
Received 7 July 2023, accepted 22 July 2023, date of publication 27 July 2023, date of current version 7 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3299296

A Survey on Reservoir Computing and Its
Interdisciplinary Applications Beyond Traditional
Machine Learning
HENG ZHANG 1 AND DANILO VASCONCELLOS VARGAS 1,2
1Department of Information Science and Technology, Kyushu University, Fukuoka 819-0395, Japan
2Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan

Corresponding author: Heng Zhang (rogerzhangheng@gmail.com)

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Challenging Exploratory
Research under Grant JP22534665, in part by the Japan Science and Technology Agency (JST) Strategic Basic Research Promotion
Program (Advanced Integrated Intelligence Platform (AIP) Accelerated Research) under Grant 22584686, in part by the JSPS Research on
Academic Transformation Areas (A) under Grant 22572551, and in part by JST Support for Pioneering Research Initiated by the Next
Generation (SPRING) under Grant JPMJSP2136.

ABSTRACT Reservoir computing (RC), first applied to temporal signal processing, is a recurrent neural
network in which neurons are randomly connected. Once initialized, the connection strengths remain
unchanged. Such a simple structure turns RC into a non-linear dynamical system that maps low-dimensional
inputs into a high-dimensional space. The model’s rich dynamics, linear separability, and memory capacity
then enable a simple linear readout to generate adequate responses for various applications. RC spans
areas far beyond machine learning, since it has been shown that the complex dynamics can be realized
in various physical hardware implementations and biological devices. This yields greater flexibility and
shorter computation time. Moreover, the neuronal responses triggered by the model’s dynamics shed light
on understanding brain mechanisms that also exploit similar dynamical processes. While the literature
on RC is vast and fragmented, here we conduct a unified review of RC’s recent developments from
machine learning to physics, biology, and neuroscience. We first review the early RC models, and then
survey the state-of-the-art models and their applications. We further introduce studies on modeling the
brain’s mechanisms by RC. Finally, we offer new perspectives on RC development, including reservoir
design, coding frameworks unification, physical RC implementations, and interaction between RC, cognitive
neuroscience and evolution.

INDEX TERMS Reservoir computing, neural networks, recurrent neural networks, nonlinear dynamical
systems, cognitive neuroscience.

I. INTRODUCTION
Artificial neural networks (ANNs) attract attention in
the fields of artificial intelligence, neuroscience, com-
puter science, and machine learning. These ANNs can be
mainly divided into two architectures: (1) feed-forward neu-
ral networks (FFNNs) and (2) recurrent neural networks
(RNNs) [1]. In the field of neuroscience, it has been real-
ized that the convergent feed-forward circuit observed in the
cerebral cortex of mammals is a method used to encode rela-
tions, allowing cognitive objects to be represented through
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multi-layered feed-forward architectures [2]. In machine
learning, training FFNNs is a process that usually involves the
optimization of a highly non-convex problem using gradient
descent based methods to find the optimum. One of the
biggest advantages of FFNNs is their ability to deal with static
(non-temporal) data processing tasks such as image recogni-
tion [3], object detection [4] and semantic segmentation [5].
However, samples are normally independently processed in
FFNNs,making it hard to handle temporally correlated events
without memory.

On the other hand, RNNs are models where neurons are
recurrently coupled with feedback connections. The recurrent
connections provide rich non-linear dynamics and memory,
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which are essential for temporal data and sequential process-
ing. However, RNNs can be challenging to train. This is
mainly because they must deal with vanishing and exploding
gradient problems, along with other problems such as longer
training time and the need for careful weight initialization [6],
[7]. Back-propagation-through-time (BPTT) [8] and Long
Short-Term Memory (LSTM) [9] networks are two solutions
to some of the problems mentioned above. However, the
learning difficulty still exists.

Reservoir computing (RC) is a bio-inspired, RNN based
computational framework mainly originated from two inde-
pendent models in the early 2000s: the Echo State Network
(ESN) [10] and the Liquid StateMachine (LSM) [11]. Similar
and related concepts include backpropagation-decorrelation
(BPDC) learning algorithm [12] and the cortico-striatal
models realized in prefrontal cortex [13]. These proposed
models were then unified as the RC computational frame-
work by Verstraeten et al. [14], and were summerized in two
reviews [15], [16].

A typical RC network includes a reservoir and a read-
out layer. Specifically, the reservoir is a network with
randomly connected neurons. It can generate complex
and high-dimensional transient responses to input. Such
responses are considered as reservoir’s states, forming unique
trajectories for each input. These high-dimensional reser-
voir’s states are then processed with a simple readout layer,
generating the output. During RC training, the weight con-
nections between neurons in the reservoir are usually fixed
to their initial random values (i.e., remain untrained), and
only the readout layer is trained by relatively simple learning
algorithms (e.g., linear regression).

RC has several advantages, such as a fast training pro-
cess, simplicity of implementation, reduction of computa-
tional cost, and no vanishing or exploding gradient problems,
among others. Moreover, they do have memory and, for
this reason, are capable of tackling temporal and sequential
problems. These advantages have attracted increasing interest
in RC research and many of its applications since its concep-
tion. However, due to the impressive wide-range results of
gradient descent based neural networks—the deep learning
revolution, RC research receded into a niche for a few years
after the 2010s. Recently, there has been a resurgence of
interest in RC as a compelling biological model of neural
networks, driven by its potential for scalability through physi-
cal implementations. Additionally, problems in deep learning
such as adversarial attacks and robustness/adaptiveness issues
have also contributed to an increase in interest in alternative
paradigms [17], [18], [19], [20], [21], [22].

A. AIMS
The complex dynamics in the reservoir indicate that RC is not
only just a machine learning framework, but also a concept
that highly correlates to physics, biology, and neuroscience.
In 2019, a review in physical RC (PRC) comprehensively
summarizes various physical materials and hardware com-

ponents that can be used for PRC implementations [23].
In biology and neuroscience, it was reported in 2013 that
parts of the brain’s mechanisms are similar to those of
reservoirs, including mixed selectivity [24] and neuronal
oscillations [2]. Although valuable surveys exist in specific
research branches, there is still a notable gap in the literature
regarding understanding the intricate interplay between RC
and its connections to physics, biology, and neuroscience.
The absence of such a comprehensive review hinders the
advancement of our knowledge and the exploration of RC’s
potential across diverse domains. Addressing this need and
providing a holistic overview would significantly contribute
to bridging this gap, facilitating further research, and unlock-
ing new insights into the various aspects of RC.

This survey provides a clear exposition of recent devel-
opments in RC. While the literature on RC is vast and
fragmented, we aim to provide a uniform introduction to
RC. We begin in Section II by introducing the fundamental
concepts of RC. In Section III, we explore different network
architectures and optimization techniques that can enhance
reservoir performance. Section IV further highlights the
recent trends of RC, facilitated by improved training schemes.
Various physical hardware solutions are also reviewed, cov-
ering electronic, optical, and biophysical approaches, among
others. Furthermore, we demonstrate the wide range of appli-
cations of RC in Section V, including practical engineering,
natural science, and social/data science, etc. These appli-
cations often involve time-dependent data, requiring mem-
ory and memory-related processing. Next, by discussing the
cortico-striatal models and coupled oscillator networks in
Section VI, we show that high-dimensional responses trig-
gered by the reservoir’s dynamics offer insights into brain
mechanisms that also exploit a high-dimensional dynami-
cal process. Additionally, our contributions to RC reside in
Section VII, where we present fresh perspectives on the
development of RC and pinpoint open problems that require
further research.

II. BASIC FRAMEWORK OF RC
In this section, we first review the historical developments
in RC. By tracing its trajectory from initial theoretical foun-
dations to the present state, our emphasis will then be on
highlighting significant works that have played a crucial role
in shaping the current landscape of RC.

A. HISTORY OF RC DEVELOPMENTS
1) THE FIRST PROTOTYPE OF RESERVOIR COMPUTING
Perhaps the birth of the RC framework was in the 1980s-
90s. During that period, some researchers were focusing
on the characterization of the fast eye movements (i.e., the
oculomotor saccade) in the corticostriatal system—the inter-
actions between cortex and basal ganglia [25]. In a pioneering
work , Barone and Joseph [26] examined the function of
the corticostriatal system by carrying saccade experiments
on macaque monkeys. They found that some neurons have
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FIGURE 1. Paper structure showing an overall picture and future trends of research in reservoir computing.

a preferred spatial saccade amplitude and direction, resulting
in selective responses to a particular sequential order. This
finding was further characterized as mixed selectivity by [24]
in 2013, which is one of the important principles in both RC
and cognitive science (see Section VI).
Taking inspiration from the experiments of the corticostri-

atal saccade system [26], [27], Dominey [13], [28] developed
the very first prototype of the reservoir network in 1995 (see
Section VI and Fig. 15 for detail). Specifically, the model
was built based on a recurrent prefrontal cortex (PFC) system
(the reservoir), and a reward-related learning method in PFC-
to-caudate connections (the readout). Since they found that
the modifications of the recurrent connections are consider-
ably computationally costing, they decided to initialize the
PFC layer with a mixture of fixed inhibitory and excitatory
recurrent connections (i.e., a reservoir with fixed connections
between neurons). The reservoir was then connected to the
caudate or striatum to obtain the readout.

2) EARLY RESEARCH AND PROBLEMS IDENTIFIED IN
GENERAL RNNs
The main branch of RC was originated in the fields of
temporal and sequential pattern recognition using RNNs.
In contrast to FFNNs that aim to approximate non-linear
input-output functions, RNNs are capable of representing
dynamical systems and processing sequential inputs with
recurrent connections [15], [23].

Early studies of RNNs include a well-known model called
Hopfield network [29] in the 1980s. The network topologies
were specifically formulated with symmetrical weights con-
nections and were trained in unsupervised ways. This special
type of network normally experiences chaotic or stochastic
dynamics with the mathematical background of statistical
physics [15]. Another type of RNN features a deterministic

update dynamics and directedweighted connections. Systems
from this type of RNN are usually made of high dimensional
hidden states with non-linear dynamics, resulting in a trans-
formation from an input sequence into an output sequence.
Two standard examples are (1) back-propagation-through-
time (BPTT) by [8] and [30]; and (2) real-time recurrent
learning (RTRL) by [31]. Even though these learning meth-
ods showed great potential in complex sequential processing,
they struggled to tackle real-world problems due to the high
computational costs and difficulties of training, especially
the vanishing and exploding gradient problems that make
them hard to capture long-term dependencies [6], [7]. In
1997, a well-known architecture, Long Short Term Memory
(LSTM) [9], was then proposed to address these problems.
For more details on the gradient-based RNNs, please refer to
an early review [32].

3) UNIFICATION OF RESERVOIR COMPUTING
In 2000, [32] proposed a new algorithm based on error gra-
dient approximation, which efficiently reduces the computa-
tional complexity and shows faster convergence in recurrent
network training. This work, referred to Atiya and Parlos
Recurrent Learning (APRL) in later literature, identified
that an RNN can be divided into two parts: the quickly
changing output weights, and the slowly adapting hidden
weights. Therefore, APRL is considered the algorithm to
bridge between general RNNs and reservoir computing [15].
Besides, another predecessor of RC, the backpropagation-
decorrelation (BPDC) learning algorithm, further simplified
APRL and made it an online learning algorithm [12].

Later in the early 2000s, two types of fundamental reser-
voir computing algorithms were independently invented
by Maass et al. [11] as Liquid State Machine (LSM), and
by Jaeger [10] as Echo State Network (ESN). The two
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FIGURE 2. Simplified structure of Echo State Network (ESN).

algorithms, as well as other related works such as BPDC
and works in neuroscience fields such as Dominey’s
research [13], were unified as a computational framework
called reservoir computing (RC) [14]. In this unified frame-
work, the low-dimensional input data is transformed into
spatio-temporal patterns in a high-dimensional space by the
reservoir—an RNN with fixed topologies and unchanged
weights. The high-dimensional responses generated by the
reservoir are then processed by the readout—an output layer
which can be trained with simple learning algorithms such
as linear regression. In other words, during training, the val-
ues of the weight connections within the reservoir remain
unchanged while only the readout weights are trained based
on specific tasks. Before going deep into recent advances in
RC, we will first introduce the basic concepts of ESN and
LSM in the following subsections.

B. ECHO STATE NETWORKS
Echo State Network (ESN) was first proposed by [10]. This
pioneering work is based on the fact that training only the
readout layer of an RNN can achieve acceptable perfor-
mance, if the network has sufficiently rich dynamics. ESN
is normally implemented with leaky-integrated, non-spiking,
discrete-time and continuous-value artificial neurons (see
Fig. 2 the network structure). To illustrate the technical
details, here we use the notations by [33]. Consider a temporal
processing task, where the input signal is u(n) ∈ RNu and the
desired target signal is ytarget (n) ∈ RNy , given n = 1, . . . ,T
with T being the total number of discrete data points. The
goal is to generate an output signal y(n) ∈ RNy that matches
ytarget (n) as optimally as possible by minimizing the error
between the two signals (e.g., Mean-Square Error, MSE). The
simplified update equations of the reservoir part in ESNs are
given by:

x̃(n) = tanh(Winu(n) + Wx(n− 1)), (1)

x(n) = (1 − α)x(n− 1) + αx̃(n), (2)

where x̃(n) ∈ RNx is the update at time step n, x(n) ∈ RNx

is the state vector of the reservoir neurons (also known as
the resulting states or the echo of its input history [15]),
Win

∈ RNx×Nu and W ∈ RNx×Nx are the weight matrices of
the input-reservoir connections and the recurrent connections

Algorithm 1 Simplified Procedure of ESN Training

1: Initialize the network by generating random Win, W.
It is common to use uniform distributed randomization
U (−1, 1).

2: Run the model with input signal u(n), n = 1, . . .T , it will
generate the same length of the reservoir states x(n) by
Eq. 1-2.

3: Collect all x(n), then calculate and get the output signal
y(n) by Eq. 3.

4: Minimize the MSE between y(n) and ytarget (n) using
techniques such as linear regression. This should obtain
a well-trainedWout .

5: Take unseen data utest (n) and obtain the predicted and/or
generated output ytest (n).

inside the reservoir, respectively. tanh() is the non-linear
activation function applied element-wise. α is the leaking rate
that mainly controls the speed of the dynamics.

The readout layer is normally linearly defined as:

y(n) = Woutx(n), (3)

where y(n) ∈ RNy is the output vector andWout
∈ RNy×Nx is

the weight matrix of the reservoir-readout connections. Alter-
natively, one can also introduce a bias value in both reservoir
and readout, as well as integrate the input signal directly to the
readout layer. In this case, u(n) in Eq. 1 becomes [1;u(n)] and
x(n) in Eq. 3 becomes [1;u(n); x(n)], where [·; ·] represents
concatenation. A brief training procedure is shown in Alg. 1.

During conventional ESNs training, Win and W remain
unchanged, and only Wout is trained in order to minimize
the error between the network output and the target out-
put (teacher signal), usually by using linear regression such
as ridge regression [34]. Alternatively, many new proposed
learning rules for ESN training exist, including but not limited
to online FORCE learning [35], weights pre-training [36],
gradient-based training [37], and evolutionary learning [38].
For details on training a RC model, please refer to section III.

