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ABSTRACT Autonomous Vehicles have become the focus of research around the world. Meanwhile,
the continuous development of various emerging technologies in recent years has paved the way for the
realization of fully autonomous driving. Furthermore, high-precision navigation and positioning systems
are crucial to self-driving cars. For navigation and positioning technology of autonomous vehicles, Global
Navigation Satellite System (GNSS)/Inertial Navigation System (INS) integrated navigation is of great
significance to realizing high-precision navigation and positioning of autonomous vehicles. This paper
researches and summarizes the development and current situation of GNSS, INS, and GNSS/INS integrated
navigation technology. GNSS/INS integrated navigation algorithms are divided into four different models of
combination methods: Ultra tightly Coupled, Tightly Coupled, Semi-tightly Coupled, and Loosely Coupled.
Besides, the advantages and disadvantages of these four integrated navigation algorithms are compared and
discussed. The characteristics of different GNSS/INS coupling models are summarized in the last chapter,
and the potential research direction of GNSS/INS in the future is proposed.

INDEX TERMS Autonomous vehicles, Global Navigation Satellite System, inertial navigation system,
GNSS/INS integrated navigation.

I. INTRODUCTION
Positioning and navigation technology contain abundant
social functions and substantial economic benefits, playing
an indispensable role in every field of society. Achieving
high-precision navigation and positioning is increasingly
essential in this rapid autonomous driving development
era. To improve the safety and efficiency of transportation,
improving the positioning methods to perform high-precision
positioning of vehicles is needed [1], [2], [3], [4], [5], [6],
[7], [8]. Comparedwith Global Positioning System(GPS), the
Global Navigation Satellite System (GNSS) has the advan-
tages of low cost, high accuracy, and no accumulation of
positioning errors with time. These advantages can improve
the observation ability by getting correlative observations and
eliminating errors.
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Inertial Navigation System (INS) can obtain the navi-
gation parameters such as three-dimensional (3D) velocity,
position, and attitude information through their gyros and
accelerometers. Their positioning accuracy will not be
affected by the exogenous environment. However, GNSS
has some problems, such as the signal being easily blocked
in the moving state, low data update rate, and poor
reliability in the dynamic environment. INS positioning
errors accumulate continuously over time. Thus, the inte-
grated navigation of GNSS/INS can complement each
other and improve the system’s overall navigation accuracy
and reliability. Therefore, GNSS/INS integrated navigation
technology is crucial to high-precision automatic driving
positioning.

Nowadays, GNSS mainly includes four typical satellite
navigation systems: GPS, Galileo, GLONASS, and Beidou
navigation satellite system (BDS) [9], [10], [11], [12],
[13], which particularly realize the function of real-time
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positioning of objects. Beidou-2 navigation satellite system
(BDS-2). Beidou-3 navigation satellite system (BDS-3).
Theoretically, when the distance between satellite and target,
satellite coordinate, and satellite clock error is known, the
target coordinate can be calculated by GNSS observation
value and basic observation equation. Still, the actual
electromagnetic wave transmission will be affected by the
relativistic effect, ionospheric error, tropospheric error, and
multipath effect. So it is necessary to use the model to
eliminate the influence of error and calculate the accurate
target coordinate.

To solve these problems, an optimized GNSS multipath
elimination method Advanced Trend surface analysis-based
Multipath Hemispherical Model (AT-MHM) is now adopted.
This method is extended to double-difference (DD) mode,
which expands the scope of the application. AT-MHM has
strong noise resistance and solves the overfitting problem
caused by multipath anisotropy [14].

However, suppose the distance is far or the target object
is moving. In that case, the satellite signal power level is
reduced, and the accuracy of the satellite’s position, velocity,
and time would also be reduced [5], [15], [16], [17], [18],
[19], [20]. When an automatic driving vehicle is moving, the
positioning accuracy of GNSSwill be affected. This may lead
to the failure to reach the destination timely and accurately.
In INS, the Inertial Measurement Unit (IMU) can measure
the three-axis angular velocities and three-axis accelerations
of the current vehicle and calculate the speed and position
of the object in the navigation coordinate system. It will
not be affected by signal transmission and has high stability.
However, the high-precision INS system is expensive, which
leads to an increase in the cost of the automatic driving
system. The low-precision INS system is inadequate to
meet the requirements of positioning accuracy. Therefore,
an automatic navigation and positioning method with high
precision and low cost is needed.

The existing GNSS/INS integrated method adopts the
optimal estimation algorithm based on Kalman Filter (KF).
This algorithm fuses GNSS and INS positioning and
navigation information and combines them with KF [18],
[21], [22], [23], [24], [25], [26] to estimate and eliminate
the errors of INS system speed, position, and attitude. The
adaptive Kalman filter (AKF) integral [27], [28], [29], [30],
[31], [32], [33] achieves long-term and stable high-precision
positioning. The analysis demonstrates that the combination
can generate high-frequency navigation information. It can
maintain high precision and low cost in long and short-
term navigation. It also can promote the popularization of
high-precision and low-cost automatic driving navigation
systems and solve the high-precision positioning problem of
the automatic driving system.

Although the GNSS/INS integrated navigation technology
is very mature, cars continue to travel in more complex
environments (underground tunnels, viaducts, woods, and tall
buildings). The signal is easily blocked in a complex envi-
ronment, resulting in low positioning accuracy. Therefore,

positioning and navigation technology must be continuously
researched and updated for the constantly changing driving
environment. In recent years, many GNSS/INS optimization
combination methods have emerged. For example, the accu-
racy of the GNSS/INS integrated algorithm is affected by the
pitch and headingmounting angles of IMU in INS. Therefore,
the Dead Reckonings (DR) approach utilizes the integrated
attitude and distance traveled of GNSS/INS to estimate IMU
mounting angles. The integrated position fusion of DR and
GNSS/INS is adopted to improve positioning accuracy [34],
[35], [36], [37]. Due to INS being expensive, a low-cost,
simple inertial sensor system, the Reduced Inertial Sensor
System (RISS), is proposed to work with Precise Point
Positioning (PPP).

On the one hand, the Tightly Coupled (TC) integration
mode is selected, and PPP network error model correction is
used. On the other hand, the difference between the predicted
value and the measured value of GNSS is taken as a measure-
ment error by Extended KF (EKF). The filter fuses systematic
errors and measurement errors to generate the final estimated
position, velocity, and attitude [38], [39], [40], [41], [42].
Research and development of autonomous vehicles would
become a global trend, and automatic driving technology
would significantly improve the efficiency, convenience, and
safety of the whole road and traffic systems [43], [44], [45],
[46], [47], [48]. Therefore, the development and current
situation ofGNSS, INS, andGNSS/INS integrated navigation
technology are studied and summarized in this paper. The
writing motivation of our paper is to enable scholars to
quickly understand the development and current situation of
GNSS/INS integrated navigation. A comprehensive review
of the typical developments of GNSS, INS, and GNSS/INS
integrated navigation is the main content of this paper. Our
paper is organized as follows: In Section II, we summarize
a large number of research on autonomous navigation and
positioning technology and briefly present the development
history of autonomous vehicles navigation and positioning
technology from GNSS to GNSS/INS integrated navigation.
In Section III, we give a detailed summary of the development
status of GNSS and INS, respectively. In Section IV, the listed
GNSS/INS integrated navigation algorithms are divided into
four categories: Ultra-tightly Coupled, Tightly Coupled,
Semi-tightly Coupled, and Loosely Coupled, elaborating the
specific content of these algorithms in detail. In Section V,
we compare and analyze the listed GNSS/INS integrated
navigation algorithms and summarize the characteristics of
different algorithms. The potential future research directions
of GNSS/INS integrated navigation have been prospected as
follows.

