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ABSTRACT This paper presents a Federated Learning (FL) algorithm that allows the decentralization of
all FL solutions that employ a model-averaging procedure. The proposed algorithm proves to be capable of
attaining faster convergence rates and no performance loss against the starting centralized FL implementation
with a reduced communication overhead compared to existing consensus-based and centralized solutions.
To this end, a Multi-Hop consensus protocol, originally presented in the scope of dynamical system
consensus theory, leveraging on standard Lyapunov stability discussions, has been proposed to assure that
all federation clients share the same average model employing only information obtained from their m-step
neighbours. Experimental results on different communication topologies and the MNIST and MedMNIST
v2 datasets validate the algorithm properties demonstrating a performance drop, compared with centralized
FL setting, of about 1%.

INDEX TERMS Discrete-time consensus, multi-hop, federated learning, distributed systems.

I. INTRODUCTION
Consensus theory, a branch of dynamical system theory that
deals with the coordination of distributed systems, has been
recently investigated in the context of Federated Learning
(FL), an emerging research trend for distributed machine
learning [1]. FL was designed as a solution for machine learn-
ing applications in which data could not be shared, collected
or re-distributed in any way, hence imposing the requirement
of having distributed learning agents cooperating to solve a
complex task in a privacy-preserving way [2]. The typical
FL algorithms envisage the presence of a centralized entity
that coordinates the learning by overseeing amodel averaging
procedure [1], and findsmore andmore application inmutiple
scenarios, such as the medical one [3]. Nevertheless, recently,
fully decentralized approaches for FL have been investigated.
In [4] a consensus-based FL algorithm leveraging on mutual
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cooperation of edge devices in wireless Internet of Things
(IoT) networks is proposed, whereas in [5] a similar algorithm
have been developed based on first-order dynamic average
consensus, while in [6] the authors proposed a FL protocol
based on discrete-time average consensus.

This work proposes the inclusion of a so-called multi-
hop consensus protocol in the design of a FL algorithm,
extending the previously proposed FedLCon algorithm [6]
with a new consensus law to mitigate its main limitations.
The main focus objective of the proposed algorithm is to offer
a solution that may be used to decentralize, with virtually
no performance loss, any FL application that relies on a
model averaging procedure. The specific multi-hop proto-
col employed in this paper was first introduced in [7] as a
solution to achieve faster consensus by exploiting multiple-
hop paths in the network. Contrary to the standard consen-
sus setting, in which the agents exchange information only
with their topological neighbours, multi-hop envisages this
exchange to also include information regarding a collection of
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their neighbours. The main characteristics of the proposed FL
algorithm are:

• The significant reduction (of about 66%) of the number
of communication rounds needed to assure convergence
compared to the previously proposed, 1-hop, algorithm
FedLCon.

• The complete transparency of the consensus protocol
with respect to the model averaging procedure that
characterizes FL, which makes the proposed solution
seamlessly deployable to the most recent horizontal FL
algorithms.

• The mathematical assurance that the decentralization
does not cause any significant performance degradation
in terms of the quality of the trained models, attained
through the assurance of implementing an exact dis-
tributed version of the model averaging procedure.

The remainder of the paper is organized as follows:
Section II discusses the relevant works in the literature;
Section III provides the reader with some background on
FL and discrete-time weighted consensus theory; Section IV
details the proposed multi-hop protocol; Section V shows the
applicability of the proposed solution to two test scenarios;
Section VI draws the conclusions and presents possible future
works.

II. RELATED WORKS
A common problem when dealing with multi-agent systems
(MAS) is the so-called ‘‘group agreement’’ that is the consen-
sus problem.Given a distributedMAS, each agent, which is in
principle a dynamical system, seeks to agree with the others
upon certain quantities of interest by using only a limited
amount of information received from the other agents [8].
Due to its very general formulation, the study of the con-

sensus problem has been conducted across multiple fields,
such as computer science [9], leading to the foundation
of distributed computing, management science and statis-
tics [10], [11], [12], and system and control theory [13],
[14], [15], [16].

