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ABSTRACT The freshness of information is critical for patient vital signs and physiological parameters
in the healthcare system because changes in these parameters can indicate a patient’s overall health status
and guide treatment decisions. In this paper, we consider an edge device-aided smart healthcare system that
relies on a resource management scheme. The medical center requires patient information, and edge nodes
process the latest measurements received by each wearable device. Our goal is to find the optimal strategy
to minimize the worst case of information freshness, i.e., the peak AoI age of information (PAoI). Firstly,
we model the problem as a Markov Decision Process (MDP). Then, we design two separate Reinforcement
Learning (RL)-based algorithms to find the optimal strategy that minimizes energy consumption and the
average PAoI. To minimize energy consumption, we propose a pair of sleep mechanisms, including the
N policy and pwake-up policy, to improve the energy efficiency of each wearable device. Simulation results
show that the proposed wake-up strategy and the proposed RL algorithm make a better trade-off between
the average PAoI and power dissipation compared to the baseline schemes.

INDEX TERMS Smart health, age of information (AoI), sleep-scheduling, deep reinforcement learning
(DRL), deep deterministic policy gradient (DDPG).

I. INTRODUCTION
Smart health empowers sophisticated diagnostic tools
to deliver advanced treatment for patients and smart
health-based equipment to improve the quality of care by
providing real-time vital indicators [1], [2]. Specifically,
smart health is capable of providing an efficient and fast
flow of information to patients and caregivers, thus enhancing
the efficiency of the healthcare sector [3]. In smart health
system, there is a large amount of data to be transmitted,
processed and stored, but the traditional cloud computing
architectures cannot cope with the needs of running a smart
health system [4]. Therefore, mobile edge computing (MEC)
has been proposed as a new approach for smart health [5], [6].
which can be utilized to boost the effectiveness of information
transmission and reduce power dissipation. Reference [5]

The associate editor coordinating the review of this manuscript and

approving it for publication was Paulo Mendes .

uses MEC nodes to meet the requirements of deep neu-
ral network algorithm training, thus providing low latency
and high performance information transmission services for
intelligent medical systems. Reference [6] investigates the
multi-edge server MEC system and uses deep reinforcement
learning (DRL) algorithms to obtain the optimal policy, thus
optimising the duration of information transmission between
servers based on non-orthogonal multiple access (NOMA)
and providing a better solution to the information transmis-
sion problem of smart health systems.

MEC-based smart health architecture is composed
of wearable devices, a patient data aggregator (PDA),
mobile/infrastructure edge nodes (MEN), an edge cloud, and
a medical center, respectively. Specifically, wearable devices
are responsible for sensing the patient’s status through the
body’s local sensor network, while the PDA acts as a
communication hub that transmits the information to the
infrastructure. The MEN processes and stores the data and
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forwards it to the cloud, and the edge cloud stores and
analyzes the patient’s data to enable the medical center to
take timely medical care [7]. Due to the intricate nature of the
information, in order to ensure precise evaluation of various
aspects of a patient’s physical condition, each update is
assumed to be independent and identically distributed (i.i.d.)
within the healthcare center.

During the transmission of patient information, the fresh-
ness of the information has a significant influence on the
timely implementation of medical treatments, especially for
surgical reliability in every hospital. For example, a highly
contagious strain that attacks the upper respiratory tract of the
human body and puts the respiratory system at risk or even
paralyzes it, makes real-time feedback on the patient’s phys-
ical condition essential, as poor timeliness of information on
the patient’s condition can lead to complete deterioration.
Similarly, chronic diseases (such as heart and lung-related
diseases) require emergency measures within 12 hours of the
onset, and the timeliness of the information can determine
whether the procedure can be performed in time, thus affect-
ing the patient’s vital signs.

In order to effectively quantify the concept of informa-
tion freshness [8], the age of information (AoI) is pro-
posed as a metric that indicates the time elapsed since the
moment of generation when the information was updated [9].
References [10] and [11] have both derived expressions for
the average Age of Information (AoI) and Peak Age of
Information (PAoI) based on an M/G/1 queueing system.
On the other hand, research [12], in comparison to [10]
and [11], evaluates the freshness of information in the sys-
tem by employing three different scheduling policies. Within
the realm of intelligent healthcare systems, edge nodes are
employed for the reception, storage, and subsequent trans-
mission of patient data conveyed by PDA, forwarding it to
the cloud. Throughout this process, the ‘‘freshness’’ of the
data directly influences the real-world performance of edge-
assisted smart healthcare systems [13].
Furthermore, wearable and implantable medical devices

(IMDs) are extensively utilized in smart healthcare scenarios
to monitor chronic diseases. However, the non-rechargeable
batteries used in most of these devices have a limited lifespan,
which fails to meet the demand for continuous monitoring.
Therefore, besides optimizing the battery material and struc-
ture, the working mechanism of the device is also a crucial
factor in reducing battery energy consumption and extending
its working life. Thus, the optimization of the device’s work-
ing mechanism to minimize energy consumption and prolong
its working life is a key issue addressed in this study.

II. RELATED WORKS
The issue of minimizing the AoI is particularly important
in the healthcare architecture of smart health, as prompt
and accurate assessment of the user’s vital signs is crucial.
In previous research on AoI, the main consideration has been
to investigate the optimization of the average AoI metric.

However, average AoI does not accurately represent the
dynamics of AoI over continuous time [14]. There-
fore, to accurately represent the long-term behavior of
AoI, we introduce the PAoI metric, which represents the
worst-case delay in the freshness of the information being
used [15].

Several approaches have been adopted to optimize the AoI
metric. Lv et al. [16] proposed an online auction mechanism
called PreDisc to optimize the metric of AoI. PreDisc lever-
ages dynamic programming to greedily allocate resources
in each time slot while considering a preemptive factor
to balance the newly arrived tasks and the ongoing tasks.
Sharan et al. [17] considered th e energy-saving scheduling
problem of AoI minimization, which was solved using a seg-
mented linear approximation method. While these methods
mainly aim to minimize AoI at the level of the optimization
algorithm, the dynamics of AoI as a continuous time process
has not been fully considered.

To fully characterize the dynamic process of AoI over time,
Wu et al. [18] formulated the AoI minimization problem as
a Markov decision process (MDP). Moreover, taking into
account the intricate nature of the MDP, it has been further
subdivided into an alternative near-optimal strategy based on
the Lyapunov drift function. Additionally, the aspect of user
fairness has been considered, and a greedy policy has been
proposed to minimize the maximum expected AoI for users.