II. APPLICATION PROGRESS IN AUTONOMOUS VEHICLE
OF GNSS AND GNSS/INS
Automatic driving mainly involves three aspects: positioning,
perception, and planning control. This paper specifically
discusses the development of automatic driving positioning.
Since the mid-1980s, GPS has provided a foundation for
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automatic driving positioning technology, promoting the
development of automatic driving [49]. In 1995, Schön-
berg et al. discussed the fusion of internal dead reckoning
navigation and periodic absolute position measurements
and used Differential GPS (DGPS) in experiments of
unmanned cars [50]. In the same year, Hermann et al. put
forward the On-The-Fly (OTF) GPS positioning algorithm to
accurately determine the vector between GPS antennas and
evaluated the positioning capability of the OTF algorithm.
The results demonstrate that the OTF algorithm could be used
for relative motion positioning and achieve high-precision
vehicle positioning [51].
In the 21st century, due to the increasingly complex driving

environment, automatic positioning technology has gradually
developed from GNSS to GNSS/INS integrated. In 2010,
Angrisano et al. researched GNSS/INS integrated navigation,
pointing out that GNSS can no longer achieve continuous
and stable positioning in urban areas, and tried different
GNSS/INS integrated methods [52]. In the same year,
Liu et al. proposed using Rauch Tung Striebel Smoothens
(RTSS) algorithm to improve the accuracy of Land-Vehicle
Navigation (LVN) to solve the loss of GPS signals and rapid
increase of INS errors with time in urban navigation [53].
In 2016, Lombard et al. proposed a steering wheel angle
control algorithm that adapts to the speed of the car. This
algorithm can achieve the goal that the driverless car’s
curve and straight line work by simultaneously controlling
the vehicle’s steering wheel angle and acceleration. And
realizing the flexible driving of the self-driving car [54].
Zhang et al. aiming at the problems of GNSS data delay and
long solution time of integrated update in GNSS/INS tight
integrated navigation system, proposed a KF mathematical
model which transfers the error state vector to the current
moment in one step after completing the delayed observation
update. Compared with the standard Kalman model, this
model has the same navigation accuracy, but the delay
in outputting navigation results is less, which ensures the
real-time performance of integrated navigation results [55].
In 2018, Wang et al. adopted Allan Variance (AV) analysis
technology instead of the general auto-regressive processes to
establish an error model. Their results demonstrated that the
overall accuracy of the combined algorithm combined with
Differential GNSS (DGNSS) was 18%, 8%, and 38%, higher
than that of the traditional algorithm in position, velocity, and
attitude, respectively. The overall accuracy combined with
Single Point Positioning (SPP) was 15%, 75%, and 77%
higher than that of the traditional algorithm in position, veloc-
ity, and attitude, respectively, which significantly improves
the positioning accuracy of the vehicle [56]. In the same
year, Lyu et al. proposed a vehicle-borne jammer detection
and location algorithm based on binary tree Support Vector
Machine (SVM) classification technology. The algorithm
was tested in urban canyons and residential areas, respec-
tively. The conclusion is that when the training data set covers
the interference signal characteristics, the correct localization

rate can reach more than 90%. The average positioning error
can be less than 30 m. The algorithm can continuously enrich
the training data set and improve the positioning perfor-
mance through learning, which has reference significance
for realizing the high-precision positioning of unmanned
vehicles [57].
Ning et al. aiming the dynamic error and observation of

gross error of GNSS/INS loose coupling, an optimal Radial
Basis Function (RBF) neural network-enhanced adaptive
robust KF method was proposed to reduce the influence
of errors. Firstly, the method took the test statistics of
Mahalanobis distance as the judgment index to realize
fault detection and used the optimal principle to train an
optimal RBF neural network strategy online. Experiments
demonstrate that this method’s two error elimination rates for
the complex urban environment were 92% [58]. Li et al. from
Tsinghua University proposed a reliable and high-precision
TC Real-time kinematic (RTK)/INS algorithm, which was
not affected by cycle slips and large pseudo-range noises.
It had better stability and higher accuracy than RTK
and the traditional RTK/INS close-coupling method [37].
In 2019, Wei Jiang et al. proposed a vehicle navigation
system integrating GNSS, INS, and Optical Velocity Sensors
(OVS). In this system, the measured value of GNSS, the
pseudo-range and pseudo-range rate difference derived from
INS, and the velocity difference derived from INS and OVS
were used as the measurement input of the system filter
to obtain an accurate navigation solution. The fault-tolerant
Fault Detection and Processing (FDP) algorithm was used
to detect the fault. The results demonstrate that the accuracy
of the integrated system was higher than that of the Loosely
Coupled system algorithm and had significant advantages
in fault tolerance and accuracy [59]. In the same year,
Elsheikh et al. proposed to combine real-time Single-
Frequency Precise Point Positioning (SF-PPP) with low-cost
INS to provide continuous and accurate navigation solutions
for the problem of low positioning accuracy of GNSS
SF-PPP due to frequent signal degradation and blocking.
The test results demonstrate that the PPP/INS system
could maintain the horizontal sub-meter Root Mean Square
(RMS) accuracy in outdoor and suburban environments [60].
In 2021, Li et al. proposed a semi-tight coupling mode
of multi GNSS PPP and Stereo Visual Inertial Navigation
Systems (S-VINS), which realized the data sharing between
the two navigation systems, and significantly improved the
vehicle positioning ability. The data demonstrate that the
3D positioning accuracy of GPS, GPS+GLOANSS, GPS+,
and GPS+GLOANSS+BDS was 49.0%, 40.3%, 45.6%, and
51.2%, which was higher than the original solution. The
semi-tight coupling model of Multi-GNSS PPP/S-VINS 3D
positioning accuracy had been improved by 41.8-60.6%
compared with multi GNSS PPP/INS [61].
This section discusses the application and development

of GNSS/INS Integrated Navigation in automatic driving.
TABLE 1 demonstrates some cases of GNSS/INS integrated
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TABLE 1. Classical algorithms for GNSS/INS integrated navigation.

navigation. According to the indicators in the table, it can
be seen that the positioning accuracy of the above-integrated
navigation has been significantly improved compared with
GNSS, and the positioning error is also reduced [68], which
is of great significance for the realization of high-precision
positioning of unmanned vehicles. These combinations are
different modes, and the different coupling degrees would
inevitably affect the accuracy. For example, the combination
in [64] adopts an ultra-tight combination, so the accuracy
of the combination would be improved compared with
other TC modes. However, analyzing the table carefully
reveals that all varieties have some usability flaws that
need to be improved. Synthesizing the above analysis,
realizing the high-precision positioning of the automatic
driving vehicle remains a complex problem. The application
of GNSS/INS Integrated Navigation in automatic driving
still needs to be investigated through continuous experiments
in the future. At the same time, real-time fault detection
of GNSS/INS integrated navigation is necessary [56], [69],
[70], [71], [72], [73] to improve the stability of system
operation and adapt to the rapid development of automatic
driving.

The second section introduces the general application of
GNSS and GNSS/INS in automatic driving in recent twenty
years.

III. A DETAILED RESEARCH OF GNSS AND INS
RESPECTIVE TECHNICAL DEVELOPMENT PROCESS
Through browsing the above parts of the article, it could
be seen that the development background and history
of GNSS/INS integrated navigation, understanding of the
development of GNSS/INS integrated navigation. To let
scholars have a deeper understanding of integrated navigation
at the level of technical methods, this section screens out
the typical cases that can reflect the development of GNSS
and INS in the last 20 years. It summarizes them from the
technical level so that scholars can quickly understand the
development status of GNSS and INS.

A. CLASSICAL ALGORITHM OF GNSS
Aiming at the multipath effect of GNSS carrier phase data
affecting the final positioning accuracy, a ray-tracing method
was proposed to eliminate the multipath error [74]. The
known geometry of the satellite reflector antenna is used to
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FIGURE 1. The vector equation of a plane [74].

FIGURE 2. The geometry of the intersection of a line and a plane [74].

estimate the number of multipath to correct the multipath
error of GNSS carrier phase data. To establish the multipath
estimation model, it is necessary to understand the geometric
principle of ray tracks. That is using the vector method
to determine the plane equation (Fig. 1 to determine the
reflection surface) and the intersection point of the line and
plane (Fig. 2 to trace the rays transmitted from the satellite
through the reflection surface to reach the antenna).