At its core, FL can be seen as a group agreement problem
in which a machine learning model, such as a deep neural
network, has to be trained in a distributed way relying on
the cooperation of a set of agents/clients. Ever since its
original formulation [1], the fundamental characteristic of
any FL algorithm is to be found its ability to deal with a
non-independently and identically distributed (non-IID) and
imbalanced data distribution as-it-is, meaning that in a FL
setting any collection and/or re-distribution of the training
data is avoided, typically for privacy/confidentiality con-
straints. This capability is attained through a so-called model
averaging procedure, according to which a centralized server
periodically collects the locally trained machine learning
to evaluate a federation-wise average model by averaging
the models’ parameters. Over the past few years, a signif-
icant research effort has been spent on developing new FL

solutions, improving its capabilities with extensions mainly
focused in two directions:
• enhancing the communication between the server and
the clients, for example by reducing the number of
parameters transmitted [17], [18], [19] or the number of
clients taking part in the averaging procedure, [20] or by
implementing further privacy-assuring measures such as
weight/gradient encryption [21] or data encryption for
encrypted training [22];

• engineering the training loss function to attain better per-
formancewith fewer rounds of communications, as done
by the FedProx [23], [24], FedDM [19] and FedSR [25]
algorithms.

Compared to the original setting, which involved appli-
cations typically related to edge/IoT devices connecting to
a central server, FL has evolved to tackle new application
domains by the integration with technologies from other
computer science fields such as cybersecurity, cryptography
and blockchain, leading to algorithms that enable reliable and
trustworthy FL applications robust against malicious clients
[26], [27], [28] , corrupted servers [29] and unreliable com-
munications [30].
As mentioned, the present study aims to design an effi-

cient solution to allow the complete decentralization of other
existing and future FL algorithms as well as to achieve faster
convergence rates, removing the typical requirement of hav-
ing a centralized entity that governs the model averaging
process. In this direction, we rely on results from consensus
theory, and in particular from the so-called average consen-
sus field [31], to design an information exchange protocol
under which the federation is able to exactly decentralize
a centralized model averaging. Due to the exact nature of
the decentralization, and its independence from the training
process and its loss, the proposed solution is in principle
applicable to any of the mentioned FL algorithms, which
instead modify mainly communication-related aspects or
the characteristics/objectives of the local trainings. For the
sake of presentation clarity, we will present the developed
algorithm, based on multi-hop consensus, applied to the orig-
inal FedAvg.

The theoretical foundations for addressing the consensus
problem have been explored in works such as [32] and [33],
where a dynamical system is used both to model the informa-
tion exchanges between vehicles and to let them achieve con-
sensus in the context of linear time-invariant (LTI) systems
with fixed time delay. Works such as [34] have studied linear
and nonlinear consensus protocols for networked dynamic
systems subject to a fixed communication topology, while [8]
extended such results to switching/time-varying topologies.
More general cases and properties, including time-delays and
robustness, have been investigated in [35].

From an application perspective, consensus has been stud-
ied and deployed in multiple MAS domains. Among such
domains, one of the most popular application has been related
to formation control. In works such as [36], inter-vehicle
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FIGURE 1. (a) Standard Federated Learning system with a secure server (left) [1]; (b) Example of a decentralized FL setting
with bi-directional point-to-point communications (right).

interconnections are modeled as a graph, whose Laplacian
properties are studied to infer stability of the considered
formation, while in [37] a local collision-free stabilizing
nonlinear state feedback for the formation is derived using
potential functions [38] and a graph modelling interconnec-
tions. In [39], a control law for a group of unicycles connected
by a communication network is derived via artificial potential
fields and consensus algorithms, allowing obstacle avoidance
and rendezvous stability.

Consensus theory has also been broadly applied to smart
networks, among which we mention smart power systems.
In [40] a consensus-based droop control for real and reactive
power sharing in microgrids is proposed, while [41] applies s
consensus protocol to synchronize the state-of-charge (SoC)
and power levels of batteries.

Multi-hop techniques are commonly adopted in the areas
of computer science [9], [42] and have found application
also for consensus problems. In [7] a multi-hop relay tech-
nique is introduced to increase the convergence speed to
the consensus equilibrium, while in [43] a multi-hop-based
consensus protocol is employed to solve the global leader-
follower consensus problem. Moreover, application of multi-
hop communication in wireless sensor networks have been
investigated from a control control perspective in [44].

