
Received 25 June 2023, accepted 20 July 2023, date of publication 27 July 2023, date of current version 2 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3299267

Co-Attention Graph Pooling for Efficient Pairwise
Graph Interaction Learning
JUNHYUN LEE 1, BUMSOO KIM2, MINJI JEON 3, AND JAEWOO KANG 1
1Department of Computer Science and Engineering, Korea University, Seoul 02841, South Korea
2LG AI Research, Seoul 07796, South Korea
3Department of Medicine, Korea University College of Medicine, Seoul 02708, South Korea

Corresponding authors: Jaewoo Kang (kangj@korea.ac.kr) and Minji Jeon (mjjeon@korea.ac.kr)

The work of Junhyun Lee and Jaewoo Kang was supported in part by the National Research Foundation of Korea under Grant
NRF-2023R1A2C3004176, in part by the Ministry of Science and ICT of Korea Supervised by the Institute of Information and
Communications Technology Planning and Evaluation under Grant IITP-2023-2020-0-01819, and in part by the Korea Health Industry
Development Institute under Grant HR20C0021(3). The work of Minji Jeon was supported in part by the National Research Foundation of
Korea under Grant NRF-2022R1F1A1070111, and in part by the Ministry of Science and ICT of Korea Supervised by the Institute of
Information and Communications Technology Planning and Evaluation under Grant IITP-2022-RS-2022-00156439.

ABSTRACT Graph Neural Networks (GNNs) have proven to be effective in processing and learning
from graph-structured data. However, previous works mainly focused on understanding single graph inputs
while many real-world applications require pair-wise analysis for graph-structured data (e.g., scene graph
matching, code searching, and drug-drug interaction prediction). To this end, recent works have shifted their
focus to learning the interaction between pairs of graphs. Despite their improved performance, these works
were still limited in that the interactions were considered at the node-level, resulting in high computational
costs and suboptimal performance. To address this issue, we propose a novel and efficient graph-level
approach for extracting interaction representations using co-attention in graph pooling. Our method, Co-
Attention Graph Pooling (CAGPool), exhibits competitive performance relative to existing methods in
both classification and regression tasks using real-world datasets, while maintaining lower computational
complexity.

INDEX TERMS Graph neural networks, graph pooling, pairwise graph interaction, drug-drug interaction,
graph edit distance.

I. INTRODUCTION
Recent advancements in both aggregation [1], [2], [3], [4],
[5] and pooling operations [6], [7], [8], [9], [10], [11], [12]
have significantly improved the capabilities of Graph Neu-
ral Networks (GNNs), enabling for more robust learning of
complex graph representations and enhancing performance
in downstream tasks like graph classification, node classi-
fication, and link prediction. However, the scope of these
approaches are limited on a single graph input while many
real-world tasks (e.g., scene graphmatching, code search, and
drug-drug interaction prediction) require pair-wise analysis
of graph-structures. Therefore, recent studies in GNNs have

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao Tong .

shifted their focus to representation learning over pairs of
input graphs.

One of the earliest approaches for paired graph representa-
tion learning using GNNs is the graph convolutional Siamese
network [13]. In Graph Convolutional Siamese network, the
input pairsmust share identical graph topology, and the paired
training is done by simply concatenating the individual graph
representations. However, since it does not take the interac-
tion between the graphs during the embedding process into
account, each graph is embedded into a single static repre-
sentation regardless of its pair. This static representation can
limit the expressiveness of the many-to-many relationships
between pairwise graphs [14]. For instance, when predicting
interactions between chemical compounds, each molecular
graph can have multiple functional groups, which are impor-
tant sub-graphs for the task. Since the contribution of each

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

78549

https://orcid.org/0000-0002-2385-4047
https://orcid.org/0000-0001-5731-6186
https://orcid.org/0000-0001-6798-9106
https://orcid.org/0000-0003-4414-4965

J. Lee et al.: Co-Attention Graph Pooling for Efficient Pairwise Graph Interaction Learning

FIGURE 1. Illustration of the concept of co-attention graph pooling. The
function Ig(·, ·) represents the interaction representation between two
graphs, as described in Section III. Our proposed pooling method is able
to extract different sub-graphs from the same graph representation when
considering different pairs. Graph A has representations from different
sub-graphs when paired with Graph B and Graph C.

functional group to the interaction depends on its pair, repre-
senting molecules with a single static representation may be
limited in terms of expressiveness. To overcome this limita-
tion, it is necessary to consider the interaction between the
input pair of graphs.

Subsequent works [14], [15], [16] proposed architectures
considering the interaction between the input pair using the
co-attention mechanism, which is an intuitive way to contem-
plate pairwise interactions. While co-attention has improved
the predictive power of these methods, they are still limited
to obtaining the interaction representation at the node-level.
This not only leads to increased complexity but also generates
redundant output as every node pair of the two input graphs
must be considered.

In this paper, we propose an efficient method for con-
sidering interactions between graphs at the graph-level by
applying co-attention to graph pooling. Our Co-attention
Graph Pooling (CAGPool) dynamically represents each input
graph based on its interaction with the opposite graph in the
pair (as illustrated in Figure 1), while adding minimal com-
putation complexity. Our model outperforms baselines even
without using the additional information commonly used in
baseline methods on real-world public benchmark datasets
for both classification and regression tasks in paired graph
representation learning: drug-drug interaction classification
and graph similarity regression. The implementation is pub-
licly available.1

II. RELATED WORK
The overall pipeline of our model is divided into two com-
ponents: Graph Convolution and Graph Pooling with Co-
attention. In this section, we provide a detailed overview of
the previous works related to each component.

1https://github.com/LeeJunHyun/CoAttentionGraphPooling

A. GRAPH CONVOLUTION NETWORKS
Researchers have been actively working on using convo-
lutional neural networks to process graph-structured data.
However, the conventional convolution operation, which is
defined on grids, is difficult to be directly applied on graphs
due to irregular structure. To address this issue, previous
researches have defined graph convolution by using the
Fourier transform (i.e. spectral graph convolution) [1], [17]
or spatial graph connectivity (i.e. non-spectral graph convo-
lution) [2], [18]. The spectral approaches can be represented
by the work of Kipf andWelling [1], where graph convolution
is redefined on the Fourier domain with a localized first-
order approximation. Non-spectral graph convolutions align
to the work of Hamilton et al. [18],where graph convolution
is defined as an aggregation function of a node’s neighbor-
hood representations. Building upon these works, subsequent
studies have aimed to improve the expressive power of both
node-level and graph-level representations [3], [4], [5].

B. GRAPH POOLING
Pooling is a technique that prevents overfitting in modern
neural network models with a large number of parameters
by reducing the size of the representations. This allows the
model to generalize better to new data. There are two main
categories of graph pooling methods: global pooling and
hierarchical pooling. Hierarchical pooling methods can be
further grouped into pooling by graph transformation and
pooling by node selection, based on how they produce the
reduced node and edge sets.

