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ABSTRACT Over the last years, firmware integrity protection has significantly been addressed in various
contexts such as internet of things, vehicles, wireless sensor networks and other systems. However, due to
variety of studied systems, the proposed approaches often make divergent and sometimes even conflicting
security assumptions. In this regard, we propose in this article a complete survey of the most relevant
approaches addressing the firmware integrity protection regardless the considered system or field of
application. We first organize the approaches in three main categories, depending on the protection type: 1.
secure update, 2. attestation, and 3. secure boot. We then propose two new taxonomies, the first one concerns
secure update mechanisms and the second one considers secure boot. Moreover, we extend the scope of
an existing taxonomy for attestation mechanisms by studying new approaches and discussing limitations.
Finally, we identify open research challenges and then give suggestions and guidelines on how to address

them.

INDEX TERMS Survey, firmware, integrity, secure update, attestation, secure boot.

I. INTRODUCTION
Firmware, these pieces of software rooted in hardware run
trustfully and flawlessly, or do they? Nowadays, firmware
have become ubiquitous and every single smart or not-so-
smart device embeds at least one. That is why firmware are
also a prime target for attackers. Indeed, as firmware often
have very high privileges due to their low-level execution,
their tampering may lead to complete platform compromise.
Tampering with a firmware can therefore have several con-
sequences depending on its application. For instance, while
a malicious firmware on a computer can be used to steal
data by compromising an encryption key, it can on other cir-
cumstances have severe consequences. For example, we can
imagine what an attacker could do with a compromised pace-
maker firmware.

Several attacks against firmware have been demonstrated
in the past:

o Bootkit, which is a malicious software that runs at the

firmware level (and often integrated into the firmware),
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has been shown feasible for different platforms. For
instance, an article published in the Phrack Magazine [1]
shows how to make and integrate a bootkit into old
Phoenix and Award BIOS firmware while other arti-
cles [2], [3], [4], [5] show different approaches to imple-
ment a bootkit into a firmware using System Manage-
ment Mode (SMM) [6]. After the disclosures of NSA’s
mass surveillance projects by Edward Snowden in 2013,
we know that NSA developed bootkits targeting servers
and network equipment [7].

Several update systems were abused to install malicious
firmware updates. In the Black Hat USA 2019, Alex
Matrosov and Alexandre Gazet showed that Lenovo’s
T540p firmware update procedure lacks signature veri-
fication so attackers could potentially install any update
they want to the embedded controller which can lead to
denial of service or data exfiltration [8]. Moreover, [9]
shows how to circumvent the update procedure of a Dell
Latitude E6400" platform.

lRunning a firmware with revision A29.
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o IoT devices are not exempt. In 2015, Chris Valasek and
Charlie Miller remotely took control of a Jeep car [10].
They were able to remotely log into the Jeep display
and multimedia system due to a lack of authentication
and then reflash a processor which can communicate
to the Controller Area Network (CAN) bus. Once they
can write arbitrary messages to the CAN bus, they had
control of the whole vehicle and can for instance turn
the wipers on and off, prevent the car from braking or
control the car’s steering. The review of Kim et al. [11]
also shows that it is possible to update the firmware
of some Electronic Control Units (ECUs) without prior
authentication.

A. MOTIVATION

Considering these attacks, the widespread of firmware and
their high privileges, it is of utmost importance to protect
their integrity against attackers. Therefore, several research
work in the literature have been proposed to ensure security
of firmware.

Among these works, some papers [12], [13], [14] focus
only on confidentiality service aiming to protect the intellec-
tual property of firmware providers and to enhance the quality
of their services. Whereas, other works propose solutions for
firmware integrity verification at the users level.

In this paper, we focus on the solutions aiming to ensure
integrity protection since we believe that it covers more chal-
lenging firmware security problems on both the providers
and the users levels. Moreover, these security problems are
usually not limited to integrity service but also covers con-
fidentiality and sometimes availability services. Therefore,
it represents a more generalized context to review. For these
reasons, we have reviewed numerous surveys which study
this issue for a specific security mechanism or field of appli-
cation (see Table 1).

Attestation was first studied by Steiner et al. [15]. In this
survey, the authors present a taxonomy of attestation in the
context of Wireless Sensor Networks (WSNs). In [19], the
authors take a different approach and focus on hardware and
hybrid attestation in the context of network infrastructures.
In this context, the resources of the nodes that compose the
system are not as constrained as in WSNs, so it is pos-
sible to use different methods that are often too costly in
terms of money or resources to be used in WSNs. In [20],
the authors study attestation in the more general context of
embedded systems. Finally, in the survey of Kuang et al. [21],
the authors study remote attestation in the context of IoT
devices. They consider different adversary models in order
to encompass as many approaches as possible.

About secure update, the studied surveys always consider
the context of IoT. In [16], Kolehmainen presents chal-
lenges to securely update an IoT device as well as ways
of solving them. The author then presents three approaches
to do a secure update: SUIT, LWM2M and blockchain.
Finally, the author proposes a high-level model of secure
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update. In [17], the authors first present prerequisites to
perform a secure update before proposing several attack cat-
egories. Finally the authors present several centralized and
decentralized approaches to perform a secure update. They
also discuss the advantages and disadvantages as well as
possible improvements of decentralized solutions. Finally,
in [18], the authors present several secure firmware update
mechanisms which are best suited for each class of IoT
devices (low-end, medium-end and high-end devices). They
also compare several client-server based (centralised) and
blockchain-based (decentralised) solutions according to their
features.

Secure boot has been studied by Wang et al. [22] in 2022.
Through their comprehensive survey, the authors have pre-
sented an extensive and insightful overview of existing secure
boot schemes for embedded devices. They have conducted
an in-depth analysis of these schemes, carefully comparing
them to highlight their respective strengths and weaknesses.
Finally, they propose a new classification of existing secure
boot methods divided into three categories: hardware, soft-
ware, and hybrid methods.

As we can notice, the surveys cited above target mainly
embedded technologies (IoT, WSNs). Our survey is different
from previous works since we consider firmware in general,
regardless of their field of application (IoT, WSN, smart grid,
etc.) or on which platform they are used.

We also consider static code analysis and control flow
protection as out of our scope. Finally, we have seen sev-
eral papers about supply chains attacks, showing that they
may impact firmware integrity [23], [24], [25]. However,
we think that supply chain attacks are a research topic on
their own and we will therefore not discuss them in this
survey.

B. OUR CONTRIBUTIONS
The contributions of our paper can be summarized as follows:

o We provide a comprehensive and extensive study that
investigates existing firmware integrity protection mech-
anisms.

o We propose a categorization of the aforementioned secu-
rity mechanisms upon their characteristics.

o We analyse and compare these techniques to show their
advantages and disadvantages.

o We identify several open research problems and we give
some suggestions on how to address them.

In this article, we start by giving an overview of research
trends and challenges for every field of application in II.
Then, we survey different protection types in sections III, IV
and V. In these sections, we first introduce useful concepts to
understand each protection type and we define their assump-
tions, adversary models and goals. Then, we introduce a
taxonomy which shows the differences between existing solu-
tions for each protection type. Each taxon is detailed and
illustrated with examples. Taxa in a same group are then
discussed to exhibit their advantages and disadvantages. In VI
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TABLE 1. Comparison of existing surveys in firmware integrity protection.

Date Field of application Secure update | Attestation | Secure boot

Steiner et al. [15] 09/2016 WSN (]

Antti Kolehmainen [16] | 08/2018 IoT ®

Bettayeb et al. [17] 03/2019 IoT (]

Mtetwa et al. [18] 11/2019 IoT ®

Sfyrakis et al. [19] 05/2020 | Network Infrastructures °

Banks et al. [20] 05/2021 Embedded ®

Kuang et al. [21] 10/2021 IoT ®

Wang et al. [22] 03/2022 Embedded [

we then discuss open research problems, analyze challenges
to be solved and give guidelines on how to tackle them.
Finally, we conclude this article in VII.

Il. FIELDS OF APPLICATION
In this section we will first analyze research trend depending
on application fields. In a second time, we will see challenges
for designing a firmware integrity protection solution for each
of these fields of application.

In the remainder of this article we will use the terms
general-purpose computer and proprietary project, so it is
necessary to define them first. We define a general-purpose
computer as a versatile high-end system and thus not special-
ized in the execution of a specific task. This notion is opposed
to embedded systems which are generally constrained in
terms of resources and specialized in one or several precise
tasks. A proprietary project is defined as a project owned by
a private company as opposed to projects published in the
scientific literature.

A. RESEARCH TREND

Figure 2 shows the distribution of the studied approaches
by field of application. The category embedded groups all
the works considering embedded systems but not mentioning
the type of the targeted system. We can observe that the
distribution of fields of application is unbalanced. Indeed,
we notice that embedded systems represent more than three
quarters of the published approaches while the works focus-
ing on general-purpose computers are rather marginal. This
disparity is even more significant as these works include
so-called proprietary projects.

The solution targeting smart grids [26] has been consid-
ered separately. Indeed, even if smart meters can be seen as
embedded systems, smart grids do not necessarily contain
only smart meters and are not necessarily composed exclu-
sively of embedded systems. The constraints, assumptions
and adversary model can therefore be different from those
of embedded systems depending on the approach and the
considered grid.

Figure 1 shows a growing interest in the study of firmware
integrity protection for the different fields of application.
We can also see that approaches targeting WSNs are start-
ing to be replaced by approaches targeting the IoT as of
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2016. This can be explained by a change in terminology
since these systems are similar in terms of firmware integrity
protection challenges. Finally, we can notice a stagnation
of approaches focusing on general-purpose computers from
1997 until 2012, the year from which work on this field
of application really starts to develop. These observations
show that nowadays firmware integrity protection is both an
interesting scientific and industrial research topic for several
fields of application.

B. CHALLENGES

1) EMBEDDED SYSTEMS

The development of an embedded system solution must take
into account various constraints [27], [28]. Some of them are
common to all embedded systems when others are specific
to a subset of these systems. First, embedded systems are
characterized by limited computing and memory resources.
That is why, Park et al. [29] propose a new protocol which is
based on a novel randomized hash function tailored for low
resources CPU. Also, they need to be power efficient because
their power source can be limited: photovoltaic cell or battery
for example. For instance, Deng et al. [30] explain that bat-
tery can be easily exhausted by an attacker re-transmitting
packets to the device, thus leading to a Denial of Ser-
vice (DoS). Moreover, Jin et al. [31] propose an approach
that eliminates redundant processing overhead in order to
reduce power usage of battery-powered sensor nodes. Finally,
these systems should stay cheap [32], [33] and sometimes
small [33].

Embedded systems can be used in critical applications
requiring continuous [34] and sometimes real-time [35] oper-
ation. This constraint requires that the system is neither
interrupted nor disturbed by the used protection mechanism.
This implies for example to ensure the compatibility between
the update and the target hardware [36], [37], [38]. Indeed,
the setup of an incompatible update can brick the system or
cause a malfunction at least.