As mentioned, dynamical system consensus-based algo-
rithms have been employed also in the context of FL,
as in [4], [5], and [6]. Centralized FL approaches, as depicted
in Figure 1 (a), involve a server that collects the DeepNN
trained by each of the federation clients on the basis of their
private data. After this collection is conducted, the server
performs a model averaging procedure according to which
an average DeepNN is obtained from the various DeepNN
collected and is then propagated back into the federation for
further distributed training.

Several decentralized FL studies consider a federation
characterized by a sparse communication topology in which
each client acts as a server for its neighbours, as shown
in Figure 1 (b. In particular, the authors of [4] propose

a direct consensus-based extension of FedAvg [1] called
Consensus-based Federated Averaging CFA, and its exten-
sion Consensus based Federated Averaging with Gradient
Exchange CFA-GE which improves the speed of the learning
procedure by allowing each agent to exploit training gradients
coming from its neighbours. The work [5] introduces a FL
algorithm based on the first order dynamic average consensus
algorithm (FODAC) [45] applied to both time-invariant and
time-varying topologies. All these works decentralize the
FL process implementing a single iteration of a consensus
protocol between the local training steps, implying that the
consensus and training procedure are linked and one may
influence the convergence of the other. On the contrary,
as mentioned the present study assures that at the beginning
of each training round every federation client shares the
same average set of parameters, which also correspond to
parameters that a centralized server would have computed
in a centralized FL solution. This characteristic allows for a
stronger convergence assurance and expected performance,
as the learning process becomes transparent with respect to
the consensus procedure, meaning that, from the learning
clients’ perspective, the system evolves as if the centralized
server was in place.

Distributed FL approaches, not based on consensus, have
been explored in works such as [46], where a hierarchical
architecture is employed to allow for massive federations
in which multiple local servers cooperate in a distributed
fashion, [47] that relies on Bayesian learning for device-
to-device (D2D) networks and [48], that, similarly to this
work, focuses on improving the consistency/similarity of the
client’s models in a fully distributed FL setting. A different
approach has been followed by the authors in [49], where
they presented a centralized solution enhanced by client-to-
client communications. The present paper, and works such
as [30] and [50], rely on graph/matrix theory to charac-
terize the communication topology of the federation and
enhance the capabilities to allow its deployment for new
applications.
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The above-mentioned works, as the present paper, focus
on a so-called Horizontal Federated Learning (HFL) setting,
in which all clientts of the federation share a common model
architecture and seek to reach a consensus on its weights or,
equivalently, the values of the optimal weights for the aver-
age client. On the contrary, Personalized Federated Learning
(PFL) [51], [52] is a recent branch of FL that investigates
settings in which each client requires a fine-tuned, individ-
ualized, model.

III. PROBLEM FORMULATION
Consider a group, or federation, I of N cooperating agents
and Suppose that each client in I stores data, which is of
the same type for all nodes, and does have computational
capability.

FL aims to solve a distributedmachine learning (ML) prob-
lem in a cooperative way, making use of the above mentioned
computational capability and the data of each clients, without
requiring the exchange of any data among the clients.

The standard FL setting envisages that all clients in the
federation share a common ML model architecture (e.g., the
layers and structure of a Deep Neural Network (DeepNN))
but have no direct means of training suchmodel on the totality
of the federation data, as every client only possess a small
portion of data that it cannot share with the other cleints.

In other words, a client i ∈ I may only train its DeepNN
using its own dataset Di = {(αn, βn), n ∈ {1, . . . ,N }},
with αn and βn being an input sample and its corresponding
label/ground-truth value.

Such training process consist, as customary in ML, in the
iterative update, in a gradient-descent fashion, of the ML
model parameters/weights wi, by means of the minimization
of a so-called ‘‘loss function’’

Li =
∑

(αn,βn)∈Di)

li((αn, βn)|wi), (1)

where the function li captures some quantity whose mini-
mization is related to solving theMLproblem as, for example,
the mean squared error between the DeepNN guest and a
label in regression tasks or the categorical cross-entropy in
classification problems.

