EN within the context of FHSS.
Specific respective theoretical constructs and integration are
addressed to illustrate the reliability and applicability of the
construction of new EN-based FHSS.
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FIGURE 1. Frame diagram for proposed algorithms.

Definition 6: A real function E : FHS(U) → R+
∪ {0} is

named an entropy on FHS set, if E satisfies all the following
properties,

1) E(ξ ) = 0 iff ξ ∈ FHS(U).
2) E(ξ ) = mn iff u9(g)(x) = 0, ∀g ∈ E and ∀x ∈ U .
3) E(ξ ) = E(ξ c) for all ξ ∈ FHS(U).
4) E(ξ ) ≤ E(ζ ) if ζ ⊆ ξ, where ξ = (91,G1), and ζ =

(92,G2).

A. PROPOSITION
Let ξ = (91,G1) be a FHS set, E : FHS(U) → R+

∪ 0 be a
mapping. Then E(ξ ) =

∑n
j=1

∑m
i=1(1− (u91(gj)(xi)) is a FHS

entropy for ξ = (91,G1).

B. ALGORITHM
Suppose X be the universal set and let G = Q1 ×Q2 × . . .×

Qn, where n ≥ 1 and Qi is the compendium of all valuable
features. The methodologies for the envisaged FHSS-based
EN are as described in the following.

1) Input each of the FHSS.
2) By using Proposition (A), determine the EN for each

FHSS.
3) Consider a FHSS with the smallest amount of EN and

choose it for the best conceivable result.
4) would choose anyone if it procured more than one.

C. EXAMPLE
As each day passes by, the world’s NT requirements increase
due to increasing population and technological advance-

ments. Currently, traditional technologies are inadequate to
support the requirement. It is vital to investigate cost-effective
and suitable technologies as a response. 3D-printing, future
connectivity(5G, 6G), programming, quantum computing,
and artificial intelligence might be a resolution to this
resource crisis in this setting. But new technologies imple-
mentation faces various risk factors. There are four X = {a =

3D Printing b = 6G internet c = Quantum computing }

new technologies implementation faces various risk factors
understudy, let a1 = Security Risk, b2 =Integration Risk,
c3 =Operational Risk, d4 =Financial Risk e5 =Regulatory
Risk be unique features with respective attribute values which
belong to gatherings Q1,Q2,Q3. He wishes to pick the opti-
mum NT choices. Let Q1 = {η1 = Durability, η2 =

Sustainability}, Q2 = {η3 = Insufficient communication},
Q3 = {η4 = Affordability, η5 = Contribution to economy},
where Q1 × Q2 × Q3 = G1 = {g1, g2, g3, g4}.

1) The management can incorporate this evidence in
the form of FHSS with the guidance of decision
makers (ψ,F), (ϕ,F) and (χ,F) respectively, 3D
Printing = ξ = (ψ,F) = {91(g1) =

{⟨u1, 0.3⟩, ⟨u2, 0.5⟩, ⟨u3, 0.2⟩}, 91(g2) = {⟨u1, 0.2⟩,
⟨u2, 0.8⟩, ⟨u3, 0.1⟩}, 91(g3) = {⟨u1, 0.7⟩, ⟨u2, 0.8⟩,
⟨u3, 0.4⟩}, 91(g4) = {⟨u1, 0.4⟩, ⟨u2, 0.6⟩, ⟨u3, 0.8⟩}},
6G internet= ζ = (ϕ,F) = {91(g1) =