The systems used in the WSNs, IoT and smart grids con-
texts have a large number of nodes distributed in their envi-
ronment [15], [34], [36], [39], [40]. It is therefore infeasible
for most application scenarios to physically reach and check
the integrity of each node. The verification process should
then be done remotely [15]. The scalability of this process
is therefore essential to be practical in this context. Another
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FIGURE 2. Distribution of publications grouped by field of application
from 1997 to 2021.

problem encountered in these applications is the communi-
cation between the nodes. These nodes often communicate
wirelessly which is challenging considering their large num-
ber and the unreliability of these communications [15], [16],
[41], [42].

The approach of Gonzalez et al. [43] shows a specific chal-
lenge for smartphones used in the context of Bring Your
Own Device (BYOD). In other words, the authors study
smartphones used in both personal and professional environ-
ments. It is therefore important for the company to be able
to guarantee that the operating system used comes from a
trustworthy source and complies with the company’s security
policy. The authors explain that designing such a solution is
challenging given the diversity in both smartphones and the
used operating systems.

VOLUME 11, 2023

2) GENERAL-PURPOSE COMPUTERS

Physical attacks should be considered in the context of
general-purpose computers [44], [45]. These systems are
indeed often accessible and can be more easily subverted
by an attacker. We can for example mention the Evil Maid
attack [46] which consists in capturing the device while it
is left unattended (for example in a hotel room) and then
making the desired alterations on the system. We can also
note that protecting the system from these attacks is seldom
considered [47], [48], [49], [50].

General-purpose computers are not fixed monolithic sys-
tems. They can be extended with peripheral cards of various
types and functions. However, these peripheral cards usu-
ally contain a firmware that can be used by an attacker to
compromise the entire system. For example, the work of
Duflot et al. [S1] shows how compromising a network card
allows to insert a backdoor into the operating system. Check-
ing the integrity of the peripherals’ firmware is therefore
crucial to ensure that they do not use vulnerable and/or mali-
cious firmware.

In the same way as embedded systems used in critical
applications, general-purpose computers have sometimes to
meet high availability constraints [52], [53]. This can for
instance happen for servers or workstations. In this context,
it is necessary, as mentioned previously, to ensure the avail-
ability of the protected system. The said protection must
therefore under no circumstances compromise the good func-
tioning of the system on which it is used.

C. OVERVIEW

The diversity of fields of application studied also implies a
diversity of considered constraints and addressed challenges.
This is why several approaches have been proposed in the
state of the art. We can classify these approaches according
to three main categories: secure update, attestation and secure
boot of firmware (see Figure 4).
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Figure 3 shows the evolution of the state of the art works
over the years, depending on the type of security. We can
notice that interest in this research area is growing for all types
of security. In the rest of this survey, we detail each of these
categories and we classify the associated approaches using a
taxonomy specific to each of them.

We would like to draw reader’s attention to the fact that,
in this paper, we only consider the secure boot of firmware.
As mentioned by some work [22], secure boot is a security
mechanism checking the whole boot chain: from firmware to
operating system, including drivers. Therefore, secure boot
ensures the device’s overall integrity and not only firmware’s
integrity. However, in this paper we study secure boot from
the point of view of firmware integrity protection as described
in the Unified Extensible Firmware Interface (UEFI) specifi-
cations [54] and in several papers [55], [56].

Ill. SECURE FIRMWARE UPDATE

In this section, we first formally describe secure firmware
update mechanisms. Then, we review the main characteristics
of existing secure update approaches and we propose a new
taxonomy (shown in Figure 5) which identifies four major
characteristics of secure firmware update mechanisms.

A. BACKGROUND

A secure update is a process by which a server S performs
the firmware update of a client C via a communication link
L. The server S is commonly assumed to be safe [30],
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[34], [36], [41], [57] and C is assumed to be uncompro-
mised before the update (we come back to this point in
part III-A2). We note Safe(S) the proposition “‘the server S
is safe””, Compromised(C) the proposition “the client C is
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compromised before the update” and Secure(L) the propo-
sition “‘the communication link £ is secure”.

This process can be generalized in the case where several
hops are used. In this case, the update transits through N
servers (noted S;) via N communication links noted £;. In this
case, the update process is said to be “secure” if and only if:

N N
—Compromised(C) A /\ Safe(S;) A /\ Secure(L;) (1)
i=1 i=1
In the same way, the update of a set of M clients (with M >
1) by a server S via a communication link £ is considered
secure if and only if:

M
/\ (—Compromised(C;)) A Safe(S) A Secure(L)  (2)
i=1

1) CHALLENGES
A secure update mechanism must address one or more of the
following challenges:

o Confidentiality: Prevent an attacker from being able
to analyze the firmware. This prevents vulnerability
research via binary analysis or reverse engineering and
prevents the theft of intellectual property.

o Integrity: Prevent the installation of a corrupted update
image.

o Authentication: Prevent an attacker to craft updates that
would have been accepted by the client otherwise. The
authentication mechanism makes sure only authorized
entities can publish and install updates to the client.

o Anti-replay: Prevent an attacker that has previously
captured a session to replay it. This prevents an attacker
from reinstalling a legitimate but old - and therefore
potentially vulnerable - version of the firmware.

The L link thus does not need to address all the challenges
we have introduced to be secure. Indeed, these challenges are
intended to be general and may be irrelevant depending on
the threat model considered.

2) ADVERSARY MODEL

The papers we have studied often adopt the Dolev-Yao [58]
model for communications between the server and the
client [30], [34], [36], [39], [41]. That is, the attacker
can eavesdrop, intercept, modify and inject packets from
/ to the network. However, the approach proposed by
Yesilyurt et al. [59] is more restrictive and consider that the
attacker can only eavesdrop the traffic on the network.

For embedded systems with limited computing power,
it is sometimes assumed that attackers have more computing
power than the client they have compromised [41].

Although the client is considered to be uncompromised
prior to the update, some works consider that the client may
be under certain conditions. For [30], attackers can compro-
mise a client but they can only compromise the confidentiality
objective. This assumes that attackers only have read access
and can extract the encryption key stored within the client’s
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memory. However, attackers do not seem to have write access
to the client. That is why they can not tamper with the
firmware - and therefore the update module - embedded in
the client. In the same way, for [39], attackers cannot com-
promise the whole client since the bootloader is supposed to
be safe and immutable. We can see that whatever the proposed
solution, the client must remain uncompromised at least as far
as the update module is concerned.

B. TAXONOMY

We have chosen to build our taxonomy upon the security
goals to be achieved. We have therefore categorized existing
solutions according to the mechanisms used to achieve the
following security goals: confidentiality, integrity, authenti-
cation and anti-replay. We believe that this classification is
relevant given the diversity of existing approaches. Indeed,
they target various applications, each of them has specific
constraints as we have mentioned in the section II. Moreover,
they do not use the same adversary model and do not make
the same assumptions. These approaches will therefore use
different mechanisms to reach the security goals.

1) CONFIDENTIALITY

The updated firmware is usually transmitted over communi-
cation channels that are not necessarily secure. Therefore,
it can be intercepted and analyzed by an attacker. Confi-
dentiality may be required by manufacturers to protect their
intellectual property or to prevent reverse engineering in case
sensitive data are stored inside the firmware. In the case where
confidentiality must be ensured, symmetric cryptography is
used by all approaches we have studied. However, the encryp-
tion key is not always stored or generated the same way.
Approaches which do not protect firmware confidentiality do
most of the time not mention it in their security goals [26],
[34], [37], [39], [60], [61] or do not take it into account in
their adversary model [36]. However, we can consider the
example of the work of Deng et al. [30] in which the authors
explicitly state that they do not take into account the confi-
dentiality aspect because of an orthogonal assumption with
this objective. They make the assumption that the attacker is
able to compromise a device completely and access all the
information it contains. In this case, it is complex or even
impossible to protect the confidentiality of the update since
the attacker can, by assumption, access every encryption key
stored within the device.

The approaches of Nilsson et al. [41], Thanh et al. [62]
and Yesilyurt et al. [59] propose to pre-install a shared
encryption key between the server and the client. In this
case, each client has a different encryption key and the server
must store them all. However, the preinstalled key can also
be shared between all devices. For instance, the work of
Kerliu et al. [63] relies on such design. Sharing a key between
all devices is convenient as only one key needs to be stored but
an attacker who is able to compromise one device is then able
to compromise the whole system. Finally, Guillen et al. [64]
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propose a protocol which is able to update the pre-installed
keys into the device. Their protocol uses dedicated packets
to update the keys independently of the firmware update.
Moreover, keys version numbers are also stored into the
device so that an attacker is unable to downgrade pre-installed
keys to a previous version. In all cases described above, the
key pre-installation should be done in a safe environment so
that an attacker will not be able to get the encryption key.

Another method is to use a randomly generated ses-
sion key each time it is needed. One way to do so is to
use the TLS protocol [38], [65], [66], [67], [68]. These
approaches benefit from the handshake procedure and there-
fore generate a different session key for each connec-
tion. The symmetric encryption algorithm used in this case
is chosen during the handshake and therefore cannot be
known in advance. However, an up-to-date implementa-
tion of TLS should only offer the following algorithms:
AES-GCM [69], AES-CCM [70], Camellia-GCM [71],
ARIA-GCM [72] or ChaCha20-Poly1305 [73]. The work of
Braeken et al. [S7] uses a Diffie-Hellman like key exchange
scheme in which both clients generate a random secret key
for each communication. Finally, the work of Choi et al. [74],
Keleman et al. [75] and Feng et al. [76] use a temporary ses-
sion key but do not specify an algorithm to use.

Another idea is to use a Physical Unclonable Function
(PUF) to generate a key. Falas et al. [77] uses the output
of a Public PUF (PPUF) stimulated by a randomly chosen
challenge as the encryption key. In another of their work [78]
they instead use the challenge as the encryption key and send
the expected output to the client along with the encrypted
update. However, in the worst case, this method requires
the client to iterate through every possible challenge before
finding the good one. Note that these approaches work only
with PPUF as the server also needs to know the output of the
PUF according to a given challenge. Finally, the approach of
Prada-Delgado et al. [35] uses an SRAM PUF with helper
data and error-correcting codes to generate the encryption
key. In this approach, the output of the PUF is only used once.
After every update, the previous PUF’s output is derived using
a key derivation function and the helper data are updated
accordingly so that the PUF will generate the expected output
the next time.

The approach of Siddiqui et al. [79] propose to update the
encryption key which is stored into a TPM along with the
firmware. In this approach, the current encryption key is
used to encrypt the value of a PCR in the TPM (reflecting
the state of the device) xor-ed with a random value which
is generated by the TPM’s random number generator. This
approach allows to update the encryption key automatically
and thus ensures that each device has its own key which is
valid only for the next update.

Finally, we also note that some works do not specify the
encryption algorithm to be used. This is the case of the works
of Fengetal. [76], Keleman et al. [75], Nilsson et al. [41]
and Choi et al. [74] which propose to use a symmetric
encryption algorithm without specifying which one. These
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approaches propose a generic protocol which independent of
the symmetric encryption algorithm used. This algorithm can
therefore be chosen according to the specific constraints of
each implementation context.