1) ECHO STATE PROPERTY
An essential condition (requisite) that a standard ESN must
meet is the echo state property (ESP), which ensures a con-
dition of asymptotic state convergence of the reservoir. This
property is under the influence of both the reservoir and the
given input. On one hand, ESP is an algebraic property that
is controlled by the reservoir’s weight matrix W. It has been
mathematically analyzed in [15], [39], and [33] that the spec-
tral radius (SR, i.e., the maximum eigenvalue of W) smaller
than unity ensures ESP in most situations. As a result, many
RNN-based RCs in literature consider SR < 1 as a necessary
condition to make the models work (see the introduction
section in [16]). However, it had been proved in [39] that
SR < 1 is neither sufficient nor necessary for the ESP. The
author claim that ‘‘it is not required to scale the spectral
radius below 1, and there is no general benefit in scaling
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FIGURE 3. Simplified structure of Liquid State Machine (LSM). Note that
LSM is implemented by spiking integrate-and-fire neurons, rather than
non-spiking artificial neurons used in ESN.

the spectral radius toward the Edge of Chaos’’. The same
paper also proposed new sufficient conditions for the ESP.
Please refer to [39] for mathematical details. On the other
hand, ESP has been empirically studied in the presence of
driving inputs of varied strength [40], without looking at the
mathematics. Reference [40] shows that for an input-driven
reservoir and a proper input scaling, the actual range of ESP
validity (i.e., SR), is much wider than what is covered by the
above literature conditions.

2) MEMORY CAPACITY AND EDGE OF CHAOS
As a special type of RNNs, ESN also has the characteristic of
short-term memory. Analytical results that characterize the
dynamical short-term memory capacity of reservoirs were
discussed in [41] and [42]. Meanwhile, it can be found in
a good deal of literature that reservoirs are claimed to work
best when they are tuned to operate at the so-called ‘‘edge of
chaos’’ [43], [44]. Here, the edge of chaos refers to a region
of parameter settings which makes the dynamical system
operates at the boundary between the chaotic and non-chaotic
behavior. However, this is also a misnomer, as claimed by
Jaeger in [45] and [39] that the ‘‘edge’’ in question here is
the edge of the ESP, not the edge of chaos. For a detailed
discussion, please refer to [46].

C. LIQUID STATE MACHINES
Liquid State Machine (LSM) was proposed by [11] from the
perspective of computational neuroscience in order to study
the brain mechanisms and model the neural microcircuits.
In contrast to ESN that uses non-spiking artificial neurons,
LSM is more biologically plausible as it is based on the
Spiking Neural Networks (SNNs) with recurrent reservoir
structures. Inside the reservoir, usually a 3D structured and
locally connected network of spiking integrate-and-fire (IF)
neurons is randomly created and stimulated by external input
spike train signals (see Fig. 3). Intuitively, the reservoir in
LSM is often called liquid, since they follow a metaphor of
excited states as ripples on the surface of a pool of water [11].
Similar to ESNs in its form, here we use u(t), x(t) and y(t)
to represent the input, reservoir state and output, respectively.

The reservoir dynamic of LSM is given by:

xM(t) = LMu(t), (4)

where t represents continuous time, xM is the reservoir state,
u represents the input spikes, and LM is the liquid filter for
input-reservoir state transformation. The readout is given by:

y(t) = fM(xM(t)), (5)

where y(t) is the output vector and fM is a ‘‘memory-less’’
readout map. The readout here can also be trained using
simple algorithms.

1) SEPARATION AND APPROXIMATION PROPERTIES
LSMs have two mathematical preconditions, namely separa-
tion property (SP) and approximation property (AP). These
two properties ensure that the network has fading memory
(i.e., echo state property in ESN). Specifically, SP addresses
the degree of separation between different internal states x
caused by different input u (condition is met if the liquid filter
LM satisfies the point-wise separation property), whereas
AP addresses the capability of the readout layer to produce
the target outputs given different liquid states x (condition
is met if the readout map fM satisfies the approximation
property). For the mathematical basis of SP and AP, please
refer to [11]. Overall, these two properties in LSMs, together
with the ESP and memory capacity in ESNs literature, ensure
the RNN-based reservoirs function properly.

D. COMPARISON OF ESNs & LSMs
ESNs and LSMs are two similar RNNs with reservoir struc-
tures. The main difference between them is that LSM used
spiking IF neurons, while ESN is based on non-spiking neu-
rons. This makes LSMs more biologically plausible to be
used in investigating biological mechanisms of information
processing in the brain. In terms of model implementation,
although both models show noticeable advantages in reduc-
ing computation cost and training time, LSM, with its bio-
logically inspired characteristics and spiking implementation,
becomes more suitable for new types of hardware such as
neuromorphic chips [47]. Therefore, LSM is reported with
several hardware designs and applications.

ESNs show better flexibility in model modifications,
as many variants of ESNs were proposed to enhance the
network performances (see Section III). These modifications
are mainly to overcome the disadvantages of conventional
ESNs. The first drawback is that the fixed connection weights
could limit the performance of ESNs, since they are ran-
domly initialized without the process of tuning or optimizing.
Moreover, it is shown that the improvement of ESNs per-
formance will reach a saturation as the size of the reservoir
increases to a certain amount. This means that only increasing
reservoir size may not result in a better performance. As a
result, researchers have been focusing on constructing multi-
reservoir ESNs, such as multi-layered ESNs [48], [49], [50]
and parallel reservoir computing [51]. Meanwhile, several
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optimization approaches have been proposed to fine-tune the
networks weights and hyperparameters by using either evolu-
tionary algorithms [50], [52] or gradient based optimization
techniques [37]. Detailed discussions of recent ESN and LSM
models are covered in section IV.

III. TRAINING A RC MODEL
In this section, we will delve into an array of methodolo-
gies for training and optimizing RC models (see Table 1).
Beyond simply training the readout, we will explore diverse
techniques that aspire to enhance the construction of reser-
voirs from various aspects, thereby enabling more effective
and efficient models. These include but does not limit to
(1) classical readout training such as ridge regression [34];
(2) online learning such as least mean square method and
FORCE learning [35]; (3) pre-training such as particle swarm
optimization [52]; (4) online gradient based learning with
back-propagation [75], [76]; (5) evolutionary learning such
as Evolino [66]; and (6) biologically plausible learning tech-
niques such as Hebbian learning [77].

A. CLASSICAL READOUT TRAINING
The original works of ESN and LSM state that the readout of
a reservoir with rich dynamics can be trained by using any
statistical classification or regression methods [16]. Using
ESNs for example, it is recommended to apply simple linear
regression technique to single-layer readout. Again, we use
the notations by [33] for illustration. First, notice that Eq. 3
can be rewritten and extended in a matrix form as:

Y = WoutX ≈ Ytarget , (6)

whereY ∈ RNy×T stands for the collection of all y(n). Similar
notation goes toX andYtarget . It is clear thatWout needs to be
optimized to minimize the difference between Y and Ytarget .
The most common technique is the ridge regression [34],
whereWout is obtained by:

Wout
= YtargetXT (XXT

+ βI)
−1

, (7)

where I is the identity matrix with β being the regularization
factor. Detailed implementation can be found in a practical
guide of ESN training in [33]. Once X is obtained in an
off-line way, one can tune β to reach the best performance
without any model retraining. Ridge regression often shows
sufficiency in many concrete tasks, when the reservoir pro-
vides rich non-linear dynamics. Moreover, it is easy and
fast to train, which attracts many researchers coming from
non-machine learning backgrounds.

B. ONLINE LEARNING TECHNIQUES
Reference [33] provides many empirical solutions on how
to produce a reservoir with good initialization. However,
problems still exist, as one cannot guarantee that the reservoir
is always well-initialized. Another effective way to solve this
problem is online adaptation. In this manner, a feedback loop
between the reservoir and readout is usually introduced.

FIGURE 4. FORCE learning overview. The red color represents that the
weight connections can be modified during training.

1) LEAST MEAN SQUARES (LMS) AND RECURSIVE LEAST
SQUARES (RLS) METHODS
Originated in the area of adaptive signal processing, LMS and
RLS are the two standard online learning methods for reser-
voir computing models [78]. The mathematical description
of LMS and RLS are presented in [53] and [55]. To illus-
trate, LMS is a gradient-based error minimization method in
which an error is exponentially discounted propagating back
through time, yet this method might be unstable because of
the large eigenvalue spreads of the cross-correlation matrix
(i.e., XXT ). Moreover, it is reported that LMS struggles
to capture the history-dependent temporal data [79]. Com-
pared to LMS, RLS is more popular due to its robust-
ness/insensitivity to the effect of eigenvalue spreads men-
tioned above, as well as its faster second-order convergence
speed. Therefore, RLS method for RC has been widely stud-
ied in [59], [60], and [55]. Although RLS has advantages
over LMS, it is more computationally costly withO(N 2) time
complexity, while LMS only requires O(N ) in most situa-
tions [41], where N is the number of variables. Having said
that, RLS is employed by FORCE learning, which creates a
new branch of reservoir computing with regard to cognitive
science and brain mechanisms.

2) FORCE LEARNING
It has been shown that RNNs often experience spontaneous
chaotic activity, and algorithms such as BPTT [30] are usually
not able to converge if the network exhibits chaotic activity.
ESN models address the chaotic activity by ensuring echo
state property (ESP), so that the models do not operate in a
chaotic manner. Instead of avoiding spontaneous activity like
ESNs, Fisrt-Order Reduced and Controlled Error (FORCE)
learning, which is perhaps the most popular online learn-
ing method of RC, reveals that the results are better when
the reservoirs exhibit chaotic behavior before training [35].
By modifying the synaptic strengths of the reservoir (either
internal or external), models trained with FORCE learning
show the effectiveness of suppressing autonomous chaotic
activity while turning it into a wide variety of desired output
patterns. Since the original mathematics are quite complex,
here we aim to provide a simplified description of the online

81038 VOLUME 11, 2023



H. Zhang, D. V. Vargas: Survey on Reservoir Computing and Its Interdisciplinary Applications

TABLE 1. Various training techniques of RC.

readout training for completeness [80]. Please refer to [35]
for details.

Consider the reservoir state as r(t) (i.e., x(n) in ESNs), the
network output z(t) (i.e., y(n) in ESNs) is defined as:

z(t) = wT r(t), (8)

where w is the weights connecting reservoir and readout.
Note that here the output dimension is restricted to one, while
it can be easily generalized to multidimensional. Training of
w happens at every time interval 1t . Before updating at time
t , the error is denoted by:

e−(t) = wT (t − 1t)r(t) − f (t), (9)

where f (t) is the predefined target function (i.e., ytarget (n) in
ESNs). The FORCE algorithm uses a modified RLS method
to update the weights by:

w(t) = w(t − 1t) − e−(t)P(t)r(t), (10)

where P(t) is a square matrix that is updated at the same time
as the weights according to

P(t) = P(t − 1t) −
P(t − 1t)r(t)rT (t)P(t − 1t)

1 + rT (t)P(t − 1t)r(t)
, (11)

and is initialized as:

P(0) =
I
α

, (12)

where I is the identity matrix with α as constant. After
training, the error becomes

e+(t) = e−(t)(1 − rT (t)P(t)r(t)). (13)

Finally, the training will end when it reaches

e+(t)
e−(t)

≈ 1. (14)

The above modified RLS method is applied to suppress
the output errors and frequently adapt the weight matrices

FIGURE 5. Generation and stability of complex spatio-temporal motor
patterns by FORCE learning (modified from [58]). Left panel shows the ten
trials to re-generate the target signal (in gray line) after training. Right
panel shows the same trials under the addition of a perturbation.

in the reservoir or readout (see Fig. 4). This makes FORCE
learning disparate from other traditional iterative training
schemes—the errors in FORCE learning are always small
during training, even at the beginning, suggesting that the
aim is not to reduce errors but rather to keep the errors
small. When training is done, the network will autonomously
generate the desired output. As the author claimed, FORCE
learning helps to construct machine learning based RNNs
that ‘‘generate complex and controllable patterns of activity
either in the absence of or in response to input’’. It provides
an interesting link between computational and biological
neuroscience. In short, FORCE learning can be seen as a
useful tool for optimizing RC, and simultaneously, it presents
a potential model that could help understand biological neural
circuits [35].

3) FORCE LEARNING VARIATIONS AND IMPLEMENTATIONS
One of the disadvantages of FORCE learning is that the
trained network is too complex to analyze the neuron activ-
ities. Also, for complex real-world problems such as speech
recognition, networks trained by FORCE require many more
units to match the performance of gradient based networks,
as reported in [56].
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Therefore, some studies have been published aiming at
improving FORCE learning, ranging from neuroscience (e.g.,
spiking networks) to physical and hardware implementations.
An ‘‘extended’’ FORCE [57], for example, was proposed for
more general internal learning by using the desired output
to generate targets for every internal neuron in the network.
This so-called ‘‘target-generating’’ network is then improved
by [58], in which the reservoir network can preserve time
information and generate complex and high-dimensional tra-
jectories even under high levels of noise (see Fig. 5). To
this end, the FORCE variations are still infeasible to be
implemented as a spiking network. Later, [59] proposed a
full-FORCE algorithm. Compared with FORCE learning,
it requires fewer neurons, achieves significantly better per-
formance in noisy environments, and can also be applied
to SNNs (see implementation in [60]). For hands-on imple-
mentation, the full-FORCE has been realized using a Python
spiking network framework called Nengo [81]. Other recent
improvements of FORCE learning include (1) Two-Step
FORCE that converges faster than the original work [61];
(2) Transfer-FORCE learning which takes the advantages
of both LMS and RLS methods for better learning perfor-
mance [55]; (3) R-FORCE that aims to model multidimen-
sional sequences [62]. Very recently, [82] built an object-
oriented, open-source Python package that implements a
TensorFlow / Keras API for FORCE.

C. ONLINE GRADIENT BASED TRAINING
Reservoir based on non-spiking artificial neurons (e.g.,
ESNs) can be trained by using gradient descent (GD)
approaches. The LMS method mentioned earlier is one of
the candidates which is first proposed in [54], yet using such
approach shows poor stability even when trying to stabilize
the network by adding noise. Reference [37] proposed a more
stable version of GD-based reservoir to optimize four hyper-
parameters: the input scaling, spectral radius, leaking rate,
and regularization parameter. Besides, BackPropagation-
DeCorrelation (BPDC) algorithm is another powerful method
for online training of single-layer readouts with feedback
connected back to reservoirs. This algorithm is robust to
the random initialization of the reservoir weights, and
it is also capable of tracking quickly changing signals.
Detailed discussions of BPDC are presented in a survey [15].
Meanwhile, the classical Back-propagation Through Time
(BPTT) approach for RNN training can also be applied to
RC model. It is worth noting that a network architecture
called Adaptive Continuous Time Recurrent Neural Network
(ACTRNN) [63] shows some similarity to GD-based RC.
Please refer to Section VI for details.

