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ABSTRACT The present work, which describes the development of a novel, portable, low-cost, effective,
hybrid-actuator rehabilitation exoskeleton, aims to present a solution for the rehabilitation of functional
finger injuries. In this robotic system, a simple and ingenious actuator is designed on the synchronizing wheel
of each finger joint, which enables the independent passive training of each finger joint with the actuation
of the motor. In addition, three damping shafts with leaf springs as another type of actuator, corresponding
to PIP, MIP and DIP joints, are used as damping devices to supply the damping force for active training.
Moreover, a gesture-based signal recognition algorithm, including a preprocessing algorithm, a feature vector
extraction algorithm, and a clustering algorithm, is designed and integrated to serve the system for further
automatic controllability. By utilizing this hybrid actuator mode, the robotic exoskeleton is able to train
each finger joint independently in a passive training mode and maintain the damping force output within
acceptable ranges for different levels ofmuscle strength. Importantly, with further optimization and upgrades,
we deduce that this system has excellent potential applications for finger rehabilitation.

INDEX TERMS Rehabilitation, signal processing, pattern recognition, stroke, robotics.

I. INTRODUCTION
In recent years, the incidence of stroke is gradually increasing
around the world, which leads to stroke turning into the
second cause of death and the third most significant source
of disability [1], [2]. This current situation is inextricably
related to hypertension [3], [4], [5], hyperlipidemia [6], [7],
[8], the growth in the number of older people, and the decline
in muscle strength and physical mobility of elderly people.

The associate editor coordinating the review of this manuscript and

approving it for publication was Santosh Kumar .

Even when the patient’s condition improves significantly
with the help of modern medical technology, most stroke
survivors suffer from various degrees of limb motor dysfunc-
tion. A major symptom of stroke is hemiplegia, a common
sequelae of impaired movement of the limbs. It seriously
reduces the quality of life for stroke survivors and places
a significant financial burden on the families involved and
the entire community. In particular, functional injury of the
hand is one of the typical sequelae of stroke. Clinical med-
ical studies have verified that a certain intensity of training
can be effective in helping patients regain the use of their
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limbs. In addition, the ability to relearn in a functional
area of the brain can be effectively enhanced, accompa-
nied by rehabilitation of motor limb function; otherwise,
there is an elevated potentiality to cause permanent function
damage [9], [10], [11].

Up to now, finger rehabilitation training still adopts the
‘‘one-on-one’’ mode, which needs a doctor to take care of
a patient. First, the doctor assesses the motor function of
the damaged limb. Afterwards, an independent rehabilitation
training program can be developed. Finally, various training
movements can be performed accurately with the guidance
and assistance of a physician. It is extremely traditional and
costs plenty of medical resources. However, this mode has
numerous shortcomings: First, the training efficiency and
training intensity are considerably affected by the subjectivity
of the rehabilitation physician, so the training effect primarily
depends on the level and experience of the rehabilitation
physician [12]. Second, the rehabilitation training mode of
‘‘one on one’’ is highly traditional and inefficient aiming at
the ever-increasing aging population, which is likely to cause
a large waste of medical resources [13]. Third, traditional
rehabilitation training modalities do not accurately control
and record training parameters such as speed, trajectory, and
intensity, and it is difficult to quantify and objectively evalu-
ate the training and rehabilitation effects. Fourth, it is also
difficult to optimize the training parameters, which is not
conducive to an in-depth study of the neural rehabilitation
laws of patients. Finally, it is not conducive to the formulation
of the best rehabilitation training programs.

In recent years, the development of robotics technology
has received increasingly attention in rehabilitation train-
ing [1], [14], [15], [16]. Among them, the development and
promotion of finger rehabilitation robots (FRRs) provides
an effective way to break the limits of the above-mentioned
treatment modes. August et al. [17] designed a finger telere-
habilitation training system using P5 data gloves. The system
uses data, gloves and specific games to perform rehabilita-
tion training on the hand and monitor and analyze muscle
movement function in real time. Thielbar et al. [18] designed
a single-finger telerehabilitation training virtual reality sys-
tem suitable for home rehabilitation training. The system
can test and record flexion and extension of the fingers and
wrists, allowing rehabilitation physicians to monitor patient
training progress and communicate with patients while pro-
viding real-time assistance. Li et al. [19] reported fiber Bragg
gratings (FBGs) embedded in silicone tubes for finger joint
movement monitoring. This technology is incorporated in
the finger rehabilitation robots, which can precisely con-
trol the finger rehabilitation movement of stroke patients.
Golomb et al. [20] designed a virtual reality-based remote
hand function rehabilitation therapy glove. This virtual glove
can track and record hand movement trajectories on a web-
cam and perform data analysis. The system is simple in struc-
ture, powerful in versatility and low in cost. Although various
finger robot rehabilitation functions have been created, the
current situation is that there are still some unavoidable