As demonstrated in Fig. 1, n is the normal vector of
the plane. To determine whether the given point of m is
on the plane, it only needs to determine whether the dot
product of the vector of (m-a) and n is 0. As demonstrated in
Fig. 2, the nearest point r to antenna p should be found first.
The position difference vector (r-p) should be calculated to
estimate the multipath possibility of satellite signals. Then,

it is necessary to find the antenna image position q and
determine the line between s and g, s and q. Finally, according
to the position of the four corners of the reflective surface,
it is necessary to judge whether s is located on the reflective
surface. By knowing the geometry of the reflecting surface,
reflecting process, antenna type, and the whole multipath
process of receiver tracking loop to determine the influencing
factors (relative permittivity of the reflector, incidence angles,
polarization efficiency state, correlator spacing, the distance
between the receiving antenna and the Reflector, a wave-
length of the carrier) of multipath error characteristics in
GNSS carrier phase measurement. Reference [74] developed
a GNSS carrier phase data simulator successfully, which
can generate multipath error characteristics, and compared
the experimental multipath error of GPS signal under three
conditions of metal, water, and brick building with the model
multipath error. The actual value of the steel plate reflection
experiment was consistent with the predicted value, with
a slight difference of only 2-5 mm. It is difficult for the
water surface experiment simulator to imitate the reflection
condition of the water surface at any time. Still, the law
of multipath amplitude and frequency changing with time
is summarized. A suitable alignment exists between the
amplitude of the actual value and the predicted value of the
brick house reflection experiment.

In the research of ionospheric time delay prediction, [75]
proposed to use of the linear time series model and Autore-
gressive and Moving Average (ARMA)-based ionospheric
Total Electron Content (TEC) multivariate prediction model
to predict the ionospheric changes to achieve good satellite
navigation. The model is divided into two parts: linear and
ARMA predictions. This paper uses the 8-year GPS data of
the 24th solar activity cycle of the Bengaluru GNSS station
for experiments. Geomagnetic activity, extreme ultraviolet
(EUV) irradiance, and periodic oscillation are taken as the
model’s input parameters. Firstly, the ionospheric linear TEC
model considers the factors such as periodic oscillation, solar
EUV irradiance, and geomagnetic activity and adopts hourly
Vertical Total Electron Content (VTEC) value to improve the
model’s performance in short-term and long-term changes in
the estimated area. Secondly, ARMA is a time series and
prediction model, which is usually a traditional short-term
and long-term TEC prediction model and is suitable for
estimating the spatial changes of the ionosphere under
geomagnetic disturbance and static conditions. The past
prediction residuals and Moving average (MA) components
of this model will affect the performance of this model.

Aiming at the problem of satellite failure caused by
the multipath effect and Non-Line-Of-Sight (NLOS), [76]
proposed using consistency check to detect and eliminate
failed satellites, to realize high-precision positioning of
automobiles. This study uses two multi-fault detections
and exclusion (FDE) algorithms (exhaustive and greedy
searches). Exhaustive searches and greedy searches respec-
tively represent the theoretical and practical performance of
FDE based on consistency test. In exhaustive searches, if the
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FIGURE 3. Dual-thread parallel real-time clock estimation algorithm [78].

satellite calculation test statistics in the view can’t pass the
chi-square test, one ormore satellitesmust be excluded to find
the healthymeasurement value. Greedy search for the optimal
solution circularly or locally, assuming only one polluted
satellite. If the satellite calculation test statistics in the view
cannot pass the chi-square test, a subset will be generated, and
one of the surviving satellites will be excluded. If multiple
subsets pass the second fault detection, the subset with the
smallest test statistics is selected. The original data of the
GNSS experiment and the actual ground data provided by
the SIP-Ades project are used in [76] to conduct experiments
and to evaluate the performance of the two algorithms
in urban canyons. The experimental results demonstrate
that the FDE based on the greedy algorithm can achieve
good positioning in the central valley of the city, and both
the exhaustive and greedy searches can achieve sub-meter
average lateral positioning accuracy. But the lateral errors
of the two FDE are more than 10 meters for deeper urban
canyons.

To solve the problems of low-cost GNSS poor accuracy
and inconvenient use in urban areas, [77] proposed to
apply the EKF system to fuse the absolute positioning
data of low-cost GNSS receiver with the relative data of
four-wheel speed sensors, a steering wheel angle sensor, and
a lateral acceleration sensor, to realize the high-precision
positioning of vehicles during GNSS interruption. Firstly,
the system extracts the original data from all sensors, and
then it will need preprocessing to convert these data into
meaningful variables. The next step is data fusion. The
preprocessing results are input into the EKF refined by the
bicycle kinematics model and Ackerman steering geometry
model to realize the best estimation of the output system.
It is concluded through experiments that the positioning
accuracy of GNSS receivers with a lower cost of this system is
improved. The accuracy of Root Mean Square Error (RMSE)
can be increased by 50%. The 95th- percentile of the distance
error distribution is increased by 50%, and the maximum
distance error is increased by 75%.

To solve the problem, the traditional undifferenced (UD)
clock estimation method is inefficient and cannot meet the

demand of multi-constellation GNSS (multi-GNSS) real-
time clock estimation. Reference [78] proposed a dual-thread
parallel algorithm composed of two threads with different
computational efficiency. It was applied to multi-GNSS
real-time clock estimation to meet the demand for multi-
GNSS real-time PPP technology. At present, real-time
clock estimation methods are divided into the UD method,
Epoch-Differenced (ED) method, and Mixed-Differenced
(MD) method [79]. The UD method uses UD observations
to estimate unknowns. The ED method eliminated the
ambiguity by the difference of observation values between
two consecutive periods. The MD method should combine
these two methods: ED phase observation and UD code
observation. As demonstrated in Fig. 3, the slow thread
of the dual-thread parallel algorithm adopts the traditional
UD method, and it usually takes a long step to update
the receiver clock, ambiguity parameters, and satellites.
By analyzing the multi-GNSS data of 75Multi-GNSS Exper-
iment, International GNSS Service, and Crustal Movement
Observation Network of China stations, it was verified that
the dual-thread parallel algorithm estimates the clock of
multi-GNSS. Its clock accuracy is basically the same as
the UD method, and its efficiency is much faster than the
ED method.

With the rapid development of satellite navigation sys-
tems, satellites have realized the transmission of multi-
frequency signals. In the research of multi-system data
integration, [80] proposed a multi-GNSS triple-frequency
PPP model based on non-combined observation to realize
multi-system data integration. When the third frequency
was introduced into the PPP model, a particular linear
combination should be selected. A new inter-frequency
deviation was generally adopted to compensate for the
pseudo-hardware delay on the third frequency of the model.
Reference [80] used GALILEO-only PPP, BeiDou-only PPP,
and GPS/GALILEO/BDS PPP. The experimental results
demonstrate that the triple-band PPP model has better
positioning results than the dual-band PPP model because
of the slight delay amplitude of the time-related phase
hardware in GALILEO and BDS. In the dynamic mode, the
3D positioning accuracy decreased by 58.17%, 71.50%, and
59.95%, respectively.

To solve the problem of GPS data fusion precision
reduction and position jump caused by the multipath effect,
[81] proposed a particle weighting Monte Carlo Localization
(MCL) model integrating GPS measurement data to solve the
problem of GPS data fusion precision reduction. The MCL
method is a localization algorithm that combines different
sensors [82]. This method is based on a particle filter, and
samples are weighted according to the likelihood calculated
from available devices [83]. Compare these two methods
based onAdaptiveMonte Carlo Localization (AMCL), which
combines GPS/IMU and LiDAR measurement. These results
demonstrate that if the GPS measurement accuracy is low,
the particles added by MCL would generate clusters, thus
realizing the correct positioning of the vehicle.
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FIGURE 4. Integrated navigation structure diagram [84].

In the research of GNSS-free high-precision positioning of
self-driving vehicles, [84] used two EKFs and a particle filter
to match lidar scanning. It solves the positioning problem
of self-driving vehicles without GNSS. As demonstrated in
Fig. 4, this equipment provides accurate speed and direction
estimation for Informed Adaptive Monte Carlo Localization
(IAMCL). It adopts a simple one-wheel model [85]. IAMCL
realizes the estimation of the absolute attitude of an
automobile and the processing of an offline map by lidar.
EKF2 provides high-frequency and smooth pose estimation
for automobiles. The experimental results demonstrate that
this method has high stability in avoiding robot abduction
in particle filter positioning, and the pose estimation meets
the requirements of stability and high speed. The lateral
average attitude error ranges from 0.1 m (60 km/h) to 1.48 m
(200 km/h), and the longitudinal average ranges from 1.9 m
(100 km/h) to 4.92 m (200 km/h).

