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ABSTRACT In distributed storage systems, data are stored across multiple storage nodes which are
unreliable and prone to failure. While erasure coding is more efficient than simple replication in terms
of storage overhead and reliability, classic erasure codes like Reed-Solomon codes require a large repair
bandwidth when repairing a failed node. Therefore, reducing both the storage overhead and repair bandwidth
under a given fault tolerance is desired, however, it is not possible to minimize both. In 2007, Dimarkis et
al. characterized the storage-bandwidth trade-off under functional repair. While exact repair is preferred
in practical systems, it was shown that only two extremal points and a line segment are achievable under
exact repair. Up to now, the storage-bandwidth trade-off under exact repair remains unresolved for general
parameters. Nevertheless, constructing codes with exact repair between the two extremal points is still of
great interest, however, very few such constructions have been reported in the literature. In this paper,
we present explicit code constructions based on block designs, which can be viewed as a generalization of a
previous work by Tian et al. Such a generalization leads to two new codes, i.e., an (n, k = n− 1, d = n− 1)
storage code based on regular mandatory representation designs (MRDs) and an (n, k = n− 2, d ≥ n− 2)
storage code based on 3-designs. It is shown that the new storage codes have a better performance than the
ones by Tian et al. in terms of the sub-packetization level and storage-bandwidth trade-off. In addition, the
new (n, k = n− 2, d) storage code supports two repair degrees, i.e., d ∈ {n− 2, n− 1}.

INDEX TERMS Block designs, distributed storage, interior points, minimum bandwidth regenerating codes,
minimum storage regenerating codes.

I. INTRODUCTION
Distributed storage systems are widely deployed in large
data centers, such as Google File System [1], Facebook
Distributed File System [2], Microsoft Azure [3], and
also peer-to-peer storage settings, such as DHash++ [4],
OceanStore [5], and Total Recall [6]. In a distributed storage
system, data are stored across multiple storage nodes that are
unreliable and prone to failure. To ensure reliability in the
presence of node failures, redundancy needs to be introduced.
Replication is a traditional mechanism for introducing redun-
dancy, but it is inefficient in terms of storage overhead as the
amount of data is increasing rapidly.

Erasure coding is a more efficient alternative, with maxi-
mum distance separable (MDS) codes being an example that
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achieves the optimal trade-off between storage overhead and
fault tolerance. Consider an original file that comprises k
symbols over a finite field Fq, by calling upon an (n, k) MDS
code, we get n coded symbols such that any k out of the n
symbols can recover the original file. These n coded symbols
can then be stored across a distributed storage system of n
storage nodes. However, in case of a node failure, the entire
data needs to be downloaded from any k surviving nodes,
leading to a large repair bandwidth γ , which is defined as
the amount of data downloaded to regenerate a failed node.

While it is desirable to reduce both the storage overhead
and repair bandwidth for a given fault tolerance, it is not
possible to minimize both. In the pioneering work in [7],
Dimakis et al. characterized the trade-off between the storage
overhead α (i.e., the amount of data stored in each node) and
the repair bandwidth γ under a symmetric setup, where

P1. Each node stores α symbols;
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FIGURE 1. Optimal tradeoff curve between storage α and repair
bandwidth γ , for k = 5, d = 9, and M = 1.

P2. A failed node can be repaired by connecting any d
surviving nodes, and each of the d nodes transmits the
same amount of information, i.e., β symbols;

where d is usually referred to as the repair degree in the liter-
ature. In addition, to guarantee fault tolerance, it is required
that

P3. The file can be reconstructed by connecting any k out of
the n nodes.

Consider a file of sizeM that is encoded by an (n, k, d) stor-
age code, under the aforementioned settings, it was proved
in [7] that α, β, and the file sizeM should satisfy

M ≤

k−1∑
i=0

min(α, (d − i)β). (1)

Codes that attain the above boundwith equality are referred
to as regenerating codes in [7]. For fixed values of parameters
M, k, d , there are multiple pairs (α, β) that satisfy (1) with
equality. This leads to the storage-bandwidth trade-off which
is piece-wise linear, see Fig. 1 for an example [7]. The exis-
tence of regenerating codes that can achieve any point on the
storage-bandwidth trade-off under functional repair was also
shown in [7], where under functional repair the code symbols
in the new replacement node can be different from that in the
failed node as long as P1–P3 continue to hold. On the optimal
trade-off, two extremal points are of particular interest, i.e.,
the Minimum Storage Regeneration (MSR) and Minimum
Bandwidth Regeneration (MBR) points. MSR points are
achieved by first minimizing the storage overhead and then
the repair bandwidth, while MBR points are achieved on the
contrary. The intermediate points between the two extremal
points on the curve will be referred to as FR-interior points.
Note that exact repair is desired in practical systems, and it
is a natural question whether the optimal storage-bandwidth
trade-off can be achieved under exact repair.

It has been shown that the two extremal points can be
achieved under exact repair and there are abundant construc-
tions [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29]. Further in [30], it was shown that the line segment
from the MSR point to the next deflection point is achiev-
able while the other interior points on the optimal trade-off
are not achievable under exact repair. In [31], through a
computer-aided approach, Tian completely characterized the
trade-off for (n, k, d) = (4, 3, 3), which showed that there
is a non-vanishing gap between the functional repair trade-
off and exact repair trade-off. Since then, there are several
works focusing on addressing the optimal storage-bandwidth
trade-off under exact repair [32], [33], [34], [35], [36] and
exact-repair code constructions between the MSR and MBR
points [37], [38], [39], [40]. However, the optimal trade-off
under exact repair was only investigated under very restricted
parameters. In [32], [33], and [34], bounds amongM, k , and
d are given under the condition of exact repair for d = k =

n − 1. These bounds demonstrate that the file sizeM of the
(n, k = n− 1, d = n− 1) storage code is upper bounded by

M ≤


⌊
s(s−1)nα+n(n−1)β

s2+s
⌋,

dβ
s ≤ α ≤

dβ
s−1 ,

2 ≤ s ≤ n− 2
(n− 2)α + β,

dβ
n−1 ≤ α ≤

dβ
n−2 .