drawbacks limiting these FRRs to apply in research institutes
and not suitable for home or community applications [21].
The common drawback of FRRs is that the mechanics are
too simple for active training. Inconvenience of operation
and cumbersome and costly instrumentation remain to be
addressed. And the recovery effect is less pronounced, result-
ing in poor utility. Taking into account the demands of
different stages of rehabilitation, the design requirement of
FRRs is to be able to provide different training modes [22].
Commonly, the training modes are divided into two cate-
gories, active training and passive training [23], [24]. The
passive training mode is appropriate for finger paralysis or
spasticity. In this state, the fingers are unable to make any
independent movement. Accordingly, the fingers are driven
by the FRRs and complete the prescribed training actions,
recovering the activity of the finger joints gradually. Accord-
ingly, the fingers are driven by the FRRs and complete the
prescribed training actions, gradually restoring the activity
of the knuckles. Correspondingly, the other training mode is
the active training mode, which is more appropriate for the
recovery phase with a certain strength and range of motion
of the fingers. The fingers are required to overcome a variety
of resistance strengths while flexing or extending voluntarily
throughout the training. This mode helps the muscles perform
strength training and promotes the recovery of motor function
in the fingers. Thus, the aim of this study is to develop a
controllable, bi-modal and portable FRR to meet the needs of
patients at various stages of recovery. In this design, a direct-
current motor (DCmotor) is applied to provide a bidirectional
force for passive training. It is a common, stable, and easy
to integrate type of actuator which appeared in the previous
FRRs [25], [26], performing the transmission system. Active
training was applied using a controllable damping shaft with
leaf springs. It has a tiny size, easy installation, low cost,
quick response, and excellent controllability. To improve
the flexibility of passive training, an AI signal recognition
algorithm (GRA) based on sEMG is put forward for ges-
ture recognition, which can be used to analyze and train the
acquired data for gesture classification. The proposed system
is able to accurately perform independent training of all three
knuckles.

II. EXPERIMENTAL SECTION
A. MECHANICAL DESIGN
A fully functional rehabilitation system for dysfunctional
finger training is constructed and the mechanical structure of
the system is shown in Figure 1. The system mainly consists
of a parameter sensing subsystem, a control and transmission
subsystem, an arm brace, a palm support component, and a
data processing subsystem. Briefly, the sensing subsystem
is responsible for the real-time monitoring and feedback of
parameters such as force, angle, position, etc.. The control
and transmission subsystem included a 32-Bit microcon-
troller (STM32F303 MCU purchased from ST semiconduc-
tor company) and its peripheral function circuits, a stepper
motor and transmission belt. We used 3D printing technology
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FIGURE 1. Illustration of the hybrid-actuator exoskeleton: (a) the flow
direction of the black arrow is the process of passive control for single
finger, (b) Circuit design of STM-32 based microcontroller, (c) the
complete hybrid-actuator exoskeleton for four-fingers rehabilitation.

to make exoskeleton parts, which contained synchronizing
wheels I, II, and III linked to the spindles of the proxi-
mal interphalangeal point (PIP), middle interphalangeal point
(MIP), and distal interphalangeal point (DIP), respectively.

To run the whole system smoothly, the control and trans-
mission subsystem controls the peripheral function mod-
ules through receiving instructions from the micro-computer
ARM11 for resource allocation. The data processing subsys-
tem processes the parameter data returned by the peripheral
sensor devices. In addition, the palm training position is
changed from down to up, allowing the entire palm to be
placed on the supporting components to relieve the fatigue
caused by the training process. To ensure that the remaining
four fingers except the thumb can be trained as efficiently
as possible, the size of the system should be reduced. Thus,
depending on the different injured fingers of the patient,
a chute is designed to change the position of the motion to
improve the practicability of the system.