A probabilistic laser positioning method based on an
improved MCL algorithm is proposed in [86], which
increases the particle weight by adding GNSS information
in the Kalman filter to achieve high-precision positioning
of autonomous vehicles. The method in [86] continuously
uses GNSS data. By changing the weight of particles and
trying to inject new particles, the problem of robot freezing
problem can be avoided. In this method, several parameters
of two positioning sources are considered. The stability of the
particle filter is kept, and the direction error is considered. The
method is based on the original adaptive AMCL algorithm.
Add GNSS data to the loop, carrying out LiDAR Likelihood,
GNSS likelihood estimation, new particle weight calculation,
and other steps. Finally, it generates new particles. The exper-
imental results demonstrate that this new automatic driving
positioning technology can achieve a good positioning effect
in urban and suburban environments. It provides a solution for
applying low-cost sensors in different complex environments.

Because of the complexity of autonomous navigation of
unmanned vehicles caused by the easy occlusion of GNSS
signals in the complex environment of forest, [87] proposed
a state estimator combining GNSS, Attitude and Heading
Reference Systems (AHRS), and odometry based on LiDAR

FIGURE 5. Block diagram of the proposed navigation solution [87].

sensors to solve the positioning problem. In the LiDAR-
based odometry solution, the relative motion of vehicles is
estimated by the trunks of the trees. This method adopts
a robust adaptive fusion algorithm based on an unscented
Kalman filter. The vector field is combined with the optimal
probabilistic planner regarding vehicle motion control. The
navigation scheme diagram is demonstrated in Fig. 5. The
sensors’ data are combined with a robust and adaptive version
of Unscented KF (UKF), which outputs and estimates the
position and speed of the sensor. The controller’s output
is micro-aerial vehicle (MAV) rollφ, pitchθ , yaw rateψ̇ ,
and vertical velocityvz. The experimental results demonstrate
that the multi-sensor fusion algorithm proposed in [87]
fully considers the global and relative measurement values.
It dramatically improves the navigation and positioning
accuracy of automatic vehicles.

Aiming at the phenomenon of error accumulation in
long-term operation caused by the lack of loop optimization
and prior constraints of the visual and LiDAR SLAM
methods, [88] proposed a positioning method with prior
dense visual point cloud map constraints generated by
a stereo camera. The method is demonstrated in Fig. 6.
In the preprocessing, the internal parameters of a stereo
camera are calibrated, and stereo images are rectified. Prior
visual point cloud maps are obtained by reconstructing the
three-dimensional surface of the vehicle-mounted large-scale
street. LiDAR is only used for pose estimation in prior
visual point cloud map generation. The classical Semi-
Global-Block-Matching (SGBM) algorithm estimates the
visual point cloud, and the current visual point cloud is
initially estimated by stereo visual odometry. The current
visual point cloud frame is matched with the candidate
sub-map by Normal Distribution Transformation (NDT).
Finally, the pose prediction is updated by using the matching
result. The experimental results demonstrate that the method
proposed in [88] overcomes the problem that the error can
easily accumulate due to the lack of loop optimization and
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FIGURE 6. The proposed pipeline of autonomous vehicle
localization [88].

long-term operation. This method can achieve autonomous
vehicle positioning without the constraint of GNSS and prior
visual point cloud. However, due to the strong dependence
on the original visual point cloud, this method is challenging
to achieve high-precision positioning when the environment
changes significantly.

B. CLASSICAL ALGORITHM OF INS
Aiming at the non-orthogonal frame angle of rotary inertial
navigation system affected by the attitude output accuracy,
[89] proposed a self-calibration method of non-orthogonal
frame angle in three-axis rotary INS (RINS) to improve
the attitude output accuracy of RINS. It can improve the
navigation accuracy of INS. The measurement parameters
of this method are attitude error and velocity error. Three
non-orthogonal angles and coupling errors are needed to be
calibrated. As demonstrated in Fig. 7, the self-calibration
scheme of non-orthogonal angles in tri-axis RINS is divided
into two steps. In step 1, the inner and outer gimbal is
locked at zero, and the middle gimbal rotates clockwise
and counter-clockwise for 180◦. When each rotation is
completed, the middle gimbal is locked for several minutes.
In step 2, the inner and middle gimbal is locked at zero,
and the outer gimbal rotates clockwise and counterclockwise
for 180◦. The duration is less than 30 minutes without
external equipment. IMU error, frame rotation axis error, and
frame non-orthogonal error are the crucial factors affecting
the attitude output accuracy of RINS. IMU error can be
self-calibrated based on navigation [90], [91], [92], [93],
[94], [95], and frame rotation axis error can use [96]. But
frame non-orthogonal error can significantly impact attitude
accuracy, so the method of [89] can be adopted. The actual
triaxial RINS results demonstrate that the method in [89] can
make the non-orthogonal angle accuracy less than 2′′ (′′is
basic unit of Angle), and the attitude output accuracy can be
improved from 200′′ to 10′′.

Aiming at heavy workload, low efficiency, and slow
running speed of manual diagnosis and recovery of soft faults
of the inertial navigation system, [97] proposed a method
of automatic diagnosis and recovery of soft faults based on
the error model of the rotary inertial navigation system to
quickly achieve the regular diagnosis and recovery of INS
soft faults. [97] could realize stable and accurate navigation
of INS. The Soft Fault Diagnosis Recovery (SFDR) method
based on the RINS error model was used to find the fault

FIGURE 7. Calibration scheme for non-orthogonal angles in tri-axis
RINS [89].

parameters by the least square method. After finding the
fault parameters, a rotation strategy was designed. The
recovery parameters were used to compensate for the outputs
of three gyros and three accelerometers to recover soft
fault parameters. According to the real biaxial RINS test,
the SFDR method gradually found soft errors. It adopted
an iterative algorithm with the advantages of fast fault
identification, recovery, and high accuracy. The scale factor
error of the gyro and accelerometer could achieve 6 ppm and
10 ppm accuracy, and the error of the gyro and accelerometer
can reach 1′′ and 2′′ accuracy.

Aiming at principal model error and calculation error in the
traditional-based in-motion attitude determination alignment
(IMADA)alignment method, [98] proposed an improved
Multistage IMADA (MIMADA) based on two-speed mod-
eling. As demonstrated in Fig. 8, the traditional-based
IMADA was used for first-level alignment to obtain the
initial constant attitude matrix. This matrix can obtain the
navigation-frame speed and then can be updated accurately.
The model can realize the second-level alignment, and the
initial strap-down matrix can be obtained after the alignment
from 1 to then the strap-down INS (SINS) can be finely
calibrated. Through 30 groups of simulation experiments,
it is verified that this method is feasible. This method has
certain positive significance in solving the design defects
of traditional IMADA based on reducing the high-level
alignment degradation of multi-level IMADA, weakening
the relationship between alignment accuracy and vehicle
speed, reducing the heading degradation times of secondary
alignment from the original 20 times to 10 times, and
improving the heading alignment accuracy by 23%.

Aiming at the problem that SINS/OD is difficult to
obtain a high-precision attitude and position quickly and
independently. Reference [99] proposed a motion alignment
scheme based on backtracking, which can improve atti-
tude accuracy quickly and independently and realize high-
precision positioning. As demonstrated in Fig. 9, the method
was divided into coarse and fine. The coarse alignment was
defined as Improved Optimization-Based Coarse Alignment
(IOBCA), which used the method proposed in [100] and
the optimized attitude determination scheme. The attitude
and position were obtained through known information

79040 VOLUME 11, 2023



Y. He et al.: Research on GNSS INS & GNSS/INS Integrated Navigation Method

FIGURE 8. The block diagram of the improved multistage IMADA with the designed dual velocity-modeling IMADA [98].

FIGURE 9. Diagram of the BSFA for OD-aided SINS [99].

such as initial binding position and zero speed. Then,
according to the alignment result and initial information
of IOBCA, through a Backtracking-Scheme-based Fine
Alignment (BSFA) combined with the KFmethod, the known
initial information was used to suppress the speed and
position errors. It could optimize the attitude and improve
the position accuracy. Three field tests demonstrate that this
method could improve attitude accuracy quickly and obtain
a high-precision position. It only applied to the navigation-
level strap-down inertial navigation system combined with a
high-precision outer diameter.