Global graph pooling methods are techniques that trans-
form the variable-sized representation of nodes produced by
GNNs into a fixed-sized vector representation. This can then
be used as input for downstream tasks such as prediction.
Some common global graph pooling methods include using
simple aggregation functions such as summation, average,
and max to combine the node representations. The SortPool
method [19] involves selecting the top k nodes from the
graph based on a certain criterion, and using their represen-
tations as the pooled output. SimGNN [16] proposes using
global context-aware attention to weight the contributions of
different nodes, and producing a pooled representation as a
weighted sum of all the node representations in the graph.
These methods allow for the use of GNN output as input for
downstream tasks, and have been applied to a range of tasks
including graph classification and regression.

Pooling by graph transformation is one of the hierar-
chical graph pooling methods where nodes are clustered and
merged under certain criteria [6], [8]. The main purpose of
Pooling by graph transformation is to learn the assignment
matrix that transforms input nodes into new cluster nodes.
The new adjacency matrix of cluster nodes is re-defined
according to the assignment matrix. The Pooling by graph
transformation has the advantage of keeping all node infor-
mation. However, there is a computational complexity issue
when calculating the new adjacency matrix for cluster nodes.

78550 VOLUME 11, 2023

J. Lee et al.: Co-Attention Graph Pooling for Efficient Pairwise Graph Interaction Learning

And also, the output of several pooling layers is not easily
interpreted through the transformed graph.

Pooling by node selection creates hierarchical graph rep-
resentations via trainable indexing method. TopKPool [20]
uses a trainable projection vector to calculate node scores and
accordingly select nodes with the top-k score. SAGPool [7]
improves upon TopKPool by using GNNs to consider the
topology of the graph along with the node features to calcu-
late node scores. Our method aligns with the work of pooling
by node selection as it has comparably lower complexity than
pooling by graph transformation. Although information loss
might occur during node discarding, we propose that this
helps the model to dynamically focus on different sub-graphs
for different graph pairs by eliminating the representations of
the nodes that are irrelevant to the interaction.

C. CO-ATTENTION MECHANISM
Attention mechanisms, which allow neural networks to
assign trainable importance weights to input [21], have been
widely used in deep learning research. There have been sev-
eral works that extend the use of attention to input in the form
of pairs. For example, Seo et al. [22] proposed a bidirectional
attention flow model that includes both query-to-context and
context-to-query attentions (i.e., co-attention) for machine
comprehension tasks. Additionally, Deac et al. [14] demon-
strated that co-attention obtained from pairs of graphs can
significantly improve the predictive power of GNNs. In this
work, we leverage the co-attention mechanism for graph
pooling to select nodes in paired graphs that should be aware
of each other.

III. METHODS
In this section, we first describe the basic notations for gen-
eral pairwise graph representation learning. Then, we intro-
duce our proposed method: Co-Attention Graph Pooling.
We denote the goal of our Co-Attention Graph Pooling,
i.e., CAGPool, followed by detailed explanations for each
components of our overall pipeline for pair-wise graph repre-
sentation learning using CAGPool (see Figure 2 for detailed
illustration).

A. PROBLEM SETTING
Let G = (V ,E) denote the undirected graph, where V is the
set of vertices and E is the set of edges. Its adjacency matrix
A can be constructed with Ai,j = 1 if (i, j) ∈ E and Ai,j =

0 otherwise. Node attributes can be represented as a matrix
form: X (0)

∈ RN×F , where N = |V | is the number of nodes
and F is the feature dimension. Our main task is to predict
the labels for a pair of input graphs (GA,GB), thus designing
a model that learns the function f : G×G 7→ R ∈ Ro, where
o denotes the output dimension.

While learning f , it has been studied that considering the
interaction between the input graph pairs leads to better pre-
diction [14], [16]. For clear comparison with previous meth-
ods, we define I (G) as the representation of the graph G and
the interaction representation of two graphs as I (GA,GB),

where In(GA,GB) and Ig(GA,GB) each denotes the inter-
action at the node-level and graph-level, respectively. Since
interactions were utilized at the node-level (In(GA,GB)) in
previous works [14], [16], [23], they suffer from high com-
plexity (see Figure 3 and Section V-B).

The main goal of this paper is to consider the interaction
representation at graph-level (i.e., Ig(GA,GB)) instead of
node-level (i.e., In(GA,GB)). To this end, we propose a graph
pooling module that learns a mapping function g : G×G 7→

G′
× G′ that improves the predictive power of f , where

G′
= (V ′,E ′) is the sub-graph with V ′

⊂ V and E ′
⊂ E .

The individual representations I (GA), I (GB) for each graph
are then refined to I (G′

A), I (G
′

B) respectively by using the
interaction representation Ig(GA,GB).

B. NODE EMBEDDING WITH GRAPH CONVOLUTION
Our overall pipeline follows the basic architecture of graph
convolution Siamese network [24]. We receive a pair of
graphs as input and apply the graph convolution with shared
weights to each graph of the pair. In the graph convolu-
tion layer, we update node representations by neighborhood
aggregation. We use the graph convolution suggested by Kipf
and Welling [1],

X (l+1)
= σ (D̃−

1
2 ÃD̃−

1
2X (l)2(l)) (1)

where X (l) is the node representation of l-th layer. Ã ∈

RN×N is the adjacency matrix with self-loops. D̃ ∈ RN×N

denotes the degree matrix of Ã. 2(0)
∈ RF×F ′

and 2(l)
∈

RF ′
×F ′

(l >= 1) are learnable convolution weights. σ is a
non-linear function that follows each graph convolution layer.
Afterwards, we concatenate the output of each output layer.
The final node representation X cat ∈ RN×nF ′

is obtained by
concatenating each of the n convolution blocks.

X cat = X (1)
∥X (2)

∥ . . . ∥X (n) (2)

where ∥ denotes the concatenation. Because we have
two graphs as a pairwise input, two node representations
(X catA ,X catB) are obtained by a graph convolution Siamese
network.

C. CO-ATTENTION GRAPH POOLING
After individually obtaining the representations for the pair
of input graphs, our CAGPool layer takes the two graph rep-
resentations ((X catA ,AA) and (X catB ,AB)) after several graph
convolution layers and then constructs the co-attention vector
α⃗ to calculate node scores. Then, the subgraphs are extracted
by indexing each graphwith the node scores. Below, we cover
details of how CAGPool works.

1) OBTAINING CO-ATTENTION VECTOR
The co-attention vector α⃗ is obtained from the two graph-level
representations of the input graph pair (xA, xB), where each
graph-level representation x ∈ RnF ′

is obtained by global
graph pooling. In this paper, we chose global mean pooling

VOLUME 11, 2023 78551

J. Lee et al.: Co-Attention Graph Pooling for Efficient Pairwise Graph Interaction Learning

FIGURE 2. The overall architecture of GNN with Co-Attention Graph Pooling.

as

x =
1
N

N∑
r=1

X catr , (3)

where X catr ∈ RnF ′

is a r-th row vector of node representation
matrix X cat ∈ RN×nF ′

. Other global graph pooling methods
can also be applied.