In addition to the heuristic algorithms employed above,
there has been some research into the use of reinforcement
learning (RL) algorithms to optimally solve the problem of
minimising AoI [29], [30], [31]. Deep RL (DRL) is a com-
bination of deep learning and RL, which solves the problem
of large state-action space or continuous state-action space
by fitting Q-tables or direct fitting strategies with the power-
ful representational power of deep neural networks, and the
convergence speed is faster [32]. Deep Q learning is a typical
example in DRL, in which deep Q networks are widely used,
such as resource allocation in the NOMA system in [33], and
drone path planning in [34]. However, the output decisions of
DQN can only be discrete, a drawback that leads to quan-
tization errors for continuous action tasks. However, deep
deterministic policy gradient (DDPG) methods are proposed
to better solve these problems, and DDPG is based on the
actor-critic structure, which is an enhanced version of the
deterministic policy gradient (DPG) algorithm.

In the transmission of information, in addition to infor-
mation timeliness, energy consumption is also an important
issue that cannot be ignored and is a challenge to extend
the working life of edge nodes [35]. In order to reduce the
number of redundant nodes, ensure the efficiency of the nodes
and thus reduce the overall energy consumption of the work,
the sleep/wake mechanism is therefore widely used. Refer-
ence [35] proposes an M/M/1/C queuing model based on
the N policy, where nodes in the dormant state are switched
to the wake-up state for data transmission work when the
packet volume reaches a threshold N , effectively extending
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TABLE 1. Contrasting our contribution to the literature.

the working life of the nodes. Reference [36] then models a
dynamic N policy based on the different arrival rates of the
packets. In [37], the authors modelled the working state of
the nodes according to the sleep/wake mechanism, i.e. the
probability of a node being woken up is p and the probability
of being in a dormant state is 1− p. The energy consumption
of the nodes was modelled according to a MDP and the
optimal wake-up probability p∗ was derived. Reference [38]
then proposes an effective energy management mechanism
based on the MDP model based on p wake-up probability,
the parameters in the study are determined by simulation
verification.

In summary, our research stands out from other works by
considering resource management solutions in edge-assisted
intelligent healthcare systems and utilizing RL-based algo-
rithms to attain optimal solutions. Our study not only builds
upon the dormant mechanism of edge devices but also takes
into account the simultaneous optimization of average PAoI
and energy consumption, which are two distinct performance
metrics. Additionally, we have devised two separate DRL
algorithms tailored to different action spaces, effectively tack-
ling the resource management problem.

A. CONTRIBUTIONS
This study considers MEC-based smart health architecture
that consists of wearable device, PDA, MEN, edge cloud and
medical center, as shown in Figure 1.
Our objective is to discover the optimal information accep-

tance strategy for MEN that minimizes the average PAoI,
which more effectively reflects the long-term characteristics
of AoI compared to traditional AoI. To address the challenge
of minimising average PAoI, we propose using RL algo-
rithms to learn the optimal policy for different environments.
Furthermore, due to the limitations of MEN’s battery size,
we also propose a sleep scheduling algorithm to extend the
lifetime of the system and ensure its robustness. In summary,
our contributions are summarized as follows:
• Firstly, we formulate the information status update as

a Markov decision problem, since MDP is a powerful tool
that fully characterizes the dynamic process of average PAoI
over time, and allows for the design of an optimal resource
management scheme.
• Secondly, we design a DRL-based algorithms to find the

optimal strategy that minimizes energy consumption and the
average PAoI, and introduces a pair of sleep mechanisms to

improve the energy efficiency of each wearable device. The
N policy combined with the p wake-up policy.
• Thirdly, to optimize the N policy and p wake-up policy,

we propose a Deep Reinforcement Learning (DRL) approach
based on a joint DQN-DDPG network to effectively optimize
the sleep scheduling strategy, because the state and action
spaces are large and involve both discrete and continuous
actions. The proposed DRL method has been validated by
simulation to be more effective in optimising the objective
function than other algorithms.

The contributions made in this paper are clearly contrasted
with the literature in Table 1.

B. ORGANIZATION
The remainder of this article is structured as follows:
In Section III, we introduce the system model and problem
formulation. In Section IV, we describe two sleep scheduling
frameworks based on DRL. Section V presents the simulation
results, and in Section VI, we draw our conclusions.

III. SYSTEM MODEL
A. QUEUE DESCRIPTION BASED ON N-POLICY AND
p WAKE-UP POLICY
We consider a smart healthcare network consisting of a
patient, wearable device, PDA, edge node, edge cloud and
medical centre, as shown in Figure 1. The markings of the
arrows in Figure 1 indicate the sequential process of trans-
mission of the raw data. The wearable device continuously
monitors the patient’s status and transmits it to the PDA,
the PDA aggregates the collected data and transmits it to
the MEN, which performs the intermediate processing and
storage functions of the data and transmits it to the edge
cloud. The edge cloud analyses the patient data and transmits
it to the medical centre to provide further medical services.
In the realm of authentic systems, prior knowledge can be
acquired through predetermined assumptions or prolonged
surveillance and statistical analysis.

The concepts of ‘‘queue awakening’’ highlight the thresh-
old N and wake-up probability p, which can be utilized to
regulate the operational frequency of edge nodes and the
latency of buffered data packets. The N strategy entails the
server entering an awakened state to receive and process
data packets once the queue reaches the threshold value N .
On the other hand, the p wake-up policy involves the server
switching between sleep and awakenen policy states based
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FIGURE 1. Smart healthcare network.

TABLE 2. Key notations.

on a probability of p, with a probability of 1 − p for awak-
ening [37], [39]. According to [37] and [39], both policies
are effective in reducing energy consumption. Drawing inspi-
ration from their findings, we have integrated these two
awakening policies in our queuing model to minimize energy
consumption and enhance information freshness.

In this paper, we investigate the problem of minimis-
ing PAoI while minimising energy consumption in an
M/M/1 queue under an N policy with a p wake-up policy.
We assume that the edge node is not in a completely dormant
state but can provide self-state information to the device.
This enables the device to determine when the node is in a
dormant or awakened state and adjust its packet transmission
rate accordingly. Due to the varying workload between the
dormant and awakened states, the edge node has different
sampling rates in these two states. In the dormant state, the
arrival rate of data packets is denoted as λ0. When the number
of packets reaches a threshold N , the node starts to enter the
wake-up state with probability p. When the nodes enter the
wake-up state, the packet arrival rate is λ1 while the packet
processing rate satisfies the negative exponential distribution
of µ. The individual edge node operating states are shown
in Figure 3.

B. M/M/1 QUEUING MODEL WITH N-POLICY AND p
WAKE-UP POLICY
In this subsection, we present the Markov queuing model
based on the N policy with the p wake-up policy and the
results of its steady-state analysis. The state of the system
is represented by the pair ⟨δ, i⟩, δ = 0 and 1, i = 1, 2, . . .,
where δ = 0 and δ = 1 indicates that the node is in a sleep
and wake-up state. i is the number of packets queued at the
edge node. When analysing the state of a system, we use the
following notation:
• P⟨0,0⟩ = the probability of no packets within the edge
node. (dormant state)

• P⟨0,i⟩ = the probability of having n packets inside the
edge node. (dormant state), where i = 1, 2, . . .