Note that, since the DeepNN architeture is common among
all the clients, the cardinality of all the weights vectors is the
same, i.e., |wi| = |wj| for all i, j ∈ I , but since the various
datasets Di are different, wi ̸= wj for all i, j ∈ I .
The goal of the federation is then to identify the set

of weights w∗ that minimizes the joint cost function [53],
defined as

L(w) :=
∑
i∈I

piLi(w), (2)

with pi =| Di | / | D |, where D =
⋃

iDi denotes the total
available data, and Li(w), the loss function of client i over its

entire dataset Di, is defined as

Li(w) = Li(Di | w) =
1
| Di |

∑
(αn,βn)∈Di

li((αn, βn) | w). (3)

In other words, the goal of the training procedure is to find
the optimal vector of parameters w∗ which, if shared among
all the clients of the federation, minimizes (2).

While in a standardML scenario the abovementionedmin-
imization of (2) is solved in a centralized fashion, by means
of a computing entity that has ccess to the entirety of the
available data, in a distributed setting data are arbitrarily
distributed over the federation, implying that the clients are
required to cooperate [1]. From a mathematical perspective,
this cooperation implies that the gradient ∇L(w) has to be
estimated from the gradients∇Li(wi) evaluated by the clients.

In order to solve the problem, if one could assume that
the data Di owned by the various clients are independent
and identically distributed (IID) with respect to D, and hence
EDi [Li(w)] = L(w)∀i ∈ I , it would follow that Li(w) provides
a good approximation of L(w) and the locally computed
gradients ∇Li(wi) could be averaged to reconstruct ∇L(w).
This approach is the one typically employed in distributed
settings, in which a centralized entity partitions the data so
that the IID hypothesis holds as common in multi-datacenter
and parallel ML solutions [1].

However, in a federated scenario, nothing can be said about
the data of each client, which is processed without any re-
distribution, and therefore, such IID hypothesis cannot be
assumed, i.e., Li(w) could provide an arbitrarily bad approx-
imation of L(w). For this particular reason, in [1] the authors
presented a round-based iterative procedure for model aver-
aging, called Federated Averaging (FedAvg).

Given a centralized server which orchestrates the learning
procedure of the federation of clients, FedAvg is based on
twomain steps, i) local training and ii) centralized averaging,
both iteratively repeated.

In the first phase, the server chooses a subset of clients
which undergo local training over their own datasetDi, while
in the second phase the server performs a weighted average
of the clients’ weights wi it collected and then forwards the
averaged weights to the entirety of the federation.

Algorithm 1 reports the presudo-code of FedAvg.
Even if several variants of FL algorithms have been devel-

oped (e.g., [54]), most of the solutions available in the
literature share with FedAvg both the centralized setting and
the two-step iterative structure of the training process.

In addition to centralized variants, several decentralized
algorithms have also been developed, in order to overcome
the single point of failure vulnerability related to the require-
ment of a learning-orchestrating centralized server, whose
behaviour needs to be completely trusted by all the clients.

In general, decentralized FL deal with federation char-
acterized by an arbitrary communication topology that can
be modeled by an undirected graph G = (I ,E), consisting
of the set I of N clients and the set E of edges, which
model the possibility of exchanging information between two
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Algorithm 1 FedAvg [1]

1: SERVER UPDATE
2: for each communication round t = 1, . . . ,T do
3: select a subset of clients for the averaging procedure
4: for all selected client i do
5: CLIENT UPDATE
6: Receive w̃i from client i
7: end for
8: set w(t) =

∑
i piw̃i(t)

9: propagate w(t) in the federation (wi(t) = w(t),∀i)
10: end for

11: CLIENT UPDATE
12: for each local epoch e from 1 to E do
13: for each mini-batch b from Di do
14: wi(t− 1)← wi(t− 1)−η∇Li(b | w(t− 1)), 0 <

η < 1
15: end for
16: end for
17: set w̃i(t) = wi(t − 1)
18: return w̃i(t) to the server

clients. In this framework, an immediate decentralization of
FedAvg, named DecFedAvg, was proposed in [6], envisaging
the model averaging procedure to be conducted by every
client on the basis of the weights collected from the its
neighbours. The signficant shortcoming of such a solution is
that, contrary to what happens in the centralized setting with
FedAvg, after each model averaging procedure, the various
clients i do not share the same set of weights and hence the
performance of the various DeepNN may vary significantly
over the federation.