(2)

The above bound implies that the optimal storage- bandwidth
trade-off curve of (n, k = n−1, d = n−1) regenerating codes
is also piece-wise linear, with the k corner points satisfying

(ᾱi, β̄i) =

(
i+ 1
in

,
i+ 1

n(n− 1)

)
, (3)

where i = 1, 2, . . . , k .
An n-independent achievable optimal trade-off under exact

repair was provided in [35] for the case of d = k , where it
was shown that the first corner point on the trade-off next to
theMSR point can be achieved for d = k . However, the proof
of [35] was just an existence proof, no explicit constructions
were given. Up to now, the optimal storage-bandwidth trade-
off under exact repair remains open for general parameters
M, k , and d .

On the other hand, there are several works that have been
dedicated to constructing exact repair storage codes between
theMSR andMBR points [36], [37], [38], [40]. In [38], codes
between the MSR and MBR points are constructed through
block designs, more specifically, by Steiner systems, bal-
anced incomplete block designs (BIBDs). However, explicit
constructions were only provided for the parameters (n, k =

n−1, d = n−1) and (n, k = n−2, d = n−1). Notably, the
(n, k = n− 1, d = n− 1) code construction is optimal w.r.t.
to bound in (2). In [37], (n′

= n+ l, k ′
= k + l, d ′

= d + l)
codes between the MSR and MBR points are constructed
by taking a known (n, k, d) code as building blocks, i.e.,
distributing n coded symbols across n + l nodes, it requires
to glue (n + l)! permutated copies of the (n, k, d) code to
satisfy P1 and P2, which leads to a huge α. In [40], codes are
constructed by combining several determinant codes in [39],
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a process that also results in a large α. Nevertheless, the
(n, k = n − 1, d = n − 1) code is optimal w.r.t. to bound
in (2), while for the other parameters they were conjectured
to be optimal in terms of the storage-bandwidth trade-off
under exact repair. The parameter α is also referred to as sub-
packetization level in [41], which suggests that codes with
a large sub-packetization level can lead to reduced design
space in terms of various system parameters and make the
management of meta-data difficult. As a result, it hinders the
implementation of practical systems. Some recent works for
codes between the two extremal points were proposed for
heterogeneous distributed storage systems [42], [43].
Although the (n, k = n − 1, d = n − 1) codes proposed

in [38] and [40] are optimal w.r.t. to the bound in (2), they
can only achieve the k corner points on the optimal storage-
bandwidth trade-off curve. To achieve the other points on the
curve, space-sharing is necessary, which results in an enlarge-
ment of the sub-packetization level. In this paper, motivated
by the idea in [38], we present explicit code constructions
with parameters (n, k = n − 1, d = n − 1) and (n, k =

n− 2, d ≥ n− 2) based on block designs, more specifically,
by regular MRDs and 3-designs. Thus the code constructions
in this paper can be viewed as a generalization of the work
in [38]. Such a generalization leads to the two new codes with
the following advantages:

• We propose a novel approach to directly construct an
(n, k = n − 1, d = n − 1) regenerating code based
on an r-regular (n,w,w+ 1, λ)-MRD. Unlike previous
works such as [38] and [40], our code achieves an inte-
rior point other than the k corner points on the optimal
storage-bandwidth trade-off curve. This distinguishing
characteristic sets it apart from the codes described in
previous works such as [38] and [40]. As a result, the
new (n, k = n − 1, d = n − 1) code achieves a smaller
sub-packetization level compared to the ones in [38] and
[40] while maintaining the same normalized storage-
bandwidth trade-off in certain cases.

• For the new (n, k = n− 2, d ≥ n− 2) code, it supports
two repair degrees, i.e., a failed node can be repaired by
contacting n−2 helper nodes or n−1 helper nodes, this
provides more flexibility since it is not always feasible to
connect and download data from all the surviving nodes
in a practical system, as some nodes may be unavailable
due to other assigned jobs or network congestion [44].
Furthermore, when choosing d = n − 2, the repair
bandwidth is smaller than that of the (n, k = n− 2, d =

n−2) code in [38].When d = n−1, the repair bandwidth
is smaller than that of the (n, k = n−2, d = n−1) code
in [38] for some regions. To the best of our knowledge,
it is the first time to construct storage codes between
MSR and MBR points that can support multiple repair
degrees with efficient repair mechanisms.

The remainder of the paper is organized as follows.
Section II reviews some necessary preliminaries of block
designs. Section III proposes the new code constructions

and their asserted properties. Performance analysis and com-
parisons are carried out in Section IV. Finally, Section V
concludes the study.

II. BASIC CONCEPTS AND LEMMAS OF BLOCK DESIGNS
Definition 1 ([45]): A t-(n,w, λ) design is a pair (X , B)

whereX is an n-set of points andB is a collection ofw-subsets
of X (called blocks) with the property that every t-subset of
X is contained in exactly λ blocks. Particularly, a 2-design
is called a balanced incomplete block design (BIBD) and is
denoted by (n,w, λ)-BIBD.
Definition 2 ([45]): Let W be a subset of non-negative

integers. A regular mandatory representation design
(n,W , λ), denoted by r-regular (n,W , λ)-MRD, is a pair
(X , B) where X is an n-set and B is a family of subsets of
X that satisfy

(i) |B| ∈ W for any B ∈ B;
(ii) For each w ∈ W , there is at least one subset B ∈ B with

|B| = w;
(iii) Each element of X is contained in exactly r blocks

of B;
(iv) Every pair of distinct elements of X occurs in exactly

λ blocks of B.
Particularly, a r-regular (n,W , λ)-MRD is a BIBD if

|W | = 1.
For a t-(n,w, λ) design (X , B), every s-subset of X is

contained in exactly λs blocks where 0 ≤ s ≤ t [45]. For
simplicity, we also denote the number of blocks that contain
any given element of X by r and b = |B|. For a 3-(n,w, λ)
design, by [45], we have

λ2 =
b(w− 1)
n(n− 1)

and λ = λ3 =
b(w− 1)(w− 2)
n(n− 1)(n− 2)

. (4)

If (X , B) is an (n,w, λ)-BIBD, by [45], we similarly have

λ =
bw(w− 1)
n(n− 1)

and r = λ1 =
bw
n

=
λ(n− 1)
w− 1

. (5)

Lemma 1 ([45]): For a r-regular (n,W , λ)-MRD with
|W | = s, assume that there are bj blocks of size wj, j =

1, 2, · · · , s, then

λn(n− 1) =

s∑
j=1

bjwj(wj − 1).