• P⟨1,i⟩ = the probability of having n packets inside the
edge node. (wake-up state), where i = 1, 2, . . .

The M/M/1 queuing model based on the N policy and the
p wake-up policy is shown in Figure 4, where the circular

VOLUME 11, 2023 81183



B. Wu et al.: AoI-Aware Resource Management for Smart Health via DRL

chain at the top and the circular chain at the bottom represent
the dormant and wake-up states of the edge nodes respec-
tively. λ0 and λ1 denote the packet arrival rates of nodes in the
dormant and wake-up states respectively, whileµ denotes the
average service rate of the node. We may wish to remember:
ρ0 = λ0/µ, ρ1 = λ1/µ. The steady state equations for P⟨0,i⟩
and P⟨1,i⟩ are as follows:

P⟨0,0⟩λ0 = P⟨1,1⟩µ,
P⟨0,i⟩ = P⟨0,0⟩, (i ⩽ N ),
P⟨0,i⟩λ0 = P⟨0,i−1⟩λ0(1− p), (i > N ),
P⟨1,1⟩ (λ1 + µ) = P⟨1,2⟩µ,
P⟨1,i⟩ (λ1 + µ) = P⟨1,i−1⟩λ1 + P⟨1,i+1⟩µ (i ⩽ N + 1),
P⟨1,i⟩ (λ1 + µ) = P⟨1,i−1⟩λ1 + P⟨1,i+1⟩µ
+P⟨0,i−1⟩λ0p (i > N + 1).

(1)

Since the model considered in this study is difficult to
solve by probability generating function (PGF), we consider
a recursive approach. It can be concluded that in the dormant
state:

P⟨0,i⟩ = P⟨0,0⟩ (i ⩽ N ),

P⟨0,i⟩ = (1− p)i−NP⟨0,0⟩ (i > N ). (2)

The transition probabilities for the wake-up state are shown
below for i ⩽ N + 1 and i > N :

P⟨1,i) =
1− ρi1
1− ρ1

ρ0P⟨0,0⟩ (i ⩽ N + 1),

P⟨1,N+k⟩ =

 (1− p)− ρk−11

(
ρN+11 − p

)
1− ρ1

−(1− p)+ (1− p)k−1
]
ρ0P⟨0,0⟩ (k ⩾ 2).

(3)

Meanwhile, based on the property that the sum of transition
probabilities is 1, i.e.,

∑i
n=1(P⟨0,i⟩ + P⟨1,i⟩) = 1(N ≪

i ≪ ∞), we can obtain the probability of no packets within
the edge node, which is P⟨0,0⟩:

P⟨0,0⟩ =
1[

N − (1−p)i−N+1+(1−p)i−2(1−p)
p +

N+i+1−ρN+11 −iρi1
1−ρ1

ρ0

] . (4)

We define idle period E [IN ], busy period E [BN ], and busy
cycle E [TN ] = E [IN ]+E [BN ], respectively, with PI denot-
ing the probability of a node being in an idle state and PB
denoting the probability of a node being in a wake-up state.
The dormant state probability PI can be found:

PI =
i∑

n=0

P⟨0,i⟩

=

[
N +

(1− p)− (1− p)i+1

p

]
p⟨0.0⟩. (5)

According to the concept of total probability, the proba-
bility of an edge node being in an awakened state PB can be
expressed as follows:

PB = 1− PI

= 1−
[
N +

(1− p)− (1− p)i+1

p

]
P⟨0,0⟩. (6)

By leveraging the memorylessness property of the expo-
nential distribution, the duration of dormant time E [IN ] can
be represented as the sum of N random variables with a mean
of 1

λ0
and i random variables with a mean of 1

λ0(1−p)
. Due to

the percentages of running time during idle and busy periods

being given respectively by PI =
E[IN ]
E[TN ]

and PB =
E[BN ]
E[TN ]

for the edge nodes, we can use (5) and (6) to calculate the
expected lengths of idle and busy periods for the nodes:

E [IN ] =
N
λ0
+

i− N
λ0(1− p)

=
i− Np

λ0(1− p)
,

E [TN ] =
E [IN ]
PI

=
i− Np

λ0(1− p)
[
N + (1−p)−(1−p)i+1

p

]
P⟨0,0⟩

,

E [BN ] = PBE [TN ]

=

(i− Np)
{
1−

[
N + (1−p)−(1−p)i−N+1

p

]
P⟨0,0⟩

]
λ0(1− p)

[
N + (1−p)−(1−p)i−N+1

p

]
P⟨0,0⟩

.

(7)

The expected number of packets for a node when the edge
node is in the dormant and wake-up states is represented by
L0 and L1 respectively:

L0

=

(N+1)2
2 +N (1− p)+ (1−p)−(1−p)i+1

p −(N + 1)(1− p)i+1

N − (1−p)i−N+1+(1−p)i−2(1−p)
p +

N+i+1−ρN+11 −iρi1
1−ρ1

ρ0

,

L1 = [
1

(1− ρ1)
[
(N + 2)(N + 1)

2

−

ρ1−ρ
N+2
1

1−ρ1
− (N + 1)ρN+21

1− ρ1

+

(2+ i)(i− 1)
(
1− ρN+11

)
2

.

+ (
(2+ i)(i− 1)

2
ρ1 −

ρ1 +
ρ21−ρ

i+1
1

1−ρ1
− iρi+11

1− ρ1
) · ρN1

−
(2+ i)(i− 1)

2
−

ρ1 +
ρ1−ρ

i
1

1−ρ1
+ iρi1

1− ρ1
]
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FIGURE 2. State-transition-rate diagrams for the N policy and p wake-up
M/M/1 queuing system.

−
(2+ i)(i− 1)(1− p)

2

+

(1− p)+ (1−p)−(1−p)i

p + i(1− p)i

p
]ρ0p⟨0, 0⟩. (8)

C. POWER COMSUMPTION
In this subsection, we define the total expected energy con-
sumption function as Ftotal. Our goal is to establish an energy
consumption function that is based on the system parameters
and provides an effective measure of the energy consumption
of the system.

Denote the average energy consumption of an edge node
switching from a dormant to an wake-up state per unit time
by ESR, and by ERS the average energy consumption of
switching from an excited to a dormant state, where esr and
ers are both system energy consumption parameters, esr is the
power consumption of the edge node each time it switches
from the dormant to the wake-up state, and ers is the power
consumption of the edge node each time it switches from the
excited to the dormant state.