{⟨u1, 0.4⟩, ⟨u2, 0.3⟩, ⟨u3, 0.5⟩}, 91(g2) = {⟨u1, 0.1⟩,
⟨u2, 0.9⟩, ⟨u3, 0.4⟩}, 91(g3) = {⟨u1, 0.5⟩, ⟨u2, 0.2⟩,
⟨u3, 0.3⟩}, 91(g4) = {⟨u1, 0.6⟩, ⟨u2, 0.2⟩, ⟨u3, 0.6⟩}},
Quantum Computing= η = (χ,F) = {91(g1) =
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{⟨u1, 0.4⟩, ⟨u2, 0.9⟩, ⟨u3, 0.1⟩}, 91(g2) = {⟨u1, 0.2⟩,
⟨u2, 0.4⟩, ⟨u3, 0.5⟩}, 91(g3) = {⟨u1, 0.4⟩, ⟨u2, 0.5⟩,
⟨u3, 0.2⟩}, 91(g4) = {⟨u1, 0.6⟩, ⟨u2, 0.2⟩, ⟨u3, 0.5⟩}},

2) The entropies can be calculated by using Proposition
(A) E(ξ ) = 6.2, E(ζ ) = 6, E(η) = 7.1,

3) The ideal solution is to use (ϕ,F) because it has the
lowest number of EN.

4) 6G is the best NT.

D. COMPARATIVE STUDIES
Several examinations of the previous techniques with short-
comings are explored to measure the proposed technique’s
reliability and supremacy. All existing restraints are abolished
when the aspects are further separated into data points. The
predicted EN-depend will address this prerequisite on FHSS.
For more detail, please see Table 2.

IV. SELECTION OF NT RESOURCES BASED ON
SIMILARITY MEASURE OF FHS SET
Here, distance Measures (DM) are discussed between FHS
sets and propose a proverbial definition of SIM for FHS sets.
Definition 7: Suppose that ξ = (91,G1), ζ = (92,G2)

and η = (93,G3) are three FHS sets in universe U . Assume
d is a mapping, d : FHS(U) × FHS(U) → R+

∪ {0} and it
possesses the following features:

• d(ξ, ζ ) ≥ 0,
• d(ξ, ζ ) = d(ζ, ξ ),
• d(ξ, ζ ) = 0 iff ξ = ζ ,
• d(ξ, ζ ) + d(ζ, η) ≥ d(ξ, η).

Then d(ξ, ζ ) is called a DM between FHS sets ξ and ζ .
Definition 8: A real function S : FHS(U) × FHS(U) →

[0, 1] is called a SIM between two FHS, (91,G1) = [aij]m×n
and (92,G2) = [bij]m×n if S meets the required conditions,
1) S(ξ, ζ ) ∈ [0, 1].
2) S(ξ, ζ ) = 1 iff [aij]m×n = [bij]m×n.
3) S(ξ, ζ ) = S(ζ, ξ ).
4) S(ξ, η) ≤ S(ξ, ζ ) and S(ξ, η) ≤ S(ζ, η) if ξ ⊆ ζ ⊆ η

for any η ∈ FHS(U).
Definition 9: Let U = {x1, x2, . . . , xm} be an initial uni-

verse development. Suppose that ξ = (91,G1) and ζ =

(92,G2), are two FHS sets, 91(g) = {x, µ91(g)(x), g ∈

G, x ∈ U}, 92(g) = {x, µ92(g)(x), g ∈ G, x ∈ U}, The
appropriate distances are then determined for ξ and ζ .
1) The Hamming distance, dHFHS (ξ, ζ ) =

∑n
j=1

∑m
i=1

|1iju(x)|, where 1iju(x) = u91(gj)(xi) − u92(gj)(xi),
2) The normalized Hamming distance, dnHFHS (ξ, ζ ) =

dHFHS (ξ,ζ )
mn

3) The Euclidean distance, dEFHS (ξ, ζ ) =
( ∑n

j=1
∑m

i=1
|1iju(x)|2

3

) 1
2 , where 1iju(x) = u91(gj)(xi) − u92(gj)(xi),

4) The normalized Euclidean distance, dnEFHS (ξ, ζ ) =

dHFHS (ξ,ζ )√
mn

Here, it is clear that the following properties holds,
1) 0 ≤ dHFHS (ξ, ζ ) ≤ mn and 0 ≤ dnHFHS (ξ, ζ ) ≤ 1
2) 0 ≤ dEFHS (ξ, ζ ) ≤