The graph-level representations are then concatenated and
fed into a linear transformation layer to extract the co-
attention vector as

α⃗ = Wα[xA∥xB] + bα, (4)

where Wα and bα are both trainable parameters with dimen-
sion of Wα ∈ R2nF ′

×2nF ′

and bα ∈ R2nF ′

. The extracted
co-attention vector is then indexed as α⃗A = α⃗0:nF ′ ∈ RnF ′

and α⃗B = α⃗nF ′:2nF ′ ∈ RnF ′

. The multilayer perceptron
(MLP) can also be used instead of a single linear transfor-
mation.

2) NODE SELECTION USING CO-ATTENTION VECTOR
The score of r-th node Zr ∈ R is calculated by dot product of
X catr ∈ RnF ′

and α⃗ ∈ RnF ′

. All node scores Z ∈ RN can be
calculated as

Z =
X cat · α⃗

∥α⃗∥
, idx = TopK(Z , ⌈kN⌉) (5)

where · denotes dot product, TopK(·) function returns the
indices of top ⌈kN⌉ nodes according to Z , and k ∈ (0, 1]
is a pooling ratio. We hold idxA from ZA and idxB from ZB
for graphs GA and GB, respectively.

Then, following the procedure of pooling by node selection
methods, we treat each node score as the significance of
the corresponding node and select the top ⌈kN⌉ nodes by

indexing with idx as

X ′
= X catidx,:

⊙ Zidx, A′
= Aidx,idx, (6)

where (·)idx denotes the indexing operation and ⊙ is the
broadcasted elementwise product. X ′

∈ R⌈kN⌉×nF ′

and A′
∈

R⌈kN⌉×⌈kN⌉ are the node feature matrix and the adjacency
matrix of a pooled graph G′

= (V ′,E ′), respectively. Since α⃗

is obtained from both GA and GB, sub-graphs are extracted
according to the interaction representation earlier denoted as
Ig(GA,GB). Now we have (X ′

A,A′

A) for sub-graph G
′

A and
(X ′

B,A′

B) for sub-graph G
′

B.

3) PREDICTION USING SUB-GRAPHS
The sub-graphs obtained by Equation (6) are embedded again
with graph convolution as

X ′(l+1)
= σ (D̃′

−
1
2 Ã′D̃′

−
1
2X ′(l)2′(l)). (7)

To feed to the final MLP layer, we convert the arbitrary
sized representations from Equation (7) into fixed-size vec-
tors xfinalA , xfinalB using the global graph pooling described
in Equation (3). Then we concatenate the two graph-level
representations and feed to the MLP layers as

output = MLP([xfinalA ∥xfinalB]). (8)

Depending on the task, appropriate functions (e.g. sigmoid,
softmax) are applied to the final output.

IV. EXPERIMENTS
We evaluate our method under two tasks: pairwise graph
classification and pairwise graph regression. In this section,
we first outline the experimental settings and describe the
datasets used to evaluate each task. Following that, we quan-
titatively compare our proposed CAGPool with the baseline
methods to validate its effectiveness. During the training

78552 VOLUME 11, 2023

J. Lee et al.: Co-Attention Graph Pooling for Efficient Pairwise Graph Interaction Learning

TABLE 1. AUROC results on the Decagon test set. The ✓under the
feature+ column indicates that the according baseline leverages external
features other than the drug itself such as protein-protein interaction or
the one-hot encoding of the drug-drug interaction (the target class).

process, we use the Adam Optimizer with a learning rate of
1e-3 for 20 epochs and a batch size of 32. We fix the hidden
dimension F ′ via grid search across 32, 64, 128, and 256.
All models, including the baselines, were implemented using
PyTorch [25] and PyTorch Geometric [26]. We carried out all
experiments on a singleNVIDIATitanXpGPU. The reported
performance represents an average of the results from five
repetitions.

A. TASKS AND DATASETS
1) DRUG-DRUG INTERACTION PREDICTION
Polypharmacy refers to the simultaneous use of multiple
drugs by a single patient to treat one or more conditions. One
of the key challenges with polypharmacy is that patients may
experience unexpected side-effects when they take several
drugs concurrently. These side-effects can lead to poten-
tially devastating clinical and financial outcomes, including
post-marketing withdrawal of drugs from the market [27].
Consequently, it is of paramount importance to accurately
predict potential DDIs of drug candidates during the drug
discovery process [28].
We utilized DDI dataset collected and used by Decagon

[29]. Decagon adopts a pathway-based approach, integrat-
ing Protein-Protein, Drug-Protein, andDrug-Drug interaction
networks into a singular graph structure. In this structure,
each node represents a drug or protein, while the links indi-
cate the interactions between these entities. Following the
experimental setup of [14], we exclusively used the Drug-
Drug Interaction subset of this dataset. In our representation,
each drug is depicted as an individual graph with atoms
serving as nodes and chemical bonds as edges. The struc-
tural information for each drug compound is obtained using
Rdkit.2 The ultimate goal of our experiment is to predict
all types of DDI (if any) that might occur, using solely the
structural information of two given drug compounds.

We adopt the exact filtering steps employed by the base-
lines [14], [29] on the Decagon dataset, including negative

2http://www.rdkit.org

TABLE 2. Evaluation results under AUPRC and AP@50 on the Decagon
test set for a more precise comparison with baselines that provide their
performance under these metrics.

sampling. A detailed explanation of the negative sampling
process is provided in our supplementary material. We use
the 964 types of polypharmacy side effects that occur more
than 500 times. The complete dataset consists of 4,576,785
positive examples. We allocate 80% of the interactions to
the training set, 10% to the validation set, and the remaining
10% to the test set. The evaluation results are reported on
the test set, for the model that achieved the best performance
on the validation set. During the testing phase, we calculate
the AUROC, AUPRC, and AP@50 across the 964 drug-
drug interaction classes, exclusively for valid samples (either
positive samples or those obtained via negative mining).

