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ABSTRACT A novel data structure that enables the storage and retrieval of linear array numeric data with
logarithmic time complexity updates, range sums, and rescaling is introduced and studied. Computing sums
of ranges of arrays of numbers is a common computational problem encountered in data compression, coding,
machine learning, computational vision, and finance, among other fields. Efficient data structures enabling
log n updates of the underlying data (including range updates), queries of sums over ranges, and searches
for ranges with a given sum have been extensively studied (n being the length of the array). Two solutions
to this problem are well-known: Fenwick trees (also known as Binary Indexed Trees) and Segment Trees.
The new data structure extends the capabilities for the first time to further enable multiplying (rescaling)
ranges of the underlying data by a scalar as well in log n. Scaling by 0 can be enabled, with the effect
that subsequent updates may take (log n)2 time. The new data structure introduced here consists of a pair of
interacting Fenwick tree-like structures, one of which holds the unscaled values and the other of which holds
the scalars. Experimental results demonstrating performance improvements for the multiplication operation
on arrays from a few dozen to over 30 million data points are discussed. This research was done as part
of Ajna Labs in the course of developing a decentralized finance protocol. It enables an efficient on-chain
encoding and processing of an order book-like data structure used to manage lending, interest, and collateral.

INDEX TERMS Cumulative sums, Fenwick trees, partial sums, prefix sums, segment trees.

I. INTRODUCTION
Consider the problem of storing arrays of numbers so that
three distinct operations are efficient
1) Incrementing individual values
2) Calculating cumulative sums over ranges of indices
3) Rescaling values over ranges of indices

Solutions that implement the first two operations in log n
time where n is the length of the list are known. Two of
the most commonly used algorithms are Fenwick Trees and
Segment Trees. This paper introduces a novel extension of
the Fenwick tree that supports the rescaling operation as well
in log n time, called a ‘‘Scaled Fenwick Tree’’ (SFT). The
idea behind the SFT is to store the underlying values in a
traditional Fenwick tree and to encode the scalars in a similar,
parallel, Fenwick tree-like data structure, with multiplication
instead of addition being the binary operation. The latter
Fenwick-like tree encodes the scalar multiples that have been
applied to ranges of the data itself. The two trees interact
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so that incrementing or rescaling a particular value involves
traversing both trees in an interactive manner.

Table 1 summarizes the comparative advantages and dis-
advantages of three implementations for storage and retrieval
of arrays: the naive approach (storing in a linear indexed
array), Fenwick Trees, and the new method introduced
here, Scaled Fenwick Trees. Each method has its strengths
and weaknesses, so the best choice for a given application
depends on the frequency and circumstances with which one
needs to perform each operation. The constants for the Scaled
Fenwick Tree are somewhat worse than those for the Fenwick
Tree for the simple query/range sum operations and updates.
However, the base Fenwick Tree requires super-linear time
for range rescaling while the SFT is the only method to
offer logarithmic time complexity in that case. Section VI
gives experimental data that agrees with the theoretical
complexities in Table 1.

Fenwick and Ryabko independently discovered what are
now known as Fenwick Trees (or, alternatively, Binary
Indexed Trees) in [1] and [2] (also see [3]). For both of
these initial papers, the motivation came from dynamic data
compression, in which the underlying data were frequency
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TABLE 1. Comparitive time/space complexity.

tables of some tokens in a stream of data. These problems
had been studied extensively in the parallel algorithms
community [4]. Recently, Bille et al. in [5] consider a data
structure storing dynamic partial sums that enables merging
adjacent array entries. The theory behind data structures
enabling efficient partial summation has been studied as well,
with Pătraşcu and Demaine providing tight bounds in [6],
and a thorough study of the general structure of storing
partial sums by Chaudhuri and Hagerup in [7]. A detailed
study of the practical implementation of solutions to the
range sum/prefix sum problem, including Fenwick trees and
various flavors of Segment trees, is found in [8].
Subsequently, Fenwick trees have foundmany applications