ESR = p
i∑

k=N

P⟨0,k⟩λ0esr

=

[
1− (1− p)i+1

]
λ0esrp⟨0, 0⟩

=

[
1− (1− p)i+1

]
λ0esr

N − (1−p)i−N+1+(1−p)i−2(1−p)
p +

i+1−ρN+11 −iρi1
1−ρ1

ρ0

,

ERS = µP⟨1,1⟩ers
= µρ0P⟨0,0⟩ers

=
µρ0ers

N − (1−p)i−N−1+(1−p)i−2(1−p)
p +

N+i+1−ρN+11 −iρi1
1−ρ1

ρ0

.

(9)

For simplicity, we assume:
eh = the holding power of a single packet in the system,
eid = energy consumption of edge nodes in idle periods,
eb = energy consumption of edge nodes in busy periods.
Using the power consumption parameters defined above,

we can derive the expression for the energy consumption
function. Our objective is to minimize the following function

FIGURE 3. Age of information of first-in-first-out (FIFO) single queue.

by finding the threshold N and wake-up probability p.

Ftotal = ehLN + eid
E [IN ]
E [TN ]

+ eb
E[BN ]
E [TN ]

+ ESR + ERS ,

(10)

where E [IN ], E [TN ], E[BN ], ESR, ERS are given in (7)
and (9).

D. PEAK AGE OF INFORMATION
To minimize energy consumption, we study the PAoI in the
context of frequency-division multiple access (FDMA),

HT ,[i]
ub,n (t) =

Dα[i]t
Gα[i]b

log2

(
1+

ψ
[i]
t,n(t)

∣∣rt,n(t)∣∣2
(D/G)G0

)
, (11)

whereHub,n denotes the upper limit of channel capacity andD
denotes the available bandwidth. ψt,n represents the transmit
power of the edge nodes and G0 is the noise spectral density,∣∣rt,n(t)∣∣ = 10−3θ0d

−a0
n is the channel coefficient of the

wireless link between the medical centre and the nth edge
node at time t , where θ0 and dn denote the small-scale fading
parameter and the link length, respectively. At the same time,
a0 indicates the path loss of the link.
The AoI of the nth edge node at the i-th state update1n(t)

is shown in Figure 3 and can be represented as A[i]n (t) =
t− t [i]n,α , where t

[i]
n,α and t

[i]
n,β denote the moment of generation

and transmission of the ith state information, respectively.
In addition to this, A[i]p,n is the instantaneous PAoI of the
nth edge node at the i-th state update. Since the optimiza-
tion process for updating each state is the same, we have
omitted the superscript ‘‘[i]’’ in subsequent equations for
simplicity:

E
[
Ap
]
= E

[
t [i]n,β − t

[i−1]
n,α

]
= E [Yn]+ E [Tn] . (12)

Y [i+1]
n and T [i+1]

n respectively represent the inter-arrival
time of data generation and the system delay of a data
packet during the i+ 1th state update. Therefore, E [Yn] and
E [Tn] denote the average inter-arrival time of data generation
and the average system delay per data packet, respectively.

Consequently, E [Yn] = limT→∞ T/
(∑

∞

i=1 1
{
t [i]n,α<T

}),
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FIGURE 4. An example that illustrates the FDMA with sleep-scheduling.

where 1. represents the indicator function. Additionally,
we employ the term ‘‘per-packet AoI’’ to evaluate the perfor-
mance of edge-assisted smart healthcare systems in relation
to the AoI associated with each packet. In accordance with
Study [40], the ‘‘per-packet AoI’’ for the ith status update can
be determined by calculating the area ofQ[i] in Figure 3 in the
following manner:

Ā[i]n =
Q[i]

t [i]n,β − t
[i−1]
n,β

=
Q[i]

2
(
Y [i+1]
n + T [i+1]

n − T [i]
n

)
=
Tn + Ap

2
(13)

In the context of the FDMA environment, the available
bandwidth is divided into m orthogonal frequency subchan-
nels, with a guard bandwidth of 1B = 10. Each subchannel
is allocated to a single edge node, allowing them to share the
same channel. The data is transmitted to the aggregator node.
As depicted in Figure 4, a FDMA time slot encompasses the
data sensing by the edge nodes, the implementation of the
sleep scheduling policy (referred to as the N policy and the p
wake-up policy), and data processing until the queue becomes
empty.

As an effective measure of information freshness, the PAoI
is a better indicator of the long-term behaviour of the AoI
process than the AoI. PAoI denotes the average maximum
duration after receiving the latest update packet, indicating
the extent to which the propagation of update information
is delayed. Based on the M/M/1 queuing model we have
developed and the little formula, the average system delay
based on the sleep scheduling strategy can be expressed as
E [Tn] = (λ0PI + λ1PB)−1 LN , where LN represents the
expected total number of data packets in the system, and
LN = L0 + L1. E [Tn] represents the average system delay,
λ0 and λ1 denote the arrival rates of different types of data
packets, PI signifies the probability of an idle slot, PB rep-
resents the probability of a busy slot, and LN represents the
expected length of data packets. By substituting equation (8)
into equation (12), we can obtain the average time interval for
state updates as E [Yn] = (λ0PI + λ1PB)−1.

Furthermore, the average for the nth edge node, employing
the sleep scheduling strategy, can be expressed as follows:

E
[
Ap,n

]
= E [Yn]+ E [Tn]

=
LN + 1

λ0PI + λ1PB
. (14)

In light of the aforementioned discourse, we can articulate
the average value of the PAoI as follows:

E
[
Ap,n

]
= Apeak (λ0,λ1, µ, i,N , p) , (15)

where the definition of the function Apeak (λ0,λ1, µ, i,N , p)
is as illustrated in Equation (14). For the sake of convenience,
we shall denote the functionApeak(λ0,λ1, µ, i,N , p) asApeak.

E. PROBLEM FORMULATION
In edge node-assisted smart healthcare systems, we focus on
the battery’s energy performance metrics and PAoI. We focus
on the node’s energy consumption performance metric and
PAoI, so our goal is to obtain the optimal N policy and p
wake-up policy that minimizes both node energy consump-
tion and PAoI. We referred to study [34] and considered
the significance of optimizing the objective function and the
differences in magnitude and dimensionality. In the actual
optimization process, we unified them into a single-objective
form using weighting coefficients w1 and w2, as follows:

min
N ,p

w1Ftotal + w2Apeak

s.t. (4) ∼ (15), 0 < p < 1,N < i. (16)

We can observe that the objective function includes the
energy consumption function represented by Ftotal and the
average PAoI represented by Apeak . It is worth noting that
both Ftotal and Apeak exhibit non-convexity, which results in a
non-convex optimization problem. Additionally, the problem
involves multiple objectives, making it a multi-objective opti-
mization problem, which further increases the complexity of
finding a solution.