In light of the problem that the longer the lever arm of
the SINS/OD and the faster the turning speed, the more
significant the speed difference would be, which would
lead to the lower precision of integrated navigation, [101]
proposed an integrated navigation method based on coupled
odometer and SINS. In this method, three Fiber-Optic

Gyroscopes (FOG) were used to measure the pitch angular
velocity, roll angular velocity, and yaw angular velocity of
the vehicle. Three accelerometers were used to measure the
vehicle’s forward, lateral, and vertical acceleration. After
calculation, the primary navigation information is obtained,
and the influence of the lever arm could be weakened by
track estimation using two odometer speeds containing the
lever arm information. As demonstrated in Fig. 10, the
difference between the speed and position information of
SINS/ODS was used as observation data to estimate the
state vector of KF. The error estimates from the KF would
be used to compensate for the primary navigation results
(attitude, velocity, and position errors). Through navigation
simulation, it is known that the integrated navigation method
proposed in [101] is applied to a wide range of scenes.
Its positioning accuracy was improved compared with the
traditional integrated navigation method.
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FIGURE 10. Schematic for the integrated navigation method [101].

FIGURE 11. The system architecture of the LiDAR-aided inertial
navigation system [102].

Aiming at the problem, the drift errors of velocity, position,
and heading angles in INS will accumulate over time. The
matching error of SLAM will also accumulate significantly
in the featureless environment. Reference [102] proposed
a Loosely Coupled EKF navigation system integrated with
INS/ LiDAR SLAM. The system is demonstrated in Fig. 11.
The model prediction state and measurement update state
belong to the KF algorithm. The output frequency of LiDAR
measurement is lower than IMU. The raw IMU output
can narrow the search range of SLAM and improve search
efficiency. The SLAM and IMU mechanization results are
fused on the Loosely Coupled EKF navigation system.
The results of various static and dynamic experiments
demonstrate that IMU mechanization provides better attitude
estimation in the dynamic test. The method proposed in [102]
can still maintain centimeter-level accuracy in a featureless
environment.

IV. DIFFERENT ALGORITHMS FOR GNSS/INS
INTEGRATED NAVIGATION
In order to let the majority of scholars have a deeper
understanding of the development of GNSS/INS integrated
navigation and positioning technology for autonomous
vehicles, this section screens out classic algorithms from
algorithms summarized in this paper. As shown in Fig. 12,
these algorithms are classified into four categories: Tightly
Coupled GNSS/INS, Loosely Coupled GNSS/INS, Semi-
tightly Coupled GNSS/INS, and Ultra-tightly Coupled

GNSS/INS, and all algorithms are described and analyzed in
detail.

In this paper, we analyze and summarize each category’s
typical GNSS/INS integrated navigation algorithms. Further-
more, these algorithms are compared from the following
aspects:

• Sensitivity of capture: GNSS navigation and positioning
function can be realized only when electromagnetic
wave signals emitted by navigation satellites are
obtained. And the acquisition sensitivity is the most
crucial signal acquisition performance.

• Positioning accuracy: The positioning accuracy can
reflect the positioning ability of integrated naviga-
tion. However, GNSS/INS combined navigation with
different coupling modes has specific differences in
positioning accuracy.

• Dynamic performance: GNSS/INS integrated naviga-
tion dynamic positioning accuracy when the receiver is
in motion.

• Anti-interference: In the case of a low signal-to-noise
ratio of satellite navigation signal or even signal inter-
ruption, the navigation solution can still be obtained.

Readers can refer to the classification method of
GNSS/INS integrated navigation algorithms and the classi-
fication results of TABLE 2 in this paper. From sensitivity
of capture, positioning accuracy, dynamic performance, and
anti-interference to get algorithms divided into four coupling
modes: ultra-tight coupling, deep coupling, loose coupling,
and semi-tight coupling. The appropriate coupling mode
is selected to solve the problem according to the actual
needs.

A. TIGHTLY COUPLED GNSS/INS
Aiming that the performance of GNSS is degraded due
to the NLOS reception, under the background that GNSS
positioning technology is widely used in the location of urban
canyons. Reference [21] proposed a close coupling integrated
positioning method of 3D building model aided (3DMA)
GNSS/INS, which could be divided into solution-based
and grid-based methods. As demonstrated in Fig. 13, this
system is divided into two integration methods. Red is
a Loosely Coupled integration method, and blue is a
Tightly Coupled integration method. Firstly, the 3DMA
GNSS shadow matching positioning algorithm performs
GNSS measurement through the initial position obtained
by GNSS pseudo-range measurements and weighted least
square positioning. Then, the solution-based method is to
estimate the satellite’s position by matching the shadow with
the surrounding building model to predict the visibility of the
satellite. A grid-based method is used to indicate the visibility
of satellites by using candidate positions’ visibility and score
information during shadow-matching positioning. IMU is
used to solve the inertial navigation equation by measuring
the target’s linear acceleration and angular rate. Loosely
Coupled method, the predicted satellite visibility can exclude
GNSS NLOS measurements, and the least square method
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FIGURE 12. Classification of GNSS/INS integrated navigation algorithms.

FIGURE 13. The flowchart of the proposed shadow matching aided the
GNSS/INS integrated positioning system [21].

is applied to the GNSS measurements excluding NLOS to
estimate the position and speed of the target. Combined
with the results of INS, the final position, velocity, and
attitude estimation can be obtained. In the Tightly Coupled
method, the final result can be obtained by combining
GNSS measurements with INS estimates using KF. The
experimental results in different scenes, such as Light Urban,
Middle Urban, Dense Urban, and Intersection, demonstrate
that the proposed two satellite visibility estimation methods

have achieved more than 80%. Line-of-sight (LOS)/NLOS
classification accuracy in most places in urban areas is at least
10%higher than the conventionalmethod. Comparedwith the
traditional GNSS/INS combination method, the precision of
the proposed 3DMA GNSS/INS Tightly Coupled method is
about 3 times higher.

To solve the problem of low navigation and positioning
accuracy, discontinuity, and stability in open sky and
GNSS signal occlusion environment, [59] proposed a TC
GNSS/INS/OVS integrated navigation system based on fault
detection and processing FDP method. As demonstrated in
Fig. 14, the adaptive fault-tolerant integrated filter consists
of three aspects: time update, fault detection and processing,
and measurement update. Firstly, the time update is to realize
the system state prediction and the corresponding error
covariance update. Secondly, the FDP algorithm detects the
fault and determines the fault treatment method. Finally, the
measurement update equation should be calculated again
with the adjusted measurement noise covariance matrix
and measurement matrix due to the changing measurement
noise covariance matrix and measurement matrix. Through
the above steps, the integrated navigation system can
obtain high-precision, continuous, and stable navigation
results. The road test results demonstrate that the position

VOLUME 11, 2023 79043



Y. He et al.: Research on GNSS INS & GNSS/INS Integrated Navigation Method

FIGURE 14. Adaptive fault-tolerant TC GNSS/INS/OVS integration
navigation system architecture [59].

FIGURE 15. Integrated navigation structure diagram [63].

solution of the TC triple integrated system is more accurate
than that of a Loosely Coupled (LC) integrated system.
TC GNSS/INS/OVS integrated navigation system based on
the FDPmethod can provide continuous and stable navigation
and positioning and has good fault tolerance.

Aiming for poor stability and continuity of integrated
positioning in GNSS/INS integrated navigation due to
frequent signal occlusion, [63] proposed an improved Tightly
Coupled algorithm. A stepwise ambiguity processing method
is adopted to form instantaneous fixed Wide-Lane (WL)
observations, which are used to correct inertial naviga-
tion measurement. Then, by estimating the differential
inter-system bias (DISB) parameter, pivot satellites can be
shared among different constellations, increasing the number
of available satellites. As demonstrated in Fig. 15, p, f , ω(the
original measured value of the INS sensor) indicates the posi-
tion, specific force, and angular velocity of the accelerometer
and gyroscope. The experimental results of semi-simulated
data sets demonstrate that the horizontal positioning accuracy
reaches 4.1 cm and the vertical positioning accuracy reaches
15.2 cm when the satellite signal transmission is blocked.
The proposed method in [63] achieves decimeter accu-
racy, which is significant to the high-precision positioning
effect of GNSS/INS Tightly Coupled in a dense urban
environment.

To solve insufficient research on multi-frequency and
multi-system Tightly Coupled positioning methods in a
dynamic urban environment, [67] was based on the
GPS/BDS-2/INS three-frequency TC positioning model.
Beidou-3 navigation satellite system four-frequency obser-
vation was introduced, and the performance of GPS/BDS-2/

FIGURE 16. The flow chart of the multi-frequency GNSS/INS Tightly
Coupled positioning method [67].