due to their simplicity and efficiency. They are somewhat
less general in capability compared to Segment Trees but are
more space efficient. Segment Trees are redundant, requiring
double space of a naive array or Fenwick tree. Furthermore,
because Fenwick trees rely on standard bit operations for
indices in twos-complement format, they are easy and
efficient to implement on a wide range of architectures. They
have found applications in computer vision and graphics
(see [9], [10]), statistical regression and kernel estimation
(see [11])
Let ai for i = 1 . . . n be a sequence of numbers that are to

be stored in memory. The most natural way to represent this
sequence is to store the raw values sequentially in memory
as an array B[i] for i = 1 . . . n, so that B[i] stores the
value ai. This representation has the merit that changing a
value ai for a particular index i is a constant time operation,
as is querying the data structure to determine the value of ai
(we are using an idealized model of computation in which
random memory access is constant time). It suffers two
drawbacks in addressing problems (1)-(3) however: both (2)
and (3) require O(n) time. To compute the sum of the first
k elements, one would need to iterate over all indices up to
k , accumulating the sum along the way. A similar process of
iterating over the entire array is necessary to scale the first k
elements.

One could instead store the values ai as partial sums,
setting C[i] to be

∑i
j=1 ai. In this representation, querying

a particular value in the array is also constant time (ai can
be reconstructed as the difference in consecutive values of
the array C), and computing a prefix sum becomes trivial.
However, updating a particular entry ai becomes expensive:
not only must the prefix sum C[i] be updated, but also all
subsequent values C[j] for j > i.
In short, there is a distinction between the underlying

encoded numerical sequence ai and the actual representation
in memory as a data structure. There are many different ways

to encode the sequence ai, with different time and space
trade-offs. In particular, if updating values is rare, but partial
sums are often required, representation C[i] above might
be preferable to B[i]. There are data structures that can
achieve logarithmic time complexity for both updates and
prefix sums, with the trade-off being that simple queries of
a particular value themselves also become logarithmic time.
One of the most well-studied and efficient was independently
discovered by Boris Ryabko and Peter Fenwick ([1], [2]), and
is now known as a Fenwick Tree or Binary Index Tree (BIT).
The idea behind a Fenwick tree is to find a happy medium
between the raw representation B[i] and the pure prefix
sum representation C[i] discussed above. If, instead, certain
well-chosen sums of ranges of values in the array are stored,
then to update or query a particular index, one only need to
accessO(log n) elements of the array. This enables updating,
querying, and computation of partial sums all in logarithmic
time.

There are some other operations to consider on our array
that are also enabled by Fenwick trees. Searching the array for
a particular prefix sum (i.e., finding the largest index i whose
prefix sum

∑i
j=1 ai is less than a given value) is important for

certain applications. This can also be done in logarithmic time
using a Fenwick tree. One might also want to consider range
updates: incrementing some prefix of the tree by a value d ,
effectively replacing aj by aj+d for all j ≤ i. This can also be
done, essentially by modeling the prefix sums as piecewise
linear functions of the index, and storing the constants and
coefficients in separate Fenwick trees (see [12]).
This paper focuses on the problem of scaling the array

values by a given scalar value x. The best-known method
for scaling an entire Fenwick tree is to iterate through all of
the values in the tree and scale each individually. This linear
time operation is actually faster than the most straightforward
method of using the Fenwick tree update method to update
each value, which isO(n log n) (since updates themselves are
O(log n)).

Here, a new data structure that enables logarithmic scaling
of any initial segment of the tree by nonzero scalars while
preserving logarithmic updates, prefix sums, and searches is
introduced. The idea behind the algorithm is to maintain two
interacting Fenwick tree-like data structures, one of which
(the ‘‘values array’’) stores the unscaled values themselves
and the other of which (the ‘‘scaling array’’) stores the scale
factors. The usual invariant of the Fenwick tree, that values
in the array store sums of the raw sequence values over
particular ranges of indices, is replaced with a new invariant:
each entry in the values array times the product of entries
encountered in the scale factor array as you traverse from the
node towards the root in a particular manner, is equal to the
sum of scaled values in a particular range. Scaling by zero
can be enabled as well, with a hit to the update operation
becoming O((log n)2).
This researchwas done as part of Ajna Labs in the course of

developing a decentralized finance protocol. In this protocol,
lenders deposit tokens in an order-book like structure indexed
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TABLE 2. Table of terms and definitions.

by price. Computing the amount of deposit above a given
price, or finding the price above which a given amount of
deposit sits, are both key problems. Furthermore, deposits
earn interest, but only if they are priced above a certain level,
which was the motivation for the rescaling operation.