B. ACQUISITION MODALITY
The main component of the acquisition device is a Sur-
face EMG (sEMG) Acquisition Wire-less Transmission Sys-
tem®, which consists of a base station and multichannel
electrodes. The base station equipped with a self-contained
rechargeable battery achieves a data transmission range of
100m. The electrodes can simultaneously collect a maximum
of 16 channels of surface myoelectric signals. These data are
sampled at a rate of 3 kHz with a common mode rejection
ratio of greater than 110 dB and a baseline noise of less
than 0.4 µV (RMS). The base station transmits this data to
the laptop responsible for data collection via a proprietary

wireless communication protocol. After completing the col-
lection of one set of gesture data from the experimenter,
a short rest period is required for the second acquisition in the
same way. Since the whole acquisition process is continuous,
the collected data includes data from both resting and active
states of the hand. Therefore, effective preprocessing has to
be performed to obtain the sEMG signal corresponding to the
gesture.

C. DATA ANALYSIS METHOD
There has been increasing interest in applying learning algo-
rithms to process sEMG signals to improve the accuracy
and dexterity of FRR in the passive training model [27],
[28], [29]. To distinguish different types of gestures with
multiple degrees of flexion of the finger joints, we use
multiple processing steps such as denoising preprocessing,
eigenvalue extraction, and feature vector reconstruction to
precisely analyze the raw data. All original signals selected
for classification research were obtained from the surface
electromyography device, purchased from NCC Electronic
Co., Ltd (Shanghai, China). In this work, there are eight ges-
tures (flexion and extension of the ring finger, middle finger,
index finger, and little finger), theoretically corresponding to
eight kinds of EMG signals, each of which is preprocessed
through a filter and smoothers to reduce the interference
of power frequency and impulse noise for a higher signal-
to-interference ratio, named as characteristic signals R1-R8.
Correspondingly, the sEMG signal can be used as a power
signal from the point of view of signal analysis. The represen-
tative indexes including macro vector set and micro vector set
can be calculated on each of the eight preprocessed signals of
gestures, and then concatenated to form a multi-dimensional
feature matrix. This feature matrix is provided to a non-linear
discriminant analysis classifier. The specific construction of
the method is as follows.

III. RESULTS AND DISCUSSION
A. SEMG SIGNAL PREPROCESSING ALGORITHM
The raw signal data for sEMG signals are nonlinear, tiny-
amplitude bioelectrical signals generated when muscle tissue
expands or contracts. The presence of some noise information
in the signal is due to the stochastic variation of the signal, the
effect of the acquisition environment, and the differences of
individual experimenters. For continuous signals containing
non-action parts, efficient segmentation should be performed
first to obtain useful parts. In fact, since the intensity of
muscle movement is proportional to the amplitude of the
signal, the indicator of signal energy can reflect the period of
finger activity. Accordingly, we can integrate the continuous
signal data in a period of time in a square, and the integral
formula is given by Eq. (1)

Ex =

∫ t0+T

t0
|Sx (t)|2dt =

∑
|Sx (n)|2 (1)

here, E is the signal energy for a period of time T, x is the
energy value at a certain time T. Sx is the continuous signal,
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and n is the length of the signal data. Furthermore, we used the
sliding rectangular window (the width was set as θ , and the
sliding step was set as θ /2) to calculate the energy value. For
improving the accuracy and reducing distractions, the starting
threshold α and ending threshold β were set, respectively,
which were adjustable depending on the actual collected data
of different gestures. When the absolute value of E is greater
than the absolute value of α in period of time T, the starting
time of the first rectangular window can be used as the starting
point of the action part of the signal. As opposed to this, when
the absolute value of E is less than the absolute value of α

in period of time T, the starting time of the first rectangular
window can be used as the ending point of the action part of
the signal. Therefore, the feature signals R1-R8 are converted
into a pre-processed signal, named F1-F8, which can be used
for pattern recognition in the next step.