BDS-3/INS Tightly Coupled positioning was preliminar-
ily studied. The process diagram of the multi-frequency
and multi-system Tightly Coupled positioning algorithm
is demonstrated in Fig. 16. The system can adapt the
Beidou-3 four-frequency DD linear combination observa-
tion model, selecting the best extra-wide-lane/wide-lane
(EWL/WL) remote sensing of the Beidou-3 four-frequency
according to the regulations, adopting geometry-free (GF)
model, applying triple-frequency carrier ambiguity resolution
(TCAR) method to GPS/BDS-2 three-frequency observation
and four-frequency carrier ambiguity resolution (FCAR) to
BDS-3 four-frequency observation to solve the EWL/WL
ambiguity problem. Finally, the EKF uses the difference
between WL observation with fixed ambiguity and DD
geometric distance calculated by INS and then corrects
the approximate coordinates calculated by INS through
estimation error to obtain the high-precision positioning
result at the current moment. The experimental results
demonstrate that the positioning accuracy of Tightly Cou-
pled BDS-3/INS is higher than that of triple-frequency
BDS-2/INS. Compared with GPS/BDS-2/BDS-3/INS, the
positioning accuracy of Tightly Coupled GPS/BDS-2/
BDS-3/INS in horizontal and vertical directions is improved
by 29.1% and 58.7%, respectively.

Whether the parameters of IMU and receiver satisfy
the dynamic loop requirement is the critical problem for
Tightly Coupled, [103] proposed a new Tightly Coupled
mathematical model, which analyzes the properties of error
propagation through the principle of the norm. The stability
of the tracking loop is judged by establishing an inequality
containing most of the parameters of the Tightly Coupled
navigation system. The Tightly Coupled algorithm proposed
in [103] is demonstrated in Fig. 17. Doppler frequency and
code phase deviation extracted from inertial information and
satellite ephemeris are the keys of IMU-assisted Tightly
Coupled. Mastering the critical information can control the
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FIGURE 17. Structure diagram of the GNSS/INS deeply coupled
system [103].

code/carrier Numerically Controlled Oscillator (NCO) in
the tracking loop to ensure the high performance of the
tracking loop under the condition of narrow bandwidth. The
experimental results demonstrate that the method proposed
in [103] is consistent with the simulation results, which
verifies the correctness of this method.

Aiming at the accuracy, robustness, and computational
efficiency of GNSS/INS integrated navigation, [104] pro-
posed a Tightly Coupled GNSS/INS integrated algorithm
using robust sequential KF. This method uses pseudo-range
and Doppler and implements GNSS/INS data fusion by
the time differenced carrier phase measurement. The KF
measurement is performed sequentially, and a new robust
estimation method detects and eliminates the signal fault.
The frame diagram of the Tightly Coupled GNSS/INS
integration algorithm is demonstrated in Fig. 18. In the figure,
the solid line represents INS’s high-rate information flow,
and the dotted line represents GNSS’s low-rate information
flow. High-speed navigation results (position, attitude, speed)
are calculated by INS mechanization through compensated
raw INS data. The GNSS receiver provides low-rate
pseudo-range, Doppler, carrier phase, and ephemeris data.
Then systematic errors should be corrected by combining
empirical models and different techniques. The updated
GNSS observations and INS-predicted counterparts form
the observed-minus-computed (OMC) measurements. The
error is estimated by robust sequential KF using OMC
measurements. The error state is returned to the INS to correct
the navigation solution and INS sensor deviation. Field
vehicle experiments demonstrate that the method proposed
in [104] improves the accuracy of velocity and attitude by
69.42% and 47.16%, respectively, compared with Loosely
Coupled. Compared with the traditional Tightly Coupled,
it increased by 64.75% and 30.88%, respectively. Compared
with batch KF processing, the computational efficiency is
increased by 53.09%. This method can quickly complete the
bridging work in the case of partial or complete interruption
of GNSS.

Because GNSS signals are more likely to be blocked
and interrupted, which affects the accuracy of navigation
and positioning, PPP/INS integrated navigation can reduce
the influence of GNSS. However, due to the high price of

FIGURE 18. GNSS/INS integration through a robust sequential KF [104].

FIGURE 19. Block diagram of the developed TC PPP/RISS integrated
system [38].

high-end INS, it may not be widely used in automobiles.
To solve this problem, [38] proposed combining INS and
RISS to achieve lane-level car navigation. The frame diagram
of PPP/RISS integrated navigation is demonstrated in Fig. 19.
The GNSS receiver acquires the raw pseudo-range, carrier
phase, and Doppler measurements. The PPP network correc-
tion and error model corrects this information. Meanwhile,
RISS mechanically outputs the measured value. EKF takes
the difference between the predicted and actual GNSS
measurements as measurement errors. The measurement
errors will be fed to an EKF. The estimated position, velocity,
and attitude are obtained by filtering the measurement error
and the corresponding error operation of the system error
model. The estimated values of navigation parameters will be
fed back to the RISS mechanization module. The estimated
error of the sensor can correct the deviation of the sensor.
In the feedback process, the error state of each epoch is
reset to keep the linearity assumption of EKF. The road test
experiment demonstrates that the root mean square error of
the PPP/RISS integrated system can be maintained at a level
of less than 20 cm, and the maximum error is less than 50 cm.
Compared with PPP alone, PPP/RISS integration can provide
a continuous and stable solution, and the re-convergence time
after GNSS interruption is shorter.

Accurate ambiguity estimation of Tightly Coupled
GNSS/INS is critical to accurate navigation and positioning.
Aiming at the ambiguity estimation problem in Tightly
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FIGURE 20. The principle of GNSS/INS Tightly Coupled ambiguity
resolution [105].

Coupled GNSS/INS, [105] proposed a new ambiguity
estimation and elimination strategy. The schematic diagram
of Tightly Coupled GNSS/INS ambiguity resolution is
demonstrated in Fig. 20. In this scheme, the ambiguity
parameter of the carrier phase is added to the state equation
of the filter for estimation. The observation model of
single-frequency and the wide-lane combination is used to
assist in ambiguity fixed. By using the method of parameter
elimination, when the ambiguity parameters are fixedwithout
cycle slip, the ambiguity parameters are removed from
the state equation to reduce the computational complexity.
The residual test method is adopted. After each epoch is
estimated, the estimation deviation and outliers need to be
tested by residual test to avoid the influence of satellite
ambiguity estimation deviation on the next epoch. Through
the experiment, the results demonstrate that in the open
sky environment, the positioning error of Tightly Coupled
GNSS/INS proposed in [105] is less than 5 cm, and the
ambiguity fixed rate is more than 97%, which is consistent
with the GNSS positioning results. Without GNSS, the
positioning accuracy of GNSS/INS is better than that of
GNSS, and the positioning accuracy in X, Y, and Z directions
is improved by 82.46%, 78.87%, and 79.67%, respectively.
The fixed rate of ambiguity increased from 73% to 78.57%.
Overall, the Tightly Coupled GNSS/INS proposed in [105]
has a higher ambiguity fixed rate. The navigation and
positioning results are stable, continuous, and accurate.

Seamless positioning technology in a complex environ-
ment is a research hotspot of autonomous vehicles (AVs).
Because of the multipath effect, an insufficient number of
satellites, easy interruption of GNSS signals, and poor quality
of indoor GNSS signals, the integration of multi-GNSS
and INS cannot provide good seamless positioning results
for indoor and outdoor AVs. To solve this problem, [106]
developed a multi-GNSS-TC RTK/INS technology. Ultra-
Wideband (UWB)/INS technology provides continuous and
accurate navigation and positioning results for indoor envi-
ronments. An improved adaptive robust extended Kalman
filter (AREKF) algorithm based on TC integrated single

FIGURE 21. Algorithm flowchart [106].