II. SYMBOLS AND ABBREVIATIONS
For convenience, Table 2 contains a reference list of
commonly used symbols and abbreviations in the text. In all
cases, they are also defined or described when introduced.

III. REVIEW OF FENWICK TREES
The following discussion is influenced by Section IV of [13],
which has a detailed discussion of the arithmetic relationships
between indices that form the basis for Fenwick trees.
As Marchini and Vigna discuss, the term Fenwick ‘‘tree’’ is
a misnomer, as there is no single tree-like structure relating
the indices to one another. Instead, there are three distinct
iteration patterns that are used to increment, query, and search
through a Fenwick tree. Below is an overview of Fenwick
trees to fix the notation.

All arrays and sequences begin with index 1. This
is standard in the Fenwick tree literature, as the index
calculations become simpler to express in standard bit
arithmetic.

For an integer i, define λi be the place of the leftmost (most
significant) 1 in the binary expansion of i, and let ρi be its
rightmost (least significant) 1. For example, 44 is 101100 in
binary, so λ44 = 5 and ρ44 = 2.
Let a sequence ai, which is the underlying data to be

stored, encoded as a Fenwick tree V[i]. The principle of
the Fenwick tree is to store at index i in the array the sum of
the values from the index j with the least significant bit of i
cleared, up to index. Define FR(i) (the Fenwick Range of i)
to be the these indices:

FR(i) =

{
i− 2ρi

+ 1, i− 2ρi
+ 2, . . . , i− 1, i

}
(1)

V[i] = ai−2ρi+1 + ai−2ρi+2 + · · · + ai (2)

For example, if i is odd, FR(i) = {i} and V[i] = ai. If i
is a power of 2, then FR(i) = {1, 2, . . . , i} and V[i] is the
entire prefix sum up to and including ai. If i ≡ 2 (mod 4)
then FR(i) = {i− 1, i} and V[i] = ai−1 + ai.
The following facts are easily verified and are the key

observations explaining how Fenwick trees work:

FT.1 i ∈ FR(i)
FT.2 For all i, j, i ̸= j implies FR(i) ̸= FR(j). Also, either

FR(i) ⊂ FR(j), or FR(j) ⊂ FR(i), or FR(i)∩FR(j) = ∅

FT.3 j ∈ FR(i) if and only if i can be obtained from j by
iterating the update function upd(j) := j+ 2ρi.

FT.4 Let the interrogation function int(j) be the integer
obtained by clearing the least significant bit of j’s
binary expansion: int(j) := j−2ρj. The set of positive
integers up to and including i is partitioned into the
sets FR(j) where j is obtained by iterating int starting
at i and ceasing once obtaining 0.

The functions upd and int were introduced in [13] to
streamline the discussion of the procedures to update and
interrogate Fenwick trees. In order to increment an under-
lying value ai stored in a Fenwick tree (an ‘‘update’’ call)
while preserving the invariant 2, one can use property FT.3.
Increment the value stored in location j of the Fenwick tree
itself, V[i] for j being any iterate of the update function upd
starting at i. Let Upd(i) be the set of these indices obtained by
iterating upd on i. There are only at most log n such numbers
less than n, hence the iteration finished in logarithmic time.
Figure 1 illustrates an example of this. The indices are listed
in the bottom row of boxes, and the raw underlying data ai
in the row of boxes above that. The Fenwick tree data itself
is sorted above, with single solid arrows showing the upd
function and dashed arrows the int function. The double solid
arrows show the path that the update algorithmwould traverse
in order to increment the value stored at index 5.