B. CHARACTERISTIC VECTOR EXTRACTION ALGORITHM
As explained above, the sEMG signal can be considered as
a power spectral density. In addition, the processed signal
Fi(F1-F8) contains plenty of feature information correspond-
ing to each gesture, which is necessary to be extracted.
Therefore, six representative characteristic indexes, including
the peak position (PP), mean absolute value (MAV), inte-
gral electromyogram (IEMG), peak value (PV), wave length
(WL), and zero crossing (ZC), were calculated from the sig-
nal data Fi, and they were shown in Figure 2(b). Considering
the complexity of EMG signals, including low frequencies,
low values, and differences, the remaining signals should be
of interest in feature extraction. In other words, it is necessary
to pay close attention to the microscopic features lurking in
the signal. However, PP characterizes the individual local
locations of the signal, while IEMG,MAV,WL, and ZC char-
acterize the macroscopic features of the time domain, which
can all be considered as macroscopic features. Thereupon,
wave-let packet analysis, which can provide a more refined
decomposition scheme, was used to express the microscopic
characteristics (contains time and frequency domain char-
acteristics) lurking in the signals. Following closely, the
structural information in the data can be extracted in a
multiscale manner. According to the orthogonality and self-
similarity principle, wavelet packet transform with ‘dmey’,
was applied to decompose the data F into three layers (see
Figure 3). The sequence of characteristic signal space domain
can actually be mapped to the sequence of new space, called
frequency bands, which is constructed by the basis function
of wavelet packet through wavelet packet analysis [30], [31],
[32]. Therefore, the signal processed by the wavelet packet
analysis can be further extracted in micro space including
both time and frequency domains. Accordingly, the signal
energy Ej of frequency bands in the scale space can be set
as a set of features for signal recognition, which was given by
Eq. (2)

Ej =

∫
|Sj(t)|2dt =

∑
k

|Sj (k) |
2 (2)

where j ( j = 1, 2, . . . , 8) is the number of frequency bands
of signal energy, Sj(Figure 3(d)) is rebuilt from the power
spectral density of each frequency band node, formed by
wavelet packet decomposition, and k stands for data length.
The stability of the feature index obtained by wavelet packet
decomposition is very important for the accuracy of sub-
sequent pattern recognition. Accordingly, we introduce the
minimum entropy criterion to obtain the optimal subspace
to ensure the stability of the feature index. Thus, the most
stable state of information of the characteristic signal can
be set as another important characteristic index, which can
be calculated by the sum of the optimal subspace entropy
(SOSE) as Eq. (3) shown. And the entropy can be calculated
by Eq. (4).

SOSE =

∑
E(st ) = −

∑
st2 log(s2t ) (3)

E(st ) = −s2t log(s
2
t ) (4)

here, st is the coefficient of the signal Fi projecting onto an
orthogonal wavelet basis of the optimal subspace. Accord-
ingly, the local microscopic features and macroscopic fea-
tures of the processed signal Fi, a total of 15 characteristic
indexes (SOSE, IEMG, MAV,WL, ZC, PP, PV and E1 to E8),
were extracted from each signal. Here, SOSE1 ∼SOSEn are
the sum of the optimal subspace entropy of the signal F1 ∼Fn.
IEMG1 ∼IEMGn are the integral electromyograms of the
signal F1 ∼Fn. MAV1 ∼MAVn are the mean absolute values
of the signal F1 ∼Fn. WL1 ∼WLn are the wave length of the
signal F1 ∼Fn. ZC1 ∼ZCn are the zero crossing of the signal
F1 ∼Fn. PP1 ∼PPn are the wave length of the signal F1 ∼Fn.
PV1 ∼PVn are the wave length of the signal F1 ∼Fn. [E11,
E1n]∼[ E81, E8n] are the entropy of the signal F1 ∼Fn.
Thus, the characteristic vectors were constituted via the

arrangement of indexes in a row generating the characteristic
matrix MT (Eq. (5)), as shown at the bottom of the next
page, which can characterize the flexion and extension of
each finger.

C. CLUSTERING AND EXPERIMENTAL EVALUATION
To verify the ability of the developed rehabilitation system
in the identification of different gestures for better passive
training, the Hierarchical Cluster Analysis (HCA) and Prin-
cipal Component Analysis (PCA) were adopted to cluster
and classify the complex and high latitude data for self-
recognition [33], [34]. As mentioned above, the characteristic
indexes extracted from the signals of gestures can be formed
as a high-latitude matrix M (15 indexes × 8 gestures ×

5 replicates). HCA is used as a statistical method for mul-
tivariate variables on M, to explore the similarity among
feature vectors. As shown in Figure 4, all eight kinds of
signal samples corresponding gestures with 40 trials (The
same gesture sample is repeated 5 times) were divided
into eight branches at the total Euclidean distance 0.3 a.u..
In addition, the branches cluster into two groups at a total
Euclidean distance of 2.7 a.u. and finally converge at a total
Euclidean distance of 5.3 a.u. It can be seen that the groups
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FIGURE 2. (a) Flow chart of signal processing, (b) the original signal and
its partial enlarged view with conventional indexes, (c) the original
signals of different gestures.