2) INTEGRITY

Integrity protection is a fundamental issue in a secure update
system. It is crucial that the update received by the client is
the same as the one sent by the server, in other words that
the update received by the client is not corrupted. The meth-
ods shown hereafter allow to detect an accidental corruption
of an update but are however inefficient to protect against
an attacker who can intercept and modify the information
exchanged between the server and the client. This is why
an authentication mechanism is often used in conjunction
with the methods described below. We will come back to the
authentication methods in the sub-section III-B3.

The most basic solution is to use a hash function computed
over the entire firmware update. In this case, the validity of
the digest is usually validated before installing the update.
However, the approach of Aschenbruck et al. [36] transmits
the update hash to the client after sending it. The verification
is therefore done after the update has been installed, which
requires the deletion of the update and the rollback of the
device in case of a corrupted update. The digest is most of
the time computed over the update plaintext, however the
approach of Siddiqui et al. [79] computes the hash over the
encrypted one. The client can thus verify the integrity of the
update before the decryption operation, which avoids a cryp-
tographic operation in case of a corrupted update. Note that
the approach of Aschenbruck et al. [36] uses SHA-1 which
has been deprecated by NIST for digital signatures since
2013 [80]. Moreover, a practical collision on this algorithm
was found in 2017 [81].

The update can also be split into several packets to avoid
having to retransmit the complete update in case of an error.
Splitting the update makes it possible to identify the source
of the error more precisely and thus to retransmit only the
corrupted block. This segmentation allows new approaches
to protect the integrity of each block. It is now possible to use
data structures such as hash chains [30], [41], [74] or Merkle
trees [30], [39], [76]. The hash chains ensure the integrity of
every block except the first one. This is why an authentication
system of the first block is necessary to ensure the integrity
and the authenticity of the whole chain. The Merkle trees have
the advantage of allowing a chaotic reception of the elements
constituting it. In other words, the packets can be received
in disorder without affecting the final calculation. Moreover,
the modification of a node imposes to recalculate only the
hashes of the impacted branch contrary to a hash chain which
requires the recalculation of all the hashes depending on the
modified element. However, for the same number of blocks,
a Merkle tree requires a larger number of hashes than a hash
chain and imposes that the client receives an index of hashes
a priori. In their work, Deng et al. [30] also propose a hybrid
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structure combining hash chain and Merkle tree. The update
is divided into pages and then each page is itself divided into
several packets. A Merkle tree is used to ensure the integrity
of a page and then the root of each tree is added into a hash
chain. This way, only the authentication of the first element
of the hash chain is needed and we still benefit from the
advantages of the Merkle tree within each page.

Some approaches propose to use a blockchain to store the
updates metadata [38], [60], [66], [68], [82]. The firmware,
too large to be stored in a block, is then externalized and the
metadata allows the client to know the location of the file
to be downloaded. The transfer of the file itself is done by
BitTorrent [60], IPFS [38], [66] or a web platform managed
by the vendor [68]. The integrity of the update is then ensured
by a hash function whose output is compared with a reference
stored into the metadata.

Integrity protection of the transmitted data can also be
ensured by a Message Authentication Code (MAC). In this
case it is important to note that integrity and authentication
can be ensured by the same function. Indeed, a modification
of the data will lead to an error during the verification of the
MAC, whether this modification is fortuitous (corruption due
to the transmission channel) or malicious (spoofing attack
attempt). A valid MAC therefore implies that data are not cor-
rupted and authentic, but if it is not the case, it is impossible
to know the origin of the error. We will see in more details
how MAC is used in III-B3.

Finally, some works do not protect the integrity of the
update. For example, Katzir and Schwartzman [26] do not
address this problem. Moreover, Yesilyurt et al. [59] use a
checksum for transmitted packets but do not check the
integrity of the update itself. These two approaches therefore
offer little or no protection in case of update corruption.

3) AUTHENTICATION
The authenticity of the update is often verified using a digital
signature (asymmetric cryptography) or a MAC (symmetric
cryptography). In the case of digital signatures, the algorithm
to be used is based either on the prime factorization of a large
number problem [67], [78] or on the discrete logarithm prob-
lem [39]. The MAC can be one output of an Authenticated
Encryption (AE) algorithm [35], [63], [64], [77] or be the
result of a function dedicated to this purpose. The approaches
using TLS [65], [67] take advantage of the algorithm selected
during the handshake and thus use a MAC even if we cannot
determine in advance which one will be used. The approach
of Braeken et al. [57] uses both a MAC and a digital signature
to authenticate the exchanges between the server and the
client. A mutual authentication between the two parties is first
established using digital signatures. Other messages are then
authenticated using an Hash-based MAC (HMAC).
Authentication can also be provided by a blockchain. For
example, Alexandros Nanopoulos and Projjal Gupta [38],
[66] use transactions on an Ethereum blockchain to store
information about updates. Clients can then verify the authen-
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ticity of the transaction using the public key of the issuer.
In order to handle the multi-developers and key revoca-
tion problems, the authors say it is possible to set up a
multi-signatures smart contract, a certification authority or a
Web-of-Trust infrastructure.

The work of Yesilyurt et al. [59] uses a shared secret to
mutually authenticate the server and the client. An authen-
tication packet is encrypted with the preinstalled key and
allows the client to verify the authenticity of the server. The
operation is then repeated from the client to the server so that
the mutual authentication is established.

Finally, the approach presented by Katzir and Schwartz-
man [26] use a pattern of frequency change of the electrical
network. The detection of this pattern by the concerned
devices activates their “reprogramming” mode for a given
period of time (this period is called “window of opportu-
nity”’). The update can then be sent and will be accepted
as long as this window of opportunity is valid. The update
authentication is ensured by the fact that attackers are not able
to predict when this pattern will appear nor can they manipu-
late the frequency of the electrical network. The authors state
that their approach can be used in conjunction with standard
cryptographic methods to enhance security.

4) ANTI-REPLAY

A popular method to prevent the replay of the update is to
add the firmware version along with other data. This version
is authenticated as the rest of data. This method was first
proposed by Nilsson et al. [41] in the context of vehicles but
as also been used on other contexts such as WSN and other
embedded systems showing that this method is viable for a
large number of contexts. In all cases, the version number
format is not specified but must be monotonically increasing,
meaning that a newer version has a strictly higher value than a
previous one. With this method, the code checking the update
before installation by the client is designed to ensure that the
version of the update received is higher than the one currently
installed. Otherwise, the update is simply cancelled. Thus,
an attacker replaying a previously captured session will not
be able to make the client install an older version of the
firmware. Changing the version is also not an option since
this change will be detected by the authentication mechanism.
The approach of Hu et al. [82] is a bit different. The authors
propose to check the firmware version by a smart contract
stored on an Ethereum blockchain. The device, which per-
forms the update request, invoke the smart contract by making
a transaction on the blockchain. When invoking the contract,
the device sends arguments such as its model, the version
of the firmware currently installed and the digital signature
of these data. The smart contract is then able to verify the
signature with the device’s public key and can therefore check
whether an update needs to be done or not. This method
has the advantages of authenticating the client, disclosing the
update metadata only when necessary and keeping track of
all updates performed.
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Another method we have seen is the use of a nonce. This
method is not incompatible with the previous one, and it
happens that they are both used together [35], [62]. Works
based on TLS also use a nonce which is generated during the
handshake. Finally, the paper written by Braeken et al. [57]
relies on a Diffie-Hellman like key exchange scheme. There-
fore, each client generates a secret number at the beginning
of the session. These secrets numbers are generated randomly
just as nonces are but must obviously be kept secret.

As mentioned in the section III-B3, Katzir and Schwartz-
man [26] use a “window of opportunity” system to repro-
gram devices. Thus, even assuming that attackers can eaves-
drop the packets when updating a device, it is impossible for
them to replay the session before the next window. However,
this window is supposed to be unpredictable and unforgeable
by the attacker. That is why, anti-replay is guaranteed. In the
same idea we find the solution proposed by He et al. [68], the
authors use the term “‘time window’’ in their paper. In their
solution, the update creation timestamp is added with other
metadata into a blockchain transaction. The client then checks
if the update is not too old before installing it.

C. DISCUSSION

We presented a taxonomy and detailed the techniques
encountered for each taxon. Each technique was then illus-
trated with examples. We also discussed the advantages and
disadvantages of different techniques. Finally, Table 2 maps,
in chronological order, a representative number of secure
update mechanisms to the taxonomy illustrated in Figure 5.
To the best of our knowledge, every secure update mechanism
would fit on the proposed taxonomy.

The main observation we make is the scarcity, in the
scientific literature, of secure firmware update mechanisms
for general-purpose computers. We think that most of the
cryptographic means used for embedded solutions could be
used as building blocks for the implementation of a secure
update system targeting general-purpose computers. Indeed,
on general-purpose computers, these algorithms are already
implemented in known libraries and their resources are much
more important than those of embedded systems. It is there-
fore unlikely that computing capacity, memory or storage
will be lacking. However, even if the same cryptographic
algorithms could be used in this context, it is not the same for
the solutions. Indeed, as we have seen in the section II, the
considered attacks and challenges for embedded systems and
for general-purpose computers differ. Therefore, a solution
targeting general-purpose computers cannot be a simple copy
of a solution targeting embedded systems. Finally, the work
of Lee et al. [83] shows a system for updating the kernel of
general-purpose computers, so perhaps it is possible to build
on this work and extend the solution to firmware update.

IV. ATTESTATION

In this section, we first formally describe the attestation
mechanisms. Then, we review a representative number of
approaches. We also extend Steiner and Lupu’s [15] (see
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Figure 6) classification of attestation approaches used in the
context of WSNSs to a new classification of existing solutions
regardless the nature of the system. We will therefore study
new approaches and discuss them from a new point of view.
We will also see the limitations we have encountered when
generalizing their taxonomy.

A. BACKGROUND

Attestation is a process by which an entity called verifier
(denoted V) wants to obtain a proof that another entity called
prover (denoted P) is in an expected state S, known by V.
For this, the attestation process relies on a timed challenge
mechanism (see Figure 7). A challenge c is generated by V
using a procedure Challenge() then sent to P. The challenge
generation time (noted 7.) is saved by V and the expected
answer ry is calculated. Once the challenge is received, P
executes an attestation routine noted Attest(S, ¢). This attesta-
tion routine takes as parameters the internal state of P as well
as the challenge ¢ and produces a response (noted rp) which
is sent to V. Finally, ¥ computes the reception time of the
answer (noted 7,) as well as the time taken by the attestation
process noted § = t, — t.. The verifier can then verifies that
rp = ry and that § is lower than a limit A. If this is the case,
then P is considered to be in the expected state S. The generic
attestation process is formalized in Figure 8. A summary of
the terminology used can be found in Table 3.

Firmware integrity attestation is a subset of attestation
processes and can be seen as the attestation of one or more
memory regions. Thus, in our case the state S isaset of N €
N* disjoint memory regions, noted M = {my, my, --- , my}
such that Vm € M, m = {0, 1}*. These memory regions can
contain static or dynamic data and can be contiguous or not.