Similarly, using FT.4, one obtains the prefix sum of the
underlying array by summing V[j] for j being any iterate of
int applied to i. There are at most log i such nonzero iterates.
An example is given in Figure 2.

IV. SCALING FENWICK TREES: NONZERO SCALARS
We now move on to the main result of this paper: enabling
efficient rescaling of ranges of the underlying data as well.
For example, suppose the elements in the underlying array
ai correspond to some statistical observations that fall in
particular buckets indexed by i. In order to translate the
observations in a probability distribution, one would need to
rescale the array by the sum of the entire array to ensure that
the sum of values is 1.

The most naive algorithm to do this for data represented
in a Fenwick tree would be of order n log n as follows. Let
f be the factor by which the user wants to rescale every
element ai. They could iterate through the array, adding
(f − 1) · ai to the element ai for i = 1 · · · n. Since the
query and update operation is O(log n) and they would need
to do this n times, the entire process would be O(n log n).
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FIGURE 1. Update item 5 by adding 1.

FIGURE 2. Interrogate sum items 1 to 15.

An obvious improvement would be to just iterate directly on
the underlying tree itself, scaling each element V[i] by the
factor f , in O(n) time.

Starting with any data structure for representing arrays ai
that supports range sums and updates, one can augment the
data structure with a global scalar s, which is interpreted
as ‘‘all elements of array ai are scaled by s’’. This would
enable global rescaling even more simply and efficiently
in O(1) time. To compute the sum over any desired range,
one simply scales the sum by s (relying on the distributive
property). To increment or update ai by a value z, call the
increment/update function on the underlying data structure
with s−1

· z, which works fine as long as s is nonzero.
One can generalize this even further by storing the scaling

factors themselves in a Fenwick tree-like data structure in
parallel to the data that stores the partial sums. Augment
the Fenwick tree data V[i] with scaling factors S[i] for
i = 1 . . . n. Intuitively, the value in S[i] is regarded as a
scaling factor that has been applied to all members of the

underlying data ai for i ∈ FR(j). The Fenwick tree invariant
(2) that V[i] =

∑
j∈FR(i) aj is replaced with a more complex

invariant involving the scaling factors. Define the scale factor
of element i as the product of the factors stored in S[j], as j
traverses the Fenwick tree from i to 0 along the same paths
used to update the tree:

scale(i) =

∏
j∈upd(i)

S[j] (3)

We then maintain the invariant:

S[i] * V[i] =

∑
j∈FR(i)

aj (4)

The V[i] array and S[i] array act much like Fenwick
trees, but with additional interwoven structure. The V[i] are
partial sums of the underlying aj data up to a scalar factor. The
S[i] encode the scaling factors themselves. The quantity
by which one should scale V[i] is obtained by starting
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FIGURE 3. Scaled Fenwick tree.

with S[i] and iterating up the tree to the root node,
accumulating the scaling factors multiplicatively.

Figure 3 shows a representation of a scaled Fenwick
tree analogous to the figures presented earlier for standard
Fenwick trees. The scaling factors are listed below the values
and are initially all set to 1.

Examples:
1) Suppose n = 2m for some m, and the user wants to

compute the prefix sum of values up to 2k for k ≤

m. In a standard Fenwick tree, the value stored in
V[2ˆk] is the entire prefix sum of the underlying
data values up to and including 2k : V[2ˆk] = a1 +

a2 + · · · + a2k , so the value is simply V[2ˆk]. In a
scaling Fenwick tree, this value is scaled by the product
of the scale factors stored in the S array as traverses
along the path up the tree from node to the root, along
the increment paths from 2k to 2m. These are the powers
of 2 between those two indices, so the return value is
S[2ˆk]*S[2ˆ(k+1)]*...*S[2ˆm]*V[2ˆk].