D. EVOLUTIONARY LEARNING TECHNIQUES
1) EVOLUTIONARY ALGORITHM
One of the disadvantages of the traditional RC models is
that the performance is highly reliant on the random ini-
tialization of the weights and hyperparameters. While the

optimal hyperparameters can be found by grid-search tech-
niques, using such techniques to find the optimal weights’
initialization is nearly infeasible [33], given a concrete task.
Therefore, instead of applying online learning rules, another
possible direction, taking inspiration from above, is to train
(or pre-train) the reservoirs using evolutionary algorithms
(EA). When EAs are applied to evolve any type of neural
networks (including reservoirs) they usually receive the name
of neuroevolution.

Various types of EA can be used to evolve a reservoir,
including (1) genetic algorithms (GA) [64]; (2) particle
swarm optimization (PSO) [52], [65] and its variants [50];
and (3) artificial bee colony [83]. For example, a GA was
applied to a double-reservoir ESN for parameter optimiza-
tion, yet without optimizing weights of input and the reser-
voirs [36]. Inspired by LSTM [9], another EA for RC was
proposed called Evolino [66]. Evolino constructs units that
are capable of preserving memory for long periods of time,
in which the weights of the reservoir are trained using evolu-
tionary methods. A performance comparison of several EAs
for RC are presented in [84].
Particle swarm optimization (PSO), which is an effi-

cient and widely used technique for finding optimal regions
on complex spaces, has also applied to reservoir weight
optimization. The first two attempts of using PSO tech-
nique include using a binary PSO to find the optimal
reservoir-readout connections [38], as well as a supervised
PSO algorithm by [65] for better initializing the input weights
of RC. However, only a subset of the weights was tuned in
the latter model, due to the high computational cost. Ref-
erence [52] further developed the PSO algorithm for RC,
where a portion of fixed weights in an ESN is pre-trained via
PSO. The results show improvements on model generation
as well as a faster convergence time, yet the network archi-
tecture is rather simple, and some hyperparameters should
be selected empirically and carefully. The latest version of
PSO based RC is the competitive swarm optimizer (CSO)
for fault diagnosis problems [50], which is a hybrid evolu-
tionary algorithm combining both a variant of PSO and local
search (LS).

E. BIOLOGICALLY PLAUSIBLE LEARNING TECHNIQUES
1) HEBBIAN LEARNING AND SPIKE TIMING DEPENDENT
PLASTICITY
Reservoir computing takes inspiration partially from bio-
logical systems. LSM-based reservoirs, for example, are
implemented using spiking neurons. This indicates that some
biologically plausible adaptation methods can be applied for
reservoir training. Inspired by synaptic plasticity in human
brains, the first attempts would be to use Hebbian and
anti-Hebbian learning to try to decrease the eigenvalue spread
in ESNs but failed [67]. Later, it is reported in [41] that
the reservoir trained by Hebbian learning ‘‘makes neurons
prefer inputs that are easy to predict and weaken connections
from those that carry more information’’. In terms of LSM,
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the spike-time-dependent plasticity (STDP), which is based
on Hebbian learning and is often integrated with SNNs, is
reported to improve the separation property (SP) in some
real-world speech data [68]. STDP was further developed to
reduce memory storage load to make RC more hardware-
friendly [69], [70].

2) INTRINSIC PLASTICITY
Another biologically plausible way of adaptation is based
on Intrinsic Plasticity (IP), which is an unsupervised learn-
ing rule used for adapting the intrinsic excitability of the
reservoir neurons. Here, intrinsic excitability refers to a phe-
nomenon called long-term potentiation, in which brief and
high-frequent stimulation tends to produce an increased abil-
ity to generate spikes [85]. Early research of the integration
of RC and IP mainly focuses on reservoir pre-training and
global optimizations [71], [72], [73]. In 2019, an IP with a
local search scheme was proposed to improve the flexibility
of the IP rule by allowing hyperparameters such as learning
rate to be different [86]. In 2022, [87] applied IP learning
to sucessfully tune the parameter in MEMS-based RC. As
a side note, experiments on intrinsic plasticity have shown
that the output distributions of real biological neurons may
have different forms in different brain regions among various
species [74].

IV. RECENT APPROACHES IN RC
A. OVERVIEW
RC has witnessed a significant development in recent years.
On one hand, traditional RC models such as ESN and LSM
have been improved by many new proposed models. Some
of these models are built on top of the original ones to
achieve better performances, while several new architec-
tures of RC have been proposed to solve problems with
increasing difficulties. On the other hand, recent studies has
demonstrated that the idea of reservoir (i.e., a dynamical
system that can generate high-dimensional and non-linear
responses) can be implemented by using various materials,
such as electronic devices, physical systems, and biological
realizations.

In this section, we aim to cover recent approaches in RC
from several perspectives up until 2023, including ESN-based
RC, LSM-based RC, dynamical systems, and physical RC.
These approaches are highly interdisciplinary and are usu-
ally tested in several benchmark tasks. To introduce some,
benchmark tasks for pattern classification includes spoken
digit recognition [88], waveform [89] and handwritten digit
image recognition [90]. Besides, the non-linear Autoregres-
sive Moving Average (NARMA) time series [53] was widely
used in time series forecasting, while a channel equalization
benchmark [54] was introduced to evaluate the RC perfor-
mance on adaptive filtering and control. In addition, temporal
XOR task [43] andmemory capacity task [42] were also com-
monly used in studies that focus on system approximation and
short-term memory.

B. RECENT TRENDS OF ESN-BASED RC
ESNs represent one of the foundational RC models. The
simplicity of implementation makes them an approachable
entry point of RC. Therefore, improving and extending ESNs
is not only a key pursuit within the RC community, but its
impacts extend far beyond, proving particularly influential
for researchers outside the field, and thus allowing more
interdisciplinary research. In the following, we review recent
trends of ESN-based RC models.

1) MULTIPLE RESERVOIRS
a: DEEP ESN
Apart from the performance saturation problems, there is
another limitation in the conventional ESN, i.e., the single
large-scale reservoir is poor in simultaneously dealing with
different timescales [91]. In this concern, some studies started
to investigate multiple timescale dynamics of reservoir struc-
ture, as it has been found that stacking recurrent networks
with different topologies can generate multiple timescales at
different layers [49].

In 2016, [49] proposed a deep reservoir computing model
to achieve hierarchical timescale representation. This model,
called deep Echo State Network (DeepESN), stacks multiple
reservoirs one on top of the other, as shown in Fig. 6. Math-
ematically, consider N the number of reservoir layers. The
update equations, extended from Eq. 1-2, is given by:

x̃(i)(n) = tanh(W(i)
fwdx

(i−1)(n) + W(i)
recx

(i)(n− 1)), (15)

x(i)(n) = (1 − α(i))x(i)(n− 1) + α(i)x̃(i)(n), (16)

where x̃(i)(n), x(i)(n) and α(i) are the update, the reservoir state
vector, and the leaking rate at layer i, respectively. W(i)

fwd is

the weight matrix connecting layers i-1 and i, andW(i)
rec is the

weight matrix of the reservoir at layer i, i = 1 . . .N . The
number of input layer is denoted by i = 0 and x(0)(n) = u(n).
At each time step n, the composition of the states in all the
reservoir layers x(n) is given by:

x(n) = ⟨x(1)(n), . . . , x(N )(n)⟩. (17)

Experiments show that the deep RC structure can achieve
(1) multiple timescale representation, where the timescales
are ordered along the network’s hierarchy; (2) multiple fre-
quency representation, where progressively higher layers
focus on progressively lower frequencies. Additionally, when
there is a perturbation at the input, the effects of this per-
turbation last longer for higher layers in the stack, and this
differentiation is drastically attenuated when input is pro-
vided to every layer. Therefore, having deeper layers while
increasing distance from the input is a key architectural factor
for obtaining a time-scales separation.

DeepESN shows potential for designing more efficient RC
learning algorithms used for sequential and temporal data
processing. From 2022, A branch of deep ESN is recently
studied by the research team of Tanaka et al. modified
the deep network architectures were proposed, combining
with other techniques such as sequence resampling [92]
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FIGURE 6. Architecture of DeepESN. For the readout organization for DeepESN, at each time step the reservoir states of all layers
are used as input to the output layer. Figure modified from [49].

in 2022 and Hodrick–Prescott filter [93] in 2023. These
model are claimed to have high prediction performance
in time-series prediction tasks with relatively low training
cost.

b: DEEP FUZZY ESN
In 2019, [48] proposed a novel deep ESN model with fuzzy
tuning called Deep Fuzzy ESN (DFESN). Here, two reser-
voirs are stacked, where the first reservoir is applied for
feature extraction and dimensional reduction, and the second
one is used for feature reinforcement based on fuzzy cluster-
ing. In other words, the output of the previous reservoir was
extracted as features for the next reservoir input, followed by
a feature reinforcing process performed by fuzzy clustering
for classification enhancement. In DFESN, back propaga-
tion is no longer necessary, since the feature reinforcement
process can be considered as a layer-wise fuzzy tuning that
replaces the back propagation algorithm with lower compu-
tational costs. As claimed by the author, input samples are
clustered more easily, thus improving the final classification
performance.

2) ESN WITH EVOLUTIONARY ALGORITHMS
a: MULTI-LAYERED ECHO STATE NETWORK AUTOENCODER
Autoencoder (AE) is a type of common feed-forward network
for dimensionality reduction and feature detection, in which
non-linear transformations are performed in each hidden
layer to regenerate a new effective data representation from
the originals. This technique was introduced to RC area
by [94] as the first recurrent and non-gradient descent-based
AE in the literature. In [94] an autoencoder was implemented
by using multilayered ESN, with a bi-level evolutionary algo-
rithms for optimizing the network architecture and weights.
Particularly, PSO was applied for the bi-level optimiza-
tion, where the first level is the architecture determination
and the second one is the weights optimization. Classifi-
cation results on various benchmarks showed that the per-
formance of the evolved model is improved compared with
the conventional ESN as well as other CNN or SVM based
models.

b: COMPETITIVE SWARM OPTIMIZER
Pre-training an ESN using PSO introduces some extra hyper-
parameters, which are usually determined empirically. Fur-
thermore, when dealing with high-dimensional optimization
tasks, PSO is likely to experience stagnation or premature
convergence [50]. To address this, [50] designed a deep ESN
model with a competitive swarm optimizer (CSO) and used it
for fault diagnosis—a precise classification task. CSO avoids
the problem of optimizing too many parameters at once in
PSO with its powerful particle update rule: the particles are
updated by evaluating a pre-defined fitness function, and the
winner particle will go straight into the next iteration. For
the implementation, CSO is combined with a local search
technique to further optimize the deep ESN structure. The
work shows that deep reservoir networks based on evolution-
ary algorithms are suitable not only for time series prediction
but can also be used to deal with classification problems with
adequate results.

3) OTHER TYPES OF ESNs
a: NON-LINEAR FUNCTIONS READOUT
As mentioned earlier, single reservoir ESN may not be able
to create rich enough non-linear dynamics. Reference [91]
proposed a new method called Non-linear ESN based on
non-linear functions and successfully decreased the internal
states of the network while increasing dynamic complexity,
thus reducing the computational load. Specifically, recall that
x(n) is the internal reservoir state vector (x for short), while
in this method, it is replaced by a non-linear function:

xNESN = f(x) = a0 + a1x + a2x2 + · · · + anxn. (18)

where an being the constant. With this modification, non-
linear complexity and the learning capability are increased,
which results in a higher accuracy in time series forecasting.
Moreover, as this method remains simple structure design,
it does not require extensive training, parameter tuning or
complex optimization process.

b: SMALL-WORLD TOPOLOGY
Small-world (SW) network was first proposed by [95]. For a
regular topological network, each node is usually connected
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to its neighboring nodes. For the connection to other ran-
domly chosen nodes (not adjacent), we denote the connection
probability as p, where p = 0 remain regular topology, p =

1 remain random topology and p ≈ 0.1 as the SW topology
(see Fig. 18).

To further investigate the echo state property and learning
performance of ESNs, [96] presented an SWbased ESN (SW-
ESN). In this study, the input and output nodes are segregated,
and the reservoir remains as an SW topology; that is, neurons
connected to the input are different from neurons connected
to the output. Experiments showed that the SW topology
enables the input to flow to the output nodes, and the cluster
organizations of the topology guarantee a larger range of echo
state property, thus improving the robustness and learning
performance of the ESN.

C. RECENT TRENDS OF LSM-BASED RC
In this section, recent trends of LSM-based RC models will
be reviewed.

1) SPIKE TIMING DEPENDENT PLASTICITY (STDP)
STDP is a local unsupervised self-organizing learning rule
based on Hebbian learning [69]. The main idea of STDP
is that if the firing neuron A tends to induce/inhibit spikes
from another neuron B, the synaptic connection w from A to
B is likely to be potentiated/depressed [47]. In other words,
the synaptic connection w from A to B is potentiated if a
causal order (i.e., the presynaptic neuron fires before the
postsynaptic neuron) is observed, or depressed otherwise.
As a spiking neural network, LSM was shown able to be
trained by this adopted learning rule in an online learning
manner, and therefore significantly reducing memory storage
load and computational cost, as well asmaking LSMbecomes
more hardware-friendly for physical implementations [69],
[70]. Specially, a recent hands-on implementation of LSM
based on [97] is realized using NEST simulator [98].

2) EVOLUTIONARY ALGORITHMS
Similarly to the small world topology, the percentage connec-
tivity indicates the connection probability between neurons
within the liquid. Finding a proper percentage of connectivity
is then an important factor for improving the accuracy of
LSM. Too high/low connectivity will harm the performance,
which also suggests that there is an optimal connectivity
for a given task. Particularly, [99] proposed an evolutionary
algorithm to optimize the number of neurons and percent-
age connectivity on a single liquid. Meanwhile, [100] used
a covariance matrix adaptation evolution strategy to opti-
mize three parameters, i.e., percentage connectivity, weight
distribution and membrane time constant in one liquid. How-
ever, [101] pointed out that the above algorithms ‘‘only
perform parameter optimization in a single liquid and do not
optimize the architectures of LSM,’’ and proposed a Neural
Architecture Search (NAS) based framework to optimize both
architecture and parameters of LSM model. Furthermore,

the presented framework introduced a three-steps search for
LSM, where the first step is architecture optimization, the
second step is the search for the number of neurons and the
final step is parameters optimization. Experimental results
show that the proposed model achieves comparable accuracy
on classification tasks of the three datasets (i.e., MNIST,
Noisy MNIST and FSDD).

D. DYNAMICAL SYSTEMS
The key essence of RC lies in its approach to use large,
fixed random networks, i.e., the reservoirs, exhibiting a
rich set of dynamical behaviors. These reservoirs provide
high-dimensionality and memory in which input data can be
transformed and stored, making it easier to model complex
temporal patterns and performmachine learning tasks. On the
other hand, dynamical systems, characterized by their tem-
poral evolution and behavior, offer crucial insights into the
working of these reservoirs, shaping how we understand and
optimize them. In the following subsections, we show how
RC provides a practical framework for studying dynamical
systems, while the theories underlying dynamical systems
give a solid mathematical foundation to the operation of RC.