FIGURE 3. (a) The original EMG signals and its wavelet denoising result.
(b) The three tree-based decomposition with dmey wavelet packet
transform. (c) The wavelet coefficient of nodes at layer three. (d) The
restructured signal for each node of the third frequency band.

represent the gesture signals in the two states (flexion and
extension), respectively. Therefore, all samples can be accu-
rately distinguished from each other without error in the HCA
dendrogram.

In addition, PCA was applied to decrease the high dimen-
sionality of the datamatrixM through projecting the intercon-
nected and complex dimensions onto new and independent
dimensions, called components (PCs). From this, we obtain
that the top 10 PCs occupy 92.34% of the total variance
of the matrix, and the top 3 PCs occupy 44.59%, 23.17%,
and 19.83%, respectively. The results are shown in Figure 5.

FIGURE 4. Hierarchical cluster analysis (HCA) for identification of eight
kinds of gesture signals. All the samples were run in quintuplicate trials.

FIGURE 5. PCA three-dimensional score plot of 40 trials from eight kinds
of gesture signals with excellent separation in the first three dimensions.

It turns out that the difference between gesture signals is not
only related to the state of action, but also to the amount
of muscle activity, the level of fatigue, and other indica-
tors. Moreover, the distance between the same action state
and gestures with different fatigue levels is shorter than the
distance between different action states and gestures with
distinct clustering phenomena, which is consistent with the
HCA results.

IV. EXPERIMENTAL EVALUATION
A. REPEATABILITY AND ACCURACY OF THE
RECOGNITION ALGORITHM
To evaluate the practical application of the proposed method
for classification in signal samples. 40 samples from each
finger at each state (flexion or extension) were detected by the

MT =


SOSE1 IEMG1 MAV1 WL1 ZC1 PP1 E11 · · · E81 PV1
SOSE2 IEMG2 MAV2 WL2 IR2 PP2 E12 · · · E82 PV2

...
...

...
...

...
...

...
. . .

...
...

SOSEn IEMGn MAVn WLn IRn PPn E1n · · · E8n PVn


=

[
MT T

1 ,MT T
2 , · · · ,MT T

n

]T
(5)
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TABLE 1. The statistical results of recognition.

proposed method repeatedly with the male 28 and female 12.
So, there were 40 × 2 × 4 =320 independent samples named
‘A’ in total. In the premise of each finger can be selected,
40 samples named ‘B’ were randomly selected (each kind
of gesture signal were run in quintuplicate trials) from ‘A’
for recognition in accordance with the method based on PCA
and HCA. As can be seen from Fig. 4, all the 40 samples ‘B’
can be accurately distinguished from each other without error
in the HCA dendrogram. Furthermore, we also conducted
experiments on the remaining 280 samples (‘A’ - ‘B’).

The table 1 shows that five samples are identified incor-
rectly with 98% accuracy. It indicates that the proposed
method has a commendable repeatability and accuracy.

B. PASSIVE TRAINING CONTROL
In this mode, a stepper motor combined with a mechan-
ical valve is applied as the main driver. The user adjusts
the mechanical valve based on the trained finger joint. For
instance, when the middle interphalangeal point and the
distal inter-phalanx point need to be trained, the user can
fix the mechanical valve with screws and further lock the
synchronizing wheel |, so that the stepper motor can only
train the specific finger joint. The mechanical valve can be
loosened when the entire finger joint needs to be trained.
Thus, after giving a certain angle, the stepper motor can
drive the conveyor belt to train the entire finger joint. During
training of the entire finger joint, the rehabilitation system
can automatically control the motor for passive training in
cooperation with the acquisition device and the proposed
gesture recognition algorithm. Accordingly, passive training
experiments were conducted (see Figure 6). Passive training
is really to control the motor to work at a constant speed
and to drive each joint to rotate. From a different perspective,
the exoskeleton experiment is an angle experiment in which
the exoskeleton drives the finger joints to rotate. Since the
MCP of the exoskeleton is similar to that of the finger,
we performedMCP angular rotation experiments on the index
finger to verify the accuracy of the mechanical structure and
recovery motion of the exoskeleton.