A BIBD with parameters n, w, λ, b, r is also denoted by
(n,w, λ; b, r)-BIBD. For any given n,w1, and w2, define

r (1)min = min{r1 : there is an (n,w1, λ1; b1, r1)-BIBD}, (6)

r (2)min = min{r2 : there is an (n,w2, λ2; b2, r2)-BIBD}, (7)

and

r (3)min = min{r3 ∈ N :

there is a r3-regular (n, {w1,w2}, λ3)-MRD}, (8)

then we have the following result.
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Lemma 2: For any given (n,w1, λ
(1)

; b1, r
(1)
min)-BIBD

(X , B1), (n,w2, λ
(2)

; b2, r
(2)
min)-BIBD (X , B2), and r (3)min-

regular (n, {w1,w2}, λ
(3))-MRD (X , B3), where 2 ≤ w1 <

w2 < n, we have

r (3)min ≤ r (1)min + r (2)min.

Proof: Let B = B1
⋃

B2, where the notation
⋃

denotes
a multi-set union in this paper. Clearly, (X , B) is a r-regular
(n, {w1,w2}, λ)-MRD,where r = r (1)min+r

(2)
min, λ = λ(1)

+λ(2).
Therefore, r (3)min ≤ r = r (1)min + r (2)min always holds.

From here on, we always assume X = {1, 2, · · · , n} for
simplicity. Finally, we introduce the very useful notion of the
incidence matrix.
Definition 3 ([45]): Let (X , B) be a design where B =

{B1,B2, . . . ,Bb}. The incidence matrix of (X , B) is the n× b
binary matrixM = (mi,j) defined by the rule

mi,j =

{
1, if i ∈ Bj,
0, otherwise.

For an n× b matrixM that denoted by

M =


m1
m2
...

mn

 ,

define the weight of row i by wt(mi) =

b∑
l=1

mi,l . For two row

vectors mi and mj, let mi · mj = (mi,1mj,1, · · · ,mi,bmj,b) be
the inner product, then it is obvious that

wt(mi + mj) = wt(mi) + wt(mj) − wt(mi · mj). (9)

III. CONSTRUCTION OF THE NEW STORAGE CODES
In this section, we present the construction of the new (n, k =

n−δ, k ≤ d < n) storage codes, where δ = 1, 2, and analyze
the conditions such that P1, P2, and P3 hold for the storage
code under two specific cases.

Since quantities α and β scale linearly withM, they can
be normalized byM as follows:

ᾱ :=
α

M
, β̄ :=

β

M
.

Then (1) can be written as

1 ≤

k−1∑
i=0

min(ᾱ, (d − i)β̄). (10)

Throughout this paper, (ᾱ, β̄), which denotes the pair of
the normalized storage and repair bandwidth of an (n, k, d)
code, will be used as the measure of performance and will
be referred to as the normalized storage-bandwidth pair for
simplicity if the context is clear.
Construction 1: Given a design (X , B) with B =

{B1,B2, . . . ,Bb}, where |Bi| = wi > δ, let M = (mi,j) be
its incident matrix. The storage code using this block design

hasM =

b∑
i=1

(wi−δ)N data symbols in certain finite filed Fq,

we arrange these data symbols in bmatrices E1,E2, · · · ,Eb,
where Ei is a (wi − δ) × N matrix, 1 ≤ i ≤ b. The structure
of the storage code can be inferred from the following two
steps:

Step 1. For each 1 ≤ i ≤ b, the data matrix Ei is encoded
by a (wi,wi − δ) MSR code with sub-packetization level N ,
to yield a wi ×N matrix Ui with the first wi − δ rows storing
systematic data and the last δ rows storing parity data.
Step 2. For each i ∈ {1, 2, . . . , b}, we place the data in the

wi rows of Ui on the wi nodes in Bi.
In the following, we first give a motivating example which

shows the main idea of the construction.
Example 1: Consider a 4-regular (6, {3, 4}, 2)-MRD

(X , B) with incident matrix

M =


1 1 1 1 0 0 0
1 1 0 0 1 1 0
0 0 1 1 1 1 0
1 0 1 0 1 0 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1

 ,

we set δ = N = 1, and construct an (n, k, d) = (6, 5, 5)
storage code using this design. The code has M = 17 data
symbols, which can be arranged as u1,1

u2,1
u3,1

 ,

(
u1,2
u2,2

)
,

(
u1,3
u2,3

)
,

 u1,4
u2,4
u3,4

 ,

 u1,5
u2,5
u3,5

 ,

(
u1,6
u2,6

)
,

(
u1,7
u2,7

)
,

then encode the data in the above 7 matrices by a (4, 3) or
(3, 2) scalar MDS code (i.e., N = 1) to yield

u1,1
u2,1
u3,1
u4,1

 ,

 u1,2
u2,2
u3,2

 ,

 u1,3
u2,3
u3,3

 ,


u1,4
u2,4
u3,4
u4,4

 ,


u1,5
u2,5
u3,5
u4,5

 ,

 u1,6
u2,6
u3,6

 ,

 u1,7
u2,7
u3,7

 .

The way how the data are stored across a distributed storage
system is depicted in Fig. 2.
Remark 1: Please note that there are some key points

regarding the new construction and the choices of the under-
lying block designs, which are specified in the following
subsections and represent themain contributions of this work.
The first key point is the observation that the model used
in [38] to distribute encoded data to storage nodes based on
a BIBD is sufficient but not necessary. Therefore, we gener-
alize the model to distribute encoded data based on a general
block design and identify the necessary and sufficient con-
ditions for deploying block designs for given parameters,
as described in the following subsections.