2) GRAPH SIMILARITY PREDICTION
Graph retrieval is a fundamental problem which involves
calculating the distance or similarity between two graphs. The
Graph Edit Distance (GED) is the most widely used distance
metric for graph retrieval [13], [16], [30], [31], [32], [33]. The
edit distance is defined as the minimum number of operations
needed to transform GA into GB. However, computing the
GED is known to be an NP-complete problem [34], making
it infeasible to calculate the exact GED within a reasonable
time frame for graphs that have more than 16 nodes [35].
Recently, there are attempts to approximate GED by using

GNNs [16]. The authors also provide GED datasets con-
taining AIDS, LINUX, and IMDB.3 AIDS4 is commonly
used in graph similarity search [13], [31], [32], [33]. AIDS
dataset contains chemical compound structure graphs with
labeled nodes. Bai et al. [16] selected 700 graphs of equal
or less than 10 nodes each. LINUX [36] dataset is about
program dependence graphs generated from the Linux ker-
nel. In the program function graphs of the LINUX dataset,
a node represents a statement and an edge is a dependency
between two statements. Bai et al. [16] selected 1000 graphs,
each of which has equal or less than 10 nodes. For both
AIDS and LINUX datasets, the ground truth GEDs are calcu-
lated by using the A∗ algorithm. IMDB [37] dataset contains
1500 graphs of which the nodes represent actors or actresses.
Edges denote that two people appear in the samemovie. As in
SimGNN, we use all the graphs in IMDB dataset for testing
the scalability. For the IMDB dataset, the approximation

3https://github.com/yunshengb/SimGNN
4https://wiki.nci.nih.gov/display/NCIDTPdata

VOLUME 11, 2023 78553

J. Lee et al.: Co-Attention Graph Pooling for Efficient Pairwise Graph Interaction Learning

TABLE 3. The experimental results of graph similarity regression task. The evaluation metrics are Mean Square Error (MSE, 10−3), Spearman’s rank
correlation coefficient ρ, and Kendall’s rank correlation coefficient τ .

algorithms, Beam [38], Hungarian [39], and VJ [40], were
used for the ground truth because the IMDB dataset con-
tains graphs with more than 16 nodes. GED is converted
to similarity score S with normalization (nGED) as fol-
low: nGED(GA,GB) =

GED(GA,GB)
(|GA|+|GB|)/2 , S(GED(GA,GB)) =

exp−nGED(GED(GA,GB)),where |Gi| denotes the number of
nodes of graph Gi and the similarity score S is in the range
of (0,1].

We exactly follow their training/testing data split and ran-
domly select validation set within a training set with the same
proportion. All the graphs are split into 60%, 20%, and 20%
as a training set, a validation set, and a testing set.

B. EVALUATION AND BASELINES
1) DRUG-DRUG INTERACTION PREDICTION
In the DDI prediction task, we assess the effectiveness of
CAGPool by comparing it with existing methods using the
Decagon dataset. We primarily employ three evaluation met-
rics used in Decagon [29]: AUROC, AUPRC, and AP@50.

Table 1 presents a comparison of our network with exist-
ing baseline networks on the Decagon dataset. The ✓in
the feature+ column indicates that the method uses addi-
tional information beyond the structural information of drugs.
The Concatenated features method [29] employs a PCA
representation of the drug-target protein interaction matrix
and individual drug side-effects. The Decagon method [29]
further includes protein-protein interactions, drug-protein tar-
get interactions, and single drug side-effect information.
Methods such as MPNN-Concat, Late-Outer, CADDI,
MHCADDI [14] use one-hot encoding of interactions to
predict their presence or absence. Our model outperforms all
these methods, whether they use additional information or
not, by only leveraging the structural features of the graph
representation for drugs.

Table 2 presents a performance comparison across
AUROC, AUPRC, and AP@50 metrics on the Decagon
dataset. Not only does our method outperform the baseline
methods proposed in [29], but it also demonstrates consis-
tently superior performance across all evaluation metrics.

Both RESCAL and DEDICOM are tensor decomposition
approaches applied to the drug-drugmatrix, whileDeepWalk
employs neural embedding based on a random walk proce-
dure.

2) GRAPH SIMILARITY PREDICTION
Table 3 presents the regression performance on GED
datasets. The baselines encompass GNN approaches
reported in the GED-CDA paper [41] and the SimGNN
paper [16]. SimGNN [16], GraphSim [42], GMN [15],
MPNGMN [43], GENN [44], and GED-CDA [41] are
characterized by their focus on node-wise interactions.
This results in a substantial computational burden due to
their high complexity, which is at least O(|VA||VB|). For
instance, SimGNN combines AttLearnableGC and Pairwise
Node Comparison. To account for graph-graph interactions,
SimGNN utilizes the histogram information of the dot product
of all node pairs between two graphs, an approach known as
Pairwise Node Comparison. SimpleMean (S-Mean) gener-
ates a graph-level embedding by averaging the node repre-
sentations. Both HierarchicalMean (H-Mean) and Hierar-
chicalMax (H-Max) employ a graph coarsening algorithm
for hierarchical graph representations [45], and then apply
global mean and max pooling, respectively. In AttDegree
(Att.Deg.), the attention weight of nodes is calculated using
the natural log. Both AttGlobalContext (Att.GC) and
AttLearnableGC (Att.LGC) compute the attention weights
using the graph-level representations. However, the latter also
incorporates a learnable non-linear transformation, unlike the
former. SGNN [43], a Siamese architecture with GCN, has
its performance reported in the GED-CDA paper. For a fair
comparison, we maintain the model architecture of SimGNN
and only replace its Pairwise Node Comparisonmodule with
CAGPool.

V. DISCUSSION
A. EFFECTIVENESS OF CONSIDERING THE INTERACTION
REPRESENTATION
The Graph convolution Siamese network [31] provides a
basic framework to deal with pairwise graph inputs by

78554 VOLUME 11, 2023

J. Lee et al.: Co-Attention Graph Pooling for Efficient Pairwise Graph Interaction Learning

FIGURE 3. Comparison of the complexity between GNNs for pairwise graph inputs. Given a pair of graphs GA and GB , the graph Siamese network (left)
has complexity O(|EA| + |EB|), but cannot embed the graph-graph interaction. Although SimGNN and MHCADDI (middle) can consider the interaction
In(GA, GB) in the node-level, the complexity increases to O(|VA||VB|). CAGPool (right) is able to consider the interaction representation Ig(GA, GB) in
the graph-level while maintaining the complexity upper bound of the graph Siamese network. In our notations, I(G′

A), I(G′
B), and Ig(GA, GB) are

aligned with vectors x final
A , x final

B , and α⃗, respectively.

predicting the interaction from individually embedded inputs
(i.e., I (GA) and I (GB)). However, as the interaction is only
minimally reflected in the final prediction layer, previous
works have extended the scope to leverage interaction rep-
resentations (i.e., In(GA,GB)) during the embedding stage.
MHCADDI exchanges node representations between two
graphs in the message-passing step, while SimGNN compares
all node pairs of two graphs after the node embedding lay-
ers. Since MHCADDI and SimGNN show a substantial gain
in predictive power compared to simple Siamese networks
(see Table 1 and Table 3), it can be concluded that utilizing
I (GA,GA) in the embedding stage is crucial when dealing
with pairwise graphs. However, as these methods utilize all
node pairs, unnecessary complexity and redundant informa-
tion are produced. This results in suboptimal performance
and efficiency, thereby compromising the final prediction.
Our CAGPool focuses on subgraphs that are extracted by
the interaction representation, mitigating the issue of noisy
representations. The experimental results in Table 1 and
Table 3 show that CAGPool successfully utilizes the interac-
tion representations at the graph-level Ig(GA,GA), achieving
state-of-the-art performance on both tasks.