According to the MCP joint rotation experiment
(Figure. S3), the maximum rotation angle can be obtained as
68.27◦, according to the free flexion angle of human fingers

FIGURE 6. The change of MCP angle with training time.

as 70◦, and the Angle error rate is 2.47%, which is less than
5%. Therefore, the exoskeleton designed in this paper can
meet the requirements of rehabilitation training.

C. ACTIVE TRAINING CONTROL
In this mode, a damping axis with a leaf spring is employed
as the resistance component, and the exoskeleton part of the
recovery system is actuated by the fingers to perform flexion
or extension actions while overcoming the resistance. The
torque of the damping shaft can be regulated to provide a
range of resistances to provide the patient with a requirement
to gradually increase the intensity of the training of the finger
muscles. The relation between the amount of deformation of
the leaf spring and the torque is shown in Figure 7. Linear
regression analysis indicates that the damping torque has a
good linear relationship with the amount of deformation of
leaf spring in the range from 0.1 mm to 14.5 mm. However,
as the deformation of the leaf spring is further increased, the
upward trend of the resistance increases exponentially. This
is related to the coefficient of the leaf spring. At the same
time, the maximum resistance reaches 26.7 N at 12.8 mm
within the elastic range of the leaf spring. Generally, the
fingers of patients with hand dysfunction or muscle damage
can withstand a maximum force of 10 N, which is within
the linear range provided by the damping device. From this,
it is shown that the damping device employed here meets the
intensity requirements of active training.

To assess the actual training effect and stability of this
mode, four different levels of deformation, including 1mm,
2.5 mm, 4 mm, 5.5 mm were selected for analysis. Figure 8
shows that the forces measured by a thin film pressure sensor
applied to the PIP during the finger bending. Distinctly, the
force exerted on the PIP shows small fluctuations during
the flexion motion, with mean values close to 3N and 6N
for deformations of 1 mm and 2.5 mm, respectively. Nev-
ertheless, when the deformation is larger than 3 mm, and
in particular 5.5 mm, the force exerted on the PIP shows
significant fluctuations with mean values of approximately
9N and 12N, respectively. This phenomenon is due to the
shaking of the experimenter’s fingers while grasping as the
damping force is increased. From this, it can be concluded
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FIGURE 7. The relationship between the damping force and the amount
of deformation. Error bars represented the standard deviations of three
independent measurements.

FIGURE 8. The force applied on PIP with different levels of deformation.

that the stability of the force exerted on the PIP gradually
deteriorates as the amount of deformation increases. And the
damping shaft with leaf spring used here can afford a stable
damping resistance below 12N for finger grasping in active
training mode.

V. CONCLUSION
In summary, a controllable, portable, effective hybrid-actuator
exoskeleton was developed for finger rehabilitation applica-
tions. This system was powered by a direct-current motor
for passive training and using the damping shafts with leaf
springs to provide the damping force for active training.
Compared to traditional passive training, real-time gesture
intent recognition algorithm was proposed to automatically
identify the bending state of different fingers for better train-
ing. Accordingly, the rehabilitation system exhibited good
selectivity to the sEMG signals via extracting the characteris-
tic vectors, including macroscopic features and microscopic
features. To achieve independent training of each finger
joint while making the system lightweight and structure
simplified, an underactuated mechanism, which combines
with the conveyor belt and a mechanical valve designed on

the synchronizing wheel, can accurately transfer the driving
to the finger joints. In addition, the damping force supplied
by the damping shaft with leaf springs within the linear range
is a stable active training mode. The damping force output
with deformations below 4 mm can satisfy the intensity
requirement of patients troubled by hand dysfunction or
muscle damage. Thus, the proposed system with the novel
gesture recognition method can be expected to be applied
for finger rehabilitation training. With further optimization
and upgrading, we believe that the rehabilitation system will
have a potential practical value in rehabilitation facilities,
communities, and home care.
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