VOLUME 11, 2023 87123



X. Wang, Y. Liao: New Storage Codes Between the MSR and MBR Points Through Block Designs

FIGURE 2. The (6,5,5) storage code that is based on a 4-regular (6, {3, 4}, 2)-MRD, where the symbols that need to
transmit from the helper nodes when repairing node 1 are indicated in shade.

As we will see in Section III-A, the second key point is
that P2 holds for the (n, k = n − 1, d = n − 1) storage
code in Construction 1 if and only if the underlying block
design (X , B) satisfies the condition that every pair of distinct
elements of X occurs in exactly β blocks of B, and it is not
required that each block has the same cardinality. Therefore,
P1-P3 holds for the (n, k = n−1, d = n−1) storage code in
Construction 1 if and only if (X , B) is a regular MRD, which
subsumes BIBDs as a special case.

Similarly, the third key point is that P1-P3 holds for the
(n, k = n − 2, d) storage code in Construction 1 if and only
if (X , B) is a 3-design if d = n− 2 and a BIBD if d = n− 1,
which will be illustrated in Section III-B.
Based on the structure of the (n, k = n−δ, d) storage code,

it is obvious that the number of the symbols stored in node i
is equal to N · wt(mi), then we have the following result.
Lemma 3: P1 holds for the (n, k = n− δ, d) storage code

in Construction 1 if and only if

N · wt(mi) = α (constant), 1 ≤ i ≤ n. (11)

In the following two subsections, we will analyze the nec-
essary and sufficient conditions of P2 and P3 for the (n, k =

n− δ, k ≤ d ≤ n− 1) storage code in Construction 1 in two
cases:

(i) δ = N = 1;
(ii) δ = 2,N > 1, wi ≡ w ≥ 2 for 1 ≤ i ≤ b.

A. THE NEW (n, k = n − 1, d = n − 1) STORAGE CODE
When δ = 1, the parameters of the storage code are (n, k =

n − 1, d = n − 1), and the MSR codes used in Step 1 in
Construction 1 can be just the scalar MDS codes, i.e., N = 1.
Under such parameters, we have the following result.
Theorem 1: The (n, k = n− 1, d = n− 1) storage code in

Construction 1 has properties P1, P2 and P3 if and only if its
corresponding design (X , B) is a regular MRD.

Proof: To prove this theorem, we first note that P3
holds if P2 holds since the reconstructing process is similar to
several repair processes. Therefore, we only need to discuss
the conditions under which P2 holds.

To repair node i, denote the set of the indices of the helper
nodes by 1 = X\{i}. For each s ∈ {1, 2, . . . , b} such
that i ∈ Bs, the lost symbol in Us can be regenerated by
downloading the remaining symbols in Us from the helper
nodes with indices in Bs \ {i} (see Fig. 2 for an example).
Therefore, the number of symbols that are sent from the jth
node is wt(mi · mj) = |{B : i, j ∈ B, B ∈ B}|. Thus, P2

holds for the (n, k = n − 1, d = n − 1) storage code in
Construction 1 if and only if

wt(mi · mj) = β (constant), 1 ≤ i ̸= j ≤ n.

In conjunction with Lemma 3 and Definition 2, we obtain the
desired result.
Remark 2: We note that if (X , B) is an (n,w, λ)-BIBD,

i.e., wi ≡ w for 1 ≤ i ≤ b, then the (n, k = n − 1, d =

n − 1) storage code is exactly the code constructed in [38].
However, our construction is more general since BIBDs are
a special kind of regular MRDs. Additionally, the normal-
ized storage-bandwidth pair of the storage code based on an
(n,w, λ)-BIBD given in [38] is

(ᾱ, β̄) =

(
w

n(w− 1)
,

w
n(n− 1)

)
. (12)

B. THE NEW (n, k = n − 2, d ) STORAGE CODE
In this subsection, we consider the case where δ = 2,N > 1,
and wi ≡ w ≥ 2 for 1 ≤ i ≤ b, i.e., the parameters of the
storage code are (n, k = n − 2, n − 2 ≤ d ≤ n − 1), while
the MSR codes in Step 1 in Construction 1 can be any MSR
codes such as the aforementioned MSR codes introduced in
Section I. Then for any 1 ≤ i ≤ b, the (w − 2) × N matrix
Ui in Step 1 in Construction 1 has the following two abilities
according to the properties of MSR codes [7]:

A1 Reconstruction ability: Any w − 2 out of the w rows of
Ui suffice to recover the whole source data in Ui.

A2 Repair ability: Any row in Ui can be regenerated by
downloading half data from each of the w−1 remaining
rows.

Note that for an (n, k = n− 2, n− 2 ≤ d ≤ n− 1) storage
code constructed above, P3 always holds from the ability A1.
Based on a (w,w−2) MSR code, an advantage of the (n, k =

n − 2, d ≥ k) code is that d can equal to n − 2 and n −

1 by A1 and A2, respectively. In what follows, we analyze
the necessary and sufficient conditions for the (n, k = n −

2, n − 2 ≤ d ≤ n − 1) storage code in Construction 1 to
satisfy P2. We first consider the case where d = n − 2 and
prove the following theorem.
Theorem 2: The (n, k = n − 2, d = n − 2) stor-

age code in Construction 1 satisfies properties P1 and P2
if and only if its corresponding block design (X , B) is a
3-(n,w, λ) design. If (X , B) is a 3-design, then the normalized
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storage-bandwidth pair of the code is

(ᾱ, β̄) =

(
w

n(w− 2)
,

w(w− 1)(n+ w− 4)
2n(n− 1)(n− 2)(w− 2)

)
.