B. THE EFFICIENCY OF CO-ATTENTION GRAPH POOLING
Figure 3 illustrates the complexity of each method that treats
pairwise graph input. The Graph convolution Siamese net-
work, being the most basic form, has an overall complexity
bounded by the complexity of embedding each graph with

GNNs:O(|EA|+ |EB|). Recent methods, such asMHCADDI
and SimGNN, construct interaction representations at the
node-level and require pairwise calculations for every node
pair between VA and VB. Therefore, the computational
complexity is bounded by O(|VA||VB|). Strictly speaking,
SimGNN has a complexity of O(max(|VA|, |VB|)2). On the
other hand, our approach requires additional computation
with a complexity of O(|VA| + |VB|) for constructing the
interaction representation at the graph-level and selecting the
nodes. Therefore, CAGPool maintains the O(|EA| + |EB|)
complexity of the simple graph convolution Siamese network
without increasing the complexity upper bound. Additionally,
we only needWα ∈ R2nF ′

×2nF ′

and bα ∈ R2nF ′

(see Equation
(4)) as additional trainable parameters, where n is the number
of GCN layers and F ′ is the hidden dimension. Given inputs
XA and XB, our module produces X ′

A and X
′
B, demonstrating a

31.2∼ 64.7% faster running time than the node-level interac-
tion module when we set the number of nodes from 50 to 200.
We describe the details in the supplementary material.

C. ABLATION STUDY
We conduct an ablation study to validate (1) whether co-
attention serves as an effective component when treating
pairwise graphs, and (2) whether CAGPool demonstrates
a meaningful improvement compared to individual pooling
without considering interaction representation.

For (1), it can be concluded that leveraging co-attention is
effective by comparing MHCADDI-ML and CAGPool with

VOLUME 11, 2023 78555

J. Lee et al.: Co-Attention Graph Pooling for Efficient Pairwise Graph Interaction Learning

TABLE 4. Ablation studies and comparison with other pooling methods
on the Decagon test set. Note that the scope of this ablation study only
includes methods that do not use additional information such as protein
features or one-hot encoding of the interaction.

MPNN-Concat (the vanilla Siamese Network architecture in
Figure 3). Moreover, CAGPool shows a significant improve-
ment in performance even when compared to MHCADDI-
ML, implying that CAGPool is a more effective way to utilize
the co-attention mechanism.

For (2), we only consider hierarchical pooling methods
with node selection to match our experimental settings. For
a fair comparison with other hierarchical node selection-
based pooling methods, we implemented TopKPool [20] and
SAGPool [7] and kept the pooling ratio at 50%. Although
all pooling methods show a gain in performance, our co-
attention-based approach serves as the most effective pooling
method for pairwise graph prediction.

D. FUTURE WORKS
1) STUDIES ON THE EXTRACTED SUBGRAPHS
The main focus of our work is the proposal of a novel
pooling method, CAGPool, for extracting subgraphs from
graph pairs, which we refer to as G′

A = (V ′

A,E ′

A) and
G′

B = (V ′

B,E ′

B), that can help predict labels such as drug-
drug interactions. Even if some nodes, v ∈ V ′, are isolated,
they contain important information due to the use of GCN
layers. In the context of predicting drug-drug interactions,
it can be extremely difficult to disambiguate the functional
groups (i.e., subgraphs) related to a specific side effect, even
for experts in the biomedical field. This is because these
subgraphs do not directly interact with each other, but rather
affect each other through complex biological pathwayswithin
the human body. While our research did not specifically
investigate this analysis, we expect that our method can facil-
itate future research in this area by identifying subgraphs that
are likely to be related to the functional groups responsible
for the side effects between drugs.

VI. CONCLUSION
In this paper, we describe the Co-Attention Graph Pooling
(CAGPool) method for processing pairs of graph-structured
data in an efficient and effective way. CAGPool combines
the co-attention mechanism and pooling by node selection
to enable a graph neural network to identify important sub-
graphs for prediction tasks while maintaining the compu-
tational simplicity of Siamese networks. We demonstrate
the effectiveness of our approach on two real-world bench-
mark datasets, showing that it outperforms baselines even

without using additional information commonly utilized by
other methods. We believe that CAGPool has the potential
to be beneficial in a wide range of applications, including
the urgent development of COVID-19 treatments, where the
ability to identify key sub-graphs in paired data can help
prevent unintended side effects.

APPENDIX A
DATASETS
In this paper, we validate CAGPool on two tasks: a classifi-
cation task for Drug-Drug Interaction (DDI) prediction and
a regression task on the Graph Edit Distance (GED) dataset.
Here, we provide additional information on the preprocessing
details and analysis for each dataset.

A. DRUG-DRUG INTERACTION DATASET
As described in the main text, we utilized the DDI dataset
assembled by Decagon [29]. The original Decagon dataset
contains Protein-Protein, Drug-Protein, and Drug-Drug pairs
integrated into a graph structure. In this structure, each node
represents either drugs or proteins, and the links indicate
interactions between the two corresponding vertices. For our
research, we focused solely on the drug-drug interaction sub-
set. Each drug is represented as a single graph with atoms
as nodes and chemical bonds as edges. The node attributes
include the type of atoms, polarity, number of hydrogen
atoms, and aromaticity. The original literature filtered for
500 or more drug pairs, but after our preprocessing, we found
that to align with the 964 interaction types, we had to filter for
498 or more pairs.

Negative Sampling To compensate for TWOSIDES,
which only contains positive samples, we adopt the negative
sampling approach used in previous works [14], [29]. The
detailed process involving a drug d and side-effect se is
described below:

• During training, tuples (d̃x , d̃y, sez), where d̃x and sez are
chosen from the dataset and d̃y is chosen at random from
the set of drugs difference from dy in the true samples
(d̃x , dy, sez). The negative sample is selected randomly
according to sampling distribution Pr , where for each
node di has a probability of P(di) =

f (di)3/4∑n
j=0 f (dj)3/4

of

appearing [46].
• During validation and testing, we randomly sample two
distinct drugswhich do not appear in the positive dataset.

B. GRAPH EDIT DISTANCE DATASET
We utilized the GED dataset from SimGNN5 [16]. The
GED dataset comprises three sub-datasets: AIDS, LINUX,
and IMDB. These datasets were designed and collected to
evaluate the performance of the graph retrieval task, a task
designed to find similar/dissimilar graphs from the database
when given a query graph.