1) ASSUMPTIONS
In the literature, we find many assumptions around
attestation-based solutions which we discuss in what follows:

The verifier cannot be compromised by the attacker. In
most cases, the verifier is a separate entity from the prover
and does not always have the same architecture as the latter.
In this case, the verifier is often considered safe. However,
not all approaches rely on this assumption. In the context
of WSNs, [84] proposes a distributed attestation protocol
in which the nodes of the network can all play the role of
the verifier. However, since the nodes are all assumed to be
vulnerable, the protocol uses a consensus protocol so that
the attestation response remains trustworthy. In this case, the
trustworthiness of the attestation response depends directly
on the number of nodes compromised by the adversary.

The verifier knows the hardware architecture of the
prover. The hardware architecture of the prover will be deci-
sive for the design of the attestation routine. Indeed, an attes-
tation routine can use secrets stored in tamper-resistant hard-
ware if the platform has any [85]. Otherwise, other processes
can be used to ensure the secrets integrity. For example,
the work of Schulz et al. [86] uses the output of a Physical
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TABLE 2. Mapping of some existing secure firmware update mechanisms to the proposed taxonomy.

Approach Application | Confidentiality Integrity Authentication Anti-replay

Deng et al. [30] WSN N HC and/or MT DS N
Nilsson et al. [41] Vehicle SC HC DS Version
PETRA [34] WSN N MAC MAC N
Costa et al. [37] Embedded N HF DS N
Braeken et al. [57] FPGA SC MAC MAC Nonce
Window [26] Smart grid N N Y Y
Selective [36] WSN N HF DS Version
SDRP [39] WSN N MT DS Version
Thanh et al. [62] FPGA SC MAC MAC Nonce
Crypto-Bootloader [64] Embedded SC MAC MAC Version
Choi et al. [74] Embedded SC HC DS Version
UpdaThing [65] IoT SC MAC DS Nonce
Boohyung et al. [60] IoT N BC + HF DS Nonce
Prada-Delgado et al. [35] IoT SC MAC MAC Nonce
Cédigo Network [66] IoT SC BC + HF BC Nonce
SOTA [59] IoT SC N Shared secret N
Feng et al. [76] Embedded SC MT MAC Version
Dhobi et al. [67] Embedded SC MAC DS Nonce
He et al. [68] IoT SC BC + HF BC Nonce + Timestamp
Hu et al. [82] IoT N BC + HF BC + DS Version
Keleman et al. [75] Embedded SC HF DS Nonce
Falas et al. [77] Embedded SC MAC MAC Version
Kerliu et al. [63] WSN SC MAC MAC N
Falas et al. [78] Embedded SC HF DS Version
Siddiqui et al. [79] FPGA SC HF DS Nonce
Lo et al. [61] IoT N HF MAC Version
Gupta [38] TIoT SC BC + HF BC Nonce

Legend :Y: Yes, N: No, SC: Symmetric Cryptography, HF: Hash Function, HC: Hash Chain, MAC: Message Authentication Code,
MT: Merkle Tree, BC: BlockChain, DS: Digital Signature

TABLE 3. Attestation notation summary.

Terminology Description
P Prover
1% Verifier
S, S State
c Challenge
rp Response computed by P
Ty Response computed by V
) Attestation duration
A Attestation time limit
te Challenge sending time
tr Response reception time
M Set of memory regions
m Memory region
Attest(S, c) Compute the response
Challenge() Generate a challenge
Time() Get the current time
P(X) Probability of X
€ Infinitesimal quantity

Unclonable Function (PUF) in the calculation of a checksum.
We can also cite SWATT [87] which relies on a careful design
of the attestation procedure so that it is optimal for a specific
hardware configuration.

The adversary has full software access. Many attestation
protocols are designed for the context of embedded systems
(IoT, WSNs, etc.). In this context, it is common that devices
do not have tamper-resistant hardware to protect the software
at the hardware level. This is why it is frequently assumed
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that an attacker has full access to the software (access to read
and write).

The adversary has full control over the prover’s com-
munication. This is a direct consequence of the previous
assumption. Indeed, if attackers have full access to the soft-
ware, they can use the device’s communication means and
therefore intercept, inject or replay traffic from / to the net-
work.

The adversary cannot modify the prover’s hardware.
It is generally assumed that the attacker cannot modify the
prover’s hardware. Attacks consisting of replacing the pro-
cessor with a faster one or adding extra memory in order to
store malicious code are therefore considered out of scope.
Side-channel attacks are also sometimes considered out of
scope [88], [89]. However, [32] allows the modification of the
hardware which is outside the System-on-Chip (SoC). The
SoC itself is considered safe because of the complexity and
cost of this kind of attacks.

2) CHALLENGES

An attestation mechanism design must address several
challenges. Indeed, according to [15], Challenge() and
Attest(S, c) functions must follow specific design rules. The
Challenge() procedure must ensure the three following design
principles:

1) Authenticity: P can verify that the challenge was
issued by V.
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M Integrity measurement
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FIGURE 6. A taxonomy of attestation mechanisms.

2) Freshness: P can know when the challenge was gen-
erated and can therefore ignore old ones.

3) Unpredictability: An attacker must not be able to pre-
dict the challenge which will be generated by V even
with the knowledge of all the previous challenges.
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Verifier Prover

Generate challenge

Compute expected
response

:| Get current time

Send challenge

A 4

Run attestation
routine

Send response
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<
:| Get current time

Compute attestation time

Verify attestation response

FIGURE 7. Overview of an attestation process.

V : ¢+« Challenge()
V o ry = Attest(S,c)
V i te« Time()

V=P : ¢
P rp < Attest(S,c)
P—=V : rp

V oty < Time()
V  d+t,—t,
V @ (ry=rp) A0 <A)

FIGURE 8. A generic attestation procedure.

The first two principles are essential to prevent an attacker
from conducting a Denial of Service (DoS) attack by forc-
ing Attest(S, ¢) to loop. The third principle is important to
prevent an attacker from computing the result of Attest(S, ¢)
in advance. The attestation routine itself must respect the
following five design rules:

1) Authenticity: V can verify that rp comes from P.

2) Atomicity: The execution of the attestation routine
must not be interrupted. Otherwise, an attacker may
modify the state S of P while the attestation routine
is running and therefore may fake a good state.

3) Unforgeability: An attacker must not be able to com-
pute rp. If the approach considered uses optimal imple-
mentation and thus strict timing constraints then the
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attacker must not be able to compute rp faster than
Attest(S, c).

4) Dynamicity: rp should reflect the current running state
of P.

5) Determinism: } must be able to compute ry such as,
for an infinitesimal €:

P(3S # S, Attest(S, c) = Attest(S, ¢)) < €

3) ADVERSARY MODEL

The objective of an attacker is to compromise P without
being detected by the attestation procedure. The different
types of attackers have already been studied by [20]. The
attacks which can be carried out against an attestation pro-
tocol have been described in detail in the context of WSN
and IoT respectively by [15] and [21]. However, we note that
communicating with a faster machine than the client to com-
pute rp (this attack is called a proxy attack) is considered as
being out of scope by some of the works which we study [48],
[90], [91].

B. TAXONOMY

We have chosen to build our taxonomy upon common prop-
erties of remote attestation mechanisms we have derived
from approaches we have reviewed. These properties are the
following:

o Evidence acquisition: Is the protection software-based,
hardware-based or hybrid?

o Integrity measurement: Does the approach check run-
time properties of the device or not?

o Timing: Is the tolerance for elapsed time calculation
strict or loose?

o Attestation routine: Is the attestation routine embedded
or generated on-the-fly?

« Memory traversal, program and data memories:
What are the attested memory regions and how is the
memory traversal made?

o Interaction pattern: How do communicate the
prover(s) and the verifier?

These properties are common to all remote attestation
approaches we have studied. That’s why we think that is
it relevant to build our taxonomy upon them. Thus, every
remote attestation mechanism should fit on the proposed
taxonomy.

1) EVIDENCE ACQUISITION
In the literature, we have identified three methods used to
acquire the evidence of the prover’s integrity: software-based,
hardware-based and hybrid.

Software-based methods rely on the attestation routine
to produce an unforgeable result. To ensure a sufficient
evidence level, software-based approaches use several tech-
niques. First, the evidence can rely on the optimality of the
attestation procedure [47], [48], [87], [91], [92]. Any modi-
fication of the procedure by an attacker will thus be detected
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by the verifier due to the higher than usual execution time.
We discuss this point in detail in the section IV-B3. Then,
other approaches propose to use an on-the-fly generated attes-
tation routine [29], [92], [93]. These approaches are based
on the assumption that the attacker will not have time to
analyze the attestation routine in the allotted time since the
routine is random and unpredictable by the attacker. Finally,
several approaches propose to fill the unused memory with
incompressible randomness and then to browse the memory
to be attested in a pseudo-random fashion [42], [84], [90],
[94].

The hardware-based approaches require dedicated secu-
rity hardware that can in some cases be tamper-resistant.
About tamper-resistant hardware, we can cite approaches
using a Trusted Platform Module (TPM) [85], [95], [96]
or a PUF [86], [97]. We have also seen approaches using
a custom security module. These security modules can be
either standalone modules [89], [98], [99] or a hardware
extension to an existing processor [100], [101]. In the first
case, a communication channel between the processor and
the security module must be implemented. For example, the
approach of Nunes et al. [98] uses Direct Memory Access
(DMA) to exchange information between the two chips. The
second method has the advantage to not expose this data
bus, since it is integrated in a single chip. However, this
second method is only applicable to processors with open
hardware. Finally, the approach of Rawat et al. [102] men-
tions using a ““secure hardware space” without specifying
its nature (off-the-shelf or custom hardware). We have thus
chosen to classify this approach as “hardware-based” on the
assumption that the required hardware is custom. Hardware-
based approaches increase the level of privileges needed by
an attacker to compromise the system. These approaches are
therefore able to protect the system against an attacker who
has complete software control. However, the use of dedicated
hardware has drawbacks such as higher costs and additional
power consumption.

Finally, the hybrid approaches rely on non-custom
and non-tamper resistant hardware modules. The hard-
ware required by these approaches is most of the time
a read-only memory (ROM) [32], [33], [103], [104]. The
approach of Carpent et al. [33] additionally requires a Reli-
able Read-Only Clock (RROC) or a secure monotonic
counter to authenticate and detect replayed or reordered veri-
fier’s attestation requests. Hybrid approaches offer a trade-off
between hardware-based and software-based approaches in
terms of cost, ease of deployment and security.