Proof: Assume node i is failed and we connect nodes
in the set 1 = X\{i, j} to repair node i, where j ∈

{1, 2, . . . , n}\{i}. To prove this theorem, we consider the
number of symbols sent from each helper node to repair node
i. For s = 1, 2, · · · , b, let us consider the blocks Bs with
i ∈ Bs.
(i) If j ̸∈ Bs, then |1 ∩ Bs| = w − 1, i.e., w − 1 rows

in Us are available. According to A2, the lost row in Us
can be regenerated by downloadingN/2 symbols in each
of the w − 1 remaining rows in Us. Therefore, for any
t ∈ X \ {i, j}, the number of symbols which sent from
node t is N

2 wt(mi · (mj + 1) · mt ).
(ii) If j ∈ Bs, then |1 ∩ Bs| = w − 2. According to A1, the

lost row in Us can be regenerated by downloading all
the symbols in the w−2 rows in Us that are respectively
stored in the nodes with indices in 1 ∩ Bs. Therefore,
for any t ∈ X \ {i, j}, the number of symbols sent from
helper node t is N · wt(mi · mj · mt ).

From the discussion above, we have that for t ∈ X \ {i, j}, the
total number of symbols sent from node t is

N
2
wt(mi · (mj + 1) · mt ) + N · wt(mi · mj · mt )

=
N
2

(
wt(mi · mj · mt ) + wt(mi · mt )

)
(13)

by (9). Thus, P2 holds for the (n, k = n−2, d = n−2) storage
code in Construction 1 if and only if (13) is a constant for any
three distinct integers i, j, t ∈ X . It is easy to check that (13)
is a constant if and only if both wt(mi ·mj ·mt ) and wt(mi ·mt )
are constants, which together with Lemma 3 imply that P1
and P2 hold for an (n, k = n− 2, d = n− 2) storage code if
and only if (X , B) is a 3-(n,w, λ) design.
When (X , B) is a 3-(n,w, λ) design, from (4) and (13) we

have

α =
bwN
n

and β =
N
2
(λ + λ2) =

w(w− 1)(n+ w− 4)
2n(n− 1)(n− 2)

bN .

Thus the normalized storage-bandwidth pair of the (n, k =

n− 2, d = n− 2) code in Construction 1 is

(ᾱ, β̄) =

(
w

n(w− 2)
,

w(w− 1)(n+ w− 4)
2n(n− 1)(n− 2)(w− 2)

)
.

The proof is then completed.
For the case d = n − 1, similar to the discussions in

subsection III-A, it is not difficult to obtain the following
result by (12).
Theorem 3: The (n, k = n − 2, d = n − 1) storage

code in Construction 1 satisfies P1 and P2 if and only if
its corresponding block design (X , B) is an (n,w, λ)-BIBD.
If (X , B) is a BIBD, then the normalized storage-bandwidth
pair is (ᾱ, β̄) =

(
w

n(w−2) ,
w(w−1)

2n(n−1)(w−2)

)
.

By Theorems 2, 3, and the fact that a 3-design is also a
BIBD, we have the following corollary.

Corollary 1: P1 and P2 hold for the (n, k = n − 2, d)
storage code in Construction 1 if its corresponding block
design (X , B) is a 3-(n,w, λ) design, where d ∈ {n−2, n−1}.

IV. PERFORMANCE ANALYSIS AND COMPARISONS
In this section, we give a detailed comparison between
the works in [38] and [40] and ours as they are closely
related.

A. COMPARISONS FOR (n, k = n − 1, d = n − 1) STORAGE
CODES
The following theorem demonstrates that the new (n, k =

n−1, d = n−1) storage code in Construction 1 outperforms
the ones in [38] and [40] in terms of the sub-packetization
level for some normalized storage-bandwidth trade-off. For
convenience, we refer to the storage codes in [38] and [40] as
TSAVK codes and EM codes, respectively.

From [40], we have that the parameters α, β, andM that
EM codes can achieve are

αEMi =

(
k
i

)
, βEMi =

(
k − 1
i− 1

)
,MEM

i = k
(
k
i

)
−

(
k

i+ 1

)
(14)

for i ∈ {1, 2, . . . , k}. The normalized storage and repair
bandwidth are

ᾱEMi =
αEMi

MEM
i

=

(k
i

)
k
(k
i

)
−

( k
i+1

)
=

(k
i

)
k
(k
i

)
−

(k
i

)
(k − i)/(i+ 1)

=
i+ 1
in

,

and

β̄EMi =
βEMi

MEM
i

=

(k−1
i−1

)
k
(k
i

)
−

( k
i+1

)
=

i
k

(k
i

)
k
(k
i

)
−

(k
i

)
(k − i)/(i+ 1)

=
i+ 1

n(n− 1)
.

By referring to (12), we observe that the normalized storage-
bandwidth pair (ᾱEMi , β̄EMi ) of the EM codes in [40] is also
achieved by the TSAVK codes in [38] that based on an (n, i+
1, λ)-BIBD. Therefore, it suffices to compare the normalized
storage-bandwidth pair of the new code only with the TSAVK
codes in [38].
Theorem 4: For any given integer s ≥ 2 and any sub-

set of positive integers W = {w1,w2, · · · ,ws}, where
w1 < w2 < · · · < ws, let

(
ᾱM , β̄M

)
be the normalized
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storage-bandwidth pair of the (n, k = n − 1, d = n − 1)
storage code in Construction 1 that based on an r-regular
(n,W , λ)-MRD. For 0 ≤ j ≤ ws−w1, let

(
ᾱTSAVKj , β̄TSAVKj

)
be the normalized storage-bandwidth pair of the (n, k =

n − 1, d = n − 1) storage code in [38] with the underly-
ing block design being an (n,w1 + j, λ(j))-BIBD. For each
0 ≤ i < ws−w1, let Li denote the line passing through(
ᾱTSAVKi , β̄TSAVKi

)
and

(
ᾱTSAVKi+1 , β̄TSAVKi+1

)
, then

(i) If ws−w1 > 1, the point
(
ᾱM , β̄M

)
always lies above

the line Li for 0 ≤ i < ws−w1;
(ii) If ws−w1 = 1, the point

(
ᾱM , β̄M

)
lies on the

line L0 and between the two points
(
ᾱTSAVKi , β̄TSAVKi

)
and(

ᾱTSAVKi+1 , β̄TSAVKi+1

)
.