1) SINGLE-NODE TIME-DELAYED FEEDBACK RESERVOIR
a: DEFINITION
Classical RC models process a low-dimensional temporal
input through a high-dimensional reservoir state space. This
high-dimensional state space is achieved by creating many
randomly connected artificial (ESN) or spiking (LSM) neu-
rons as a reservoir, so as to receive input data coupled into
the reservoir with weight (synaptic) connections. It turns out
that RC can be implemented by using only a single hardware
node. In 2011, the concept of using a single dynamical node
as a reservoir to generate a high-dimensional space, was
introduced in [102]. In contrast to network-based reservoirs
consisting of many neurons such as ESN and LSM, single
nodeRC shows great simplicity especially for physical imple-
mentation, Theoretically, the proposed delay system refers
to non-linear delayed feedback system, which is a type of
dynamical system described by delay differential equations
given by [105]:

dx(t)
dx

= F(t, x(t), x(t − τ )), (19)

where t and x are continuous time and state variables, respec-
tively. F is the function of this system with τ > 0 the delay
factor. This system is usually employed by using electronic
circuits with a feedback loop (see Fig. 7A). The workflow is
as follows:

• A low-dimensional input signal (e.g., one-dimensional
temporal signal) is first processed using a time-
multiplexing masking function, and modulates the state
of the node.

• The single node samples the pre-processed input states
and holds them for a delay period of τ .
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FIGURE 7. RC with dynamical systems. (A) Single-node time-delayed feedback reservoir [102]. (B) Cellular automaton [103]. (C) DNA oscillator [104].

• Meanwhile, N virtual nodes are set that equally divide τ

with the time interval of θ = τ/N , forming a delay line.
• When the signal reaches the end of the delay line, it is fed
back into the node, influencing the node’s future states.

• The current state of the node and the states stored in the
delay line are then fed to the readout layer with trainable
weighted connections.

b: EXTENSIONS
The single-node delayed feedback RC was experimentally
investigated on spoken digit recognition task and NARMA
time series prediction task [42], [88]. Some variations of
delayed feedback structure were proposed, such as (1) Differ-
ent ensembles of delay-based RC with several delayed neu-
rons by [106]. and (2) two circular connected time-delayed
based reservoirs with a longer delay line by [107].

2) CELLULAR AUTOMATON
Another type of dynamical system that can be used as an
RC is the cellular automaton (CA). CA is a collection of
a cell-grid of specified shape that evolves (interacts with
its neighbors and changes its state) through a number of
discrete time steps [108]. CA’s new state is determined by a
pre-defined set of update rules and neighboring cells, result-
ing in a rich dynamic (see Fig. 7B).
The concept of CA system was further extended to RC.

A series of work on building CA-based RC was made
by [109] and [103], where an evolution rule was introduced to
create a space-time volume in the automaton state space (i.e.,
the reservoir). The proposed CA system was reported to be
suitable for combining other types of discrete dynamical sys-
tems such as Boolean logic and symbolic processing [110].
Recent studies on CA-based RC also include modifications
and extensions of network architecture [111], [112]; as well
as improvements of evolution rules in CA [113]. More
recently, [114] explored the advantages of critical spacetime
patterns generated by elementary cellular automata (ECAs)
in reservoir computing, specifically focusing on the distrac-
tor’s length in time series data and proposing asynchronously
tuned ECAs (AT-ECAs) to generate universally critical space-
time patterns.

3) COUPLED OSCILLATORS
a: DEFINITION
RC models have been successfully applied in research areas
such as machinery, chemistry, biology and physical systems
(see section V). Among these implementations, many RCs

are built using coupled oscillators. A general representation
of the dynamics of coupled oscillators is given by an ordinary
differential equation:

dxi(t)
dt

= F(xi(t)) + G(x1(t), . . . , xN (t)), (20)

where i = 1, . . . ,N is the index of a total of N coupled
oscillators, xi(t) is the state of ith the oscillator at time t , F and
G are an isolated function and a coupling function. The rich
dynamics are provided by each oscillator and the interactions
between them [23]. In the following, we aim to review studies
that utilize coupled oscillators as a building block of RC.
Additionally, we will discuss oscillation mechanism of brain
in Section VI.

b: MECHANICAL OSCILLATORS
The first category of RCs using coupled oscillators is based
on mechanical oscillators. Reference [115] built a network
with anharmonic (i.e., non-linear) oscillators, where the com-
ponents include masses coupled linear or non-linear springs,
making the system power-efficient to solve a bit-stream com-
putation task and a spoken words classification task.

c: DNA OSCILLATORS
In the field of molecular computing, a deoxyribonucleic
oscillator (DNA) reservoir was first proposed in [104]. This
RC consists of coupled deoxyribozyme based oscillators.
Specifically, a microfluidic reaction chamber was used to
construct a reservoir, since different DNA species can interact
(see Fig. 7C). Here, the microfluidic reaction chamber is
a specific kind of chamber used to carry out chemical or
biological reactions under well-controlled conditions. Rich
transient dynamics were then generated in the reservoir,
where the reservoir state consists of the time-varying con-
centration of various species inside the chamber. A signal-
tracking task was then performed by using a reservoir with
three DNA species that exhibits oscillatory behavior. Recent
developments of DNA oscillators include a random chem-
ical RC model [116], where the random chemical circuits
(i.e., DNA strand displacement) provide complex non-linear
dynamics, making them suitable for RC implementation.
A novel RC using DNA oscillators was reported in [117]
which solves the problem of the lack of readout layer in
the previous work [104], and was then demonstrated for the
handwritten digit recognition and a second-order non-linear
prediction.
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d: CHEMICAL REACTION NETWORKS (CRNs)
Related to the DNA oscillators, the chemical reaction net-
works also show the capabilities to RC implementations. One
of the initial studies on CRN-based RC model was presented
in a presentation [118], from which the reservoir dynamic
is given by a set of ordinary differential equations (ODEs),
while the readout layer is to learn the Hamming distance
between input bit-streams. In 2022, the author further pro-
posed a chemical RC for single stranded DNA (ssDNA)
analysis [119]. Additionally, [120] used amodular framework
to implement a RC model. The main advantage of this work,
compared with the previous DNA oscillators [104], is that
molecular computing allows changing the size of CRNs on-
the-fly. Another new chemical RC architecture was proposed
by [121], where the reservoir was implemented through
electrochemical reactions. Also, it is reported that the Polyox-
ometalate molecule (POM) in this chemical RC increases the
diversity of the response current and thus improves their abil-
ities to predict periodic signals. POM-based RC was further
integrated with the so-called single-walled carbon nanotubes
as a random dense network [122]. Adequate results were
obtained in tasks including waveform reconstruction, non-
linear autoregressive modelling andmemory capacity testing.

e: OTHER RCs WITH OSCILLATORS
It is reported that oscillatory behavior can be restricted to
the phase domain [123]. This makes it possible to apply
phase oscillators that exhibit rich dynamics to RC [124].
A RC using two coupled relaxation oscillators built on
VO2 switches was reported [125], where the oscillators
show high order synchronization that allows simulating the
XOR operation. Besides, RC can also be implemented by
using spin-torque nano-oscillators in neuromorphic comput-
ing [126]. See Section IV-E for detail of spintronic RC.

E. PHYSICAL RC
Recall that the key feature of RC models is to transform
sequential/temporal inputs into a high-dimensional non-
linear dynamical space (i.e., the reservoir). If the reservoir
provides rich enough dynamics, the desired output can be
read out by using simple learning methods such as linear
regression (see section III for details). Therefore, in principle,
any kind of ‘‘non-linear, high-dimensional dynamical sys-
tems which satisfies some conditions’’, has the potential to
be a reservoir.

In particular, RC has become popular in a wide range of
research fields focusing on hardware design; that is, recent
trend of RC implementation have shifted to many domains of
physical reservoir computing (PRC) such as optical systems,
neuromorphic devices, chemical reactions, quantum comput-
ing, to name a few.

Several reviews have tried to organize this highly inter-
disciplinary topic of PRC. A comprehensive overview of
recent PRC implementations was reported in [23], while
[161] focuses on the recent advances in photonic RC. A book

series with detailed and special issues on designing PRC was
published [45]. In the following sections, we briefly outline
the recently proposed PRCmodels for completeness. Readers
may refer to the articles above for a more systematic and
theoretical understanding of PRC.

1) ELECTRONIC RC
a: ANALOG CIRCUITS
Various electronic circuits are potential components for
hardware RC. Previously, we discuss the single-node time-
delayed feedback RC that was first proposed by [102] and
[127]. In fact, this type of RC can be formed by electronic
circuits with other digital hardware elements [162], [163].
Additionally, a single-node RC implemented by using spiking
circuits was also reported [130], [131]. The advantages of
analog circuit based RC include (1) less hardware require-
ments and (2) power efficiency in spiking implementations.
Therefore, RCs based on analog circuits were successfully
applied to tasks including (1) spoken digit recognition and
memory capacity estimation [127]; (2) time series prediction
and ECG signal processing [128]; and (3) non-temporal non-
linear tasks [129].

b: FIELD-PROGRAMMABLE GATE ARRAY (FPGA)
FPGAboard, as a hardware friendly element, has been proven
to be suitable for RC implementations. An early attempt
at the combination of RC and FPGA board was reported
by [164]. In 2014, an FPGA board with stochastic logic was
used to implement RC for non-linear time series prediction
task [165]. The offline learning in the work above was further
modified to an online learning scheme [132], where the units
in the reservoir exhibit sigmoid activation and learn with a
gradient descent algorithm. In terms of spiking implementa-
tion, the conventional LSM models were successfully built
on FPGAs in an early research [133] (see Fig. 8A), as well
as some models featured with parallel processing [134] and
STDP learning rule [166]. In fact, FPGA-based RC have
shown (1) better re-configurability; (2) much faster process-
ing speed; (3) less energy costs compared to general CPUs;
and (4) more biologically plausible (SNN-based LSM). Sev-
eral benchmark tests were taken, indicating FPGAs based RC
can be applied to (1) channel equalization problems [132];
(2) image and isolated digit recognition [133], [134]; and (3)
short input and waveform patterns classification [135], [136].

c: MEMRISTIVE RC
A memristive device, or memristor, is a type of passive
circuit element that maintains a relationship between the
time integrals of current and voltage across a device. Some
studies of RC focus on using memristive elements. Here,
the property of memristive elements is different from other
circuit ones, since they vary the resistance depending on the
current flow at different times. There are two main types
of memristive components suitable for RC. The first type is
based on neuromemristive circuits. Specifically, memristors
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TABLE 2. Types of physical implementations of RC: components and applications.

are used to model the synaptic plasticity between neurons.
Reference [137] successfully built an ESN based on mem-
ristor (see Fig. 8B), yet the performance was worse than the
conventional ESN in terms of time-series prediction task.
Other studies include using double crossbar arrays as reser-
voir in ESNs [167] and LSMs [168].

Another branch of studies has shown that memristive
devices without neurons can also generate rich non-linear
dynamics for RC implementations. The first attempt was
made by [138] for a wave pattern classification task, where
a memritstive topology was applied as a reservoir (Fig. 8C).

In 2017, another RC model using dynamic memristors for
hard digits recognition was reported [139]. Other memristive
networks were also explored to have potential of construct-
ing RC, such as (1) random memristor networks [169]; (2)
memristor with volatility [170]; (3) memcapacitors [171]
and its hierarchy extension [172]; and (4) atomic switch
networks [173].

2) PHOTONIC RC
Optical computing is another paradigm suitable for
RC implementations, where the complex non-linear and
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FIGURE 8. Electronic RC. (A) Hardware LSM architecture using FPGAs. BRAM refers to block RAM, where W and W ′ are the old and updated synaptic
weights, respectively [134]. (B) RC implemented by memristors with local connections [137]. (C) Memristor-based reservoir computing using GAs for
training [138].

high-dimensional dynamics can be achieved in the intensity
and phase of the optical field. A wide range of studies aim to
uncover this specific area of RC. In principle, there are two
main directions of photonic RC implementations: (1) spa-
tially distributed optical nodes, and (2) time-delayed based
photonic RC. For more detailed investigation and discussion,
please refer to two comprehensive reviews in [161] and [23].

a: SPATIALLY DISTRIBUTED OPTICAL NODES
It has been realized that the fixed and randomly connected
topologies in the conventional RC models (e.g., ESN and
LSM) can be implemented by spatially extended photonic
networks using spatially distributed optical nodes. Perhaps
the first optical RC was proposed and subsequently devel-
oped in [174] and [140]. Here, an on-chip network of
semiconductor optical amplifiers (SOAs) was constructed to
efficiently compute the tanh function in the reservoir. Later,
a digital masking approach was proposed to overcome the
short time delay and high operation rate in the previous
photonic RC [175]. From 2014 on, several techniques based
on optical nodes were reported, including (1) photonic crystal
platform [143], [144]; and (2) nodes with free-space optics
principles [176]. In fact, optical nodes RC are not only oper-
ating with lower power consumption, but more importantly,
they are extremely fast in computation. In terms of benchmark
tasks and applications, RC with optical nodes were simulated
and applied to (1) optical packet header identificationand
spoken digit classification [140], [141]; (2) logical function
prediction [142]; (3) waveform prediction task [143]; and (4)
memory capacity task [144].

b: TIME-DELAYED FEEDBACK RC
In section IV-D1, we review RC with single-node time-
delayed feedback loop. After the first electronic time-delayed
reservoir proposed by [102], optical devices were quickly
used to implement such systems [89], [177]. In specific, these
pioneering systems applied opto-electronic feedback loops,
where the optical parts with long fiber provide non-linearity
and time-delay while the electronic parts play the role of input
processing and output extraction [161]. Later, the electronic
parts of the opto-electronic based RC were replaced by active

optical devices (i.e., SOAs or fiber coupler) [178], forming
an all-optical delayed based RC. Moreover, it is reported that
a significant improvement of high-speed, low-consumption
can be achieved by using passive devices (see Fig. 9D).
An example is a RC with a coherently driven passive cavity
proposed in [145], in which a simple linear fiber cavity was
used as a reservoir to solve tasks such as non-linear channel
equalization and spoken digit recognition with remarkable
performance.