FIGURE 22. Closed-loop error-state GNSS/INS tight integration
architecture [107].

frequency multi-GNSS-TC RTK/UWB/INS map system is
studied to provide continuous, reliable, and high-precision
navigation information for indoor and outdoor Avs. In TC
integrated system, carrier phase observations, and GNSS
code will be affected by multipath errors, and the accuracy of
code observation and UWB ranging will also be affected by
multipath propagation. The accuracy of GNSS floating-point
solutions will be affected by the observation errors. The
improved AREKF algorithm is used to adjust the variance of
outliers. The flow chart of the algorithm is demonstrated in
Fig. 21. The experimental results demonstrate that the RMS
accuracy of the algorithm and the system in the north, east,
and two-dimensional directions are 0.1756 m, 0.1698 m, and
0.2443 m, respectively. The average errors in the north, east,
and two-dimensional directions are 0.0932 m, 0.1049 m, and
0.1657 m, respectively. The maximum errors in the north,
east, and two-dimensional directions are 0.7986 m, 1.0632 m,
and 1.1372 m, respectively. This scheme has high positioning
accuracy and stability in indoor, transitional, or outdoor
environments.

Aiming at the undetected or IMU fault of Tightly Coupled
GNSS/INS integration, [107] proposed an effective fault
detection and exclusion scheme. The integrated model is
demonstrated in Fig. 22. It is derived to capture GNSS faults
and filter faults. The EKF error in the integrated model
will be fed back during iteration to correct the system,
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FIGURE 23. Basic structure of multiple receivers based GNSS/SINS tight
integration system [108].

maintaining a linear approximation of the system model.
GNSS measurement is an external aiding of Tightly Coupled
GNSS/INS, which is used to correct INS solutions and
compensate for inertial sensor errors. It is assumed that
two independent detectors are used to detect GNSS and
filter faults, and then the system will recover independently
to eliminate the influence of filter faults. The simulation
experiment proves that the scheme can always maintain high
efficiency and effectiveness when a fault occurs.

GNSS can obtain accurate navigation results by observing
a sufficient number of satellites, but when the signal
quality decreases, the positioning capability of GNSS will
be affected. However, INS contains random noise, so the
positioning error accumulates with time. To solve this
problem, [108] proposed multiple receivers Tightly Coupled
GNSS/SINS scheme, adopting the measurement difference
method to improve the calculation efficiency. The frame
diagram of GNSS/SINS based on multiple receivers is
demonstrated in Fig. 23. The integration filter’s measurement
vector consists of multiple receivers’ pseudo-range and
pseudo-range rates. Measurement differences can reduce the
dimension of the state vector. The integration filter estimates
the INS error, feeds it back, and compensates the INS.
The compensated INS navigation solution is outputted as a
result. The experiment demonstrates that the navigation and
positioning accuracy of the Tightly Coupled multi-receiver
GNSS/INS proposed in [108] is higher than that of the Tightly
Coupled single-receiver GNSS/INS. The feasibility of the
measurement difference method can be verified.

B. LOOSELY COUPLED GNSS/INS
Aiming at low positioning accuracy and poor navigation
effect due to weak GNSS signals in actual navigation and
positioning, [62] proposed an INS/GNSS/LiDAR SLAM
integrated navigation system. This system makes up for
the deficiency of the integrated system by acquiring all
the information received by each sensor. The integrated
navigation system is demonstrated in Fig. 24. The refreshed
grid-based SLAM and updated mechanization (red and green

FIGURE 24. Data processing of INS/GNSS/Refreshed-SLAM fusion
algorithm [62].

FIGURE 25. Loosely Coupled RIO mechanization for spoofing
detection [66].

marks in the figure) are adopted in the system, which
enriches and expands the traditional GNSS/INS integrated
navigation. The refreshed grid-based SLAM (blue mark
in the figure) obtains the initial value from Direct geo-
referencing (DG). At the same time, GNSS/INS needs the
support of the refreshed grid-based SLAM. The updated
mechanization authenticates all the measured values of the
system. The experimental results demonstrate that, compared
with the traditional GNSS/INS integrated navigation system,
this system provides absolute navigation accuracy of 2meters
and 0.6% of distance traveled when the GNSS signal is
interrupted. In the case of a weakGNSS signal, the navigation
accuracy reaches 1.2 meters.

Aiming at the phenomenon that GNSS signal spoofing
threatens the security and privacy of unmanned driving, [66]
proposed a spoofing detection method based on a consistency
check between GNSS and IMU/odometer mechanization.
The method analyzes the measurements of GNSS and
IMU/odometer independently and checks the mechanization
solutions of GNSS and INS/odometer, respectively. The
mechanized frame diagram of Loosely Coupled Reduced
IMU and odometer (RIO) for deception detection is demon-
strated in Fig. 25. RIO can provide relative position, velocity,
and heading information by mechanically receiving forward
velocity information, raw accelerometer, and gyroscope mea-
surements. During the observation interval, the authenticity
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FIGURE 26. Flowchart of methods [109].

verification unit will compare GNSS’s navigation solution
with RIO. If the solution is feasible, the GNSS solution
corrects the RIO solution, and the navigation KF corrects
the accelerometer and gyroscope. Finally, the actual vehicle
experiment verifies the feasibility of the method proposed
in [66]. The spoofing detection performance of the method
in sub-urban and dense urban environments is evaluated.

Aiming at the problem of low satellite visibility of single
vehicles, the ambiguity resolution (AR) is easy to fail in
the urban occlusion environment. To solve this problem,
[109] proposed a cooperative GNSS-RTK AR method. Use
navigation data of multiconnected vehicles to improve AR.
Improve GNSS, RTK, andAR through centralized processing
of multiconnected vehicles’GNSS, INS, and LiDAR data.
High-precision positioning results can be obtained by the
map-matching algorithm of the occupancy likelihood map
(OLM), which connects the relative positions between
vehicles. The flowchart of the method is demonstrated in
Fig. 26. A joint RTK algorithm is proposed to enhance AR
performance by fusing the observation data of all connected
vehicles. The relative position between vehicles establishes
the position constraint between vehicles. Constraints can
be calculated by the LiDAR OLM method and attitude
information of INS. Finally, the final position estimations
of connected vehicles with relative position and ambiguity
constraints need the information of joint RTK. The experi-
mental results demonstrate that compared with the standard
RTK AR method for a single vehicle, the performance of
RTK AR is improved in terms of ratio values, success rate,
and fixed rate by the method proposed in [109]. The vehicle
positioning accuracy is also improved. Even if the GNSS
signal is blocked, the ideal navigation and positioning results
can still be obtained.

Since the position accuracy of PPP/INS is comparable to
that of DGNSS/INS. Still, the poor yaw angle accuracy leads
to low positioning accuracy under dynamic conditions, [24]
proposed aMulti-Antenna GNSS (MAGNSS)/INS integrated
navigation system. The flow chart of this integrated naviga-
tion is demonstrated in Fig. 27. Because of the errors of gyros
and accelerometers, INS mechanized navigation solutions
may drift, and the precision of gyros and accelerometers

FIGURE 27. Flow chart of MAGNSS/INS integrated navigation [24].

FIGURE 28. Flowchart of motion-constrained GNSS/INS integration for
the track irregularity measurement [29].

determines the drift rate. The external system can estimate
the navigation error to realize a stable navigation scheme.
The differential equations of the misalignment angle, velocity
error, and position error are the error equation of INS.
The experimental results demonstrate that the position, roll,
and pitch accuracy of the PPP/INS integrated navigation
system are higher. Still, the accuracy of yaw is lower
when tactical-grade INS is adopted. The MAGNSS/INS
proposed in [24] solves the problem of low yaw accuracy
of PPP/INS. MAGNSS/INS integration realizes low-cost and
high-precision positioning without a base station.

Because of the low spatial accuracy of GNSS/INS
integration applied to track geometry measurement, the
relative spatial accuracy threshold values satisfying the
constraint of shortwave track irregularity measurements are
derived in [29], and the GNSS/INS integration is constrained.
The flow chart of the integrated system is demonstrated
in Fig. 28. Error compensation means that the output of
inertial sensors is corrected by sensor error and then input
into the navigation algorithm. The estimated sensor errors
of optimal estimation can adjust the corresponding raw
IMU measurements. The dotted line part in the figure is
navigation initialization, which provides initial attitude from
different alignmentmethods tomaintain high-precision initial
navigation. Generally, the GNSS or input manually provides
the initial position and velocity. Mechanization is to update
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FIGURE 29. Robust Adaptive INS/GNSS integrated navigation
system [110].

the velocity and position of INS by rotating and integrating
the acceleration measurement, and the attitude of INS is
calculated by compensating the gyroscope measurements.
The EKF will update the measurements according to the
position and velocity information provided by the navigation
system. The influence of INS drift error is reduced by
the optimal smoother to achieve the high-precision post-
processing application. The field test demonstrates that the
accuracy of GNSS/INS integration with motion constraints is
relatively high, and the accuracy requirements of shortwave
track vertical irregularities can be met.