IV. DRL-BASED SLEEP SCHEDULING FRAMEWORK
In this section, we will introduce two sleep scheduling frame-
works based on DDQN and DQN-DDPG, respectively. The
framework structures of both frameworks are illustrated in
Figure 5, respectively.

A. DRL DESIGN IN THE SLEEP SCHEDULING SYSTEM
Reinforcement learning (RL) is a significant area of machine
learning (ML) that leverages continuous interaction to gather
information about an unknown system and improve its oper-
ating strategy through trial and error. As a result, RL does not
necessitate a mathematical model or any prior knowledge of
the system.

To solve RL problems, it is necessary to establish an MDP
model, which primarily includes state space, action space,
and reward. For the sleep scheduling system that we have
developed, the definitions of these components are as follows.
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• Status space: During each decision period, the edge
nodes occupy a state. We represent the possible state set of
peripheral nodes using S. The state variable denotes the state
of the node (dormant or awake) as well as the number of data
packets.

S = {S : S = ⟨δ, i⟩ i ⩾ 0}, (17)

where δ ∈ {0, 1}, δ = 0 indicates that the node is in a dormant
state, δ = 1 indicates that the node is in a wake-up state, i
indicates the amount of data in the node, i ⩾ 0.
• Action Space: The action space comprises of two

actions: selecting a threshold N and setting an wake-up prob-
ability p, so the action of TS t is defined as

at =
{
a1t , a

2
t

}
, (18)

where a1t ∈ A1 represents the action of adjusting the thresh-
old N selection, and a2t ∈ A2 represents the action of
selecting the probability p.
• Reward function: The objective of this study is to min-

imize both energy consumption and average PAoI, so both
factors are taken into account in the system’s reward setting.
However, the goal of reinforcement learning is to maximize
the cumulative discounted reward. Therefore, the reward in
time slot t is defined as follows

rt+1 = −w1Ftotal − w2Apeak , (19)

where w1 and w2 are the corresponding weighting coef-
ficients. Based on this, the long-term rewards are as
follows

Gt =
∞∑
k=0

γ krt+k+1, (20)

where γ ∈ [0, 1] is a discount factor that is used to weigh the
future rewards against the current rewards.

B. DDQN BASED SLEEP SCHEDULING FRAMEWORK
In RL, in order to maximize the long-term reward, an optimal
policy π needs to be found. π denotes the probability of
mapping from any state s to action a, which tells the intel-
ligence how it should choose an action in state s to achieve
the desired R. Given a policy π , we use the Q function to
evaluate the effect of taking action a in the current state s.
The function with the highest Q-value is called the optimal
Q-value function Qπ∗ (st , at), which is defined as

Qπ∗ (st , at) = max
π

Qπ (st , at)

= max
π

E [Rt | st , at ]

= max
π

E [rt + γRt+1 | st , at ]

= max
π

E [rt + γQπ (st+1, at+1) | st , at ]

= E
[
rt + γ max

at+1
Qπ∗ (st+1, at+1) | st , at

]
.

(21)

The recursive formula (24) is also known as the Bell-
man equation. However, the Bellman equation requires the
calculation of the expectation of the entire state space,
which makes it impossible to calculate to obtain Qπ∗ (st , at).
To solve this problem, function approximation is used in
conventional RL to approximate the expectation, while DRL
combines RL with deep neural networks (DNNs) to approxi-
mate the function. DRL has powerful computational power
and performs better than RL for problems with large state
space and action space.
DQNs, which are a combination of Q-learning and deep

neural networks, are powerful structures that can learn from
and explore their environment. Through Q-learning, the sys-
tem earns rewards for each action taken, which is used to
populate Q- and V-tables. Deep Q learning updates the model
parameters of the Q function by iteratively calculating the
loss function between predicted and target Q values, and
back-propagating to improve the model.
As depicted in Figure 5, DDQN-based sleep scheduling

framework consists of two DQN units. Each DQN unit
is composed of two networks: a Q-network Q(s, a;χ ) for
estimating the Q-value of the selected action, and a target
Q-network Q(s, a;χ−) for generating the target Q-values
used in training, where χ and χ− represent the weights of
their neural networks.
At the start of each TS, st is transmitted to the DQN

unit of the threshold N selection network. Given st as input,
the Q-network of this unit outputs the Q-estimate value
Q
(
st , a1t ;χ

)
for action a1t ∈ A1. After obtaining Q estimates

Q
(
st , a1t ;χ

)
for all actions, we use ϵ − greedy policy to

determine the threshold N for selecting action a1t , balanc-
ing the exploration of new actions with the exploitation of
known ones. Specifically, we randomly select action a1t from
A1 with probability ϵ, or select the action a1t with the highest
estimated Q value with probability 1− ϵ, as follows.

a1t = arg max
a1t ∈A1

Q
(
st , a1t ;χ

)
, (22)

where 0 < ϵ < 1, through this strategy and reward func-
tion, enables the DQN unit to explore unselected actions that
may have better rewards, thereby exploring the entire action
space and updating the corresponding Q values. Meanwhile,
the unit responsible for selecting the awakening probability
p remains active. Input the state st , and obtain the action
a2t selected based on the awakening probability using the
same method.
After generating the threshold-selected and awakening

probability-selected actions, execute action at =
{
a1t , a

2
t
}
.

The packet threshold N and wake-up probability p for edge
nodes are updated based on at , and the DRL network struc-
ture calculates the reward rt according to Equation (18) and
obtains a new state st+1. Using the experience replay strategy,
we place each training sample (st , at , rt , st+1) in the memory
bufferOwithin each time step (TS). In each TS, we randomly
select N samples from the buffer to update χ .
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To adjust the network for the threshold N selection, we uti-
lize randomly sampled training samples (st , at , rt , st+1) to
obtain the target Q-value generated by the unit based on the
Q-network, as follows

yi = ri + max
a1i+1∈A1

Q
(
si+1, a1i+1;χ

−

)
. (23)

We train the Q-network of the unit by minimizing the loss
function.

L(χ) =
(
yi − Q

(
si, a1i ;χ

))2
. (24)

For the selection of the wake-up probability p for the unit,
we utilize the same method to calculate the target Q-value
and the loss function.

yi = ri + max
a2i+1(m)∈A2

Q
(
si+1, a2i+1;χ

−

)
,

L(χ ) =
(
yi − Q

(
si, a2i ;χ

))2
. (25)

For the DQN unit that selects the wake-up probability p,
it updates the weights χ− of the target Q-network by copying
the weights of the Q-network in each TS. Based on theDDQN
sleep scheduling network framework, the algorithm is shown
in Algorithm 1.