3) SPINTRONIC RC
Spintronics, or spin electronics, is a branch of physics (par-
ticularly condensed matter physics) and nanotechnology that
uses the intrinsic spin of the electron and its associated
magnetic moment, in addition to its fundamental electronic
charge, in solid-state devices. It is reported independently
that several spintronic elements can be candidates for RC
implementations, including but not limited to spin-torque
oscillators, spin waves, magnetic skyrmion; and Dipole-
coupled nano-magnets. Spintronic RC were reviewed in [23],
as well as in [146] specially for spin-torque oscillators.

a: SPIN-TORQUE OSCILLATORS
The first experiments of building a spintronic RC can be
found in [179] and [180], where the spin-torque oscillators
were used to provide non-linearity. Here, the so-called mag-
netic tunnel junction is the key component and is used as
a reservoir. The advantage of spin-torque oscillators is that
the whole neural network can be emulated by the fast mag-
netization dynamics generated by simple components. The
performances of spin oscillators based RC were evaluated
with short-term memory estimation experiments, and were
quantified by macro-magnetic simulation [146], [147].

b: SPIN WAVES RC
Another branch of spintronic RC is using spin waves as a
reservoir. The first RC based on spin waves was proposed
by [181]. A bit sequence input was used and a stripe mag-
netic domain structure is introduced in a continuous magnetic
garnet film where spin waves propagate, thus generating spa-
tially distributed rich dynamics. In 2021, spin waves RC was
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FIGURE 9. RC implemented with electronic and optical elements [161]. (A) Opto-electronic RC system. The optical (electronic) path is depicted in red
(blue) color. (B) Readout layer used in photonic RC by [178]. (C) All-optical RC based on a semiconductor laser subject to delayed optical feedback.
(D) All-optical RC based on passive devices.

numerically evaluated in [148], and was further shown to be
low power consuming [182]. For the applications, spin waves
RC in the above studies shows state-of-the-art performances
in numerical experiments of temporal XOR problems and
memory capacity tasks, once the model is properly tuned.

c: MAGNETIC SKYRMIONS
Magnetic skyrmions are small swirling topological defects
in the magnetization texture, in which the stabilization and
dynamics depend strongly on the topological properties of
skyrmions [183]. In 2018, the first prototype of RC based on
skyrmion fabrics was proposed in [184] and [185]. Here, the
skyrmion fabrics refer to the phases that interpolate between
single skyrmions, skyrmion crystals and magnetic domain
walls. Owing to their random phase structures, they are
claimed to be suitable for RC implementation. Another appli-
cation on RC based on magnetic skyrmion is to implement
physical RC based on a single magnetic skyrmion memristor
(MSM) for image classification task (i.e., handwritten digit
recognition) [149].

d: DIPOLE-COUPLED NANOMAGNETS
A novel magnetic nanodots array was reported for a new
way of RC implementations [150]. The proposed system is
a static magnetic system, in which the dynamics are enriched
by increasing the number of nanomagnets. Specifically, the
reservoir is formed by dipole-coupled nanomagnets (nodes).
Similarly to the conventional RNN-based RC, some nodes
were connected to the input, while all nodes were connected
to the output and were then read out by the magnetic ran-
dom access memory (MRAM) technology. A good aspect of
nanomagnets based RC is that the magnetic interconnections
solve the wiring problem of hardware RNN implementations,
showing a great potential to build a large-scale RC system.
The system performance was evaluated in the NARMA10
task with adequate results.

4) MECHANICAL RC
a: MASS-SPRING-DAMPER SYSTEMS
Several mechanical RC models have been proposed, includ-
ing but not limited to soft robots and sensors networks.
The idea of employing robot’s body and its dynamics as a
computational resource for RC, is originated from the early
works [186], [187]. The so-called mass-spring-damper sys-
tems are used to replace the conventional neurons in the
reservoir (e.g., artificial nodes in ESNs). Specifically, mass-
spring-damper systems serve as good models to simulate
the biological bodies and soft-bodied robots, where both
systems show rich non-linear dynamics that can be used
in physical RC implementations. Inspired by the pioneer-
ing works above, [151] built a mass-spring-damper system
for active shape discrimination. From a more biologically
plausible perspective, [188] created a soft robotic arm based
on an octopus. The work implies that control can partially
be outsourced to the physical body and the interaction with
the environment without being processed by the brain or a
controller. The authors further made a series of work on the
octopus-inspired robotic RC, showing that the implementa-
tions can learn to emulate timers, delays and parity [152],
[153]. For more applications of mechanical RC, please see
Section V.

b: SENSORS
RC had been shown potential for processing sensor data
(see section V). Yet some researchers like [156] argued that
those reservoirs focusing on sensing are often exploited in a
somewhat passive manner, being a separated post-processing
component that receives data from sensors. Therefore, [156]
proposed the State Weaving Environment Echo Tracker
(SWEET) sensing approach, where the RC is considered the
sensing element itself for novel sensing applications such as
ion concentration analysis.
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c: TENSEGRITY ROBOTS AND CENTRAL PATTERN
GENERATOR (CPG)
For completeness, tensegrity based robots and CPGs are
briefly reviewed here. To illustrate, tensegrity refers to a
stable structure that consists of tensile elements connected by
additional compressive elements [189], which is considered
to be as adaptive and resilient as the biological systems.
Another concept, the central pattern generator (CPG), is a
neural network that can produce rhythmic patterned outputs
without relying on rhythmic sensory or central inputs [190],
[191], [192], [193]. On top of the mass-spring systems, [157]
first developed a RC based on a tensegrity based structure
and applied it to locomotion and sensing tasks. Tensegrity
structure can be further used as computational resources for
modelling biological structures like human bodies and cells
due to its stability. For example, CPG signals were gener-
ated by a tensegrity based RC for locomotion [194], [195].
Another CPG-related RC was reported in [196], where the
FORCE learning algorithm was used to train a spiking-based
reservoir that acts as a CPG. Reference [197] further showed
that the biologically plausible tensegrity robots are capable of
adaptation to environmental changes.

5) QUANTUM RC
Quantum reservoir computing (QRC) is an intersection of
quantum computing and RC. Reviews on this topic can be
found in [198], [199], and [200]. The platform of QRC
was first proposed by [201]. The idea is to use analog
quantum dynamics under a time-dependent Hamiltonian,
where the parameters are randomly chosen without tuning.
Here, the Hamiltonian is a mathematical operator used to
describe the total energy of a quantum system. It plays a
central role in the Schrödinger equation, which describes how
a quantum state evolves over time. Several improvements of
QRC have been explored, including (1) boosting computing
power [202]; (2) enhancing memory capacity [203]; and (3)
using Nuclear Magnetic Resonance (NMR) [204]. Taking
the advantage that any quantum-chaotic system can be used
for implementations, QRC are investigated in many other
studies, including (1) using quantum circuits with quantum
gates [158]; (2) single non-linear oscillator [159]; and (3)
dynamical phase transitions [160].

F. OTHER RC MODELS
RC With Non-Linear Vector Autoregression (NVAR): It turns
out that RC can be realized as a general, universal approxi-
mator of dynamical systems, in which the RNN part contains
non-linear activation neurons while the readout layer is a
weighted linear sum of the reservoir states. A novel con-
cept was proposed by [205] and [206], that RC with linear
activation of neurons followed by a non-linear readout is
equivalent to a universal approximator. In this case, such a
RC would become mathematically identical to a non-linear
vector autoregression (NVAR) machine [207]. By identifying
the limitations of random reservoir and taking inspiration

from [207] and [208] proposed a so-called next generation
reservoir computing (NG-RC) model based on NVAR. The
proposed model was built without the requirements of ran-
dom matrices and many meta-parameters, and the feature
vector of the NVAR was introduced equivalent to the read-
out of RC For mathematical details, please refer to [208].
By applying NG-RC to three RC benchmark tasks including
Lorenz attractor prediction, the model showed faster compu-
tational time while at the same time requiring only a small
number of sample and few meta-parameters for training.
A possible application would be using NG-RC to create a
digital twin for dynamical systems.

V. RECENT APPLICATIONS OF RESERVOIR COMPUTING
As a special type of recurrent neural network, RC avoids the
main problem of a difficult, unstable and resource-consuming
training process. In the past decade, however, various deep
learning algorithms, took advantage of the intricacies of gra-
dient based RNN training with greater computational power
and finally became main-stream. This led reservoir comput-
ing research into a niche for a few years. As scientists in
various research fields have found many new ways of RC
implementations and applications (see Table 3), RC have
prompted renewed interest among researchers from disparate
domains. This section presents a comprehensive review of
these recent trends, showcasing the widespread applicability
of RC from the realms of engineering and computer science
to the diverse fields of physical and social science.

A. BIOMEDICAL
1) ELECTROCARDIOGRAM (ECG)
A modified ESN is applied to cardiac monitoring [209].
Specifically, the experimental data includes two classes of
ECG signals from MIT-BIH databases with highly imbal-
anced number of instances. The reservoirs are used as
patient-adaptable classifiers. These classifiers can not only
produce accurate results, but also show the potential to imple-
ment ECG classifiers by using neuromorphic hardware with
spiking neural networks. Similarly, [210] used an ESN for
abnormal cardiac activity detection (Fig. 10A). The main
objective is to apply an ECG monitoring model in Medi-
cal Internet of Things (MIoT) devices with fast speed and
low power consumption. The proposed RC model shows
better performance and generalization in AHA andMIT-BIH-
SVDM datasets than patient-adaptable methods, and also
suggests that RC can be implemented in wearable wireless
devices. Besides, in the problem of ECG signal denoising,
a single-node RC is applied to solve this problem by mini-
mizing the EMG signal that impairs the ECG signal [211].

In 2021, [252] reported a new type of reservoir for arrhyth-
mic heartbeats classification. Inspired by the pioneeringwork
on the combination of organic electrochemical transistors
(OECTs) and reservoir computing, they implemented den-
dritic networks using OECTs for real-time classification.
In detail, the reservoir is created by using coupled dendritic
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TABLE 3. Recent applications of RC in various research fields.

fibers. Once these fibers are excited through the electrolyte,
they create a strong enough non-linear dynamic of the input
signals. The proposed networks show the potential use for
biofluid monitoring and biosignal analysis with high accu-
racy, indicating that bio-compatible computational platforms
can interact with body and biological analysis.

2) ELECTROMYOGRAPHY (EMG)
Some studies on EMG also apply RC models. Refer-
ence [253] proposed a scalable and reconfigurable neu-
romemristive reservoirs architecture for EEG and EMG
signal analysis. A further EMG application using LSMmodel
was proposed by [212], where the EMG signal collected
by the surface EMG (sEMG) sensors are classified by an
LSM-based neuromorphic hardware. In 2021, another spik-
ing RCmodel that applies CRITICAL plasticity rule [254] for
synaptic connection optimization was proposed for hand ges-
ture recognition [255] (Fig. 10B). The author also proposed a
novel approach to evaluate and convert the raw EMG signals
to spikes encoding.

3) MAGNETOCARDIOGRAPHY (MCG)
Checking the ECG is not possible for everyone. Alterna-
tively, magnetocardiography (MCG) signals can be detected
by measuring the magnetic field produced by the electrical
currents in the heart and can be converted into ECG signals.
Reference [213] built the first physical RC model for MCG
monitoring. Specifically, the noisy sensed MCG signals take
as input to the reservoir (i.e., the spintronic sensors, see
Section IV-E) and the output is the predicted ECG signals
(Fig. 10C). This lightweight RC model is claimed to be much

power-saving and lower memory-required while achieving
comparable performance with a deep learning based filtering
approach [214]. A similar model was later proposed by [256]
to extract ECG signals from MCG signals.

4) OTHER BIOMEDICAL APPLICATIONS of RC
In early research of molecular reservoir computing, the cou-
pled deoxyribozyme oscillators is shown to be a type of
reservoir [104]. This refers to DNA reservoir computing
(see Section IV). In addition to DNA based RC, a medical
image classification with distributed representations on cellu-
lar automata RC was reported by [257] (see cellular automata
RC in Section IV). Besides, a recent study on spatio-temporal
feature learning used RCmodel for T-cell consistent segmen-
tation [215]. Instead of only applying a single reservoir, the
model used multiple reservoirs for image segmentation and
classification, where each reservoir focuses on a specific area
of the image to obtain local interactions.

B. MACHINERY
1) ROBOTICS
In section IV, we gave a brief review of mechanical RC. The
so-called mass-spring-damper systems were built as the first
type of mechanical RC by [186] and [187] (see Fig. 11A).
This new type of RC was then used for active shape dis-
crimination [151]. Meanwhile, [188] made a series of works
on the octopus-inspired soft robotic RC (Fig. 11B), show-
ing that the implementations can learn to emulate timers,
delays, and parity [152], [153], [188]. Another application
of robotic RC was reported to learn and reproduce various
end point trajectories by using a new RC-based soft robot
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FIGURE 10. (A) Ventricular heartbeat classifier using RC [210]. (B) Gesture recognition using a plastic reservoir (EMG signal processing) by [255]. (C) MCG
Monitoring using physical RC with spintronic sensors acting as physical reservoir nodes [213].

FIGURE 11. (A) Non-linear mass-spring-damper systems as a RC proposed by [186]
(middle panel). Pneumatically driven, modular robot arm as a RC proposed by [258] (right
panel). (B) A bio-inspired RC using octopus as soft robotic arm by [188]. (C) A foraging
learning task [155]. A vehicle robot was placed in an environment with obstacles and was
directed toward the goal. The system used FORCE learning to generate a coherent signal
output from a living neuronal culture.

system with a highly complex pneumatically driven robotic
arm [258]. RC has also been applied in robotic crawling
by using the origami – a traditional play of folding paper
into sophisticated and 3D shapes. Reference [154] shows that
an origami structure based PRC can be designed to build a
soft robotic controller for earthworm-like peristaltic crawl-
ing. Reference [155] embedded FORCE learning into a robot
to learn in a living neuronal culture (i.e., foraging learning
task), in which the robot was placed on square fields with
various obstacles and was directed toward the target objects
(see Fig. 11C).

2) UNMANNED AERIAL VEHICLES (UAVs)
RC can be applied to UAV systems. Particularly in telecom-
munications, RC models were used in the so-called cache-
enabled UAVs for optimizing resource allocation over the
LTE licensed and unlicensed bands. The first attempt was
to use ESN in such a system to predict each user’s content
request distribution and its mobility pattern when limited
information on the states of users and the network is avail-
able [216]. An LSM-based model was further proposed,
which can predict more context information of the users and
thus improves the prediction accuracy [217].
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Another branch of UAV applications includes one that uses
a deep ESN based reinforcement learning algorithm for UAV
path planning by [218]. In this system, eachUAVuses an ESN
to optimize paths and learns transmission power at different
locations. Besides, ESN can also be used to control rotorcraft
UAVs, which outperforms linear models in robustness to
disturbances [259]. In 2021, [260] proposed a method for
controlling flapping-wing UAVs in different wind directions,
where strain sensors are applied to measure the wind move-
ments, and a physical RC is used as a classifier to recognize
the wind stream from the sensor data (see Fig. 12A).

3) SENSORS
RC models can also be integrated into wireless sensor net-
works (WSNs). Generally, the sensor devices in WSNs are
distributed and computationally constrained, and the col-
lected data usually consist of temporal information, which
makes RC inherently suitable for embedding on the WSN
devices [219]. One of the real-world WSN applications using
RC is activity recognition in Ambient Assisted Living (AAL)
tasks [220]. Specifically, RC-based multi-sensors were used
for feature collection and extraction. The sensed data were
then further processed by an ESN which provides a good
activity recognition accuracy with low computational costs.
In 2021, a bio-inspired in-sensor RC was demonstrated to be
effective for classifying short sentences of language [221].

It is worth noting that although RC had been shown poten-
tial for processing sensor data, some researchers like [156]
argued that those reservoirs focusing on sensing are often
exploited in a somewhat passive manner, being a separated
post-processing component that receives data from sensors.
Therefore, [156] further proposed the State Weaving Envi-
ronment Echo Tracker (SWEET) sensing approach. Here,
RC was considered as the sensing element itself for novel
sensing applications such as ion concentration analysis.