2) Again, let n = 2m, and suppose that the users wants to
compute the prefix sum of values up to 2k + 2j for some
j < k ≤ m. In a standard Fenwick tree the value stored in
V[2ˆk+2ˆj] is the sum of values between 2k + 1 and
2k + 2j: V[2ˆk] = a2k+1 + a2k+2 + · · · + a2k+2j . One
can add this to V[2ˆk] to reconstruct the entire prefix
sum, so the value returned is V[2ˆk]+V[2ˆk+2ˆj].
In a scaling Fenwick tree, these values need to be scaled.
As the algorithm proceeds up from 2k + 2l towards the
root, it first passes through the nodes 2k+2j+1, 2k+2j+1

up to 2k + 2k−1.
Let the arrays V[i] and S[i] satisfying invariant (4) be

given. One can then construct an entire prefix sum to i in
a manner similar to the standard Fenwick tree prefix sum
algorithm. As in a standard Fenwick tree, the entire prefix
sum is broken into sums over at most log n subintervals.
The new wrinkle is that each of these subinterval sums
must be multiplied by the appropriate scale factor as in (4).

These scale factors are stored in Fenwick tree structure S[i]
that parallels the structure of the partial sums V[i], and
so they themselves can be accumulated (multiplicatively)
alongside the partial sums. Because the factors increase
as one moves down the tree, it’s more efficient to write
this algorithm as moving from the root of the tree down
towards the leaves rather than the usual Fenwick tree prefix
sum implementation, which iterates from the deeper nodes
towards the root.

Below is Python-like pseudo-code implementing the prefix
sum algorithm, given tree data V[i] and S[i], and index
index. The variable i traverses the tree downwards from
the root towards the target index for the prefix sum. This is
accomplished by reconstructing index bit by bit, starting
with the most significant bit, in contrast with the usual
Fenwick algorithm, which starts with index and clears it
bit by bit, starting with the least significant bit. The new
algorithm increments the sum at the same indices as in the
standard Fenwick tree prefix sum algorithm, but in reverse
order. It also needs to visit some intermediate nodes, however,
to track the scale factor itself. For example, in order to
compute the prefix sum stored at index 5, the algorithm
needs to consider not just the values and scales stored at
indices 4 and 5 as in a standard Fenwick tree, but also the
scale factor stored at 6 (as well as 8, and any higher power
of 2).

In order to increment a specific value in the scaled
Fenwick tree at index index, one needs only to update the
values in Upd(index). In the standard Fenwick tree, this
is done by traversing the tree upwards using upd starting
at index, but in this case, how much to increment the
value V[i] by is unknown, because it’s been scaled by
scale(index) which is the product of all the S[j] as j
traverses the path from index to the root along the update
path. One could compute this explicitly at the outset, but
this would require a redundant traversal. Instead, reversing
direction and traversing downwards from the root to index
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LISTING 1. Prefix sum.

avoids this redundancy. Accumulate the scale factors in
runningScale along the traversal. Because the value v is
added to the value at index i, which is included in the partial
sum scaled by runningScale at location ii+ j in the code
below, when incrementing the value array, it is necessary to
divide by runningScale first.

LISTING 2. Increment.

Now consider the algorithm to scale a prefix range of
values itself. To scale every entry up to index by a number
factor, one could partition {1, . . . ,index} into subranges
as in FT.4. Each one of these subranges can be implicitly
scaled by applying the scaling factor to the appropriate entry
in the scaling array S[j]. This works well for maintaining
invariant (4) for index itself, but alone would cause the
resulting data to violate the same invariant (4) for other
indices that overlap but aren’t contained in 1 . . .index. For
example, rescaling the values up to index 5 by only changing
the scale factor stored in entries 4 and 5 alone is insufficient:
subsequent queries for the sum up to 6 would still reflect the
unscaled value at index 5, as this is stored as part of the sum
in index 6. The correct algorithm needs to adjust the values
stored in these overlapping indices as well.