C. DQN-DDPG BASED SLEEP SCHEDULING FRAMEWORK
In this section, we will introduce the sleep scheduling frame-
work based on DQN-DDPG. The DQN-DDPG framework
is an improvement over the DDQN framework. For the unit
that selects the wake-up probability p, we utilize the DDPG
network to directly output the wake-up probability. DDPG
can effectively handle continuous action spaces, thus solving
the dimensionality problem.

Moreover, the utilization of a DDPG network enabled us
to accomplish a more sophisticated and nuanced optimiza-
tion of policy selection, ultimately resulting in enhanced
system performance. It is noteworthy that this approach
necessitated a greater amount of training data and a more
intricate network architecture as compared to the DQN
method. Nevertheless, the DDPG network’s superior perfor-
mance endows it with great potential as a valuable tool for
applications that necessitate precise control of continuous
actions.

The DDPG network is comprised of four sub-networks: the
actor network π (s;µ) which selects an action to maximize
the Q value of the output, the critic network Q(s, a; θ ) which
predicts the Q value, and the corresponding target actor net-
work π

(
s;µ−

)
and target critic network Q

(
s, a; θ−

)
which

generate the target values for training. Here,µ, θ, µ−, and θ−

represent their respective weights. The DDPG network oper-
ates in an actor-critic fashion where the actor network updates
its parameters through the DPG, selecting the optimal action
in the current state, and the critic network evaluates the action
chosen by the actor network. In the sleep scheduling system,
when an edge node receives a packet, it transmits status

Algorithm 1 DDQN-Based Edge Node Sleep Scheduling
1: Initialize the replay memory O
2: Initialize the Q network Q (s, a;χ) and target Q network
Q
(
s, a;χ−

)
with initial weights χ− = χ

3: Initialize the terminating TS Tmax , weights update inter-
val W ,

4: for j = 1, 2, ......,Kmax do
5: DQN unit selects the action a1t ∈ A1 following the

ϵ − greedy policy.
6: DDPG unit selects the action a2t ∈ A2 following the

ϵ − greedy policy.
7: Obtain a reward rt , and then the state is transited to

st+1.
8: Store the tuple sample (st , at , rt , st+1) into the mem-

ory O.
9: if O is full then

10: Sample a random mini-batch of N tuples
(si, ai, ri, si+1) from memory O;

11: Update the weights by minimizing the loss function
.

12: For the threshold N selection DQN unit, update its
weights by minimizing the loss function (24).

13: For wake-up probaility p-selection unit, update their
weights by minimizing the loss function (25)

14: end if
15: Update the status of edge nodes as st −→ st+1
16: end for
Output: Policy π

information to the DRL-based sleep scheduling framework.
Upon receiving this information, the DDPG unit generates a
deterministic wake-up probability p for the assignment action
a2t = π (st ;µ), based on the weights µ and the current
state st .

In order to add the exploration of new actions while ensur-
ing the known actions. Similar to the ϵ − greedy strategy in
DQN, we add the random noise to the initial output action as
follows

a2t = [π (st ;µ)+N ]10 , (26)

whereN denotes a random noise process that obeys a normal
distribution. a2t is then restricted to the (0, 1) interval.
After executing the action generated by the DDPG unit, the

DRL-based sleep scheduling framework receives the reward
and the system state moves to st+1. We store (st , at , rt , st+1)
in the relay memory O(t).

The critic network Q(s, a; θ ) can estimate the Q value of
the selected action, which is equal toQ(s, π(s;µ); θ ). And the
actor network π (st ;µ) updates its weight to obtain a larger
cumulative discount reward, as follows

∇µJ (π ) = Es∼ρπ
[
∇µπ(s;µ)∇aQ(s, a; θ)

∣∣
a=π(s;µ)

]
. (27)
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Using the N sample sets selected inO(t), we can approximate
the expectation

∇µJ (π )

≈
1
N

∑
i

[
∇µπ (s;µ)

∣∣
s=si
∇aQ(s, a; θ )

∣∣∣
s=si,a=π(si;µ)

]
.

(28)

Using the target actor network π
(
s;µ−

)
and target critic

network Q
(
s, a; θ−

)
, the target Q values generated based on

random group training are

yi = ri + γQ
(
si+1, π

(
si+1;µ−

)
; θ−

)
. (29)

On the basis of this, the critic network Q(s, a; θ) updates its
weights by minimising the loss function, which is defined as
follows

L(θ ) =
1
N

∑
i

(
yi − Q

(
si, a2i ; θ

))2
. (30)

To summarize, within the context of the wakeup probability
assignment network, the actor network denoted by π (s;µ)
takes the state st as input and produces the action a2t , while
updating the parameter µ using equation (28). On the other
hand, the critic network Q (s, a; θ) takes in the state si,
outputs the Q value, and updates the parameter θ through
equation (30). The target actor network π

(
s;µ−

)
and target

critic network Q
(
s, a; θ−

)
input to the tuple in O(t), and

output to compute the target Q value in (29). Simultaneously,
their weights µ− and θ− are updated in a gentle manner to
ensure learning stability, as follows:

θ−← τθ + (1− τ )θ−,

µ−← τµ+ (1− τ )µ−, (31)

where 0 < τ ≪ 1. Algorithm 2 briefly outlines the details of
DRL-based sleep scheduling framework.

D. TIME AND SPACE COMPLEXITY ANALYSIS
In this section, we have conducted a comprehensive analy-
sis of the time and space complexity of the two proposed
DRL-based sleep scheduling algorithms.

1) TIME AND SPACE COMPLEXITY ANALYSIS OF THE EDGE
NODE SLEEP SCHEDULING ALGORITHM BASED ON DDQN
Time Complexity:

Step 1: Initialization of the replay memory. The time com-
plexity of this operation can be considered negligible, O(1).

Step 2: Initialization of the weights for the Q-network and
target Q-network. The time complexity of this operation can
be considered negligible, O(1).

Step 3: Initializing termination threshold Tmax and weight
update intervalW also has a time complexity of O(1), which
can be considered negligible.

Steps 4-16: Repeat Kmax times, performing a series of
operations each time. Steps 5-7: Select action, obtain reward,
and transition state. The time complexity of these operations
can be considered negligible (O(1)).

Algorithm 2 DQN-DDPG Based Edge Node Sleep
Scheduling
1: Initialize the Q-network Q(s, a;χ ) as the DQN unit for

selecting the threshold N with the weight a.
2: Initialize the actor network π (s;µ) and the critic net-

work Q(s, a; θ ) of the wake-up probability p assignment
DDPG unit with weights µ and θ .

3: Initialize target Q network Q
(
s, a;χ−

)
, target actor net-

work π
(
s;µ−

)
and target critic network Q

(
s, a; θ−

)
with initial weights χ− = χ,µ− = µ and θ− = θ .