5https://github.com/yunshengb/SimGNN

78556 VOLUME 11, 2023

J. Lee et al.: Co-Attention Graph Pooling for Efficient Pairwise Graph Interaction Learning

FIGURE 4. An example of isomorphic graphs. IMDB-2277 and IMDB-8804
are from different instance but have a same graph structure and node
features. The graph edit distance between them is zero.

We found that some graphs in GED datasets were in
an equivalence relation (i.e. isomorphism) (see Figure 4).
According to SimGNN authors, they treat the query graph as
an unseen graph even if there exists an isomorphic graph in
the database. Because checking for isomorphism is expensive
with traditional graph algorithms, an algorithm that can effi-
ciently capture isomorphic graphs is important in this dataset.
Since our model is permutation invariant, it can benefit this
task by capturing isomorphism efficiently.

APPENDIX B
COMPREHENSIVE OVERVIEW OF GRAPH POOLING
METHODS
In this section, we 1) explain the categorization of graph
poolingmethods and 2) compare them in terms of complexity.
Hierarchical graph pooling methods can be classified into
pooling by graph transformation and pooling by node selec-
tion. The overview is illustrated in Figure 5. There are various
pooling methods based on graph algorithms such as spectral
clustering [45], but we only consider graph pooling methods
that can be trained end-to-end. Our approach is based on the
pooling by node selection method.

Given the input graphG = (V ,E) with the set of verticesV
and the set of edges E , the hierarchical graph pooling can be
represented as the function g : G 7→ G′, where G′

= (V ′,E ′)
is the small-size graph. Graph G has the node feature matrix
X ∈ RN×F and the adjacency matrix A ∈ RN×N , where N
is the number of nodes and F is the feature dimension. The
final goal of the graph pooling method is to obtain the graph
G′

= (V ′,E ′) that has the node features X ′
∈ RN ′

×F and
the adjacency matrix A′

∈ RN ′
×N ′

. We categorize the graph
pooling methods according to how X ′ and A′ are calculated.

C. POOLING BY GRAPH TRANSFORMATION
Pooling by graph transformation (also called as pooling by
clustering) downsamples graph by learning the transforma-
tion matrix. Following the work of Ying et al. [6], pooling
methods in this category calculate the output node features
X ′ and the adjacency matrix A′ by using the transforma-
tion matrix S ∈ RN×N ′

, which is called as the assignment
matrix [6]. Here, the matrix S transforms not only nodes,
but also edges. Therefore, how we define S is the main
key in pooling by graph transformation. In DiffPool, the

transformation matrix S is obtained from the node embed-
ding of Graph Neural Networks (GNNs). In StructPool, the
transformation matrix S is trained via conditional random
fields [8]. Briefly, pooling by graph transformation methods
have a common framework as

X ′
= S⊤X , A′

= S⊤AS, (9)

where X ′
∈ RN ′

×F is the feature matrix of N ′ cluster nodes
and A′

∈ RN ′
×N ′

is the adjacency matrix of them. Note that
G′

= (V ′,E ′) is not a sub-graph of G (i.e. V ′
̸⊂ V ,E ′

̸⊂ E).

1) COMPLEXITY ISSUE OF GRAPH TRANSFORMATION
Despite the improvement in their performance, pooling by
graph transformation suffers from heavy computational cost
when obtaining the new adjacency matrix A′. DiffPool suffers
from heavy computational complexity because the S and the
output graph is represented as a dense matrix. Although S of
StructPool can be either dense or sparse according to their
setting, it still suffers from heavy complexity because of the
iterative method for S and the calculation of A′ described in
Equation (9).

D. POOLING BY NODE SELECTION
In Pooling by node selection, X ′ and its adjacency matrix A′

are obtained by selecting the nodes according to the node
score Z ∈ RN , leaving nodes with high scores and discarding
the rest. Because both X ′ and A′ are simply calculated by
indexing, these methods do not increase the upper bound of
computational complexity in GNNs. Pooling by node selec-
tion therefore eventually boils down to ‘‘how we define the
scoring function for each node? (i.e., how we define Z?)’’
TopKPool calculate node scores Z from the dot product of
node features and a trainable projection vector [20]. SAGPool
exploit both node features and the graph topology to calculate
node scores Z [7]. After the calculation of Z , both perform the
indexing operation as

X ′
= Xidx,:, A′

= Aidx,idx, (10)

where (·)idx denotes the indexing operation and idx is the
top-k indices of node scores Z . Unlike pooling by graph
transformation,G′ is a sub-graph ofG (i.e. V ′

⊂ V ,E ′
⊂ E).

Because the nodes are explicitly selected, it would be helpful
to interpret which local structures are important to increase
the predictive power of GNNs.

1) WHY IS CAGPool BASED ON NODE-SELECTION?
As referred in Section VI-C and Section VI-D, pooling by
node selection alleviates the computational complexity issue
of pooling by graph transformation such as DiffPool. Since
the main goal of our model is to design a low-compleixty
model that can effectively and efficiently encode the interac-
tion representation between the pair of input graphs, we fol-
low the architectural design of pooling by node selection. For
instance, if we adapt the graph DiffPool-like CAGPool which
is described the below section, the complexity is quadratic

VOLUME 11, 2023 78557

J. Lee et al.: Co-Attention Graph Pooling for Efficient Pairwise Graph Interaction Learning

FIGURE 5. The illustration of pooling by graph transformation and pooling by node selection. · denotes the matrix multiplication and
⊙ denotes the broadcasted multiplication. For both methods, the input graph G = (V , E) has the node feature matrix X ∈ RN×F and
the adjacency matrix A ∈ RN×N , where N, F denote the number of nodes and the feature dimension, respectively. In (a) pooling by
graph transformation, the output graph G′ = (V ′, E ′) is generated according to the transformation matrix S ∈ RN×N ′

, where V ′ is the
set of cluster nodes and N ′ denotes the number of cluster nodes. In (b) pooling by node selection, it is important to define the node
score Z ∈ RN well. According to the node scores Z , the top-k nodes are selected as elements of V ′ ⊂ V .

to the number of nodes for each graph, O(|VA|2 + |VB|2).
Alsowe can identify the important substructure in the original
topology that is difficult in Pooling by graph transformation.
During the experiments in our main paper, we followed 50%
ratio pooling for fair comparison with other pooling by node
selection methods.

2) EXTENSION OF CAGPool TO A GRAPH-TRANSFORM
VERSION
While pooling by node selection can be beneficial in terms of
computational complexity and interpretability, it is also true
that some nodes are not selected during the pooling process
and are therefore discarded. On the other hand, pooling by
graph transformation includes all nodes in the final aggre-
gated clusters, without loss of information. CAGPool can be
extended to a graph transformation version by setting the
assignment matrix as follows:

S = h(XA,XB) (11)

This means that the clustering is dynamically performed
based on the representation of the pair of graphs.