4) FAULT DIAGNOSIS
Fault diagnosis generally refers to the process of detecting
errors in physical systems while attempting to identify the
source of the problems. Built on the deep ESN architec-
ture suggested by [49] and [50] proposed evolving deep
ESN models for 3-D printer fault diagnosis, with a devel-
oped version of particle swarm optimization (i.e., competitive
swarm optimizer, CSO). This RC model uses evolutionary
optimization and is shown to be state-of-the-art and compu-
tationally economic, which is a complement to deep learning
algorithms, rather than a competitor. Meanwhile, the same
research group proposed another solution for 3-D printer fault
diagnosis [48], [224]. Specifically, deep ESNs were used to
improve feature extraction performance, where the features
were reinforced throughout the hidden layers by using fuzzy
clustering as a tuning step. This low computational costing
model also provides the optimal solution in all experiments,
with a total of 26 different condition patterns in fault diagno-
sis data.

TABLE 4. Comparison of the Accuracy (%) of recent RC models in image
recognition benchmarks.

In addition, RC can also be applied to chemical fault diag-
nosis in the proton exchange membrane fuel cell (PENFC)
system. The first RC application in PEMFC system diagnosis
was made by [222], where a delayed feedback RC was used
to detect four fault types yet in the static operating conditions
only. Instead of processing voltage signal in the original
data space, a newer variant based on previous models was
proposed, which performs abnormal detection in the reser-
voir computing based model space (current-voltage model)
without requiring additional feature extraction [223].

C. DATA SCIENCE
1) IMAGE RECOGNITION
Image recognition stands as a prominent field within com-
puter vision and machine learning. While RC shows impres-
sive performance in finding and generating temporal features,
it has also been adapted for image recognition tasks, either
alone or integrated with other techniques such as deep net-
works with convolutional layers. Table 4 shows the perfor-
mance comparison between different RC models. To illus-
trate, when using RC alone to deal with 2D or 3D inputs
(i.e., images or videos), data are usually flattened into 1D
signals prior to feeding them into the reservoir, as discussed
in [33]. When combining with convolutional layers, these
layers preprocess images and videos, transforming them into
intermediate representations which the reservoir can process
temporally [261], [262], [263], [264], [265], [266]. Although
RCmodels demonstrate competitive performances with other
machine learning methods like CNNs on simpler datasets
such as MNIST, their performance significantly declines
when faced with datasets exhibiting higher spatial complex-
ity, such as CIFAR-10. This performance gap highlights the
inherent limitations of RC in dealing with complex spatial
correlations, and underscores the need for further exploration
and investigations in this field. On the other hand, studies
have proved that convolutional neural networks are likely to
misclassify even if small perturbations are added to original
samples [17], [18], [19], [20], [21], [22]. Thus, this also
highlights a strong incentive for RC-based methods to tackle
high-dimensional inputs with strong 2D/3D correlations, as it
was shown that higher degrees of nonlinearity in the model
are related to more robust neural networks, and nonlinearity
is where the RC really shines.
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FIGURE 12. (A) A flapping-wing UAV for recognition of the wind direction in which PRC approach was used to classify the wind stream from
sensors [260]. (B) A dual-reservoir structure for chunking temporal information streams [227]. (i) Chunking problems example. Three fixed
chunks and noise (random sequence between chunks) are repeated in the input sequence with equal probabilities. (ii) The dual-reservoir
structure. (iii) Selective readout responses to the individual chunks, which are colored according to their selectivity to the chunks.

2) CLUSTERING
One of the applications of RC in data science is cluster-
ing. As a special case of clustering, time-series clustering
introduces several additional issues when compared with
static data clustering. For example, the lengths of time-series
usually vary, and some of them may be infinite (e.g., video
and audio sequences collected from CCTV cameras). More-
over, temporal dependencies in different parts of a particular
time-series cannot be captured by making a fixed detecting
window (i.e., the dynamical behaviors in sequences contain
to both short- and long-term correlation). As a result, similar-
ity measurement techniques, such as calculating Euclidean
distance among temporal data, are not inherently suitable for
time-series clustering.

Reference [225] proposed the first dynamic clustering
algorithm using conventional ESNs. The idea is to apply a
clustering method inside every step of the reservoir’s state
update, where the author claimed that any unsupervised
clustering methods can be used in principle (e.g., k-means
or any other iterative, partitioning clustering methods). The
proposed method overcomes the above-mentioned issues and
produces more compact clusters when applied to a hard clas-
sification problem of detecting patients with eye disease in
eye movements datasets (saccades). In 2020, deep reservoir
structure was introduced in time-series clustering [226]. The
proposed algorithm was applied to more common benchmark
datasets and showed better clustering quality than the previ-
ous algorithm and static clustering methods.

3) CHUNKING
Related to clustering problems, some studies have been
proposed for sequence chunking [273], [274]. Here, the
main difference between time-series clustering and sequence
chunking is that chunking finds the temporal correlation
between state variables, instead of clustering homogenous
time-series together based on a certain similarity measure
(see Fig. 12B in the upper-left panel). Reference [227] used
dual-reservoir networks that supervise each other to mimic

the partner’s responses to the given input. Here, a challenge
of chunking sequences with uniform transition probabilities,
which can be easily processed by humans in basal ganglia,
was successfully solved by the proposed model while con-
ventional statistical approaches fail to chunk (see Fig. 12B).
This suggests that reservoirs can predict dynamical response
patterns to sequence input other than to directly learn transi-
tion patterns.

4) SIMILARITY LEARNING
Reference [228] applied RC to learn the similarity between
image pairs with limited data. The reservoir here acts
as a non-linear filter that projects the images into a
high-dimensional state space, in which the state trajecto-
ries represent different dynamical patterns that reflect the
corresponding relationship of given image pairs. The pro-
posed model was tested on MNIST dataset and images taken
from a moving camera. Compared to deep Siamese Neural
Networks, this RC model showed significantly better perfor-
mance in generalization tasks. The generalized combinations
of relationships provide robust and effective image pair clas-
sification.

D. SECURITY
1) ATTACK DETECTION IN SMART GRID
RC has been proven to efficiently solve false data injec-
tion (FDI) and to improve the reliability in smart grid sys-
tems [229]. The first attempt was to use a modified delayed
feedback network (i.e., single-node time-delayed RC) as
a reservoir combined with a multilayer perceptron (MLP)
as a readout for single-period attack detection [230]. This
RC model with MLP architecture produces a high attack
detection rate (99%) and shows strong robustness in various
attack types. Later, the author extended the pioneering work
to the more challenging dynamic attack detection in smart
grid [231], where a bio-inspired learning rule called precise-
spike-detection (PSD) [276] is used for spiking reservoir
training.
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FIGURE 13. (A) Diagram of Specific Emitter Identification (SEI) using RC [234]. A multi-layer time-delayed feedback reservoir structure was introduced to
enable the linear classifier for emitter identification. (B) RC used for symbol detection (modified from [275]).

Regarding the attack detection, recent applications of RC
include detecting malware and micro-architectural attack,
which is reported in [232] using a CMOS-based RC neural
network embedded in a 65nm CMOS chip.

2) SPECIFIC EMITTER IDENTIFICATION (SEI)
SEI is capable of extracting rich non-linear characteristics of
internal components within a transmitter to distinguish one
transmitter from another. Since the fingerprint of SEI cannot
be emulated, it is widely used in IoT devices to prevent MAC
address spoofing attacks. A reservoir with delay loops for
SEI was first proposed by [233] and further adapted to edge
computing [234] where the RC architectures include a digital
loop (FPGA) and a photonic one (Fig. 13A).

E. COMMUNICATIONS
1) OPTICAL COMMUNICATIONS
In the high speed optical fiber communication systems,
RC was applied for digital equalization. Reference [235]
quantified the equalization performance of the optoelectron-
ics RC. Experiment results show that the optoelectronics RC
outperforms traditional equalizers under the same transmis-
sion conditions, taking the advantage of its ring topology for
better correlation between adjacent data as well as its lower
complexity and computational cost.

2) NETWORK TRAFFIC
Reference [236] proposed a method for application iden-
tification for network traffic by physical RC, which pro-
cesses traffic flows as dynamical time series data and enables
fast and real-time identification. Another RC application is
reported by [237] for road traffic analysis.

3) SYMBOL DETECTION IN MIMO-OFDM SYSTEMS
Inwireless communication domains, multiple-inputmultiple-
output with orthogonal frequency division multiplexing
(MIMO-OFDM) is a key enabling technology in the 5G
cellular network. Symbol detection is an important technique
due to the severe non-linear distortion during transmission
(Fig. 13B). Thus, an accurate estimation of MIMO-OFDM
channel is usually required. The first integration of RC and
MIMO-OFDM systems was proposed by [238]. Specifically,

an ESN was used for system modelling and predicting non-
linear dynamics, where the MIMO-OFDM channel estima-
tion is no longer necessary. Further, inspired by deep RC
architectures [49], [239] extended the existing shallow RC to
form a deep neural network [239], [275], which significantly
mitigates the frequency distortion.

F. CHEMISTRY
1) FUEL CELLS (FC)
ESNs have shown their effectiveness on remaining useful
lifetime (RUL) prediction for proton exchange membrane fuel
cell (PEMFC). Reference [240] developed the first RCmodel
for FC prognostics using conventional ESN. Later, several
variants of RC model have been proposed for improving the
prediction performance. These include an ESN combined
with ANOVA method [241], as well as a multi-reservoir
ESN [242]. However, recent research states that the above
proposals assume that FCs are operated in constant nom-
inal operating conditions [243]; that is, only the degrada-
tion is considered the factor of the deviation of stack volt-
age. Another open problem is that the prognostic results
in long-term experiments show that prediction will become
inaccurate when disturbances occur.

2) CHEMOSENSOR
Metal oxide (MOX) based sensors are a common choice for
tasks of chemical detection, yet the time response of these
chemical sensors is usually excessively slow. It is stated that
algorithms based on batch or sequential measurements are not
suitable for continuous sensing scenarios. Reference [244]
used RC algorithms to overcome the slow temporal dynamics
of the chemosensors and applied RC for real-time gas con-
centration prediction by observing the sensors’ time series in
response to the changes in the composition of a gas sample.
Still, problems were reported, such as the drift of sensor
response over time.

3) MAGNETIC SKYRMIONS
RC using magnetic skyrmions are reviewed previously in
Section IV, where the random phase structures of the
skyrmion fabrics are suitable for RC implementation [185].
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FIGURE 14. (A) An ESN was used to predict the remaining useful lifetime (RUL) of Fuel Cells [243]. (B) A chemical RC implemented by a
random chemical circuit with different DNA species [116]. (C) An electrochemical-reaction-based reservoir proposed by [121]. (i) Structure
of the Polyoxometalate (POM) molecule. (ii) Testing procedure.

Recent applications in this field is to implement RC based
on a single magnetic skyrmion memristor (MSM) for image
classification task (i.e., handwritten digit recognition) [149].

4) COUPLED DEOXYRIBOZYME OSCILLATORS AND DNA
OSCILLATORS
Taking the inspiration of DNA reservoir computing
approach [104], [116] proposed a random chemical RC
model, where the random chemical circuits (i.e., DNA
strand displacement) provide complex non-linear dynamics,
making them suitable for RC implementation (Fig. 14B).
The proposed model outperforms the previous deoxyri-
bozyme oscillator RC [120] in short and long-term mem-
ory tasks. Another recent RC using DNA oscillators was
reported in [117] which solves the problem of the lack
of readout layer [104], and then applied to a handwritten
digit recognition and a second-order non-linear prediction
task.

5) CHEMICAL REACTION NETWORKS (CRNs)
As mentioned earlier, reservoir’s dynamic can be generated
by a set of ordinary differential equations (ODEs). An exten-
sion was proposed for single stranded DNA (ssDNA) anal-
ysis [119]. Besides, [120] used a modular framework for
molecular computing to implement a RC model. The main
advantage of this work, compared with previous DNA oscil-
lators [104], is that molecular computing allows tuning
the size of CRNs. Another new chemical RC architec-
ture was proposed by [121], where the reservoir is imple-
mented through electrochemical reactions since the chemical
dynamic is shown to be computing resources (Fig. 14C).
As claimed by the author, the Polyoxometalate molecule in
the solution ‘‘increases the diversity of the response cur-
rent and thus improves their abilities to predict periodic
signals’’.

G. ENVIRONMENTAL
1) WIND FORECASTING AND WIND POWER GENERATION
Reference [91] proposed a RC based wind speed and wind
direction forecasting model. In fact, the proposed model is a
new type of non-linear echo state network, which is discussed
in Section IV. Instead of deterministic forecasting, a recent
study focuses on probabilistic wind power forecasting [245]
by using a time warping invariant echo state network [277].
In addition, the wind turbines were used as a major source of
power generation for smart grids, where the delayed feedback
RC was applied for attack detection [230].

H. AUDIO AND SPEECH
1) AUDIO PROCESSING
Audio signals cover a wide range of temporal sequences such
as speech, sounds and music. In 2009, RC was first applied
as a general framework for non-linear audio processing
by [278]. Three main potential applications were proposed
with simulations, including tube amplifier plugin identifi-
cation, non-linear audio prediction and music information
retrieval (MIR). RCwas claimed suitable for non-linear audio
processing because of the inherently temporal processing
capability. In terms of real-time audio processing, a cas-
caded discrete-time RC was proposed for black-box system
identification [279]. Albeit much effort was made to reduce
computation consumption, the cascaded structure is stated
considerably more complex to tune than the conventional RC.
In 2019, [249] proposed randomly weighted CNNs for music
classification. The proposed model shares similarity to RC,
where weight connections remain untrained during training.

2) SPEECH RECOGNITION
The earliest RC application of speech recognition was
presented in [88]. Here, an LSM-based RC with spik-
ing integrate-and-fire neurons was implemented recognizing
isolated digits, where the readout is trained using ridge
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regression. The problem of the model is that it requires
intermediate data storage for offline learning. Similarly
to the work above, [246] trained output neurons using
back-propagation based MLPs. Inspired by Hebbian learn-
ing, [47] further proposed a variant of Hebbian online learn-
ing rule to train an LSM without requiring data storage for
speech recognition. In detail, the analog input speech signal is
pre-processed by the Lyon passive earmodel and further con-
verted into spikes by BSA algorithm [280] before feeding into
LSM. Other types of RC can also be applied to speech recog-
nition. For example, an ESN combined with extreme kernel
machines was used for Arabic speech recognition [247]. In
2020, a RC based on nano-oscillators was also applied to TI-
46 database [248].

I. FINANCE
1) STOCK MARKET PREDICTION
A successful prediction of a stock’s future price could yield
significant profit. An early attempt of short-term stock price
prediction was reported in [281], who used an ESN as a
basic network with the Hurst exponent to select a persistent
subseries with the greatest predictability for training from the
original training set. Instead of using basic ESN, three RC
network structures were investigated in stock price predic-
tion [250], including the small-world topology discussed in
an earlier section.

2) FINANCIAL SYSTEM MODELLING
Reference [251] used RC for financial system modelling.
In this study, an ESNwas first applied to predict a pre-defined
financial system behavior. The model was further proved to
effectively re-generate only the required data based on limited
known information.