√
mn and 0 ≤ dnEFHS (ξ, ζ ) ≤ 1

It is notable that SIM can be produced from DM. Hence,
wemay utilize the proposedDM to characterize SIM between
Fuzzy hypersoft sets. In view of the relationship of SIM and
DM, a few SIM between FHS sets ξ = (91,G1) and ζ =

(92,G2) are characterized as follows;

SHFHS (ξ, ζ ) =
1

1 + dHFHS (ξ, ζ )

SEFHS (ξ, ζ ) =
1

1 + dEFHS (ξ, ζ )

SnHFHS (ξ, ζ ) =
1

1 + dnHFHS (ξ, ζ )

and

SnEFHS (ξ, ζ ) =
1

1 + dnEFHS (ξ, ζ )

A. ALGORITHM
SupposeX be the universal set and letG = Q1×Q2×. . .×Qn,
where n ≥ 1 and Qi is the compendium of all valuable
features. The methodologies for the envisaged FHSS-type
SIM are as described in the following.

1) Insert each of the FHSS.
2) Establish the SIM for each FHSS using definition 8.
3) Choose the FHSS with the most similarities.
4) Choose one of the optimums if it earned more than one.

B. EXAMPLE
Emerging technologies such as Artificial Intelligence (AI),
Software 2.0, Programming, and Robotics are transforming
diverse industries and sectors. AI entails replicating human
intelligence in machines, enabling them to carry out activ-
ities like decision-making and problem-solving. Software
2.0 signifies a transition towards utilizing machine learn-
ing and AI methods to construct software that can acquire
knowledge from data. Programming refers to the procedure
of developing computer programs using programming lan-
guages. Robotics encompasses the creation and utilization
of robots that possess the ability to perform tasks in the
physical realm. These advancements hold the promise of rev-
olutionizing fields such as automation, healthcare, and more.
It is essential in developing countries to obtain the proper
continuous supply that has a low impact on the environment,
budget, and business. This endeavor benefits a handful of
individuals. Availability, stability, and productivity are essen-
tial to address while evaluating viable NT resources. From
Example C,

1) Our purpose is to explore the perfect NT source based
on established of standards. The FHSS concept is
included in this setting below.
Artificial Intelligence ξ = (ϕ,F) = 91(g1) =

{⟨u1, 0.3⟩, ⟨u2, 0.5⟩, ⟨u3, 0.2⟩}, 91(g2) = {⟨u1, 0.2⟩,
⟨u2, 0.8⟩, ⟨u3, 0.1⟩}, 91(g3) = {⟨u1, 0.7⟩, ⟨u2, 0.8⟩,
⟨u3, 0.4⟩}, 91(g4) = {⟨u1, 0.4⟩, ⟨u2, 0.6⟩, ⟨u3, 0.8⟩},
Software 2.0 γ = (χ,F) = 92(g1) =

{⟨u1, 0.3⟩, ⟨u2, 0.2⟩, ⟨u3, 0.4⟩}, 92(g2) = {⟨u1, 0.5⟩,
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TABLE 2. The envisaged EN-based FHSS is compared with previous entropies.