This can be done by not only traversing upwards through
the indices by flipping successive least significant bits to 0 in
the binary expansion of index as done in increment,
but by also including intermediate indices that have a
single 0 flipped to a 1. The code mult below does this
by starting with j as the least significant bit of index
and iteratively shifting it left. The variable runningSum
stores the total increase in sum below index in the tree
at each loop. If index has the same bit set to 1, execute

the ‘‘if’’ part (lines 6-8), which scale the subtree below
index and accumulates in runningSum how much they
were incremented. Also flip the bit of index to 0 as in
increment. If the corresponding bit in index is set
to 0, the index is in the overlapping interval case similar
to index 6 in the example above. Then increment the
corresponding value array element by runningSum, and
update runningSum itself by the corresponding scale factor
so that it remains accurate further up the tree.

Figure 4 shows an example of this operating on the SFT
presented earlier. The red boxes and blue boxes are the nodes
visited when multiplying the 9th entry by 3. Red boxes
correspond to the ‘‘if’’ clause, while blue boxes correspond
to the ‘‘else’’ clause.

LISTING 3. Multiply.

Below is the pseudo-code for the inverse prefix sum
function as well. This searches the tree for the least index
whose sum up to and including it doesn’t exceed target.
This operates very similarly to the analogous search function
for standard Fenwick trees, with the addition that it accounts
for the scale factor along the way.

V. SCALING FENWICK TREES: ALLOWING FOR ZEROS
The previous section describes a system for scaling ranges
of an array of numbers by a nonzero scalar. What happens
to this algorithm if passed zero into the mult function? This
will traverse through certain nodes in the tree, multiplying the
entries in the scaling array to 0 – which, of course, merely
sets them to the value 0. This implicitly encodes the invariant
that effectively says ‘‘all values below this in the tree are 0’’.
The only mechanism in the above algorithms to modify the
scaling array further is an additional call to mult, which can
only multiply the entries of the scaling array by subsequent
scaling values. Since there is nothing one can multiply 0 by
to get a nonzero value, there is no possible way to increment
an entry to a nonzero value once it has been set to zero in
this way. Another way to see this problem is on line 10 of the
pseudo-code for increment, which divides by the value in
the scaling array. If this value has been set zero, the algorithm
will fail with a division by 0.

The issue is this division in increment. The existing
algorithm does work to scale ranges by zero but breaks
subsequent calls to increment values in that range. In the
increment code, the variable runningScale tracks the

79208 VOLUME 11, 2023



M. Cushman: Scaled Fenwick Trees

FIGURE 4. Scaling Fenwick Tree Index 9 by 3.

LISTING 4. Inverse query.

implicit scale factor that is applied to all entries in the V[i]
array below it in the tree. In order to allow a particular
element to be incremented below that, one could reset any 0’s
encountered in the scaling tree to 1, and then set its value array
entry to 0, as well as the scale factor of all of its children to 0.
This is simply another way of encoding the data ‘‘all entries
below this index are 0’’. This reset will allow the division to
proceed.

In order for this to work, O(log n) entries in the scaling
array need to be set to 0. As the process traverses down
the tree, it will continue to encounter these 0, then setting
their children to 0 as well. The resulting algorithm has time
complexity O(log2 n).
It is possible to modify these algorithms (at least in the

nonzero scalar case) to enable the preservation of zeros. Add
a new function, obliterate, that can force a value to
be 0 ‘‘on the nose’’. This addresses the issues with the first
example above. One can further modify the other functions
that change state, increment and mult, so that they
preserve zero values. The following is a useful alternative
characterization of a given index’s value ‘‘being zero’’ in an

LISTING 5. Increment allowing zeroes.

SFT: compute the value at index i by taking the difference
between two adjacent prefix sums. These sums are computed
by summing the appropriate intervals given in FT.2, scaled
by the appropriate factors as encoded in the tree. For two
adjacent indices i − 1 and i, many of these intervals (and
the associated scale factors) will coincide. The difference
comes in index i itself: the prefix sum up to indices including
i will include as a term the sum over FR(i) (computed as
scale(i)*V[i], while that for i − 1 will include the
sum of over FR(i − j) where j is a power of 2 less than
2ρi (each summand computed as scale(j)*V[j]). The
scale factors scale(j) that apply to all of the intervals in the
latter sum are products of the scale factors encountered as
one traverses from index j to the root. These are precisely
S[j] times the same set of scale factors that appear in
the product expansion of scale(i). Therefore, an alternative
characterization of an index i having value 0 in the SFT is:

V[i] =

∑
a<ρi

S[i-2ˆa]*V[i-2ˆa] (5)
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By forcing this equality, one can set the value at index i to
0. Furthermore, if one can always update the tree in such a
way that this equality continues to hold after the update if it
did prior, then zero values across updates will be preserved
across updates.