Proof: By (12), we have(
ᾱTSAVKi , β̄TSAVKi

)
=

(
w1 + i

n(w1 + i− 1)
,
w1 + i
n(n− 1)

)
for 0 ≤ i ≤ ws−w1. Therefore the equation of Li is

β̄ = fi(ᾱ)

= −
(w1 + i)(w1 + i− 1)

n− 1
ᾱ +

(w1 + i) (w1 + i+ 1)
n(n− 1)

,

where 0 ≤ i < ws−w1.
Given an r-regular (n,W , λM )-MRD, assume that there

are bj blocks of size wj, j = 1, 2, · · · , s, then by Lemma 1,
we have

λn(n− 1) =

s∑
j=1

bjwj(wj − 1).

Therefore,

(
ᾱM , β̄M

)
=


s∑
i=1

biwi

n
s∑
i=1

bi(wi − 1)
,

s∑
i=1

biwi(wi − 1)

n(n− 1)
s∑
i=1

bi(wi − 1)

 .

Now we only need to compare the values of f (ᾱM ) and β̄M to
prove our statement. It is not difficult to obtain that

(fi(ᾱM ) − β̄M )n(n− 1)
s∑
j=1

bj(wj − 1)

= −(w1 + i− 1)(w1 + i)
s∑
j=1

bjwj −
s∑
j=1

bjwj(wj − 1)

+ (w1 + i) (w1 + i+ 1)
s∑
j=1

bj(wj − 1)

= −b1i(i+ 1)

−

s∑
j=2

bj[(wj−w1)(wj−w1 − 1 − 2i) + i2 + i]

= −b1i(i+ 1) −

s∑
j=2

bj[(wj−w1 −
2i+ 1

2
)2 −

1
4
].

Note that n(n− 1)
s∑
j=1

bj(wj − 1) > 0, therefore,

(i) If ws−w1 > 1, then f (ᾱM ) − β̄M < 0 always holds,
i.e., the point

(
ᾱM , β̄M

)
lies above the line Li for any 0 ≤ i <

ws−w1;
(ii) If ws−w1 = 1, then w1 < ws forces s to be 2.

Therefore, fi(ᾱM ) − β̄M = 0 since i = 0 in this case, i.e.,
the point

(
ᾱM , β̄M

)
lies on the line L0. It is easy to see that(

ᾱM , β̄M
)

̸=
(
ᾱTSAVK0 , β̄TSAVK0

)
,
(
ᾱTSAVK1 , β̄TSAVK1

)
in this

case. Furthermore, the point
(
ᾱM , β̄M

)
lies between the two

points
(
ᾱTSAVK0 , β̄TSAVK0

)
and

(
ᾱTSAVK1 , β̄TSAVK1

)
.

The proof is then completed.
Since the (n, k = n − 1, d = n − 1) EM codes and the

TSAVK codes are optimal w.r.t the bound in (2), and they
achieve the k corner points on the optimal tradeoff curve,
which together with Theorem 4 implies that the new (n, k =

n− 1, d = n− 1) storage code in Construction 1 based on an
r-regular (n,W , λ)-MRD is optimal w.r.t the bound in (2) if
and only ifW = {w,w+ 1}, where 2 ≤ w ≤ k . Additionally,
we provide a rigorous proof to demonstrate the optimality of
the new storage code.
Theorem 5: The (n, k = n − 1, d = n − 1) storage code

in Construction 1 that based on an r-regular (n,W , λ)-MRD
is optimal w.r.t. the bound in (2) if W = {w,w + 1}, where
2 ≤ w ≤ k . In addition, the new code does not operate on
the k corner points of the optimal storage-bandwidth trade-
off curve characterized in (2).

Proof: Clearly, the storage code has the following
parameters

α =
b1w+ b2(w+ 1)

n
, β =

b1w(w− 1) + b2w(w+ 1)
n(n− 1)

,

M = b1(w− 1) + b2w. (15)

Then,
dβ

α
=
b1w(w− 1) + b2w(w+ 1)

n
n

b1w+ b2(w+ 1)

=
w(b1w+ b2(w+ 1)) − b1w

b1w+ b2(w+ 1)

= w−
b1w

b1w+ b2(w+ 1)
.

This implies that dβ
w ≤ α ≤

dβ
w−1 . Now, let’s consider the case

when 2 ≤ w ≤ n− 2,

⌊
w(w− 1)nα + n(n− 1)β

w2 + w
⌋ = b1(w− 1) + b2w = M.

If w = n− 1, we have

(n− 2)α + β

= (w− 1)
b1w+ b2(w+ 1)

w+ 1
+
b1w(w− 1) + b2w(w+ 1)

w(w+ 1)

=
w(w− 1)b1w+ b1w(w− 1)

w(w+ 1)

+
b2(w+ 1)w(w− 1) + b2w(w+ 1)

w(w+ 1)
= b1(w− 1) + b2w = M.
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FIGURE 3. Comparison of the normalized storage-bandwidth pairs
achieved by the EM codes, TSAVK codes, and the new codes for
(n = 6, k = 5, d = 5).

Based on the above analysis, we can conclude that (2) holds
with equality for the new (n, k = n − 1, d = n − 1) storage
code in Construction 1 that based on an r-regular (n, {w,w+

1}, λ)-MRD.
In addition, it is worth noting that according to (2) and

(3), the k corner points satisfy α =
dβ
i for i = 1, 2, . . . , k .

However, based on (15), it is evident that α ∤ dβ for the new
code, which implies that the new code does not operate on
the k corner points of the optimal storage-bandwidth trade-
off curve characterized in (2).

Note that all of the (n, k = n − 1, d = n − 1) EM
codes, TSAVK codes, and the new storage code based on
an r-regular (n, {w,w + 1}, λ)-MRD are optimal w.r.t. the
bound in (2). However, there are some differences between
the new code and EM, TSAVK codes. The EM codes and
TSAVK codes operate exactly on the k corner points of the
optimal trade-off curve, the other points on the curve can only
be achieved through space-sharing. On the other hand, the
new storage code based on an r-regular (n, {w,w + 1}, λ)-
MRD operates on a point in stead of the k corner points of the
optimal trade-off curve. An example is illustrated in Figure 3,
where the points achieved by the new storage codes are based
on the following MRDs (X , B)

• A 3-regular (6, {2, 3}, 1)-MRD, where

B = {{1, 2, 4}, {1, 3}, {1, 5, 6}, {2, 3, 5}, {2, 6},

{3, 4, 6}, {4, 5}}.