⟨u2, 0.1⟩, ⟨u3, 0.2⟩}, 92(g3) = {⟨u1, 0.7⟩, ⟨u2, 0.2⟩,
⟨u3, 0.8⟩}, 92(g4) = {⟨u1, 0.2⟩, ⟨u2, 0.4⟩, ⟨u3, 0.5⟩},
Programming σ = (µ,F) = 92(g′′

1) =

{⟨u1, 0.1⟩, ⟨u2, 0.3⟩, ⟨u3, 0.6⟩}, 92(g′′

2) = {⟨u1, 0.1⟩,
⟨u2, 0.4⟩, ⟨u3, 0.6⟩}, 92(g′′

3) = {⟨u1, 0.5⟩, ⟨u2, 0.1⟩,
⟨u3, 0.2⟩}, 92(g′′

4) = {⟨u1, 0.4⟩, ⟨u2, 0.6⟩, ⟨u3, 0.2⟩},
and ideal NT in the form of FHSS is ζ =

(ψ,F) = 92(g′′′

1 ) = {⟨u1, 0.4⟩, ⟨u2, 0.6⟩, ⟨u3, 0.1⟩},
92(g′′′

2 ) = {⟨u1, 0.8⟩, ⟨u2, 0.2⟩, ⟨u3, 0.5⟩}, 92(g′′′

3 ) =

{⟨u1, 0.4⟩, ⟨u2, 0.3⟩, ⟨u3, 0.9⟩}, 92(g′′′

4 ) = {⟨u1, 0.3⟩,
⟨u2, 0.7⟩, ⟨u3, 0.6⟩}, By Definition 9, the Ham-
ming distance between ξ and ζ is dHFHS (ξ, ζ ) =∑4

j=1
∑3

i=1 |1iju(x)| = 3.6, dHFHS (γ, ζ ) =∑4
j=1

∑3
i=1 |1iju(x)| = 2.5, dHFHS (σ, ζ ) =∑4

j=1
∑3

i=1 |1iju(x)| = 3.7, and so, SHFHS (ξ, ζ ) =

1
1+1.2 = 0.21, SHFHS (γ, ζ ) =

1
1+1.2 = 0.28,

SHFHS (σ, ζ ) =
1

1+1.2 = 0.21.
2) Thus, (γ, ζ ) have highest SIM, so Software 2.0 is the

most optimal NT source.

C. THE FHSS’S FEATURES AND A COMPARATIVE ANALYSIS

In the following subsection, we provide an evaluation of
the introduced techniques considering their imperfections.
This assessment aims to determine the feasibility and effec-
tiveness of the proposed tricks. Additionally, we compare
the envisioned NT with other existing systems and iden-
tify certain shortcomings. We discuss these drawbacks by
illustrating the key concepts outlined in the relevant com-
ponents.However, when features are further segmented into
attribute values, all existing flaws fail to adapt. The concor-
dance of organizational components is depicted; please see
Table 3.

V. EVALUATIONS OF NEW TECHNOLOGIES USING A
TOPSIS-BASED OPTIMIZED FHS SET CLASSIFIER
A. A CASESTUDY/PRACTICAL EXAMPLE
Environmental research is of utmost importance, particularly
when it comes to the various aspects of NT. NT emerges
as an inevitable consequence of domestic, enterprise, and

organizational activities. To evaluate the options of New
Technologies on a global scale, this section proposes a com-
bined fuzzy Multiple Criteria Decision Making (MCDM)
framework based on the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) approach. The frame-
work takes into account specialized, contemporary factors
related to social, institutional, innovation, economic, and eco-
logical aspects. Through a detailed analysis, the evaluation
aims to provide insights into the potential impact of NT on
the environment.

B. THE EXPLORATION OF NEW TECHNOLOGIES
RESOURCES AND ITS ASPECTS
Analytic NT exploration and machine learning mathemat-
ics significantly impact the environment as they can serve
a significant role in the planning phase of the projects.
The obtained insight will most likely be highly influential
in the decision-making process involving numerous eco-
nomic, social, and ecological factors. There are various
kinds of NT that are explored. For more detail, please see
figure 2. In recent years, several groundbreaking technolo-
gies have emerged, revolutionizing various industries. 3D
Printing has enabled the creation of complex objects with
precision and speed, transforming manufacturing processes.
The advent of 6G internet promises lightning-fast connec-
tivity, enabling seamless communication and powering the
Internet of Things. Quantum Computing holds the potential
to solve complex problems exponentially faster, revolution-
izing fields like cryptography and drug discovery. Software
2.0 represents a paradigm shift in programming, utilizing
machine learning and neural networks to create intelligent
software systems. Artificial Intelligence has advanced signif-
icantly, empowering machines to mimic human intelligence
and automate tasks across diverse domains. Programming
remains a fundamental skill, allowing developers to create
innovative software solutions. Automation and Robotics have
gained prominence, enhancing efficiency and productivity
across industries through autonomous systems. These tech-
nologies collectively shape the future, paving the way for
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TABLE 3. Comparison of previous similarity measure to the proposed SIM.