2) INTEGRITY MEASUREMENT

Attested memories can contain static data (ROM, program
memories) or dynamic data (data memories, CPU registers,
etc.). Static data attestation is the most common, but it does
not allow the detection of attacks that rely solely on the mod-
ification of dynamic data: stack overflow or Return-Oriented
Programming (ROP), for example.
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In order to address these issues, some approaches attest
dynamic data. First, we have encountered approaches that
attest all memory regions containing dynamic data [47], [88],
[94], [101]. Second, the approach of Garay et al. [92] attests
only the program control locations such as the program stack,
which allows to simplify the attestation. Indeed, with this
method the verifier only needs to know some key structures
of the program execution and not the whole content of data
memories. Third, some approaches [47], [48], [88], [91], [95]
attest only some registers of the CPU reducing again the
knowledge required by the verifier. The attested registers con-
tain addressing information (program pointer or data segment
pointer for example) and therefore give information about the
execution of the program at runtime. For example, an attacker
wishing to hijack the execution of the program, to execute
a function that should not be executed for example, will
necessarily modify this kind of registers. However, there is a
direct relationship between the verifier’s knowledge and the
security of the system. Indeed, the less the verifier is knowl-
edgeable about the prover, the more the attacker’s leeway is
increased since the amount of attested data is reduced.

The attestation of both static and dynamic memories is
crucial in order to ensure on the one hand that the program
has not been modified and on the other hand that the program
executes as it was mentioned to be. However, if the attestation
of static data is straightforward, it is not the same for dynamic
data since the verifier must know all the known good states
of the prover’s dynamic data. Indeed, the number of possi-
ble states grows exponentially with the number of possible
branches in a program.

It should be noticed that this category is not the
most relevant for the certification of the bitstream of an
Field-Programmable Gate Array (FPGA). Indeed, the bit-
stream is not a program that would be executed sequentially
by a processor at runtime but a configuration that is read
and interpreted at power-up and that is not used afterwards.
A bitstream is therefore static in essence and does not have
dynamic elements such as the stack or the heap. This is why
all the solutions attesting the bitstream of an FPGA will
necessarily be classified as “static”.

3) TIMING
No matter how remote attestation is implemented, the verifier
only waits for the prover’s response for a defined time. Some
approaches use a strict timing condition while others use a
looser one.

Approaches based on strict timing can avoid dedicated
hardware since security is founded on the optimality of the
attestation procedure. We note that most of them are soft-
ware based [47], [48], [87], [91], [92]. However, this method
brings up several problems that need to be discussed. First
of all, producing an optimal attestation procedure is difficult
and is specific to the considered architecture. It is therefore
challenging to use this method in a system involving hetero-
geneous architectures. Moreover, this method is vulnerable
to proxy attacks: an attacker may use a machine with higher
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computational capabilities than the prover in order to com-
pute the attestation response faster than the latter. This allows
the attacker to respond to the verifier within the time limit
despite a non-optimal attestation routine. Finally, network
latency must be carefully evaluated to avoid false positives
and false negatives. However, the approach of Schellekens
et al. [95] solves this problem by using a TPM. The TPM
is used to generate and sign two timestamps on the prover
side: one before the checksum execution and one just after
the checksum execution. These two timestamps and their
signature are sent to the verifier which thus has a proof of
the execution time of the checksum procedure on the prover
side. The latency of the network does not intervene in the
calculation of the elapsed time, solving in fact this issue.

Approaches based on loose timing rely on the secrecy of
keys used by cryptographic functions. The security level of
these approaches is therefore inherent to the security of the
cryptographic material storage. In this regard, several meth-
ods are used in the scientific literature. First of all, a ROM
can be used [32], [88], [98], [100], [101], [103]. Note that in
this case other mechanisms must be implemented to ensure
the confidentiality of the cryptographic material if this is
required. Other approaches use a dedicated security module,
whether it is a TPM [85], [96] or another security mod-
ule [89], [99], [102]. Vliegen et al. [97] use PUFs to generate
the key used by their attestation protocol. Finally, the solution
proposed by Shaneck et al. [93] uses a decryption code for
the attestation routine. The key used by the decryption code is
hidden in the memory of the device. Obfuscation techniques
are also used to make the recovery of the cryptographic
material even more complex. Therefore, the security of this
approach relies only on the obfuscation of the decryption
code and thus on security by obscurity. In other words, this
approach is secure only as long as the attacker is unable to
find the decryption key in memory.

4) MEMORY TRAVERSAL

The attestation procedures considered in this survey use the
contents of the prover’s memory as evidence of its trustwor-
thiness. These procedures can then browse memory in two
ways: sequentially or pseudo-randomly.

Approaches using a sequential memory traversal (see the
column “Memory traversal” of Table 4) go through the mem-
ory of the prover in an iterative manner from start to end. This
method allows for the traversal of the whole attested memory
and has a linear time complexity as a function of the memory
size. However, a sequential traversal is predictable by an
attacker. This is why this method does not detect malicious
code that would be able to relocate itself over time (called a
roving malware). Indeed, when the attestation routine starts,
the malware can be relocated to the end of the memory and
moved back after the attestation routine passes through the
original malware’s location, thus effectively avoiding detec-
tion.

In order to protect against this attack, approaches using
a pseudo-random traversal have been developed. Pseudo-
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random traversal techniques can be divided into two cate-
gories: cell-based pseudo-random and block-based pseudo-
random. A cell-based traversal attests each address individu-
ally while a block-based traversal divides the memory into
one or more blocks. Each block is attested randomly and
then the addresses constituting the same block are attested
sequentially. There are two important issues with pseudo-
random traversals.

First, a particular attention must be given to the selection of
the random number generation algorithm, otherwise the secu-
rity level of the protection could be jeopardized [105], [106],
[107]. We have identified several methods which are used in
the scientific literature. A stream-cipher algorithm such as
RC4 [31], [40], [48], [871, [93], [95] or RCS [42], [84] is for
example frequently used. The approach of Carpent et al. [33]
uses a block-cipher in counter (CTR) mode. The approaches
proposed by Li et al. [90] and Horsch et al. [91] are based on
simple algorithms suited for devices with low computational
capabilities and whose optimality may be important. Finally,
the approach of Tan et al. [96] uses nonces sent by the verifier
as pseudo-random numbers. Note that, in all of the above
cases, the random number generator must be seeded with a
value unknown to the attacker, otherwise the latter might be
able to pre-compute the output of said generators.

Second, due to their random nature, these traversal
techniques are probabilistic instead of being deterministic.
Indeed, there is no certainty that each address will be attested
at least once. This is why, in order to ensure with a high prob-
ability that each address will be attested at least once, these
approaches are based on the result of the Coupon Collector’s
Problem [108]. This problem states that for a memory of size
n it is necessary to perform O(n In n) memory access. In fact,
some addresses end up being read several times, leading to
an unnecessary overhead that can be reduced by a block-
based traversal. Indeed, for a block of size b, only (9("1%)
memory accesses are necessary to attest each address at least
once with high probability. It is therefore a trade-off between
performance and security that must be considered for each
implementation.

5) ATTESTATION ROUTINE

Most existing approaches have their attestation routine
embedded in the prover’s memory. However, a verifier can
also generate an attestation routine each time it wishes to
attest the prover. In the first case the attestation routine
must be free of vulnerabilities and can be known by the
attacker without compromising the security of the approach.
In the second case, the security of the system is based on
the assumption that attackers cannot guess in advance the
instructions constituting the attestation routine and that they
will therefore not have the time to analyze it in order to forge
a valid response. To make attacker’s task harder, various tech-
niques are used in the literature. For example, the approach
of Shaneck et al. [93] encrypts the attestation routine using a
shared key between the prover and the verifier. The authors
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then add a decryption routine along the encrypted attestation
routine. This decryption routine retrieves the key which can
be hidden in the prover’s memory or in the decryption routine
itself. The program is also obfuscated and contains junk
instructions, self-modifying code and uses opaque predicates
in order to make the analysis more complex, whether it is
automatic or manual.

We can also take the example of the solution proposed
by Garay et al. [92] which is mainly built upon a technique
called “program blinding”. This technique consists in com-
bining a small hand-written program with another randomly
generated one so that the hand-written program keeps its
properties but its output becomes difficult to predict. More-
over, the authors use a large set of possible randomly gen-
erated programs (called “‘agent” in the paper) in order to
reduce the probability that an attacker in possession of all the
generated agents could find by chance the one that will be
used. Finally, the authors take care to generate agents with an
irreducible Control-Flow Graph (CFG) so that any attempt to
simplify the program will fail.

Finally, the approach of Park and al. [29] uses a randomly
generated hash function. When the verifier wishes to attest
the prover, a hash function is randomly generated and sent to
the prover. The latter hashes the memory to be attested with
this hash function and then returns the result to the verifier.

6) PROGRAM AND DATA MEMORIES
Program memory is not always used to its full capacity. Some
memory areas can be vacant and thus be used by an attacker.
In order to prevent this scenario, some solutions propose to
fill this unused memory with random data [31], [42], [84],
[90], [94], [96]. However, despite this, it is still possible for
an attacker to compress the program memory in order to free
up memory space. The latter contains mostly instructions
that have low entropy and can therefore be compressed. This
is why Vetter et al. [104] propose, in addition of filling the
memory with random noise, to use a specific program mem-
ory able to store compressed instructions and to decompress
them on-the-fly. As aresult, the code becomes incompressible
and an attacker is no longer able to free up memory space.
Depending on the architecture considered, the data mem-
ory can be shared with (von Neumann architecture) or sep-
arated from (Harvard architecture) the program memory.
In both cases an attestation routine which does not check the
data memory does not detect attacks which only modify this
memory such as stack overflow or ROP. This is why some
approaches also check the data memory [47], [88], [90], [92],
[94], [101]. In this case the verifier must know not only the
content of the program memory but also the content of the
data memory which can be difficult as the program become
more complex and the number of possible states increases.
We also note that the approaches we have identified are
designed for embedded systems or devices whose program
remains simple enough so that the verifier can know the
possible states of the data memory.
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In the context of FPGAs, talking about data memory does
not make sense. Indeed, the FPGA’s bitstream is not a pro-
gram running at runtime and as such does not have a data
memory. The bitstream is used only once to configure the
FPGA at the hardware level and then the memory containing
this configuration data is not used until the next power cycle.
The memory containing the bitstream can be seen as the pro-
gram memory even if it is sometimes called differently. For
example, Vliegen et al. [97] call this memory “configuration
memory”’. In the specific case of their approach which uses
a technique called ““partial reconfiguration”, the program
memory can be partially rewritten but it is not always the
case. The bitstream is indeed most of the time stored in an
immutable memory from the point of view of the FPGA (the
FPGA does not have the ability to write on this memory).

‘We have also studied works that do not make the distinction
between program memory and data memory. For example,
the ERASMUS project [101] mentions a memory area named
“RAM / Flash” which seems to contain code and data. The
SMATT project [40] mentions “memory cells of the smart
meter” without specifying if these are memory areas con-
taining code, data or both. That is why we cannot know if
the data memory is checked or not. Similarly, the works of
Schulz et al. [86], Carpent et al. [33] and Nunes et al. [98] do
not specify the content of the attested memory areas.

7) INTERACTION PATTERN

The majority of the approaches encountered are based on
“one-to-one”” communication. A verifier communicates with
a single prover in order to perform the attestation of the
latter. However, this method has a linear time complexity
with respect to the number of provers to attest. For example,
Liet al. [47] use a “‘one-to-one”” communication in order to
attest several devices of a system. To do so, they attest each
device sequentially, effectively leading to an O(n) complex-
ity.