To overcome this limitation, a consensus-based algorithm,
FedLCon, was also proposed in [6]. According to this
algorithm, the model averaging procedure is replaced by
a so-called ‘‘consensus round’’ that requires the clients to
exchange their weights according to a standard discrete-
time weighted-average consensus law. At the end of every
consensus round, the various clients share the same weights,
effectively decentralizing FedAvg without any performance
loss. In order to archive this result, a significant commu-
nication overhead is introduced, as each consensus round
requires a number of information exchanges that depends on
the federation topology and in particular on its connectivity.
To reduce the impact of this overhead, the next section will
present an extension of FedLCon that employs a multi-hop
consensus strategy.
Remark 1: Like FedAvg [1], also FedLCon [6] and its

extension to multi-hop protocols proposed here are com-
pletely transparent to the particular DeepNN employed to
solve the considered machine learning task. In other words,
the proposed solution will work without any modifica-
tion regardless of the neural network architecture being
employed.

IV. MULTI-HOP
Let G = (I ,E) be an undirected graph used to represent the
communication topology of a networked-MAS, with I being
the set ofN clients, and E ⊆ I2 being the set of edges; if there
exists an edge (ni, nj) between clients ni and nj, it means that
nj can receive information from ni.
A path is defined as a sequence of distinct clients

[n1, n2, . . . , nk ], such that (ni−1, ni) ∈ E , with i = 1, . . . , k ,
and it is called an m-hop path if it includes m + 1 clients.
An undirected graph is defined as connected if there exist a
path between any two nodes.

It is now possible to define the following matrices [55]:
The adjacency matrix A = {aij} ∈ RN×N is defined as

aij =

{
1, (ni, nj) ∈ E
0, otherwise

The degree matrix D = dij ∈ RN×N , where dij =
∑

j aij,
is a diagonal matrix and each diagonal entry corresponds to
the degree of node i, namely to the node’s number of edges.
The Laplacian matrix is then L = D− A.

Let xi(t) be the state of node ni at time t , and Ni = {nj ∈ I :
(ni, nj) ∈ E} be the set of its neighbours; a networked-MAS
is said to achieve consensus at a certain time t̄ if xi(t̄) = xj(t̄),
for all ni and nj ∈ I .
It is well known that under the hypothesis of a connected

undirected graph, and under the following consensus protocol

ẋi(t) =
∑
j∈Ni

aij
(
xj(t)− xi(t)

)
(4)

the networked-MAS reaches consensus, and each node share
a common consensus value

x̄ =
1
N

∑
i

xi(0) (5)

If each node ni ∈ I is associated with a weight pi, it is pos-
sible to defined the weight matrix P = diag(pi) ∈ RN×N , and
consider theweighted-average consensus problem. Under the
same assumption on the connectivity of the graph of the
previous case, following the following consensus protocol

piẋi(t) =
∑
j∈Ni

aij
(
xj(t)− xi(t)

)
(6)

the system reaches a consensus value that coincides with the
weighted average of their initial conditions:

x̄ =

∑
i∈I pixi(0)∑

i∈I pi
. (7)

Extending the previous considerations to discrete time,
assuming that the sampling time ϵ is such that ϵ <

mini∈I (pi/dii) [8], [31], the law (6) can be discretized as

xi(t + 1) = xi(t)+
ϵ

pi

∑
j∈Ni

aij(xj(t)− xi(t)). (8)

that in matrix form [31] becomes

xi(t + 1) = Hpx(t), (9)
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with Hp = IN − ϵP−1L, where IN is the identity matrix of
size N .
From (9), starting from the well-known definition of dom-

inant time constant for a discrete-time linear time-invariant
system and its settling time [56], it follows that the agents will
reach convergence, with precision of 99%, after a number of
steps nϵ :

nϵ = 5max
i∈I

⌈
−1

ln(| λi(Hp) |)