4: Initialize the terminating TS Tmax , weights update inter-
val W , replay memory O, the random noise process N .

5: for t = 1, 2, . . . ,Tmax do
6: DQN unit selects the action a1t ∈ A1 following the

ϵ − greedy policy.
7: DDPG unit selects the action a2t ∈ A2 according to

(25).
8: Obtain a reward rt , and then the state is transited to

st+1.
9: Store the tuple sample (st , at , rt , st+1) into the mem-

ory O.
10: if O is full then
11: For DQN unit, update its weights by minimizing the

loss function (24).
12: For DDPGunit, the actor network updatesµ accord-

ing to (28), and the critic network updates θ accord-
ing to (30).

13: Update χ− of the DQN unit by copying χ in every
W TS.

14: Update θ− and µ− of the DDPG unit according to
(31).

15: end if
16: end for
Output: Policy π

Step 8: Store the sample in memory. The time complexity
of this operation can be considered negligible (O(1)).

Steps 9-14: If the memory is full, perform weight updates.
For the samples in memory, execute the minimization oper-
ation of the loss function. The time complexity of these
operations depends on the computational complexity of the
loss function, assumed to be O(n).

Step 15: Update the state of the edge node. The
time complexity of this operation can be considered
negligible (O(1)).

The time complexity of the entire loop, which is executed
Kmax times, can be approximated as O(K n

max).
Based on the analysis provided, the overall time complex-

ity of the algorithm can be approximated as O(K n
max).

Space Complexity:
1. The space complexity of the replay memory, denoted

as O, depends on its size, assumed to be O(m), where m
represents the capacity of the memory.
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FIGURE 5. DRL-based sleep scheduling framework.

2. The space complexity of the Q-network and target
Q-network depends on the network structure and the number
of parameters, assumed to be O(r), where r represents the
number of parameters in the network.

3. The space complexity of other variables and data struc-
tures can be considered negligible since their sizes are fixed
and can be represented as O(1).

In conclusion, the overall space complexity of the
algorithm can be approximated as O(m + r), considering the
combined space requirements of the replay memory (m) and
the Q-network and target Q-network parameters (r).

2) TIME AND SPACE COMPLEXITY ANALYSIS OF THE EDGE
NODE SLEEP SCHEDULING ALGORITHM BASED ON
DQN-DDPG
Time Complexity:

Step 1: Initialize the Q-network. The time complexity of
this operation can be considered negligible (O(1)).

Step 1: Initialize the Q-network. The time complexity of
this operation can be considered negligible (O(1)).

Step 2: Initialize the actor network and critic network.
The time complexity of this operation can be considered
negligible (O(1)).

Step 3: Initialize the target Q-network, target actor net-
work, and target critic network. The time complexity of this
operation can be considered negligible (O(1)).

Steps 5-16: Iterate for Tmax times, performing a series
of operations. Steps 6-8: Select action, obtain reward, and
transition state. The time complexity of these operations can
be considered negligible (O(1)).

Step 9: Store the sample in the replay memory. The
time complexity of this operation can be considered
negligible (O(1)).

Steps 10-14: If the replay memory is full, perform weight
updates. For DQN units and DDPG units, this involves min-
imizing the loss function and updating the weights. The time

complexity of these operations depends on the computational
complexity of the loss function, assumed to be O(n).

The loop is executed Tmax times, so the overall time com-
plexity of the loop is O(T nmax).
Overall, the code has an approximate time complexity

of O(T nmax).
Space Complexity:
1. The space complexity of the Q-network, actor network,

and critic network depends on their network structure and the
number of parameters, assumed to be O(r), where r represents
the number of parameters in the network.

2. The space complexity of the replay memory, denoted
as O, depends on its size, assumed to be O(m), where m
represents the capacity of the replay memory.

3. The space complexity of other variables and data struc-
tures can be considered negligible as their sizes are fixed.

In summary, the overall space complexity of the algorithm
can be approximated as O(r + m), considering the combined
space requirements of the network parameters (r) and the
replay memory (m).

V. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
DQN-DDPG-based resource allocation scheme implemented
in smart healthcare with the assistance of edge nodes through
simulation. The main simulation parameters are shown in
Table 2 and the rest of the simulation parameters are men-
tioned in the text. The structure of the developed neural
network consists of an input layer, two hidden layers and an
output layer. The number of neurons in the hidden layers are
10 and 20 respectively. The Rectified Linear Unit (ReLU)
function, f (x) = max(0, x), is chosen as the activation func-
tion for all the hidden layers. According to [41], τ in (31)
is 0.01, and the noise process in (26) follows N (0, 1),
while other parameters are set based on [42]: learning rate
β = 0.001, ϵ = 0.9, memory capacity |O| = 5000, weights
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TABLE 3. Default simulation parameters.

FIGURE 6. Cumulative discounted rewards under different DRL methods.

update interval W = 10, batch size N = 32. In order to
compare the performance of different algorithms, the average
test results are obtained from 2000 episodes, each consisting
of 20 steps.

Figure 6 evaluates the effect of different DRL methods
on reward convergence, where the threshold N < 10,
λ0 = 0.5,λ1 = 0.6, µ = 0.7, the learning rate β =
0.001, and ϵ = 0.9. From the figure we can see that the
DQN-DDPG algorithm converges faster compared to the
DDQN algorithm, and its reward is better than the DDQN
algorithm for obtaining a locally optimal solution, thus illus-
trating the optimality of the performance of our proposed
DQN-DDPG algorithm. Meanwhile, Figure 7 compares the
performance of greedy strategy and random strategy with
DDQN and DQN-DDPG algorithms. As shown in Figure 7,
we can observe that as the wake-up probability p changes,
the DQN-DDPG algorithm performs better in optimizing the
objective function than the DDQN algorithm. The average
objective function obtained using the DQN-DDPG method
compared to that obtained using the DDQN method, the

FIGURE 7. Under the condition that N < 20, various algorithms optimize
the performance of the objective function.

FIGURE 8. The impact of wake-up probabilities on average PAoI with
varying limitation ranges at threshold N .

greedy algorithm and the stochastic strategy was reduced by
1.8%, 9.1% and 14.9%, respectively, within the same thresh-
oldN limit. Therefore, we consider utilizing the DQN-DDPG
algorithm to investigate the impact of different performance
parameters on optimizing the objective.