FIGURE 2. Flow chart for different NT resources.

TABLE 4. All experts opinions collectively.

unprecedented advancements and transformative possibilities
[5], [9], [10], [11], [12], [14], [15], [16].

• 3D Printing
• 6G internet
• Quantum Computing
• Software 2.0
• Artificial Intelligence
• Programming

• Automation
• Robotics

C. ALGORITHM
Step 1: To create a decision average matrix for each alter-
native based on the collective perspective of professionals in
the FHS (Fuzzy Health System) set, we utilize the standard-
ized precipitation fuzzy conceptual framework. This decision
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TABLE 5. Normalized matrix.

TABLE 6. Weighted normalized matrix.

TABLE 7. Positive ideal solution.

TABLE 8. Negative ideal solution.

TABLE 9. Separation from positive ideal.

matrix has been widely recognized in the field. To apply the
TOPSIS, we need to rank the efficiency of each option using
the following equation:

rij =
xij√∑m
1 x

2
ij

; (1)

TABLE 10. Separation from negative ideal.

TABLE 11. Preference values.

with x = decision matrix; i = 1, 2, . . . ,m and j =

1, 2, . . . , n.
Step 2: Based on the weighted normalised rating (yij), the

weighted normalised fuzzy control matrix can be computed
as follows:

yij = wirij (2)

with i = 1, 2, . . . ,m; and j = 1, 2, . . . , n.
Step 3: To identify the best positive and negative solutions,

we construct the positive ideal solution matrix and the nega-
tive ideal solutionmatrix. The positive ideal solutionmatrix is
built using the equation(3), the negative ideal solution matrix
is evaluated using the equation (4).

A+
= (y+1 , y

+

2 , . . . , y
+
n ); (3)

A−
= (y−1 , y

−

2 , . . . , y
−
n ); (4)
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TABLE 12. Final ranking matrix.

Step 4: The distance between each attributic value of each
renewable energy source for each criterion and both positive
and negative ideal solutionmust be calculated in the next step.
The distance between alternative Ai and the positive ideal
solution can be demonstrated as equation (5):

D+
=

√√√√ n∑
j=1

(y+i − yij)2; (5)

i = 1, 2, 3 . . .m The distance between alternative Ai with
negative ideal solution can be formulated with equation (4):

D−
=

√√√√ n∑
j=1

(y−i − yij)2; (6)

i = 1, 2, 3 . . .m
Step 5: Determining the value of preference for each

alternative The preference value for each alternative (Vi) is
given as:

Vi =
D−

i

D−

i + D+

i

(7)

i = 1, 2, 3 . . .m
Step 6: Sort the options and select the best one.

D. NUMERICAL EXAMPLE
Step 1: Let X = {a =3D Printing, b = 6G internet,
c =Quantum Computing, d =Software 2.0, e =Artificial
Intelligence, f =Programming, g =Automation, h =

Robotics }, be a set of alternatives and {δ1, δ2, δ3, δ4} is a set
of experts who will evaluate the best alternative with weight
vector (0.2, 0.3, 0.1, 0.05, 0.15, 0.05, 0.05, 0.1)T , let a1 =