VI. RC WITH BRAIN MECHANISMS AND COGNITIVE
SCIENCE
A. RESERVOIR IN THE CEREBRAL CORTEX
RNNs have been shown to have rich, complex, non-linear and
high-dimensional dynamics. In the cerebral cortex, especially
the prefrontal cortex (PFC), massive recurrent connections of
neurons were found, and it is progressively recognized that
some parts of the brain operate as reservoirs [282]. More-
over, the cortex is shown able to extract the desired outputs
(readout) from the high-dimensional neural representations
(reservoir). In this section, we review studies on using RC to
model the cerebral cortex.

1) DOMINEY’S DECADE-LONG RESEARCH: THE BIRTH OF RC
Dominey et al. developed the first RC prototype in a series
of neurocognitive studies on corticostriatal systems [13],
[28]. During the period of 80s-90s, many researchers were
focusing on the characterization of the fast eye movements
(i.e., the oculomotor saccade) in the corticostriatal system,
which refers to the interactions between cortex and basal
ganglia [25]. Particularly, [26] examined the function of

the corticostriatal system by carrying saccade experiments
on macaque monkeys. The experiments showed that some
neurons (1) have a preferred spatial saccade amplitude and
direction; (2) selective to response to a particular sequential
order. In 2013, [24] characterized this finding asmixed selec-
tivity, which became one of the important principles in RC
and cognitive science.

Suggested by the two experiments of the corticostriatal
saccade system [26], [27], the first corticostriatal RC model
was built based on (1) a recurrent prefrontal cortex (PFC)
system (i.e., the reservoir), and (2) the reward-related learning
in PFC-to-caudate connections (i.e., the readout). Fig. 15
shows the architecture of the model. Since they found that
the modification of the recurrent connections are consider-
ably computational costing, they decided to initialize PFC
layer (the reservoir) with a mixture of fixed inhibitory and
excitatory recurrent connections. The reservoir layer was then
connected to the caudate or striatum to obtain the readout.
This pioneering RC model, as the author claimed, can be
seen as a dedicated temporal recurrent network (TRN), which
shows the inherent capabilities and sensitivity to temporal
and sequential structure by providing a rich spatio-temporal
dynamic [283].
Recent Extension of TRN: Dominey et al. further proposed

a series of works on the previous corticostriatal RC model.
These include a combination of RC and neuro-physiological
models of language processing [284], [285], as well as a per-
formance improvement of the RC learning algorithm [286].
Reader may refer to a more detailed review of the corti-
costriatal RC model and its historical developments in a
review paper by [287]. In 2013, one of the important corti-
cal activities was obtained in randomly connected recurrent
networks (e.g., reservoir) andwas then characterized asmixed
selectivity [24] (see the following section). In 2016, the repre-
sentational power and dynamical properties of mixed selec-
tivity were investigated by training a RC model to perform
a complex cognitive explore-exploit task initially developed
for monkeys [288]. By comparing the neural activity of the
reservoir and the primate dACC neurons, it is found that
not only mixed selectivity was observed in the two types
of neurons, but more strikingly, the distributions of neurons
were quite similar in terms of the epoch (explore/exploit), the
task phase, and the target choice, which strongly supports
the argument that the cortex behaves computationally as a
reservoir (see Figures 3 and 4 in [288]).

2) RECENT STUDIES OF THE CORTEX
Dimensionality Implies Selectivity: One of the complex neu-
ral activity phenomenons in PFC and in the model by [13]
is that the firing rates of some neuron populations were
modulated by the combinations of conditions such as spatial
location and sequential order [289]. This cortical activity
was then characterized as mixed selectivity by [24] in an
object sequence memory task. Specifically, pure selectiv-
ity refers to neurons whose responses are selective only to
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FIGURE 15. The first RC model built based on a recurrent PFC system as reservoir (modified from [28]).

an individual task-relevant aspect, whereas mixed selectiv-
ity refers to neurons whose responses are explained by a
non-linear superposition of responses to the individual task-
relevant aspects. In the object sequence memory task, mon-
keys were required to watch a sequence of two subsequently
displayed images. After that, they had to (1) recognize the
two images under distraction (recognition task), or (2) recall
the order of the two images (recall task). The dimensionality
of the neural spaces was then estimated (i.e., the minimal
number of coordinate axes needed to specify the position
of all points in neurons’ firing rate space). It is observed
that the dimensionality was higher if neurons having mixed
selectivity were included. More importantly, the neural pop-
ulation was estimated to have a higher dimensionality when
the monkeys performed correctly on a trial. That is, in the
error trials, a collapse in dimensionality was observed, which
impairs the ability of downstream readout neurons to produce
the correct response. Moreover, [24] and [290] showed that
RC models can be compared with a randomly connected
recurrent structure in the monkey prefrontal cortex, which
can generate high-dimensional mixed selective dynamics to
assure the separability in the downstream readout units. The
higher the dimensionality of the population coding, the better
the performance on the task [289]. Regarding the readout,
it was reported that the brain implements mixed selectiv-
ity even when it does not enable behaviorally useful linear
decoding (i.e., simple linear readout), suggesting that mixed
selectivity may be the key of population encoding for reliable
and efficient neural representations [291].
Recent studies have shown that mixed selectivity not only

plays an important role in PFC, but in other parts of the
brain. Reference [292] found strong mixed selectivity in
the subiculum (i.e., the area between the entorhinal cortex
and the CA1 subfield), where individual neurons respond
conjunctively to task-related aspects including position, head
direction, and speed. In 2022, mixed selectivity was observed
in the thalamus of a weakly electric fish [293]. Here, the
mixed selectivity strategy was implemented to encode inter-
actions in the recurrent networks in pallium, which is related
to courtship and rivalry in terms of dominance in male-male
competition and female-mate selection.

B. NEURONAL OSCILLATIONS
Neuronal oscillations refer to the temporally structured activ-
ity generated in mammalian brains, where neurons undergo
periodic changes in excitability. These oscillations had been
found in neuron assemblies, a concept to describe the behav-
iors by a population of neurons. In this section, we first
present the cognitive science research on neuronal oscilla-
tions, and then we discuss the relationship between oscilla-
tions and RC models, followed by several examples of the
existing research. Contents are partially from [2].

1) NEURON ASSEMBLIES
a: FEED-FORWARD CIRCUITS
It is widely believed that there are two frameworks of pro-
cessing in natural systems in the cortex [2]: (1) convergent
feed-forward circuits and (2) neuronal assemblies. In the
framework of feed-forward circuits, specific neurons fire to
particular features, and the information is propagated from
the former layer to the next higher layer. In this way, higher-
level features (e.g., cognitive objects) are extracted through
a multi-layered structure. The encoding scheme here refers
to spatial encoding, which is well-suited for simultaneously
presenting features such as images. However, due to the lack
of short-term memory functions, feed-forward circuits are
less apt to tackle the relations among temporally segregated
events.

b: NEURON ASSEMBLIES
On the other hand, a complementary framework in cognitive
brains is the neuronal assemblies. Unlike the feed-forward
networks which include explicit layered structures, the
assemblies of neurons usually form coupled recurrent net-
works with non-linear, high-dimensional and self-organizing
dynamic [2]. Relations among cognitive objects are translated
into the weighted connections between neurons; in other
words, high-level features are represented by the amplified
reverberations (echoing) of neuronal assemblies. With the
reverberating responses, the rich dynamics provided by the
coupled recurrent connections have short-term memory (fad-
ing memory), and become efficient to handle temporally
related sequential events.
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FIGURE 16. The spread of synchrony. Here, the blue neuron populations
are already synchronized, and they might entrain other neurons (those in
green) to become part of the same overall assembly after some point in
time (see the dashed red line), thus resulting from the spread of
synchronized activity through lateral connections. Figure modified
from [299].

2) BLINDING PROBLEM
a: PROBLEM OF NEURONAL ASSEMBLIES
One of the challenging problems of the neuron assemblies
is the blinding problem, which refers to the segregation
of simultaneously active assemblies. According to [77],
if assemblies were solely distinguished by enhanced activity
(i.e., discharge rate) of the constituting neurons, it becomes
difficult to distinguish which of the more active neurons
actually belong to which assembly. Moreover, if the given
objects share some common features and overlap in space
(e.g., blind source separation and cocktail party problem),
the corresponding feature-selective nodes would have to be
shared by several assemblies [2].

b: SOLUTIONS TO BLINDING PROBLEM
A possible solution is multiplexing, in which various active
assemblies are segregated in time. Because of the discharge
rate of cortical neurons is relatively low (i.e., the integration
needs time), multiplexing becomes problematic if only dis-
charge rate is considered for distinguishing assemblies [294].
Therefore, it is only capable in a slow timescale [295].

In the 1990s, Gray and Singer proposed that ‘‘neurons
temporarily bound into assemblies are distinguished not only
by an increase of their discharge rate, but also by the pre-
cise synchronization of their action potentials’’ [296], [297],
[298]. They also predicted that neurons that respond to the
same sensory object might fire in temporal synchrony, with
a precision in the millisecond range. Synchronization by
oscillation is briefly introduced in the following section.

3) SYNCHRONIZATION BY OSCILLATION
a: DEFINITION OF SYNCHRONIZATION
The periodic changes of excitability of the neurons are con-
sidered neuronal oscillations among different brain areas [2].
It has been identified that these oscillations vary in terms

FIGURE 17. The Arnold tongue regime in coupled oscillators. This is a
graphical representation modified from [300] to illustrate the
synchronization behavior relating the difference in preferred frequency
with increasing coupling strength, which results in a ‘tongue’-shape of
possible synchronization regimes.

of the frequency, ranging from approximately 0.05 Hz
to 500 Hz [301]. According to [302], synchronization by neu-
ronal oscillations has beenwidely detected across various nat-
ural systems, in which different oscillations can ‘‘coexist and
often synchronized to each other or nested into each other’’.
This observation is called the spread of synchrony. As an
example shown in Fig. 16, the synchronized larger-scale
populations can entrain other smaller local assemblies with
different oscillations to be overall synchronized. This spread
of synchronized activity was then believed to be a reinterpre-
tation of the represented objects [299].

b: ARNOLD TONGUE REGIME
One of the interesting observations of synchronization behav-
ior in coupled oscillators is the Arnold tongue regime.
An early experiment by Van Huygens revealed that the beats
of pendulum clocks can be synchronized when having the
same timber; that is, if the preferred frequencies of the oscil-
lators are similar, weak mutual interactions are enough for
oscillatory synchronization [300]. This observation was then
summarized as Arnold tongue regime by [303]. As shown
in Fig. 17, the coupling strength should increase in order
to assure a stable synchronization when the preferred fre-
quencies between coupled oscillators become increasingly
different, thus resulting in a tongue-shaped pattern. Synchro-
nization would become unstable if the difference between
preferred frequencies exceeds a critical point [300].

4) HOW RC RELATES TO OSCILLATIONS?
Recall that in most of the existing literature, RC models
should normally meet several requirements to be efficient
and functional for various tasks. These are also considered
the properties of a RC model [23], which include (1) High-
dimensionality: low-dimensional inputs are mapped into a
high-dimensional space, which allows originally inseparable
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or temporal inputs to be linearly separable as shown by the
Cover Theorem [304]. (2) Non-linearity: non-linear mapping
transforms the input into linearly separable reservoir states
which can be read out by readout layer. (3) Separation prop-
erty: a RC model should be capable of separating different
inputs into different classes, under small fluctuations or in
noisy environments [11]. (4) Fading memory: also known
as short-term memory or echo state property. This algebraic
property eliminates the effect of initial network condition.
In other words, it ensures that the reservoir state is depen-
dent on recent-past inputs (reverberating responses), but not
distant-past inputs (responses faded).

In a RC review, [2] made a proposal to link the concept
of RC in machine learning and that of neuronal behaviors
in the cognitive brain. Readers may refer to the article for
details. Based on the proposal, here we aim to discuss how
the dynamics of coupled oscillators in mammalian brains
could be exploited to accomplish the abovementioned four
characteristics in RC.

a: HIGH-DIMENSIONALITY AND NON-LINEARITY
The first fact is that the cortex is reported to have consistent
and randomhigh-dimensional oscillations, which refers to the
‘‘resting activity’’ [305]. Meanwhile, it is believed that brains
are likely to have an internal model of the external world
(i.e., prior knowledge, which can be updated by learning).
When the input comes in, the input stimuli ‘‘activate’’ some
feature-sensitive neurons, thus making the dynamics of the
network collapse into a stimuli-specific substate (e.g., oscil-
latory synchronization). All of these may suggest that once a
reservoir enters a substate (i.e., synchronization), it is likely
that the dynamics can be tuned selectively to specific stimuli
or generating specific output signals.

b: SEPARATION PROPERTY
Asmentioned above, the stimuli-specific substate with rhyth-
mic oscillations, according to [2], ‘‘would have a lower
dimensionality and to exhibit less variance than the rest-
ing activity, to possess a specific correlation structure and
be metastable due to reverberation (rhythmic oscillations)
among nodes supporting the respective substate’’. Note that
all these activities, including the stimuli-specific substates,
are happening in a high-dimensional state space; thus, differ-
ent inputs can be well-separated and classified even linearly,
similar to the readout of RC models.

c: FADING MEMORY
Moreover, fading memory refers to the short-term memory in
RC literature, in which the reservoir state should depend on
recent inputs but not distant-past inputs. From an oscillation
point of view, there exist several experiments in the cat’s
visual cortex, which can support the mechanism of fading
memory [306]. As stated in [2], these experiments show that
‘‘ (1) the information about a particular stimulus persists in
the activity of the network for up to a second after the end

of the stimulus (fading memory). (2) Two subsequent stimuli
and the order of their presentation can be correctly classified
with a linear classifier sometime after the end of the second
stimulus, suggesting that the network is capable of perform-
ing non-linear XOR operations and (3) Stimulus identity is
distributed across many neurons (>30) and encoded both
in the rate vector and the temporal correlation structure of
the responses’’. The above evidence may explain the fad-
ing memory from the perspective of neuronal oscillations,
suggesting that short-term memory is not only a property of
the networks, but also a consequence of the oscillations and
reverberations.

In addition, long-term memory is also important, and it
is a more complex one. Early experiments showed that the
‘‘default’’ state of the unperturbed, sleeping brain is a com-
plex system of numerous self-governed oscillations, particu-
larly in the thalamocortical system [301], [305]. The content
of these oscillations reflects spike sequence patterns created
by prior waking experience. Moreover, these oscillations are
spontaneously replayed (e.g., during sleeping), leading to an
‘‘off-line’’ synaptic modification. Such replays might be the
way to the formation of long-term memory. Overall, a reason
why short-term memory rather than long-term memory is
one of the necessary requirements for building a RC model
might be that we usually keep the random connections in the
reservoir fixed without modifications. As a result, RCmodels
generally struggle to form long-term memory, since replays
in terms of synaptic modifications are required (i.e., investi-
gating long-term memory is a more challenging task). In fact,
some learning algorithms, such as STDP [307] and FORCE
learning [35], are trying to modify the synaptic connections,
and therefore they are likely to be able to possess long-term
memory.