This is why a ‘“‘one-to-many” communication can be
used when many provers have to be attested. This tech-
nique takes advantage of the parallelization of the attes-
tation routine execution to save time when attesting the
complete system. We have seen three methods of paralleliza-
tion in the literature. First, the approaches of Jin et al. [31],
Asokan et al. [103], Tanet al. [96] and Ammar et al. [88]
propose to do attestation chaining. This method consists
in attesting hierarchically the provers of the system. Some
provers thus play the role of verifier for the provers hier-
archically below them. This hierarchy can be established
according to different criteria depending on the application
context: geographical proximity of the provers to the ver-
ifier or presence of a hardware module on the device for
example. Then, the approach of Park et al. [40] randomly
selects a fixed number of identical provers and sends to
all of them the same challenge. All provers being strictly
identical and having the same challenge, the answer received
by the verifier must be the same regardless of the prover.
The overhead is thus reduced since it becomes unnecessary
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to perform n times the checksum calculation. Finally, the
approach proposed by Rawat et al. [102] transmits the attes-
tation request to all provers at the same time. Each provers
then uses its secret key to compute the answer that will be
transmitted to the verifier. However, all these methods have
the drawback of having a single point of failure: the verifier.
Indeed, the verifier is unique and must be considered secure.
Moreover, the chain attestation has the disadvantage of not
allowing to attest finely the system. Indeed, as soon as a
malicious node is attested, all the nodes that are hierarchically
below it will also be considered malicious even if this is not
the case.

In order to address the single point of failure issue, a
“many-to-one” communication can be used. This method
is introduced by Yangetal. [84] and allows to get rid
of a trusted verifier. The authors present two distributed
software-based attestation schemes that rely only on “‘regu-
lar” nodes and thus do not need a verifier. However, a draw-
back of this method is that the network must be dense. Indeed,
if the network is not dense, attackers could take control of a
sufficient number of nodes and could therefore compromise
the consensus within the network. They would then be able to
make healthy nodes look like corrupted nodes and vice versa.

C. DISCUSSION

In this section we extended Steiner et al. [15] classification of
attestation approaches used in the context of WSNs to a new
classification of existing solutions regardless the nature of the
system. We have therefore studied approaches that they have
not studied and we addressed these solutions from a new point
of view. Furthermore, we have outlined some limitations we
have encountered when generalizing their taxonomy. The
Table 4 maps, to the taxonomy shown in Figure 6, the attesta-
tion mechanisms that we considered relevant for solving our
problem. The table is sorted in chronological order.

V. SECURE BOOT

In this section, we first formally describe secure boot mecha-
nisms. Then, we review the main characteristics of existing
secure boot approaches and we propose a new taxonomy
(shown in Figure 9) which identifies five major characteris-
tics. We discuss each identified characteristic in more detail
below.

We have split the projects from scientific literature and
proprietary projects. We define a proprietary project as a
project owned by a private company. We think that it is rele-
vant to distinguish between scientific and private approaches.
Indeed, private projects are mostly based on opaque soft-
ware and/or hardware blocks as opposed to approaches pub-
lished in the scientific literature. That is why we would
need to reverse engineer these private projects if we would
like to uncover their secrets. However, we do not have the
right to carry out this work due to intellectual property
protection laws. We therefore consider as true the asser-
tions made in the technical documentation published by the
manufacturers.
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FIGURE 9. A taxonomy of secure boot mechanisms.

A. BACKGROUND
In the context of this survey, we consider that the security
goal of secure boot is to verify the integrity of the firmware
as described in the UEFI specifications [54]. This definition
of secure boot is widely accepted in the security commu-
nity [55], [56]. The literature overflows with various names
such as “trusted boot”, “measured boot’’, ““‘verified boot’’ or
“authenticated boot” . For the sake of clarity, we will group
all these names together under the name “‘secure boot” .
Secure boot uses the principles of Root of Trust (RoT)
and Chain of Trust (CoT) (see Figure 10). A RoT is the first
element of a CoT. It is the element which is considered as de
facto secure. In the case of secure boot this element can be
a piece of software like a first stage bootloader [109], [110]
or a hardware module like a TPM [46], [50], [111], [112],
a smartcard [112], [113] or another hardware module [114],
[115]. The next layer is measured by the current one then this
measurement is verified. If the verification succeeds then the
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FIGURE 10. Overview of a Chain of Trust (CoT).

procedure continues with the next layer until all layers have
been measured. Otherwise, the procedure prevents the system
from booting.

Formally, let L = {Ly, Lo, --- , Ly} a set of N layers and
M (L) a measurement function taking as argument the layer
L to be measured and returning True if the measurement is
valid, False otherwise. In this case, the validity V; of each
layer L; is defined by the recurrence relation (3). The layer
number zero represents the RoT and is therefore considered
as de facto valid.

Note that the measurement function M, could need a refer-
ence value allowing it to the validity of the layer L passed in
parameter. This reference value, named golden value, is vol-
untarily abstracted here since we want to keep the notations
generic in order to cover as many cases as possible. We have
also done the same for all the cryptographic material that M
might need: public / private key, secret key, etc.

Vo=T 3)
Vier = Vi AM(Lit1)

1) CHALLENGES
A secure boot mechanism should address the following chal-
lenges:

o Integrity: Prevent an attacker to modify the firmware.
In other words, the solution should ensure the bootstrap-
ping chain’s integrity.

VOLUME 11, 2023



A. Marchand et al.: Firmware Integrity Protection: A Survey

IEEE Access

« Platform independence: The solution should be easily
implementable on heterogeneous machines from several
manufacturers.

« Resilience: The solution should provide a way to recover
from a firmware modification. The machine should be
able to boot even if the firmware has been modified and
must boot in a known good state.

2) ADVERSARY MIODEL

The adversary’s goal is to compromise the integrity of the
firmware without being detected by the secure boot mech-
anism. In other words, the adversary’s goal is to execute
arbitrary code despite the presence of the protection.

The attacks that the attacker is allowed to perform depend
directly on the privilege level of the protection. The protec-
tions proposed in the literature use either dedicated hard-
ware (for instance [55], [112], [114], [116]) or a software
extension (for instance [46], [109], [117]), see Table 5 for
more information. Software level approaches do not protect
against an attacker with hardware access to the system. How-
ever, even the approaches using some dedicated hardware
do not address all hardware attacks. Indeed, [118] does not
allow side-channel and fault injection attacks. In the same
way, [119], [120] only allows the compromise of memories
and buses which are external to the protection, the others are
supposedly safe.

B. TAXONOMY

We have chosen to build our taxonomy upon common prop-
erties of secure boot mechanisms we have derived from
approaches we have reviewed. These properties are the fol-
lowing:

o Special hardware required: Does the solution require
the use of specific hardware?

o Platform independent: Can the solution be easily
implemented on other platforms than the one it was
designed for?

o Measurement algorithm: What are the algorithms used
by the measurement method M ?

« First measurement stage: At which abstraction level is
the measurement function M called for the first time?

o Recovery: Does the proposed solution have a recovery/
backup mechanism in case s firmware corruption is
detected?

We think that this categorization is more relevant than
basing our taxonomy upon security goals. Indeed, the only
security goals we have identified is to ensure the integrity
of the boot chain. Moreover, we think that the five charac-
teristics we have identified are common to all secure boot
approaches.

1) SPECIAL HARDWARE REQUIRED
The majority of the studied approaches require the use of spe-
cific hardware. Our study revealed five different categories of
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hardware: custom chip, specific processor, fuses, TPM and
smartcards.

Custom chips can be open or closed hardware. Closed-
hardware chips are used by private projects such as HP
Sure Start [121], [122], [123], Intel Boot Guard [124], [125]
or the Apple T2 chip [126]. This opacity, although under-
standable from the point of view of manufacturers’ intel-
lectual property protection, is in our opinion bad from the
point of view of security since it is similar to security by
obscurity. Indeed, approaches relying solely on security by
obscurity are only secure as long as the algorithm remains
unknown to the attacker. However, the attacker can carry
out reverse engineering work in order to discover it. If the
attacker succeeds in doing so, the security of the system
is completely compromised. That is why some proprietary
projects use open-hardware chips or open-source software.
We can for instance cite the OpenTitan project [53] whose
Verilog hardware description is published in a GitHub repos-
itory. Another example is the Olympus project [125], [127]
whose specifications, source code and hardware are publicly
available. We also found several open-hardware approaches
documented in the scientific literature [118], [128], [129].

Usage of specific processor(s) can be explained in several
ways. On the one hand, some projects have been designed
for a single processor or a single family of processors. It is
for example the case of the project of Lebedev et al. [116]
which is interested in the protection of platforms using the
Sanctum processor. On the other hand, some approaches use
functionalities that are only offered by a limited number
of processors. This is for example the case of the solu-
tion proposed by Gonzalez et al. [43] which uses TrustZone,
a technology implemented only on some ARM processors.

Fuses are hardware components that can be written only
once and whose value cannot be changed afterwards (once
the fuse is “burnt”, it cannot be restored to its original state).
This technology is used to store critical information about
the protection configuration. For example Jiang et al. [115]
use a fuse to store cryptographic material, namely the golden
values of the system. We can also talk about Samsung
Knox [130] which uses a fuse to permanently store warranty
expiration information if one of the bootstrap layers is not dig-
itally signed by Samsung. The weakness of this technology is
also its strength: the configuration becomes immutable and a
new configuration requires to replace the concerned hardware
components. If this is still possible for open hardware, it is not
the case for closed hardware.

Several approaches rely on TPM. TPM can be used
as storage for cryptographic material and only allow its
reading under certain conditions as in the approach of
Hudson et al. [46]. It can also be used to measure the integrity
of the boot chain layers [50], [112], [124]. TPM have the
advantage of being factory-integrated on recent general-
purpose computers and can be implemented on a large num-
ber of others. However, one of the disadvantages of its use
is its cost, which can be too high in some situations. This
drawback is particularly limiting in the context of low cost
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embedded systems where the price of a TPM can sometimes
be similar to the price of the system itself.

The storage of cryptographic material can also be done
thanks to smartcards. The advantage of a smartcard compared
to a TPM is its mobility. Indeed, users can carry it with them
and use it easily on different workstations, whereas a TPM is
fixed, soldered to the system. For example, the approach of
Itoi et al. [113] uses a smartcard to verify the boot sequence
of a workstation. First, the workstation sends the encrypted
hash to be checked to the smartcard. Then. the smartcard
decrypts it with its private key and verify it. Then, the smart-
card generates the response (pass or fail), signs it with its
private key and sends it back to the workstation. Finally,
the workstation can, according to the response, continue or
abort the bootstrapping procedure. Another example is the
approach of Gonzalez et al. [43] which uses a Secure Ele-
ment (which is a smartcard integrated into a mobile device) in
the context of BYOD applications. The authors use the smart-
card to verify the validity of the operating system (according
to the company’s policy). Once the operating system is veri-
fied, the user can access to the company’s sensitive data (VPN
access, public and private keys to authenticate users, etc.).
Otherwise, these data are locked into the secure element and
the operating system can not access them.