Equation 5 dictates how to write obliterate: just
compute the right-hand side, and put it V[i]. However,
there is one subtlety: after zeroing out the target index,
those changes must propagate up the tree to the other nodes
that contain i in their range, and do so in such a way that
preserves zeros. The key insight is that when modifying a
value V[i] in the SFT by adding or subtracting a given
quantity, this difference can propagate up the tree node
by node, computing what would needed to change each
node’s parent which is then incremented appropriately. The
algorithm stores that difference and continues iterating up the
tree. As the algorithm traverses the tree upwards to modify
node i, it will first have visited one of its children, which will
be one of the terms on the right-hand side of (5). Then, modify
V[i] by S[i] times the delta applied child by, which will
preserve criterion (5).

Below is pseudo-code for the obliterate operation.
Lines 2-6 below compute the difference between the left-hand
side and right-hand side of (5). Lines 7-11 then apply this
difference to the left-hand side of (5) and propagate the
difference up the tree.

LISTING 6. Prefix sum.

It would be tempting in line 9 of obliterate to
simply set runningSum = runningSum*S[i] – after
all, distributing S[i] over V[i]+runningSummakes this
look obvious. However, this would violate the rounding
criteria, as the precise change in V[i] must be preserved to
propagate up the tree further, as discussed above.

Function increment needs to change as well and must
iterate node by node upwards towards the root to ensure that
the differences to every node are propagated.

LISTING 7. Prefix sum.

The function getScale computes scale(i) by accumulat-
ing the product of entries in S traversing the int tree from i to
the root.

Similar tricks are at play for mult. Recall from the
discussion of mult above that, in addition to applying the
new scale factor to various elements of the scaling array S,
specific overlapping values of the values array X also need
to be updated as well. Line 4 below computes that delta, and
the while loop starting on line 9 applies it consistently to the
overlapping intervals.

LISTING 8. Multiply.

VI. EXPERIMENTAL RESULTS
Experimental results comparing the time performance of
Scaling Fenwick Trees to both a naive implementation and
a standard ‘‘Base Fenwick’’ tree implementation of the array
interface, including updating, interrogation, and scaling are
shown in Figure 5 and Figure 6. The raw numerical values
are included in Table 3 and Table 4. The data show a
large decrease in scaling times for the Scaling Fenwick
Tree. This improvement is offset by small increases for
updates as compared to either alternative implementation.
For prefix sum queries, the scaled Fenwick tree performs
slightly worse than the baseline Fenwick tree, but both
tree implementations significantly outperform the naive
implementation. This pattern is true both for average and
worst-case experimental statistics. All of these empirical
results are consistent with the expectations based on the
theoretical analysis of the algorithms (namely, that SFTs
would offer the best performance for rescaling, with the
tradeoff of slightly worse performance for updates and range
sum queries).

Python3 code for the Scaled Fenwick Tree and both
alternative implementations is available as a reproducible run
on Code Ocean in [14]. While the particular experimental
results cited here are for a particular desktop machine (which
is described below), the results available in [14] agree with
these results and can be easily reproduced on Code Ocean.

In considering the reported run-time results, it’s essential
to bear in mind the specific details of the machines and
the implementations used in the experiments. The observed
timing, for instance, could be influenced by factors such
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TABLE 3. Mean execution time comparison for naive versus baseline fenwick versus scaled fenwick.