5) EXAMPLES OF SYNCHRONIZATION IN RC
a: MULTIPLE RESERVOIRS
Deep reservoir computing was proposed in [49], in which
multiple reservoirs are concatenated together to form a hier-
archical network structure. Detailed model descriptions are
discussed in Section IV. It has been proved that the deep
RC structure can achieve (1) multiple timescale represen-
tation, ordered along the network’s hierarchy; (2) multiple
frequency representation, where progressively higher layers
focus on progressively lower frequencies. According to the
Arnold tongue regime shown in Fig. 17, if we keep the
coupling strengths at a low level (week synaptic links, or even
zero weight connections), neurons with similar preferred fre-
quencies can be synchronized, at different frequency bands.
Therefore, this may explain the reason why multiple reser-
voirs can achieve these while the conventional ESN cannot,
from the perspective of neuronal oscillations.

b: GACTRNN
GatingAdaptive Continuous TimeRecurrent Neural Network
(GACTRNN), is another research taking the inspirations from
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FIGURE 18. Neuroscientists suggest that neural oscillations reveal a highly complex interplay of neural populations and local integrations
by coupled oscillations and synchronization, in which multiple timescales in hierarchical processing streams can be achieved. (A) and (B)
show examples of how these mechanisms work on a computing and processing level. (A) GACTRNNs [63], a type of neural network where
neurons in a population can learn to simultaneously represent temporally different primitives, by changing their timescales. (B) An ESN
with a small-world topology. The network rewiring probability is around 10% [96].

neuronal oscillation proposed in machine learning by [63]
in 2020. It extended the classic RNN to adaptive timescales
RNN, which shares some similarities to reservoir comput-
ing models. GACTRNN is claimed to be able to learn to
gate its timescale characteristic during activation and thus
dynamically change the timescales in processing sequences;
in other words, by changing their timescales during process-
ing, neurons can learn to simultaneously represent temporally
different primitives (Fig. 18A).

c: SMALL-WORLD TOPOLOGY
An ESN based on the topology of small-world (SW) wiring
was proposed by [96] (Fig. 18B). The model incorporated
SW structure with RC and further investigated echo state
property. It was found that the SW topology plays the roles
of both efficient signal propagation and enhancement of the
ESP in neural computation. In fact, this idea partially origi-
nated from the cortical anatomical connectivity of the human
brain. According to [301], ‘‘complex brains have developed
specialized mechanisms for the grouping of principal cells
into temporal coalitions’’. In order to reduce the complexity
of the connections without excessive wiring, the number of
long-range connections between neurons decreases in grow-
ing brains; in other words, the synaptic path lengths between
distant cell assemblies are reduced, keeping the path lengths
short and maintaining fundamental functions.

VII. PERSPECTIVES AND FUTURE RESEARCH
Reservoir computing is becoming increasingly popular due to
its simple network structure, hardware-friendly features, low
computational cost, and fast training process. These benefits
enable RC to extend far beyond machine learning into a
wide range of research fields. In this paper, we provide a
thorough overview of RC’s history, strengths and weaknesses
from the perspectives of machine learning, dynamical sys-
tems, physics, biology, and neuroscience. We also summarize
recent advanced approaches and architectures for RC opti-
mizations and implementations. Besides, applications of RC
are reviewed, from which we have seen how this interdisci-
plinary idea can be applied in various research areas.

While RC still remains an unconventional computational
framework compared to other machine learning techniques
like deep learning, its impact can be enhanced by addressing
various challenges. Recent developments have unveiled new
directions and perspectives for RC, indicating its untapped
potential and promising prospects that may even surpass
those of mainstream methods. In this section, we present
perspectives and discuss the open problems that motivate
further research in this field.

A. RESERVOIR DESIGN AND OPTIMIZATION
A consensus view of conventional RC is that initializing a
random RNN as a reservoir is not the optimal solution, and
that connecting a linear readout with the reservoir limits the
generation of the downstream responses. It is also known
that neurons in cortical networks in the brain are not ran-
domly connected, while their structures and synapses exploit
an evolutionary and developmental process [308]. Recent
research, especially on ESNs and LSM, mainly focuses on
network structure designs (e.g., deep reservoir), parameter
optimizations (e.g., particle swarm optimization) and training
rule determinations (e.g., STDP and Hebbian learning). Even
if the optimal synaptic weights were discovered, the perfor-
mance of various concrete tasks would still vary. As pointed
out by Jaeger [45], ‘‘currently available insights are mostly
distilled from experimental studies of timescale profiles or
frequency spectra in input data and provide no comprehensive
guides for optimizing reservoir designs’’. In other words, one
should find away to analyze and abstract both the characteris-
tics of input/output and task specifications, which can be used
to design the reservoir dynamics. One possible solution is
called reservoir Learning-to-learn (L2L) [308], in which a set
of (hyper)parameters of the reservoir are optimized by BPTT
for awhole family of learning tasks; note that this shares some
similarity to meta learning in machine learning and neuro-
science. This L2L method was investigated on LSM models
and it can also be implemented by other RC architectures.
Moreover, to have better and faster learning, it is possible to
train the reservoir by the L2L method even without changing
synaptic weights to readout neurons. Nevertheless, whether
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the performance takes advantage of other reservoirs is still an
open question.

B. EASY-ACCESS TOOLS, CODING FRAMEWORKS AND
RECIPES
One pressing open problem in RC is the relative lack of
user-friendly coding environments, libraries, and computa-
tion frameworks. Unlike the well-developed infrastructure
supporting deep learning and other scientific computational
paradigms, the coding ecosystem for RC remains relatively
underdeveloped and fragmented. As shown in this paper
that although numerous models and architectures have been
proposed for RC, there is a notable dearth of unified frame-
works that researchers can leverage with ease. This poses a
significant challenge as it lowers the speed and efficiency
of research, requiring additional time and effort to navigate
through a variety of individual tools and frameworks, and
often necessitates the development of custom code for each
research project.

However, this does not imply that no progress is being
made towards building a more unified and accessible coding
infrastructure for RC. Indeed, we have seen some promising
developments over the years. Back in the early 2010s, [33]
provided a comprehensive guide on how to implement an
ESN, which widely impacts future studies. The author also
released a demonstration of coding ESN from scratch in Julia,
Matlab, Octave, Python, and R language. In 2012, a toolbox
was developed for RC called Oger (OrGanic Environment
for Reservoir computing) to train and evaluate recurrent
neural networks, particularly ESNs and LSMs [309], [310].
From 2017 on, several tools were released in terms of dif-
ferent RC models, such as ESNs, LSMs, and FORCE-based
algorithms. The easyesn library was released [311], provid-
ing a more easy-to-use API for automatic gradient based
hyperparameter tuning (of ridge regression penalty, spectral
radius, leaking rate and feedback scaling), as well as transient
time estimation. Meanwhile, a hands-on LSM implementa-
tion using NEST simulator in Python was proposed [97],
[98], which is considered to be the starting point for new
researchers who are interested in spiking-based RC mod-
els. Later, another open-source spiking model framework,
Nengo, was developed for FORCE learning and its variation
implementations [81]. In 2018, EchoTorch was proposed,
and perhaps it is the first Python package to simplify the
evaluation and implementation of ESNs and RC [312]. In
2019, a Matlab toolbox for DeepESNs [49] was released that
extends the RC paradigm towards deep networks. One of
the most common deep learning frameworks, TensorFlow,
also supports the ESN layer in 2020 (see TF Addons). More
recently, in 2022, [82] present tension, an object-oriented,
open-source Python package that implements a TensorFlow
/ Keras API for FORCE learning. Another Julia package
for RC is ReservoirComputing.jl [313]. It aims to provide a
simple and flexible framework to work with ESNs and other
models. Additionally, [314] present a Python library that

facilitates the creation of RC architectures, from ESNs and
FORCE learning, to complex networks such as DeepESNs
and other advanced architectures with complex connectivity
between multiple reservoirs with feedback loops.

Despite progress, the full potential of RC is yet to be
realized, and the goal of a unified and accessible environment
for RC still eludes us. There is a need for more work in this
area to ensure that the full potential of RC can be explored
and utilized effectively.

C. PHYSICAL RC AND EXTREMELY EFFICIENT HARDWARE
As mentioned earlier, RC has reawakened and gained atten-
tion because of the fast development of PRC designs. Unlike
conventional RCs that suffer from the information processing
speed limit, PRCs can overcome this limit and process mas-
sive amounts of data in real-time. We review PRC models
that use different physical materials from different areas such
as electronics, optics, chemistry, and quantum. As more and
more PRC approaches are being proposed, there are several
open problems to be solved. For example, some PRCs get
rid of the massive recurrent connections in RNNs, yet they
are hard to design and tune (e.g., implementing a delayed
feedback loop of the single node reservoir is quite a chal-
lenging task). Similarly, setting hyperparameters for PRC is
not straightforward. In 2021, [316] proposed a framework to
evaluate what makes a good computing substrate, providing
a new perspective on how to build and compare physical
reservoir computers.

Another challenge lies in harnessing the full potential of
RC for machine learning applications and achieving highly
efficient hardware implementations. Very recently, this issue
has been explored and discussed in [317], where the future
directions of inquiry are segmented into three categories.
Simply put, the first category focuses on the theoretical
aspects of RC, aiming to drive efficient model design and
ensure reliable RC applications. This includes works like
reservoirmemorymachines [318], consistency capacity [319]
and curve fitting abilities [320] analysis. The second cat-
egory delves into the exploration of novel model designs
and applications of RC, with an aim to enhance computa-
tional performance and efficiency in tasks related to pattern
recognition. Possible solutions include (1) industrial applica-
tions such as adaptive practical nonlinear model predictive
control [321] and digital twins [322]; (2) integrating RC
with deep learning methods such as convolutional and graph
neural networks [262], [263], [323], [324], [325]. Lastly,
the third category is to keep investigating new architec-
tures and mechanisms in physical hardware that are suitable
for RC implementations. Latest research includes a new
FPGA-based RC for low-power pattern recognition [326],
networks based on the Schrödinger equation [327], and a new
cellular automata implementing rule (CA90) [328]. Overall,
these studies use a wide range of new hardware, showcasing
efficient RC-based methods and stimulating further growth in
this research domain.
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FIGURE 19. Self-oscillatory echo state network (SO-ESN) generating oscillations to reproduce desired waveforms without
any inputs (figure from [315], with permission). The figure shows the ratio (%) of reservoir that triggers oscillations with
regard to leaking rate (x-axis) and spectral radius (y-axis). A stable synchronization by oscillation can be seen in (E),
in which neurons 0 and 1 were randomly selected from the population.

D. RC WITH COGNITIVE SCIENCE AND NEUROSCIENCE
In terms of modelling RC in cognitive science and neuro-
science, we have reviewed several mechanisms of cognitive
brains and tried to bridge the concept of neuron population
to RC, such as mixed selectivity [24] which reveals that the
prefrontal cortex can generate high-dimensional mixed selec-
tive dynamics to assure the separability in the downstream
readout units. Future research directions include finding new
analogies for biological characteristics in RC, allowing for a
deeper understanding of brain’s and bodies’ mechanisms.

The domain of oscillation with synchronization, as previ-
ously discussed, is one area warranting further investigation.
In fact, progress has been made in using ESNs to produce
oscillatory outputs without any inputs, by mimicking the
central pattern generators (CPGs) shown to be involved in
rhythmic human movement [190], [191], [192], [193]. CPGs
are important circuits present in the neural system of live
beings. In fact, vertebrates have a spinal cord composed of
many of CPG circuits, and it was shown that the spinal cord
and mostly CPGs are sufficient for complex locomotion (e.g.,
walking and running in cats) [329], [330]. In 2023, Tham
and Vargas [315] show that even the most basic ESN can
be trained to reproduce the trajectory of dynamical systems
from simple sinusoidal and square waves to complex Lorenz
chaotic time series with high precision, without any external
excitation. Fig. 19 depicts the different probabilities of having
a reservoir that triggers oscillations in terms of both leaking
rate and spectral radius (i.e., the echo state property, ESP),
where pure yellow represents the highest probability. Here,
it is important to note that the ESP, by design, typically
restricts spontaneous oscillation, as it ensures that the reser-
voir’s internal state should eventually lose memory of its
initial conditions, hence creating a fading ‘‘echo’’ of past
inputs. This can be seen in the cases of Fig. 19C-D, that the

reservoirs’ states converge to 0 and remain stable afterward
(refer to damped oscillation in [315]). In contrast, as shown
in Fig. 19E, oscillations occur when the ESP is most likely
not to be guaranteed. Therefore, this study clearly indicates
the necessity for additional research, particularly regarding
the outcomes and implications when the ESP is not strictly
adhered to.

On the other hand, high-dimensionality is another fea-
ture shared by the encoding of neuron populations and RC
models. Recent studies have also proposed other approaches
to understanding the role of high-dimensionality in bio-
logical and artificial neural networks. Neural population
geometry, for example, is an approach that provides a use-
ful population-level mechanistic descriptor underlying task
implementation. Here, the geometry of representation can
be represented by high-dimensional neural activity, and it
is further observed that the neural activity lies on lower-
dimensional subspaces, i.e., the so-called intrinsic dimen-
sionality or neural manifolds [331]. Similar to the reservoir
responses, these lower-dimensional subspaces can then be
well-separated by using simple classifiers.

Although all of these remain in an early stage of devel-
opment, the investigations look promising for getting deeper
insights into both artificial and natural intelligence.

E. RC FROM AN EVOLUTIONARY PERSPECTIVE
In addition to artificial intelligence and neuroscience, some
researchers are exploring RC through an evolutionary lens,
which brings a fresh angle to the discussion. Natural sys-
tems exhibiting reservoir-like behaviors are prevalent in
nature (e.g., nonlinearities in liquids [11], soft robotic in
muscles [188], electric and chemical dynamics in neural
networks [116], [332], and brain mechanisms [2], [13], [24],
[28]). This suggests that such reservoirs might have evolved
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as advantageous structures for processing complex infor-
mation, similarly to other computational approaches such
as feed-forward networks [1], attractor networks [29], and
self-organized maps [333] that have been influenced by and
have influenced biology. As stated by [334], however, the
current evidence is not as compelling as the well-established
similarities between, for example, the structure of the human
visual system and deep convolutional neural networks.
From an evolutionary perspective, [334] argue that although
reservoir-like systems may initially emerge due to their sim-
plicity, their long-term persistence could be hindered by evo-
lutionary trends towards specialization and scaling. In other
word, as the reservoir evolves to specialize, integrate diverse
sensory information, or scale up, the generalizing properties
of the reservoir may become less advantageous compared to
highly specialized circuits. This leads to another question:
under what conditions might reservoirs maintain their orig-
inal architecture with redundant dynamics, and when might
they evolve towards more specialized configurations? Over-
all, understanding the evolutionary constraints is essential
in evaluating its potential and limitations both in biological
systems and engineering applications.

F. HYBRIDS AND NEW FOUNDATIONS
Last but not least, some recent works from 2019 have merged
RC with other systems or paradigms such as deep learn-
ing [49], [50], [92], [117], [218], [239], [262], [263], [323],
[324], [325]. Moreover, some authors have started investigat-
ing modifying the foundations (e.g., NG-RC [208]). In fact,
research on random networks [96], [252], [335], [336] shows
that there is a wide range of methods taking inspiration from
some core mechanics of RC to build novel approaches that
might challenge reservoir computing’s current foundations in
the near future.
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