• A 4-regular (6, {3, 4}, 2)-MRD, where

B = {{1, 2, 3, 6}, {1, 2, 5}, {1, 3, 4, 5}, {1, 4, 6},

{2, 3, 4}, {2, 4, 5, 6}, {3, 5, 6}}.

• A 15-regular (6, {4, 5}, 10)-MRD, where

B = {{1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 4},

{1, 2, 3, 5, 6}, {1, 2, 3, 5}, {1, 2, 3, 6},

{1, 2, 4, 5, 6}, {1, 2, 4, 5}, {1, 2, 4, 6},

{1, 2, 5, 6}, {1, 3, 4, 5, 6}, {1, 3, 4, 5},

{1, 3, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6},

{2, 3, 4, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6},

{2, 3, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}.

• A 6-regular (6, {5, 6}, 5)-MRD, where

B = {{1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6},

{1, 2, 3, 5, 6}, {1, 2, 4, 5, 6},

{1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}}.

Through space-sharing, the EM codes and TSAVK codes
can also achieve points on the optimal storage-bandwidth
trade-off curve beyond the k corner points. However, it is
important to note that space-sharing significantly increases
the sub-packetization level compared to that of the new stor-
age code based on an r-regular (n,w,w+ 1, λ)-MRD.

To further illustrate this point, let’s consider an example
that demonstrates how the sub-packetization level of the
new storage code CM can be lower than that of the codes
obtained by space-sharing TSAVK codes and EM codes in
certain situations.
Example 2: By substituting n = 12, w1 = 3 and

w2 = 4 into (6)–(8), we obtain r (1)min = r (2)min = 11 and
r (3)min = 4 [45]. Let (X , B1), (X , B2), and (X , B3) be
a (12, 3, 2; 44, 11)-BIBD, a (12, 4, 3; 33, 11)-BIBD and a
4-regular (12, {3, 4}, 1)-MRD, respectively. Using these three
designs, we can obtain two (n = 12, k = 11, d = 11) storage
codes from [38] and an (n = 12, k = 11, d = 11) storage
code by Construction 1, denoted by CTSAVK2 , CTSAVK3 , and CM ,
respectively. For i = 2, 3, let (αTSAVKi , βTSAVKi ,MTSAVK

i )
be the parameters of CTSAVKi , and let (αM , βM ,MM ) be the
parameters of CM . By (12) andM = (w− 1)b, we have

(αTSAVK2 , βTSAVK2 ,MTSAVK
2 ) = (11, 2, 88),

(αTSAVK3 , βTSAVK3 ,MTSAVK
3 ) = (11, 3, 99).

By Definition 1-(iii), we have rn = b1w1 + b2w2, which
together with Theorem 4 implies αM =

b1w1+b2w2
n = 4,

βM = 1, and MM
= 35. Clearly, the normalized storage-

bandwidth pair of CM is (ᾱM , β̄M ) = ( 4
35 ,

1
35 ). By space-

sharing between the codes CTSAVK2 and CTSAVK3 , we can obtain
a new (n = 12, k = 11, d = 11) storage code CSS−TSAVK

with parameters

αSS−TSAVK xαTSAVK2 + yαTSAVK3 ,

βSS−TSAVK xβTSAVK2 + yβTSAVK3 ,

MSS−TSAVK xMTSAVK
2 + yMTSAVK

3 .

By choosing appropriate values for x and y, the normalized
storage-bandwidth pair of CM can also be achieved by the
code CSS−TSAVK . In this case, we have

ᾱM
αSS−TSAVK

MSS−TSAVK =
xαTSAVK2 + yαTSAVK3

xMTSAVK
2 + yMTSAVK

3

,
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TABLE 1. A comparison of the sub-packetization level α among the new
(n = 6, k = 5, d = 5) storage code, the codes obtained by space-sharing
EM codes and by space-sharing TSAVK codes with the normalized
storage-bandwidth pair ( 4

35 , 1
35 ).

β̄M
βSS−TSAVK

MSS−TSAVK =
xβTSAVK2 + yβTSAVK3

xMTSAVK
2 + yMTSAVK

3

,

This results in y = 3x. Obviously, if we choose x = 1 and
y = 3, we obtain the minimum value of αSS−TSAVK . Then the
corresponding parameters of CSS−TSAVK are(

αSS−TSAVK , βSS−TSAVK ,MSS−TSAVK
)

= (44, 11, 385).

Clearly, the sub-packetization level of CSS−TSAVK is 11 times
larger than that of CM .
Similarly, to achieve the same normalized storage-

bandwidth pair of CM by EM codes, one needs to space-
sharing two EM codes with parameters

(αEM2 , βEM2 ,MEM
2 ) = (55, 10, 440)

and

(αEM3 , βEM3 ,MEM
3 ) = (165, 45, 1485).

This leads a storage code CSS−EM which has the same nor-
malized storage-bandwidth tradeoff as CM , but with a sub-
packetization level of αSS−EM

= 220, which is 55 times
larger than that of CM . Table 1 includes the comparison.

B. COMPARISONS FOR (n, k = n − 2, d ) STORAGE CODES
Denote our new (n, k = n − 2, d) code constructed in
Section III by CM and the (n, k = n− 2, d) code constructed
in [38] by CTSAVK . The following theorem gives a theoretical
comparison between CM and CTSAVK in terms of the repair
bandwidth when k = d = n− 2.
Theorem 6: Based on a 3-(n,w, λ) design, where 3 < w <

n, the normalized repair bandwidth of CM is smaller than that
of CTSAVK under the same parameter (n, k = n−2, d = n−2)
and the same normalized storage.