TABLE 4. Maximum execution time comparison for naive versus baseline fenwick versus scaled fenwick.

as the memory model, including cache utilization and
cache coherence. Modern processors make extensive use of
caches, and data locality can significantly affect performance.
Therefore, an algorithm that makes efficient use of cache can
often outperform a theoretically faster algorithm that does
not. In the case of the Python implementation, the presence
of automatic memory management, or garbage collection,
could also impact performance. Garbage collection pauses,
often unpredictable, can add significant overhead in terms of
time, particularly for programs that create and discard many
objects.

Nonetheless, we see consistent behavior across a wide
range of array sizes, from a few dozen to ten of millions of
indices. The behavior of the average times and the extremal
(worst case) times are consistent as well. This provides
assurance that these theoretical and empirical results are
accurate representations of a typical implementation.

Furthermore, SFTs have been implemented in the
Ethereum Virtual Machine using Solidity, a programming
language designed for implementing smart contracts running
on the EthereumVirtualMachine, as part of the Ajna Protocol
open source project. Run time complexity in Solidity is best
measured using gas utilization, and the memory model is
very different than a typical x86 based architecture. Despite
the entirely different environment and constraints, the results
obtained from this implementation were consistent with the
theoretical expectations, demonstrating SFT’s adaptability

FIGURE 5. Plot of Log Average Execution Time (ms) Versus log2(n) .

and consistency of the results discussed above. While the
particular empirical results discussed in detail here are
influenced by many system and implementation factors, the
fundamental efficiency of the algorithm as predicted by its
theoretical time complexity manifests consistently across
diverse platforms.

Figure 5 is a log plot of the average execution time in
milliseconds versus array length for all nine pairs of operation
‘‘update,’’ ‘‘query’’ and ‘‘multiply’’ with implementation
‘‘naive,’’ ‘‘baseline Fenwick,’’ ‘‘Scaled Fenwick.’’ These
were tested using the Python implementation discussed above
on an AMD Ryzen 9 5950 3.7 GHz running Ubuntu Linux
version 22.04. The x-axis is log2 of the array length, so the
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FIGURE 6. Plot of Log Maximum Execution Time (ms) Versus log2(n) .

longest arrays were of length 225 = 33, 554, 432. Each table
value is an average of 100 runs for the paired operation and
implementation, with the index randomly sampled up to the
array length. Identical operations (values and array indices)
were used for each of the three different implementations for
each operation.

The maximal data among the same 100 runs for each
condition are contained in Figure 6. The worst case execution
time of the scaled Fenwick tree for these three operations for
arrays of length 225 = 33, 554, 432 are under a third of a
second.

VII. CONCLUSION
Scaled Fenwick Trees are a novel data structure and a suite
of algorithms that enable efficient manipulation of numerical
array data. Updates, range sums, searches, and multiplying
arbitrary ranges of values by nonzero scalars can all be
implemented in time logarithmic in the lengths of the array.
The data structure is space redundant and requires storing
two numerical values for every array entry. This research
was motivated by a particular problem in the management
of a database of loans and lenders for a blockchain-based
decentralized finance application. Similarly, structured prob-
lems present themselves in coding and compression, data
analysis, filtering and sorting, and other areas, however,
so this research may find application well beyond its original
motivation. Experimental results show that this algorithm
enables sub-second updates, range sums and range rescalings
for linear numerical array data of tens of millions of data
points on common desktop consumer hardware.

Scaled Fenwick Trees do come with some drawbacks.
There is space redundancy in the form of an additional scaling
array, so that twice the memory usage is necessary to hold
the same number of data points as compared to either a
straightforward naive array or classical Fenwick tree. As with
classical Fenwick Trees or Segment Trees, updating an array
value requires logarithmic, not linear, time in the array length.
Finally, compared to a classical Fenwick tree, both updates
and range sums require additional computation to incorporate
the values in the scaling array so that while both methods are
log-time complexity, the constants are worse for the scaled
Fenwick tree.

Overall, for efficient implementation of all three oper-
ations: updates, range sums and range rescaling of linear
array date, Scaled Fenwick Trees offer signficant advantages
with reasonable offsetting disadvantages. In applications that
require frequent rescalings in particular, Scaled Fenwick
Trees can be a good choice of data structure to store and
process data.
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