2) PLATFORM INDEPENDENT

We first need to define what we consider to be a “plat-
form independent” approach. We have previously shown that
some approaches require specific hardware in order to work.
A “platform independent” approach is then defined as an
approach that is compatible with almost all the platforms of
its field of application despite the possible use of specific
hardware blocks. The scientific literature proposes indepen-
dent platform approaches that we have classified into several
categories.

First of all, the approach of Yinetal. [110] is fully
software-based. Their solution can therefore be implemented
on any platform since no hardware is required and the
proposed algorithms do not depend on specificities of a
particular architecture. The approach of Miiller et al. [131]
uses a firmware decryption program and a security module
implemented in an FPGA to decrypt the firmware itself.
The encryption key is generated thanks to a dedicated PUF
chip, external to the security module and communicating
with the latter via an SPI bus. The authors specify that their
solution should be implemented with the PUF into a single
chip (ASIC) in order to prevent an attacker from obtaining
the PUF response by sniffing the SPI bus. In the same way,
the approach of Pocklassery et al. [132] uses the output of a
PUF, implemented into a System-on-Chip (SoC), as a decryp-
tion key. This approach integrates the PUF and the rest of
the security module into the same chip and is therefore not
vulnerable to the previous attack. However, in both cases, the
PUF is only used to generate a decryption key. It is therefore
possible to use their approaches as is and replace the PUF by
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another key generation mechanism to have a fully software-
based approach.

Then, some approaches [119], [120] implement a proces-
sor within an FPGA and use a part of its resources in order
to implement a security module. Therefore, no additional
hardware is needed since the FPGA was already used for the
processor. Other approaches [111], [129] also use an FPGA
but as a security module on its own. In other words, the
FPGA is dedicated to security tasks (boot chain verification,
recovery, etc.) and communicates with the processor that
executes the firmware. These approaches therefore expose
at least one communication bus between the processor and
the security module. The data on this bus may be sniffed or
altered by an attacker with physical access to the system. This
attack is more difficult to do when everything is integrated
into one single chip as the attacker would need to probe into
on-chip busses. Finally, a drawback of these two methods is
the need to consider the FPGA’s bitstream safe as an attacker
who is able to successfully modify the bitstream is able to
modify the behavior of the security module.

3) MEASUREMENT ALGORITHM

Almost all approaches rely on one or more cryptographic
functions: hash function, digital signature or MAC. In all
cases, one or more pieces of data must be stored in a secure
way in order to compare the calculated value to a known
good value. The first method consists in calculating the hash
of the not yet trusted layer and comparing it with a known
good hash [49], [91], [109], [129], [132]. This method is
the simplest to implement but requires to store a golden
value per layer measured in a read-only memory. In order
to reduce the amount of read-only memory required, it is
possible to use a MAC instead of a hash function [115],
[118], [131]. Thus the only data to be stored securely is
the secret key which is the same for every layer. The ref-
erence MACs can be stored in a non-secure memory since
the attacker is not able to calculate them without the secret
key. In this case, the secret key memory must not only be
read-only but the confidentiality of the key is also needed.
The principle is essentially the same for the digital signature.
In this case, the piece of data to be protected is the public
key and the reference signatures can be stored in a non-secure
memory.

The approaches we studied use different methods to store
critical information related to the firmware integrity verifi-
cation. The first solution is to use a ROM to ensure that
this data is not modified by an attacker with full-software
access. This ROM is either integrated inside a custom chip,
as it is the case for the proprietary projects [52], [121],
[122], [123], [126], or added as an external component as
in the case of the AEGIS solution [117]. This solution has
then been extended to add a smartcard support allowing
to store sensitive data in a removable component bound to
the user [113]. The approach of Huang et al. [112] also uses
this method but uses a USB security module instead of a
smartcard. These information can also be stored in fuses
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which ensures that these data cannot be modified even by an
attacker with physical access to the system. The approaches
of Devic et al. [119] and Rouget et al. [120] use an FPGA as
a security module. The sensitive information are stored in the
bitstream which is considered secure. Finally, the approach
of Lebedev et al. [116] uses a PUF to generate a key which is
then used to encrypt and decrypt the secret key of the device.
This device’s secret key can then be stored encrypted in an
untrusted memory across reboots.

A TPM is also perfectly suited since it is designed for this
application. Indeed, a TPM chip has registers designed to
securely store hashes, called Platform Configuration Register
(PCR). The specificity of these registers is that writing can
only be done via an ‘“‘extend” operation. During an “extend”
operation, the value currently stored in the register is concate-
nated with the data to be extended and the result is then hashed
to create the new value of the PCR. Each new value written
in such a register therefore depends on the previous one. The
final value of a PCR is thus a chain of hashes of all the pieces
of data that have been measured since the TPM was powered
up, thus ensuring the integrity of the entire chain if the last
hash is equal to the known good value. This method is used
by Trammell Hudson [46] and Avani et al. [SO]. The main
drawbacks of using an hardware TPM module are the usage
of dedicated hardware increasing the cost of the final system,
the reliance on a TPM chip manufacturer and the compati-
bility issues that may potentially exist with some platforms.
Moreover, the approach of Khalid et al. [128] uses a custom
security module that implements TPM’s functionalities.

The approach of Lietal [111] presents an Extended
Trusted Platform Module (ETPM). This ETPM has all the
functionalities of a TPM and adds some new ones: backup
system, symmetric cryptography at hardware level and bus
arbitration. The authors also present a secure boot procedure
using their ETPM. Their approach is different from those
presented in the previous paragraph. Indeed, the latter use the
TPM via the firmware so the secure boot is actually managed
by the firmware itself while the ETPM manages the secure
boot procedure on its own.

The approach of Yin et al. [110] uses an Error Detecting
Code (EDC) to ensure the integrity of each layer. The authors
propose an implementation based on the CRC-16 algorithm.
This approach, although using a similar principle to the one
used by hash function based approaches, offers a lower level
of security. Indeed, due to the linearity of CRC-16, an attacker
is able to modify the firmware without changing the CRC-16
value. We therefore do not recommend to use this method
since it offers a too low security level compared to other
alternatives.

The approach of Wang et al. [114] is based on execution
time calculation of several pieces of firmware code. To do
this, the authors modify the firmware by adding hooks to it
in order to know the elapsed time for a particular instruc-
tions block. A routine then checks that the calculated time
corresponds to a golden value (within one epsilon) stored
in memory. We have identified several drawbacks to this

VOLUME 11, 2023

approach. First, a golden value must be stored in read-only
memory for each instructions block we wish to analyze.
Second, a profiling operation must be performed before the
device is deployed in order to populate the memory with these
golden values. Finally, if the entire firmware is not checked,
it is technically possible for an attacker to slip through the
cracks if it only modifies the parts of the code that are not
protected.

4) FIRST MEASUREMENT STAGE

The first measurement stage corresponds to the level of
abstraction performing the first measurement of the firmware.
According to the approaches studied, we have identified two
different stages for the verification: firmware and hardware.

Doing the first measurement at the firmware level has the
advantage of requiring no additional hardware but only a
modification of the firmware. However, it has the disadvan-
tage of not protecting against an attacker who has complete
control over the software in itself. Indeed, at least a software
routine initiating the measurement must be considered safe.
The attacker can then rewrite this software block to bypass the
protection. In order to prevent this attack, these approaches
rely on hardware mechanisms.

The first idea is to use a ROM to store the first piece
of code which will be executed and which will do the first
measurement [50], [91], [114], [116]. The approaches of
Adnan et al. [109] and Haj-Yahya et al. [55] store the First
Stage BootLoader (FSBL, ie. the first software to be exe-
cuted by the device) into a small ROM located inside the
processor or the security module. The FSBL can then mea-
sure the rest of the firmware which is located into a bigger
unprotected memory. The AEGIS project [113], [117] uses
the same idea but for general-purpose computers. However,
general-purpose computers usually don’t have a dedicated
ROM space to store the FSBL. That is why this approach
uses a dedicated ROM card to store the FSBL. The approach
of Trammell Hudson [46] also targets general-purpose com-
puters but uses the read-only protected areas mechanism
offered by existing EEPROM instead of a dedicated ROM.
This approach therefore doesn’t need an external hardware
component. The approach of Javier et al. [43] also stores the
FSBL into a ROM but also uses a Trusted Execution Environ-
ment (TEE) and a Secure Element (smartcard) to store critical
cryptographic material and software. The FSBL first verifies
the integrity of the TEE operating system and then initializes
the TEE with it. The TEE then verifies the integrity of the
next stage before executing it. In case the next stage is not
verified, the user can use its Secure Element to authenticate
the system. This mechanism allows for instance a company to
certify different operating systems in a bring your own device
context.

The approaches proposed by Pocklassery et al. [132] and
Miiller et al. [131] store the RoT into a ROM and encrypt the
rest of the firmware. However, the decryption key is generated
by a PUF. The integrity of this key is then checked by the RoT
and is then used to decrypt the rest of the firmware. Finally,
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the approach of Jiang et al. [115] uses not only a ROM to
store the RoT but also fuses (which can in fact be seen as
a small read-only memory) to store cryptographic material.
Doing the first measurement at the hardware level there-
fore offers a protection against attackers with full software
access as the firmware does not need to be considered secure,
only the hardware performing the measurement needs to be.
Assuming that the firmware cannot change the behavior of the
hardware security (which should never be the case), attackers
necessarily need physical access to achieve their goals. This
method is used by all proprietary projects (see proprietary
projects in Table 5) and by approaches using an FPGA as a
hardware security module [111], [118], [119], [128], [129].

5) RECOVERY

A recovery mechanism allows to restore the system to a
trusted state in case of accidental or malicious corruption of
the firmware. The majority of the approaches that we found
do not implement a recovery mechanism. Among those which
do, we can distinguish four different ways of implementing
recovery.

The first implementation type uses a specific region within
the same memory chip as the firmware one. This type of
implementation does not require a specific hardware module
since the existing hardware can be used as long as the memory
has enough capacity to store both images. The main disadvan-
tage is that an attacker with full software access could access
the backup in addition to having access to the firmware. This
method is used by the Olympus project [125], [127] and by
the work of Yin et al. [110].

The second method consists in using a dedicated secu-
rity hardware module and storing the backup in an addi-
tional memory located outside this module. This method has
the advantage of physically isolating the backup from the
firmware. Thus an attacker, even with full software access,
will not be able to compromise the backup. However, this
method does not offer protection against an attacker with
physical access to the device. This idea is used by the
approaches proposed by Webel et al. [52], Liet al. [111] and
by the OpenTitan project [53].

The third method is similar to the previous one except that
the backup memory is located inside the security hardware
module. This technique is, in our opinion, the most robust
from a security point of view because it also offers some
protection against an attacker with physical access to the
system. We note that this method is the most used among the
approaches that we study [118], [121], [122], [123].