Proof: From [38] and Theorem 2, we known that the
normalized storage-bandwidth pairs of the (n, k = n−2, d =

n− 2) codes CTSAVK and CM are respectively(
ᾱTSAVK , β̄TSAVK

)
=

(
w

n(w− 2)
,

w
n(n− 2)

)
and(

ᾱM , β̄M
)

=

(
w

n(w− 2)
,

w(w− 1)(n+ w− 4)
2n(n− 1)(n− 2)(w− 2)

)
.

Therefore, we have

β̄M

β̄TSAVK
=

w(w− 1)(n+ w− 4)
2n(n− 1)(n− 2)(w− 2)

n(n− 2)
w

=
(w− 1)(n+ w− 4)
2(n− 1)(w− 2)

.

FIGURE 4. Comparisons between CTSAVK and CM under the parameters
(n = 20, k = 18, d = 18).

FIGURE 5. Comparisons between CTSAVK and CM under the parameters
(n = 20, k = 18, d = 19).

Since (w − 3)(n−w) > 0 holds for 3 < w < n, we can
conclude that β̄M/β̄TSAVK < 1 holds for 3 < w < n. This
completes the proof.
Theorem 6 is best illustrated through the example shown in
Fig. 4. It is clear that our new code CM outperforms CTSAVK
constructed in [38] when d = n− 2.
Now let us move on to compare CM and CTSAVK with the

same parameter (n, k = n− 2, d = n− 1).
Theorem 7: When n → ∞, the normalized repair band-

width of CM is smaller than that of CTSAVK under the same
parameter (n, k = n − 2, d = n − 1) when the normalized
storage ᾱ is smaller than a threshold

T =

72 n2−72n+13
f (n) + f (n) + 2(3n2 − 3n+ 1)

3 n
(
2n2 − 2n− 3

) (16)

where f (n) is defined in (17), as shown at the top of the
next page.
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f (n) =

(
108n

(
2n3 − 4n2 + 7n− 5

)
+ 35 − 6

(
2n2 − 2n− 3

) √
3

(
108n4 − 216n3 + 108n2 − 1

))1/3

. (17)

β̄TSAVK = h′(ᾱ) =
1

2(n− 1)

(
(n2 − n− 1)ᾱ −

√
(n2 − n− 1)2ᾱ2 − 2(n3 − 2n2 + 2n− 1)ᾱ + (n− 1)2

)
−

1
2
. (19)

Proof: Note that the normalized storage-bandwidth pair
of the (n, k = n − 2, d = n − 1) code CTSAVK based on an
(n,w, λ)- BIBD that constructed in [38] is given by

(ᾱTSAVK (w), β̄TSAVK (w))

= (
w

w− 1
n− 1

n(n− 1) − w
,

w
n(n− 1) − w

), (18)

where w ≥ 2. By varying w, CTSAVK can achieve different
normalized storage-bandwidth pairs. By space-sharing, the
normalized storage-bandwidth pairs that CTSAVK can achieve
are on a curve β̄TSAVK = h(ᾱ), which is piece-wise linear with
the corner points being (18).

By (18), we have (19), as shown at the top of the page,
when ᾱ =

w
w−1

n−1
n(n−1)−w with w ≥ 2, i.e., h(ᾱ) = h′(ᾱ) when

ᾱ =
w

w−1
n−1

n(n−1)−w with w ≥ 2. It is easy to see that h(ᾱ) =

h′(ᾱ) for all ᾱ when n → ∞.
While by Theorem 3 and Corollary 1, the normalized

storgae bandwidth pair of the (n, k = n − 2, d = n − 1)
code CM based on a 3-(n,w′, λ′) design are

(ᾱM =
w′

n(w′ − 2)
, β̄M =

w′(w′
− 1)

2n(n− 1)(w′ − 2)
),

i.e., the normalized storage-bandwidth pair is on the curve

¯βM = ᾱ(nᾱ + 1)/2(nᾱ − 1)(n− 1) (20)

when ᾱ =
w′

n(w′−2) with w
′
≥ 4. Similarly, (20) holds for all

ᾱ when n → ∞.
When n → ∞, it is easy to verify that β̄E < ¯βTSAVK is

equivalent to

n2(2n2 − 2n− 3)ᾱ3
− n(6n2 − 6n+ 2)ᾱ2

+ (6n2 − 6n+ 1)ᾱ − 2n+ 2 < 0,

which results in

ᾱ <

72 n2−72n+13
f (n) + f (n) + 2(3n2 − 3n+ 1)

3 n
(
2n2 − 2n− 3

) ,

where f (n) is defined in (17).
This completes the proof.
Remark 3: The normalized storage-bandwidth pairs that

CTSAVK and CM can achieve are two complicated piece-wise
linear functions, which make it difficult to characterize the
formula of the exact threshold T for general n. Nevertheless,
we can still use T in (16) to give an estimation.
As a concrete example, we show that under the parameters

(n = 20, k = 18, d = 19), CM has better performance than
CTSAVK when ᾱ less than a given threshold, as shown in Fig. 5.

V. CONCLUSION
In this paper, we proposed codes between the MSR and
MBR points using block designs. Specifically, we obtained
an (n, k = n − 1, d = n − 1) storage code based on regular
MRDs, and showed that it achieves a point on the optimal
storage-bandwidth trade-off curve that is distinct from the
corner points, provided that the underlying regular MRD
consists solely of blocks of size w and w + 1. Additionally,
our code exhibits a smaller sub-packetization level compared
to the codes proposed in [38] and [40], while achieving the
same normalized storage-bandwidth pairs for certain cases.
We also obtained an (n, k = n − 2, d ≥ n − 2) storage
code based on 3-designs and showed that the new code has
a smaller normalized repair bandwidth than the one in [38]
for all regions when d = n − 2 and for some regions when
d = n − 1. The proposed construction subsumes the one
in [38] as more general block designs can be employed.
Though the storage bandwidth pair is not as good as the one
in [40], the new codes have a simpler structure, and the new
(n, k = n − 2, d ≥ n − 2) storage code supports two repair
degrees.

Generalizing the new construction to any k < n − 2 is
possible, however, P2 is not easy to satisfy, and the analysis
is more sophisticated, which will be left for future research.
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