⌉
, (10)

where λi(Hp) is the i-th eigenvalue different from 1 of the
matrixHp and ⌈·⌉ denotes the ceiling function of its argument,
with a resulting 1%-settling time ta ≈ nϵ · ϵ.
The consensus framework can be employed in the FL by

providing an appropriate interpretation to the clients of a
given federation. Even if they are not dynamical system in the
strict sense of the term, the weights wi(t) of the DeepNN of
each client can be seen as its state xi(t) which evolves in time
as FL training procedure goes on. Having the goal of learning
a high-performance machine learning model specific to the
particular task being addressed, i.e., image segmentation,
classification, regression, without sharing their own data, the
clients, by iteratively updating their weights as described
in [1], can be seen as a group of agents seeking consensus.

As a result, while FedAvg requires a centralized server to
orchestrate the entire learning procedure, a consensus-based
approach such as FedLCon [6] provides a fully decentralized
solution. In fact, the weights of each client are updated via
a consensus round which lasts nϵ (10) times; by setting their
initial states equal to their weights resulting from the learning
procedure, i.e., using the symbols of Algorithm 1, xi(0) =
w̃i(t), for all i ∈ I , equation (8) becomes

xi(k + 1) = xi(k)+
ϵ

|Di|

∑
j∈Ni

aij
(
xj(k)− xi(k)

)
(11)

where ϵ and Di are defined as before, and the corresponding
consensus value becomes

xi(nϵ) ≈

∑
i |Di|w̃i(t)
|D|

, ∀i ∈ I (12)

meaning that, after nϵ consensus iterations, the state of
each client corresponds to an approximation of the weights
computed in a centralized way in FedAvg - see line 8 of
Algorithm 1. The procedure is iteratively repeated when-
ever communication among clients is permitted. Algorithm 2
reports the pseudo-code for FedLCon.

As the consensus procedure is transparent to any FedAvg-
like algorithm, the present work allows the use of multi-hop
communications within the FedLCon algorithm, providing
each client with more information to update its weights, com-
ing not only from its neighbours, i.e., 1-hop communication,
but also from the neighbours of its neighbours, i.e., m-hop
communications.

Algorithm 2Multi-Hop FedLCon

1: DECENTRALISED FEDERATED LEARNING
2: for all communication rounds t = 1, . . . ,T do
3: for all clients i ∈ I do
4: for each local epoch e from 1 to E do
5: for each mini-batch b from Di do
6: wi(t−1)← wi(t−1)−η∇Li(b|wi(t−1))
7: end for
8: end for
9: set w̃i(t) = wi(t − 1)

10: end for
11: update wi(t) via a CONSENSUS ROUND
12: end for

13: CONSENSUS ROUND
14: Compute nϵ according to (10) depending on the topology
15: Set xi(0) = w̃i(t) for all clients i ∈ I
16: for k = 0, . . . , nϵ − 1 do
17: for all clients i ∈ I do
18: update xi according to (14)
19: end for
20: end for
21: set wi(t) = xi(nϵ) for all clients i ∈ I

Given the graph G, suppose to consider two-hop paths; the
corresponding consensus protocol [7] is described as follows

ẋi = −
∑
j∈Ni

aij

(
xi − xj

)
+

∑
k∈Nj

ajk (xi − xk)

 (13)

As a result, client i expands its knowledge by receiving not
only information coming from its neighbours j, but also from
the neighbours of j resulting in a better convergence perfor-
mance of the network. The approach of multi-hop may be
extended to m-hop relay case. Therefore the multi-hop relay
protocol can improve the convergence speed without increas-
ing the number of links and cost, but at the price of extra
communication bandwidth. In addition, with the increasing
of the more number of hop m the protocol leverages, the
faster the convergence speed is, while the more sensitive the
protocol is to the time delay. This arises a trade-off among
convergence speed, bandwidth and sensitivity to time delays
to account in the protocol design [57]. In this respect the 2-
hop relay protocol strongly improves convergence speed with
a reduced detriment of delay-stability margin and bandwidth.
This is why for the considered healthcare application, that
usually presents low-latency communication, we will con-
sider m = 2. Moreover, the extra requirement of bandwidth
may be mitigated by transmitting in the same packet the
information of the state of both a node and its neighbors, at a
price of a small reduction of delay-stability margin. This also
reduces packets lost for collision phenomena, making this
algorithm appealing also for edge-computing scenarios [57].
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FIGURE 2. Test DeepNN architecture.