Environmental, a2 = Ubiquity, a3 = Economic, be distinct
features with respective feature values that are collections
main components Q1,Q2,Q3, let Q1 = {η1 = Depletion of
natural resources, η2 = Smart Technology, η3 = Need of
waste disposal, η4 = Environmental damage}, Q2 = {η5 =

flexible and proactive, η6 = Sustainability}, Q3 = {η7 =

Affordability}, whereQ1×Q2×Q3 = {Ci, i = 1, 2, 3, . . . 8}.
In collaboration with experts, we have developed a decision
average matrix for each alternative based on the collective
opinions of experts in the FHS set. This matrix is created
by considering a set of parameters and their respective sub-
parameter values, please see Table 4. Normalized Table 5 by
using Equation (1).

Step 2: By utilizing Equation (2), it is possible to develop
a weighted decision matrix for each alternatives, see Table 6.
Step 3: Compute the positive ideal solution and negative

ideal solution using Equations (3) and (4), respectively, see
Tables 7,8.
Step 4: Compute the distance of each candidate from pos-

itive and negative ideal solution using Equations (5) and (6),
see Tables 9,10.
Step 5: Compute the preference value for each alternative

using Equation (7), see Table 11.
Step 6: Rank the alternatives and choose the best one, see

Table 12.

VI. CONCLUSION
In conclusion, the increasing population and technological
advancements have led to a growing demand for new tech-
nologies (NT) worldwide. However, traditional technologies
are proving to be insufficient in meeting these requirements.
Therefore, it is crucial to explore cost-effective and envi-
ronmentally friendly green technologies as a response to
this resource crisis. The future direction lies in the devel-
opment and implementation of emerging technologies such
as connectivity (5G, 6G), programming, artificial intelli-
gence, and renewable energy solutions. The paper proposes
extended Multi-Criteria Decision Making (MCDM) strate-
gies to optimize implementation associated with new tech-
nologies. The novel approach of using Fuzzy Hypersoft
(FHS) set is discussed, which can effectively handle uncer-
tainties, vagueness, and unclear data. This framework offers
greater flexibility compared to existing literature structures
by allowing for sub-partitioning of attribute values, resulting
in a better understanding of the information. In the assessment
of criteria for energy options, precise figures may not always
be available, necessitating the use of human and expert judg-
ments. This adaptable and sensitive review approach ensures
a more comprehensive analysis. The adaptive MCDM design
incorporating Entropy (EN), Similarity Measure (SIM), and
TOPSIS techniques relies on the FHS framework. These
frameworks are particularly valuable for investigating renew-
able energy (RE) issues as they can handle a wide range of
attributes, including components with multiple sub-attribute
values. To demonstrate the practical application of the pro-
posed approach, expert ratings are utilized. This showcases
the relevance and effectiveness of the methodology. Fur-
thermore, a sensitivity analysis is conducted to assess the
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impact of primary criterion weights in the sorting process.
Moving forward, the research should focus on implementing
and testing the proposed MCDM strategies and the Fuzzy
Hypersoft set in real-world scenarios. Practical experiments
and case studies can provide valuable insights and validate
the effectiveness of the approach. Additionally, the frame-
work could be expanded to include other relevant factors and
criteria, considering the evolving nature of technology and
environmental challenges. As a future research suggestion,
various integrated fuzzy Multiple Criteria Decision Making
(MCDM) techniques such as Neutrosophic Hypersoft Set,
Plithogenic Hypersoft Set, Pythagorean fuzzy uncertainty,
Hypersoft Set, and Plithogenic Intuitionistic FHS (Fuzzy
Health System) Set, along with their hybrid structures, can be
applied to address a range of problems. These methodologies
have the potential to deliver desired outcomes and provide
valuable insights.

In particular, these techniques can find applications in
fields like medical imaging problems, image processing, and
pattern recognition studies. Their utilization in these areas
can contribute to advancements and improvements in various
aspects, including diagnostic accuracy, image enhancement,
and object classification.
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