In Figure 8, we evaluated the relationship between the
average PAoI and the wake-up probability p based on the
DQN-DDPG method. We considered the optimal solutions
based on DRL for average PAoI and energy consumption
when the data packet threshold N is limited to 10, 20, 40, and
60, respectively. After the number of data packets reaches the
threshold N , data transmission and processing are performed
with a wake-up probability of p. As shown in Figure 6,
when the wake-up probability is 0.1, the average PAoI is
the highest. When the wake-up probability reaches 0.3 and
0.5, the average PAoI correspondingly decreases. However,
when the wake-up probability reaches 0.9, the difference in
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average PAoI between 0.7 is not significant. When the
wake-up probability is low, the nodes are mostly in a sleeping
state, causing a large accumulation of data packets and result-
ing in lower information freshness and a larger average PAoI.
When the wake-up probability increases, most nodes are in
the wake-up state, and the speed of data packet transmission
and processing is faster, resulting in a significant decrease in
the average PAoI. However, the data processing capacity and
range of edge nodes are limited, and even if almost all nodes
are in a working state, timely processing of all data packets
may not be possible. Therefore, when thewake-up probability
is high, the average PAoI may not decrease significantly.

Meanwhile, we observed that the freshness of informa-
tion decreases as the threshold N range expands. This is
because a larger threshold N range causes data packets to
accumulate, resulting in delayed transmission and processing
of data, which increases average PAoI. As shown in Figure 8,
when the wake-up probability is 0.8, average PAoI increases
by 50.2% for N < 40 compared to N < 20 and by 47.1% for
N < 20 compared to N < 10.

FIGURE 9. Average PAoI for different data transmission rates during
dormant mode and wake-up mode.

FIGURE 10. Energy consumption for various wake-up probabilities.

Figures 9 illustrate the impact of varying data transmission
rates on the PAoI using the DQN-DDPGmethod in both sleep
and wake-up states. As illustrated in Figure 9(a), increasing
the data transmission rate in the dormant state from 0.1 to
0.4 results in a corresponding decrease in average PAoI.
However, when the rate reaches 0.5, the difference in average
PAoI compared to that at a rate of 0.4 is not significant.
Elevating the data transmission rate during the dormant state
expedites the number of data packets reaching the thresh-
old N , ultimately increasing the probability p of the node
transitioning to the wake-up state for data transmission and
processing, which enhances information freshness. Nonethe-
less, a high data transmission rate during the dormant state
is limited by the wake-up probability p and data processing
rate, potentially limiting the extent to which average PAoI can
decrease.

The pattern of average PAoI demonstrated in Figure 9(b)
is similar to that in Figure 9(a). As the data transmission
rate during the wake-up state increases from 0.2 to 0.45,
the corresponding average PAoI decreases. However, the
decrease in average PAoI is not significant when the rate
reaches 0.6 compared to that at a rate of 0.45. Increasing the
data transmission rate during the wake-up state facilitates the
handling of more data packets, ultimately leading to higher
work efficiency and a reduction in average PAoI. Nonethe-
less, a high data transmission rate during the wake-up state is
limited by the wake-up probability p and the data processing
rate, which may limit the extent to which average PAoI can
decrease. Additionally, Figures 9 demonstrate that increasing
the data processing rate can effectively enhance information
freshness.

Figure 10 depicts the relationship between energy con-
sumption and the wake-up probability p. It can be observed
that energy consumption first decreases and then increases
as the wake-up probability p increases. This is because the
low wake-up probability at the initial stage results in a large
accumulation of data packets, leading to an increase in the

81192 VOLUME 11, 2023



B. Wu et al.: AoI-Aware Resource Management for Smart Health via DRL

FIGURE 11. Energy consumption of various data transmission rates
during dormant mode and wake-up mode.

required energy consumption to maintain the packets. As the
wake-up probability increases, edge nodes enter the wake-up
state with a probability of p, enabling data packet trans-
mission and processing, which reduces the required energy
consumption to maintain the packets. However, when the
wake-up probability is too high, most nodes are in a working
state, resulting in an increase in energy consumption. At the
same time, it can be inferred from Figure 10 that energy con-
sumption increases with the increase of the threshold range
N , because as the threshold range N increases, the required
energy for packet retention increases. When the wake-up
probability is 0.5, the energy consumption of N < 40 is
7.5% and 4.4% higher than that of N < 20 and N < 10,
respectively.

The figure depicted as Figure 11 illustrates the impact
of varying data transmission rates on energy consumption
through the application of the DQN-DDPG approach in
both the sleep and wake-up states. The visual representation
shows that elevating the data transmission rate during the

dormant state barely affects energy consumption. On the
other hand, during the wake-up state, a higher data transmis-
sion rate facilitates the processing of accumulated data pack-
ets, ultimately leading to a significant reduction in energy
consumption.

It is worth noting that the processing rate of data pack-
ets has a significant impact on energy consumption. Energy
consumption increases with an increase in the processing
rate of data packets. This is because as the number of data
packets decreases significantly, the system needs to increase
the transmission rate of data packets to maintain queue sta-
bility, leading to an increase in energy consumption. When
λ0 = λ1 = 0.4, as shown in Figure 11(a) in the dormant state,
the energy consumption of µ = 0.5 and µ = 0.6 decreases
by 6.4% and 1.8%, respectively, compared to µ = 0.7.
In the wake-up state, as shown in Figure 11(b), the energy
consumption of µ = 0.5 and µ = 0.6 decreases by 8.4%
and 4.9%, respectively, compared to µ = 0.7. Therefore,
it can be concluded that energy consumption increases with
an increase in the processing rate of data packets.

Based on the research conducted by [43] and [44] regarding
the impact of wearable devices on system energy consump-
tion andAoI, as well as our analysis of the proposed operation
of the smart healthcare system, we can conclude that with
an increase in wearable devices, there is an increase in the
amount of patient information collected. This leads to a
significant increase in the number of data packets in the
aggregation node, causing them to reach the threshold value
N more quickly. As a result, the expected length of the busy
period in the node increases, since the power consumption
during the wake-up state is much higher than during the
sleep state. Therefore, the energy consumption of the node
increases.

Furthermore, with the increase in information volume,
the expected length of data packets also increases. Since
the data processing rate is fixed, the processing time for
data packets becomes longer, resulting in an increase in
average PAoI.

VI. CONCLUSION
In this work, since edge nodes have the advantage of low
latency in information transmission, we have investigated an
intelligent healthcare system assisted by edge nodes, where
energy-limited edge nodes can perform real-time transmis-
sion and processing of patient vital signs information. In order
to ensure timely information while minimizing energy con-
sumption, we have studied a sleep scheduling strategy based
on both threshold N and probability p wake-up using the
DRL method. The simulation results have confirmed the
effectiveness of the proposed DRL-based sleep scheduling
strategy, as well as the impact of threshold N and wake-up
probability p on the average PAoI. Furthermore, we verify
that the proposed DQN-DDPG method performs better than
the DDQN method, the greedy algorithm and the stochastic
policy optimization, within the same threshold N limit.
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