Starting from G and allowing for two-hop communica-
tions, it is possible to define the two-hop undirected graph
Ĝ = (I , Ê), where Ê corresponds to the two-hop paths of G.
Finally, the joint undirected graph G̃ = G

⋃
Ĝ = (I ,E

⋃
Ê).

Applying the above mentioned consensus protocol to
FedLCon is quite straightforward, as the only modification
taken into account is related to equation (11), which becomes

xi(k + 1) = xi(k)+
ϵ

|Di|

∑
j∈Ni

aij

((
xj(k)− xi(k)

)
+

∑
k∈Nj

ajk (xi(k)− xk (k))
)

, (14)

whose convergence is assured by selecting nϵ according to
(10) using the matrices that characterized the m-hop commu-
nication graph Ĝ.

V. CASE STUDY
A. SETUP
In this section, we do present a comparison of multi-hop
communications within the FedLCon algorithm over the
MNIST [58] and MedMNIST v2 [59] datasets in terms of
performance and comunication overhead.

In both cases we do solve a multi-class classification prob-
lem; with regards to the MNIST dataset, being a collection
of handwritten digits between 0 and 9, a DeepNN is trained
to discriminate among nine classes; while with respect to
the MedMNIST v2 dataset, our testing was conducted on its
sub-set BloodMNIST [60] that consists of an eight-classes
classification problem for microscopic peripheral blood cell
images.

The considered DeepNN shares the same architecture for
both scenarios; the output of a 2D convolutional layer of

32 filters and kernel size (3,3) undergoes a pooling operation
of size (2,2) before being flattened and given to one dense
layer with 100 neurons and ReLu [61] activation function.
A graphical representation of the DeepNN is reported in
Figure 2. Being the proposed algorithm completely transpar-
ent to the particular type of neural network architecture under
consideration, it was decided to a compromise between archi-
tecture complexity and performance. Note that the number of
trainable parameters in the DeepNN does not impact the con-
sensus protocol, as (14) implies that each component of the
vectors xi does not depend on the others (i.e., each DeepNN
parameter converges towards its average independently from
the others).

We set the parameters of the algorithm as local training
epochs E = 2, mini-batch size b = 32, communication
rounds T = 15. Unlike the number of communication rounds
which is arbitrarily chosen, the choice of a small number of
local training epochs is mainly related to the limited computa-
tional capabilities of the clients of the considered federation:
since no assumption has been made regarding the type of
clients, we do make a conservative choice. The simulations
were conducted using Tensorflow [62] and Keras [63] on
an Intel i9900k platform with 128GB RAM and an Nvidia
RTX 3090.

The topology of the federation plays a fundamental role
within the application of the proposed algorithm, regardless
of the particular m-hop protocol taken into account. Ran-
domly generated connected federations constituted by five to
twenty clients were considered for our testing, as depicted in
Fig. 3.
We remark that the use of multi-hop communications

within FedLCon can be applied without loss of generality
to both directed and undirected graphs with an arbitrary

VOLUME 11, 2023 80619



D. Menegatti et al.: Discrete-Time Multi-Hop Consensus Protocol for Decentralized Federated Learning

FIGURE 3. Considered undirected graphs: Top left - 5 nodes; Top right -
10 nodes; Bottom left - 15 nodes; Bottom right - 20 nodes.