APPENDIX C
COMPARISON OF THE RUNNING TIME
To demonstrate the efficiency of our method, we compare
the running time of node-level and graph-level interaction
modules. Each module accepts XA and XB as an input pair and
outputs X ′

A and X ′
B, which represent the pooled node feature

matrix. We set the number of nodes from 50 to 200 and repeat

FIGURE 6. Visualization of the top attention score nodes on true-positive
samples from the test set. The highlighted areas represent attention
patterns based on the pairs. The percentages indicate our prediction
values.

the process 10k times to obtain consistent results. The graph-
level interaction module produces X ′

A and X ′
B 31.2 - 64.7 %

faster than the node-level interaction module.

APPENDIX D
VISUALIZATION OF THE ATTENTION PATTERNS
Figure 6 showcases a relationship diagram that includes
visualization of attention areas for an example of many-to-
many interactions.We examined the true-positive cases of our
model and highlighted the nodes with the highest attention
scores. The percentage above the edge between each structure

78558 VOLUME 11, 2023

J. Lee et al.: Co-Attention Graph Pooling for Efficient Pairwise Graph Interaction Learning

represents the confidence score of our prediction model.
As shown in the figure, each drug is pooled and projected
differently based on the drug it interacts with.

ACKNOWLEDGMENT
(Junhyun Lee and Bumsoo Kim contributed equally to this
work.)

REFERENCES
[1] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with graph

convolutional networks,’’ in Proc. Int. Conf. Learn. Represent. (ICLR),
2017, pp. 1–14.

[2] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lió, and Y. Bengio,
‘‘Graph attention networks,’’ Proc. Int. Conf. Learn. Represent., 2018,
pp. 1–12.

[3] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, ‘‘Simple and deep graph
convolutional networks,’’ in Proc. 37th Int. Conf. Mach. Learn. (ICML),
2020, pp. 1725–1735.

[4] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković, ‘‘Principal
neighbourhood aggregation for graph nets,’’ in Adv. Neural Inf. Pro-
cess. Syst. (NeurIPS). Red Hook, NY, USA: Curran Associates, 2020,
pp. 13260–13271.

[5] G. Wang, R. Ying, J. Huang, and J. Leskovec, ‘‘Multi-hop attention graph
neural networks,’’ in Proc. 13th Int. Joint Conf. Artif. Intell., Aug. 2021,
pp. 3089–3096.

[6] Z. Ying, J. You, C. Morris, X. Ren,W. Hamilton, and J. Leskovec, ‘‘Hierar-
chical graph representation learning with differentiable pooling,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2018, pp. 4800–4810.

[7] J. Lee, I. Lee, and J. Kang, ‘‘Self-attention graph pooling,’’ in Proc. 36th
Int. Conf. Mach. Learn., Jun. 2019, pp. 9–15.

[8] H. Yuan and S. Ji, ‘‘STRUCTPOOL: Structured graph pooling via condi-
tional randomfields,’’ inProc. Int. Conf. Learn. Represent., 2020, pp. 1–12.

[9] J. Baek, M. Kang, and S. J. Hwang, ‘‘Accurate learning of graph represen-
tations with graph multiset pooling,’’ in Proc. Int. Conf. Learn. Represent.,
2021, pp. 1–22.

[10] J. Du, S. Wang, H. Miao, and J. Zhang, ‘‘Multi-channel pooling graph
neural networks,’’ in Proc. 13th Int. Joint Conf. Artif. Intell., Aug. 2021,
pp. 1442–1448.

[11] J. Wu, X. Chen, K. Xu, and S. Li, ‘‘Structural entropy guided graph
hierarchical pooling,’’ in Proc. 39th Int. Conf. Mach. Learn. (ICML), 2022,
pp. 24017–24030.

[12] S. M. Ko, S. Cho, D.-W. Jeong, S. Han, M. Lee, and H. Lee, ‘‘Grouping-
matrix based graph pooling with adaptive number of clusters,’’ in Proc.
27th AAAI Conf. Artif. Intell. (AAAI), 2022, pp. 1–9.

[13] S. I. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. Lee, B. Glocker, and
D. Rueckert, ‘‘Distance metric learning using graph convolutional net-
works: Application to functional brain networks,’’ in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer,
2017, pp. 469–477.

[14] A. Deac, Y.-H. Huang, P. Velickovic, P. Lio, and J. Tang, ‘‘Empowering
graph representation learning with paired training and graph co-attention,’’
in Proc. ICLR, 2020, pp. 1–14.

[15] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, ‘‘Graph matching
networks for learning the similarity of graph structured objects,’’ in Proc.
Int. Conf. Mach. Learn., 2019, pp. 3835–3845.

[16] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, ‘‘SimGNN: A
neural network approach to fast graph similarity computation,’’ in Proc.
12th ACM Int. Conf. Web Search Data Mining, Jan. 2019, pp. 384–392.

[17] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bron-
stein, ‘‘Geometric deep learning on graphs and manifolds using mixture
model CNNs,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 5425–5434.

[18] W. Hamilton, Z. Ying, and J. Leskovec, ‘‘Inductive representation learn-
ing on large graphs,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1024–1034.

[19] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, ‘‘An end-to-end deep
learning architecture for graph classification,’’ in Proc. AAAI Conf. Artif.
Inteligence, 2018, pp. 1–9.

[20] H. Gao and S. Ji, ‘‘Graph U-Nets,’’ in Proc. Int. Conf. Mach. Learn., 2019,
pp. 2083–2092.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 5998–6008.

[22] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, ‘‘Bidirectional atten-
tion flow for machine comprehension,’’ in Int. Conf. Learn. Represent.
(ICLR), 2017, pp. 1–7.

[23] Y. Pathak, S. Laghuvarapu, S. Mehta, and U. D. Priyakumar, ‘‘Chemically
interpretable graph interaction network for prediction of pharmacokinetic
properties of drug-like molecules,’’ in Proc. AAAI Conf. Artif. Intell.,
vol. 34, 2020, pp. 873–880.

[24] G. Koch, R. Zemel, and R. Salakhutdinov, ‘‘Siamese neural networks for
one-shot image recognition,’’ in Proc. ICML Deep Learn. Workshop, Lille,
France, vol. 2, 2015, pp. 1–8.

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, and L. Antiga, ‘‘Pytorch: An imperative style, high-
performance deep learning library,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2019, pp. 8026–8037.

[26] M. Fey and J. Eric Lenssen, ‘‘Fast graph representation learning with
PyTorch geometric,’’ 2019, arXiv:1903.02428.

[27] I. J. Onakpoya, C. J. Heneghan, and J. K. Aronson, ‘‘Post-marketing
withdrawal of 462 medicinal products because of adverse drug reactions:
A systematic review of the world literature,’’ BMC Med., vol. 14, no. 1,
p. 10, 2016.