A last method, proposed by Arbaugh et al. [117] consists
in externalizing the backup on a server and downloading
it directly from it. This method has the advantage of not
requiring any additional hardware since the software RoT can
use the network hardware already available on the device to
communicate with the server. The main drawback however
is the inclusion in the Trusted Computing Base (TCB) of all
the items needed to download the backup and the assumption
that the server is secure.
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C. DISCUSSION

In this section we presented a taxonomy and detailed the
techniques encountered for each taxon. Each technique was
then illustrated with examples. We also discussed the advan-
tages and inconvenient of these techniques. Table 5 maps,
in chronological order, a representative number of secure boot
mechanisms to the taxonomy illustrated in Figure 9. To the
best of our knowledge, every secure boot mechanism would
fit on the proposed taxonomy.

VI. DISCUSSION: OPEN RESEARCH PROBLEMS

In this section, we first discuss the applicability of stud-
ied approaches. Then, we study open research problems
and give directions on how to address them. We will first
look at known attacks that can defeat some of the pro-
posed protections. We will then study the potential con-
tribution of new technologies to the resolution of the
firmware integrity protection issue. Finally, we will then
discuss mixing several protection mechanisms in a single
solution.

A. APPLICABILITY

Throughout our study, we have identified some solutions
based on mechanisms specific to one or more contexts.
We will detail these solutions below and explain why they
cannot be implemented for all contexts.

First of all, the solution proposed by Katzir and Schwartz-
man [26] is very specific. It is based on the principle of
“window of opportunity” and require the frequency of the
electrical network to change in order to update a device’s
firmware. However, this solution relies on two prerequisites:
1. the device to be programmed is on the electrical network
and 2. It is possible to vary the frequency of the said electrical
network. However, this is only realistic in the context of an
electrical network operators wishing to update devices on
their own network. It is therefore very difficult to transpose
this solution to another context.

Then, some attestation solutions are based on a one-
to-many or many-to-one interaction pattern (see sub-
subsection IV-B7). These solutions can only be used in the
context of a system with several devices. These solutions
are thus particularly suited for WSNs and for the IoT world
but cannot be implemented when the considered system is
made of a single device. This is typically the case for solu-
tions targeting general-purpose computers. These solutions
consider a system made up of a single machine and there-
fore cannot use the interaction patterns explained in this
paragraph.

Then, we can notice that the studied approaches can be
divided into two main categories: software solutions and
hardware solutions. A software solution has the advantage
of being less expensive since no hardware is required. It is
also (in theory) compatible with any platform. However, these
solutions cannot protect against an attacker with physical
access to the system. In this case, only hardware solutions
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can be helpful. They are however more expensive and are
sometimes incompatible with certain platforms. In fact,
we have identified limitations in terms of compatibility
regarding the hardware required by some approaches. For
instance, the approach of Lebedev et al. [116] was designed
specifically to be integrated within the Sanctum processor.
Then, the solution of Gonzalez et al. [43] uses TrustZone,
a technology implemented only on some ARM processors.
Finally, Intel Boot Guard [124], [125] requires an Intel pro-
cessor

to work.

These limitations also applies for proprietary solutions
using closed hardware. This type of hardware is, by def-
inition, a black box that we are forced to trust. This is
similar to security by obscurity and is therefore opposed to
the Kerckhoffs’ principle [134], which is detrimental to the
security of the system. Moreover, some fuses are sometimes
burned in the production phase in order to pre-configure the
protection. This process imposes to the user all or part of
the configuration and can be problematic in case of firmware
customization. Finally, this causes a problem in the event
of a proven vulnerability at the hardware level, since it is
impossible for the user to make any modification to the
hardware or to the configuration. Users are therefore forced
to rely on the product recall by the manufacturer in order to
keep their system protected.

Finally, solutions based on hardware components add a
production cost for each device. This additional cost may or
may not be significant and prevent the implementation of a
solution depending on the context considered. Indeed, a sen-
sor or an IoT device are constrained in terms of manufacturing
cost (see section II). Thus, adding hardware components to
protect their firmware may be feasible in theory but impossi-
ble to implement due to the increased cost of the final product.

B. OPEN RESEARCH PROBLEMS

In this subsection we will pursue our specific analysis by
focusing on the state-of-the-art shortcomings and potential
threats associated to the proposed solutions.

1) KNOWN ATTACKS

We will see existing attacks against some of the mechanisms
discussed earlier. These attacks show that some of the pro-
tection mechanisms discussed in this survey are vulnerable
and should not be used for future projects unless the said
attacks couldn’t happen in the considered context. We will
first discuss the time-of-check to time-of-use (TOCTOU)
bugs. We will then discuss TPMs, the keystone of many
approaches, yet vulnerable to several attacks.

The name “TOCTOU bugs” can sometimes be misleading.
Indeed, the word “bug” may imply that TOCTOU can only
occur at a software level. However, TOCTOU is a logical
flaw introduced during the design of a system. It is therefore
possible to find this kind of flaw at a software level as well as
ata hardware level. Indeed, TOCTOU is caused by a race con-
dition involving a check (for instance checking the credentials
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of a user) and the use of the result of that check (for instance
granting the access to the user or not). This kind of logical
flaw is therefore independent of the language used, of the
implementation, and even of the hardware involved. Thus,
it is possible to exploit a TOCTOU bug regardless of both
the type of security (secure update, attestation, secure boot),
the application (embedded, general-purpose computers, [oT,
WSN, FPGA, etc.), and the abstraction level of the protection
(software or hardware). In our case, a TOCTOU bug may
occur when a measurement is performed because the integrity
of the firmware is ensured at the time of the measurement.
However, there is no guarantee that the firmware will not be
modified later at the runtime. In other words, the firmware
that we have checked may not be the same as the one that
is running. The exploitation of this race condition has for
example been shown to be feasible against Intel Boot Guard
by Peter Bosch and Trammell Hudson [135]. Moreover, the
survey of Steiner et al. [15] presents this logical flaw as an
important issue in the context of WSN attestation. Finally,
De Oliveira Nunes et al. [136] present RATA, an extension of
their project VRASED [98] which protects the later against
TOCTOU.

TPMs are vulnerable to several attacks. First of all, Jeremy
Boone [137] has made a hardware module that intercepts
packets sent and received by the TPM via the 12C bus.> The
author shows that it is possible to attack the PCR extend
operations and thus compromising the confidence that can be
given to the measurements made by the TPM. Jeremy Boone
also shows that the proposed module is able to substitute
itself to the random number generator of the TPM, thus
making deterministic any calculation based on this generator.
Next, Han et al. [138] present two software attacks that allow
an attacker to forge the values of the PCR registers, again
challenging the trustfulness of the measurements. Finally,
Moghimi et al. [139] present attacks against several differ-
ent TPMs. They can extract keys from these chips using
side-channel timing attacks. The authors also demonstrated
how to recover a StrongSwan IPSec VPN server’s authen-
tication key via a network connection using such attacks.
We think that in light of these facts, the use of TPM for new
projects should receive increased attention.

The attacks described above show that the solutions pro-
posed in the literature can be attacked by at least two different
vectors: software and hardware. Thus, even if secure devel-
opment of the firmware is an important step to avoid bugs at
the software level, it is not sufficient to ensure the security of
a system against an attacker with physical access.

2) NEW TECHNOLOGIES

Recently, there has been interest in using new technologies
such as blockchain or Artificial Intelligence (Al) to verify the
integrity of firmware.

2The author has chosen this bus for simplicity and specifies that the
support of SPI and LPC buses is planned for a future release. That is why
the chosen bus does not seem to impact the attack feasibility.
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We have previously discussed the fact that some secure
update approaches use a blockchain [38], [66], [68], [82].
However, we note that the use of this blockchain is limited
to the update metadata storage. The firmware itself is indeed
too large to be stored into a block and must therefore be
externalized to another service. We therefore consider that the
contribution of a blockchain in this context is questionable
since it adds heaviness to the secure update system without
providing any real benefit in terms of security. We think
that it can however be useful when used for the update
traceability and event logging for instance in a context of
computer park management. Moreover, the solutions pro-
posed by He et al. [68] and Hu et al. [82] are based on private
blockchains and do not discuss the consensus algorithm used
or how participating nodes are rewarded to improve the secu-
rity of the blockchain. We therefore think that further studies
should address these issues to highlight the advantages and
disadvantages of existing solutions in the context of secure
firmware updates using a private blockchain.

Artificial intelligence is used by the approach of
Wang et al. [114]. The authors propose a machine learning
algorithm allowing the detection of a malicious firmware.
They propose two different implementations: a first one
doing the computations locally and a second one doing
the computations using a remote analyzer. Al can therefore
be used in the context of secure boot to perform dynamic
analysis of the system. However, we have identified several
limitations to this approach. First of all, we must question the
learning phase of the algorithm. It is indeed essential to be
able to ensure the integrity of the firmware, without which
it is possible that learning data are biased due to a malicious
firmware [140]. Secondly, this approach is not very adaptive.
A modification of the firmware (because of an update for
example) requires to redo the whole learning process and
recompute every golden value. Finally, the implementation
performing the computations remotely requires the analyzer
and the whole network stack to be safe, which increases the
potential attack surface. Further work are thus expected on
this subject, in order to discover solutions to overcome these
limitations.

3) BLENDING EVERYTHING TOGETHER
In this survey, we studied three different types of protec-
tion: secure update, attestation and secure boot. However,
few approaches combine these types of protection. The only
example we have found in the literature is the SobTrA solu-
tion [91]. This software solution, targeting embedded sys-
tems, uses both an attestation and a secure boot mechanism.
SobTrA first uses a timing-based attestation mechanism to
verify the integrity of the untrusted device by making sure
that a piece of code is executed untampered on it. This code
can then act as an anchor for a chain of trust and bootstrap the
platform thanks to a secure boot mechanism.

As we have seen throughout this paper, applications are
diverse and their constraints, challenges, goals and threat
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models vary from one system to another. It is therefore not
enough to combine several independent solutions to create
a new solution using several types of protection. Designing
such a solution requires a thorough study of the system to be
protected. Moreover, combining several types of protection
raises several questions which remain open for the moment:
which combinations are interesting according to the field
of application and the considered threat model? Do these
protection mechanisms overlap? Can we have a sense of end-
to-end security by using these three protection mechanisms?

VII. CONCLUSION
In this survey, we investigated three protection mechanisms
(secure update, attestation and secure boot) used to ensure
firmware integrity. We presented two new taxonomies that
identify the main characteristics of secure update and secure
boot solutions. We also extended the scope of a taxonomy
used in the context of WSN attestation to all types of systems.
We discussed the limitations we have encountered doing such
a generalization as well. In addition, we presented the advan-
tages and the disadvantages of each design choice made for
these approaches. Finally, we have identified open research
issues and have given guidelines on how to address them.
We have also highlighted the need for research taking into
consideration physical attacks, open specifications and using
generic hardware. Among the various research opportunities,
designing a solution targeting general-purpose computers
while taking into account the previously highlighted limita-
tions appears promising. Such approaches should combine
several security types, which to the best of our knowledge,
has not been done so far.
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