TABLE 1. Number of consensus iteration nϵ evaluated via (10) per
communication protocol for the considered scenarios. The standard
implementation of FedLCon [6], that is equivalent to a 1-hop
implementation of the proposed multi-hop FedLCon algorithm, requires
three times more consensus rounds compared to the 2-hop version on all
considered federations.

number of clients by means of an appropriate choice of the
matrix Hp.
For the sake of comparison, we report in Table 1 the

evaluation of the number of consensus iterations necessary
to assure convergence, that is nϵ as defined in (10). From the
table, it can be seen that the proposed 2-hop version of FedL-
Con reduces, for every federation topology considered, the
communication overhead by 2/3. We mention that, in larger
federations in which nϵ may increase significantly, m-hop
extensions of (13), such as a 3-hop consensus law, may be
used to further reduce nϵ .

Looking at (10), this follows from the calculation of matrix
Hp; while in the 1-hop case the Laplacian L which is set to be
used is the of the undirected graph G, in the 2-hop one is that
of the joint undirected graph G̃. The main implication of this
effect is that, given the same scenario and computing power,
the 2-hop protocol requires less time and communications to
complete a consensus round with respect to the 1-hop case.

B. RESULTS
In this subsection we propose a comparison of FedLCon-
based on 1-hop and 2-hop communication protocols perfor-
mances in two specific scenarios, respectively with |I | = 10
forMNIST as shown in Fig. 4, and |I | = 20 for BloodMNIST
in Fig. 5.

FIGURE 4. MNIST: 10 clients. Accuracy comparison of FedLCon in 1-hop vs
2-hop.

FIGURE 5. BloodMNIST: 20 clients. Accuracy comparison of FedLCon in
1-hop vs 2-hop.

Given that a classification problem has to be solved for
both applications, i.e., an image is associated with a class
to which it belongs, the main metric used for comparative
purposes is the accuracy, namely the percentage of correct
classifications.

The figures show that, regardless of the particular commu-
nication protocol considered, 1-hop (orange line) and 2-hop
(blue line), in both cases there is a continuous increase in
accuracy passing from one communication round to the next,
for all 15 rounds. We remark that both algorithms almost
exactly reconstruct the same performance that a centralized
architecture using FedAvg would have attained. In the figures
we also report with a dashed line the performance that a non-
federated system, trained on the entirety of the data, was able
to archive after an equivalent number of total training epochs.

We further stress that the almost identical curves between
the 1 and 2-hop implementation can be attained thanks to the
decoupling of the training and consensus processes allowed
by FedLCon. In fact, the consensus value of each consesus
round is independent of the particular communication proto-
col considered, as in both cases it depends only on the initial
conditions of the clients’ state. This allows to assure that,
if provided with the same data, the various clients will share
the exact same DeepNN at the end of every consensus step,
with no significant degradation of performance.
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FIGURE 6. BloodMNIST: Confusion matrix. 20 clients, 2-hop case.

The slight variations in accuracy that can be noted sporad-
ically (e.g., rounds 4, 7 and 10 in Fig. 5), can be explained
by the 99% convergence assured by the nϵ consensus round.
This limited convergence error leads to a negligible max-
imum performance difference that was observed to be at
most 1.17 %.

For compliteness, being the BloodMNIST dataset imbal-
anced, we report in Figure 6 the full confusion matrix
obtained on it by the final DeepNN on the federation formed
by 20 clients.

VI. CONCLUSION AND FUTURE WORKS
This paper has presented a multi-hop consensus based proto-
col for decentralized Federated Learning (FL). The proposed
approach has been designed to allow for the removal of the
centralized server that is required by all standard, centralized,
FL solutions that implement a model-averaging procedure.
The resulting decentralized federation is guaranteed to reach
exactly the same performance of the starting centralized solu-
tion, thanks to an almost exact reconstruction of the averaged
model, at a faster convergence rate. The properties of the
algorithm, including the performance guarantee, have been
provenwith standard Lyapunov arguments from discrete-time
dynamical system theory. Compared to existing decentralized
algorithms, the multi-hop consensus protocol implemented in
this study significantly reduces the number of required infor-
mation exchanges, allowing for the algorithm deployment on
larger federations and more time-critical applications. Two
test cases were discussed to empirically validate the charac-
teristics and capabilities of the proposed algorithm, with an
observed performance drop in the order of 1% compared to
the centralized case. Future developments involve the design
of a decentralized consensus protocol suitable for delay-
critical applications andmassive scenarios such as large-scale
IoT networks.
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