[28] K. Han, E. E. Jeng, G. T. Hess, D. W. Morgens, A. Li, and M. C. Bassik,
‘‘Synergistic drug combinations for cancer identified in a CRISPR screen
for pairwise genetic interactions,’’ Nature Biotechnol., vol. 35, no. 5,
pp. 463–474, May 2017.

[29] M. Zitnik, M. Agrawal, and J. Leskovec, ‘‘Modeling polypharmacy
side effects with graph convolutional networks,’’ Bioinformatics, vol. 34,
no. 13, pp. i457–i466, Jul. 2018.

[30] H. Bunke, ‘‘What is the distance between graphs,’’ Bull. EATCS, vol. 20,
pp. 35–39, Jun. 1983.

[31] Y. Liang and P. Zhao, ‘‘Similarity search in graph databases: A multi-
layered indexing approach,’’ in Proc. IEEE 33rd Int. Conf. Data Eng.
(ICDE), Apr. 2017, pp. 783–794.

[32] X. Zhao, C. Xiao, X. Lin, Q. Liu, and W. Zhang, ‘‘A partition-based
approach to structure similarity search,’’ Proc. VLDB Endowment, vol. 7,
no. 3, pp. 169–180, 2013.

[33] W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao, ‘‘Graph similarity
searchwith edit distance constraint in large graph databases,’’ inProc. 22nd
ACM Int. Conf. Conf. Inf. Knowl. Manage., 2013, pp. 1595–1600.

[34] H. Bunke and K. Shearer, ‘‘A graph distance metric based on the max-
imal common subgraph,’’ Pattern Recognit. Lett., vol. 19, nos. 3–4,
pp. 255–259, Mar. 1998.

[35] D. B. Blumenthal and J. Gamper, ‘‘On the exact computation of the graph
edit distance,’’ Pattern Recognit. Lett., vol. 134, pp. 46–57, Jun. 2020.

[36] X. Wang, X. Ding, A. K. H. Tung, S. Ying, and H. Jin, ‘‘An efficient graph
indexing method,’’ in Proc. IEEE 28th Int. Conf. Data Eng., Apr. 2012,
pp. 210–221.

[37] P. Yanardag and S. V. N. Vishwanathan, ‘‘Deep graph kernels,’’ in Proc.
21st ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2015,
pp. 1365–1374.

[38] M. Neuhaus, K. Riesen, and H. Bunke, ‘‘Fast suboptimal algorithms for the
computation of graph edit distance,’’ in Proc. Joint IAPR Int. Workshops
Stat. Techn. Pattern Recognit. (SPR) Structural Syntactic Pattern Recognit.
(SSPR). Cham, Switzerland: Springer, 2006, pp. 163–172.

[39] H. W. Kuhn, ‘‘The Hungarian method for the assignment problem,’’ Nav.
Res. Logistics Quart., vol. 2, nos. 1–2, pp. 83–97, Mar. 1955.

[40] S. Fankhauser, K. Riesen, and H. Bunke, ‘‘Speeding up graph edit distance
computation through fast bipartite matching,’’ in Proc. Int. Workshop
Graph-Based Represent. Pattern Recognit. Cham, Switzerland: Springer,
2011, pp. 102–111.

[41] R. Jia, X. Feng, X. Lyu, and Z. Tang, ‘‘Graph-graph context dependency
attention for graph edit distance,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Jun. 2023, pp. 1–5.

[42] Y. Bai, H. Ding, K. Gu, Y. Sun, and W. Wang, ‘‘Learning-based efficient
graph similarity computation via multi-scale convolutional set matching,’’
in Proc. AAAI Conf. Artif. Intell., vol. 34, 2020, pp. 3219–3226.

[43] X. Ling, L. Wu, S. Wang, T. Ma, F. Xu, C. Wu, and S. Ji, ‘‘Hierarchical
graph matching networks for deep graph similarity learning,’’ in Proc.
ICLR, 2020, pp. 1–18.

VOLUME 11, 2023 78559

J. Lee et al.: Co-Attention Graph Pooling for Efficient Pairwise Graph Interaction Learning

[44] R. Wang, T. Zhang, T. Yu, J. Yan, and X. Yang, ‘‘Combinatorial learning
of graph edit distance via dynamic embedding,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 5237–5246.

[45] M. Defferrard, X. Bresson, and P. Vandergheynst, ‘‘Convolutional neural
networks on graphs with fast localized spectral filtering,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 3844–3852.

[46] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 3111–3119.

JUNHYUN LEE received the B.S. degree in
biomedical engineering from Korea University,
in 2017, where he is currently pursuing the Ph.D.
degree in computer science, under the supervi-
sion of Prof. Jaewoo Kang. His research interests
include deep learning, geometric machine learn-
ing, and biomedical applications.

BUMSOO KIM received the B.S. and Ph.D.
degrees in computer science from Korea Uni-
versity, Seoul, South Korea, in 2016 and
2022, respectively. During the Ph.D., he was a
Research Scientist withKakaoBrain, SouthKorea,
from 2020 to 2022. After the Ph.D., he was
a Research Scientist with LG AI Research,
South Korea, where his research interests include
deep learning, scene understanding, efficient
transformers, and large-scale vision-language
pretraining

MINJI JEON received the B.S. degree in computer
science, the M.S. degree in bioinformatics, as part
of the Interdisciplinary Graduate Program, and the
Ph.D. degree in computer science fromKorea Uni-
versity, Seoul, South Korea, in 2012, 2014, and
2018, respectively. Upon completion of the Ph.D.,
she held the position of a Research Professor with
Korea University, from 2018 to 2019. She was
a Postdoctoral Fellow with the Icahn School of
Medicine at Mount Sinai, New York, NY, USA,

from 2020 to 2022. Since 2022, she has been an Assistant Professor with the
Department of Medicine, Korea University College of Medicine, Seoul.

JAEWOO KANG received the B.S. degree in
computer science from Korea University, Seoul,
South Korea, in 1994, the M.S. degree in com-
puter science from the University of Colorado
Boulder, CO, USA, in 1996, and the Ph.D.
degree in computer science from the Univer-
sity of Wisconsin–Madison, WI, USA, in 2003.
From 1996 to 1997, he was a Technical StaffMem-
ber with AT&T Labs Research, Florham Park,
NJ, USA. From 1997 to 1998, he was a Tech-

nical Staff Member with Savera Systems Inc., Murray Hill, NJ, USA.
From 2000 to 2001, he was the CTO and a Co-Founder of WISEngine Inc.,
Santa Clara, CA, USA, and Seoul. From 2003 to 2006, he was an Assis-
tant Professor with the Department of Computer Science, North Carolina
State University, Raleigh, NC, USA. Since 2006, he has been a Professor
with the Department of Computer Science, Korea University, where he is
the Department Head of the Bioinformatics for Interdisciplinary Graduate
Program.

78560 VOLUME 11, 2023