Aiming at the problem of state space model with
non-Gaussian measurement noise, [110] proposed a robust
GNSS/INS navigation system design based on parallel
nonlinear filtering. Nonlinear approximation techniques such
as EKF and Sigma Point Kalman Filter (SPKF) are adopted.
A robust navigation system is designed, and the navigation
state vector is estimated. The frame diagram of an inte-
grated navigation system using robust adaptive GNSS/INS
is demonstrated in Fig. 29. The simulation experiment
demonstrates that the parallel architecture improves the
efficiency during the rapid movement of the aircraft, and the
non-Gaussian GNSS noise has affected the nonlinear filter
slightly. The estimation results of parallel architecture and
impulsive measurement noise environment are better than
those of nonlinear filters such as EKF, UKF, and Central
Difference Kalman Filters (CDKF).

C. SEMI-TIGHTLY COUPLED GNSS/INS
Because of that Visual-Inertial Navigation Systems (VINS)/
GNSS integrated navigation relies on the global position to
eliminate the accumulated error, and the positioning level is
not high, [61] proposed a Semi-tightly Coupled integrated
system of multi-GNSS PPP and S-VINS. The algorithm
implementation principle of the system is demonstrated
in Fig. 30. The system must complete the visual-inertial
initialization, apply the sliding window-based nonlinear
optimization to the system state, and transform the local
state into the global state in real-time by converting the local
and global frames. The transformation matrix is initialized
to the identity matrix and updated after global optimization.
PPP data processing adopts the intermediate frequency (IF)

FIGURE 30. Implementation of the graph-optimization-based
semi-Tightly Coupled framework of multi-GNSS PPP/S-VINS [61].

FIGURE 31. Structure of ultra-tight integrated navigation system based on
RBF neural network [111].

combination of GNSS raw pseudo-range and phase mea-
surements. When the feedback mechanism is running, the
predicted position of S-VINS is used for PPP data processing.
Then the global fusion processor receives the global position
and its uncertainty. After global optimization, the optimal
positioning result is obtained. Finally, the conversion from
the local to global frames is updated. The vehicle experiment
results demonstrate that the multi-GNSS PPP/S-VINS Semi-
tightly Coupled system will be 41.8-60.6% higher than the
multi-GNSS PPP/INS system in terms of 3D positioning
accuracy.

D. ULTRA-TIGHTLY COUPLED GNSS/INS
To obtain navigation results that meet the accuracy require-
ments even when GNSS signals are weak, [111] proposed an
ultra-tight integrated navigation algorithm based on neural
network-aided filtering, and a deeply integrated navigation
system based on radial basis function neural network method
is designed. The architecture of the integrated navigation
is demonstrated in Fig. 31, which is divided into two
stages. In the first stage, when the GNSS signal is good,
the KF and neural network model are combined to control
the error caused by the uncertainty of the model. In the
second stage, when the GNSS signal is lock-losing, the
neural network model of the first stage is used to predict
the out-of-lock system model to curb the accumulated error
of the inertial navigation system with time. Then, adaptive
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KF is applied to the system state vector, and the estimated
value is used to correct the error of INS. The experimental
results demonstrate that the algorithm proposed in [111]
can realize high-precision positioning and continuous and
stable navigation of integrated navigation under weak GNSS
signals, which verifies the practicability of the algorithm.

Aiming at the integrated structure system based on
coherent cumulative measurements in-phase/quadra-phase
(I/Q) in GNSS/INS ultra tight integrated navigation has
complexity and nonlinearity when I/Q is converted into
navigation information, [64] proposed a new model and
linearization method to be applied to the integrity, stability
and hidden nonlinear factors of the system. A code phase
approximationwaywithout introducing newmeasurements is
used for the positioning error caused by neglecting code-loop
deviation. The Ultra tight integration system is demonstrated
in Fig. 32. In this structure, the I/Q signal of the receiver
is estimated by the information provided by INS, and the
difference between the measured and estimated I/Q values
of the receiver is taken as the observed value. The modified
positioning information and ephemeris calculate the loop
control parameters. Then, forming a vector tracking carrier
loop. Reference [64] proposed an ultra-tight integration with
code errors without re-measurement, as demonstrated in
Fig. 33. This integrated system does not introduce early and
late measurement and uses position error to approximate
code delay and self-correlation function, coupled with I/Q
prediction. It does not use a traditional scalar code-tracking
loop, and its discriminator using and can be canceled. The
experimental results of semi-physical simulation demonstrate
that the new coding phase approximation method proposed
in [64] greatly reduces the coding error rate during cyclic
oscillation. It has high target positioning, speed, and attitude
accuracy.

V. SUMMARIES AND OUTLOOK
A. SUMMARIES
In this paper, GNSS/INS integrated navigation algorithms
are comprehensively summarized. As can be seen from
TABLE-2, each algorithm has its characteristics:

In the GNSS/INS integrated navigation algorithms, except
for the Ultra-tightly Coupled mode, the other integrated
modes are challenging to capture GNSS signals quickly.

For different integrated modes in integrated navigation,
the position accuracy of LC (see [62], [66], [110], [109],
[24], [29]) is the lowest. The positioning accuracy of Tightly
Coupled (see [21], [59], [63], [67], [103], [104], [38], [105],
[106], [107], [108]) and Semi-tightly Coupled (see [61])
decreases in turn. Because the Ultra-tightly Coupling mode
(see [111], [64]) has the strongest ability to estimate and
correct the errors of INS. Thus, its positioning accuracy
is the highest. Therefore, GNSS/INS integrated navigation
with different coupling modes will affect autonomous vehicle
navigation and positioning capabilities and safety.

In integrated navigation, both loosely coupled and Tightly
Coupled use the output information of the GNSS receiver to

FIGURE 32. Ultra-tight integration considering code errors [64].

FIGURE 33. Ultra-tight integration considering code errors without new
measurements [64].

assist INS, and the GNSS receiver is always independent.
Thus, the anti-interference ability and dynamic tracking
ability of these twomodes still need to be enhanced. However,
the Ultra-tightly Coupled cancels the carrier tracking loop.
It directly uses the I/Q signal output by the correlator of
the GNSS receiver as the input of the integrated navigation
KF, realizing themutual independence ofmeasurement noise.
Thus, the dynamic performance and anti-interference ability
of the Ultra-tightly Coupled are the best.

Among the GNSS/INS integrated navigation algorithms
selected in this paper, [66], [62], [109], and [59] are
not simply combining GNSS and INS. Reference [59]
is GNSS/INS/OVS integrated navigation. Reference [62]
is INS/GNSS/LiDAR SLAM integrated navigation. Refer-
ence [66] is a spoofing detection method based on a con-
sistency check between GNSS and IMU/OD mechanization.
The GNSS, INS, and LiDAR data are applied in [109]. They
both combine other sensors. This demonstrates that integrated
navigation is developing from GNSS/INS to GNSS/INS
combined with multi-sensors.
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TABLE 2. Comparison of GNSS/INS integrated navigation algorithms.

Overall, the Ultra-tightly Coupled is the best in capture
sensitivity, positioning accuracy, dynamic performance, and
anti-interference ability. The overall performance of Tightly
Coupled and Semi-tightly Coupled deteriorate gradually.
However, the capture sensitivity and positioning accuracy

of Loosely Coupled is average. Its dynamic tracking ability
and anti-interference ability are the worst. Therefore, when
the GNSS signal is partially blocked, the navigation and
positioning accuracy of Ultra-tightly Coupled, Tightly Cou-
pled, Semi-tightly Coupled, and Loosely Coupled decreases
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in turn. However, considering the actual cost and different
application requirements, these integratedmodes have advan-
tages and disadvantages.

Reference [112] is a review of the specific application of
GNSS in bridge structural health monitoring. The application
of GNSS can predict bridge faults in advance and efficiently,
which is of great significance. Reference [113] is a review
of the specific application of GNSS in railway signals in
Europe. GNSS is an essential part of the European Train
Control System (ETCS) as a low-cost signal solution for
ETCS. Compared with [112] and [113], the novelty of our
paper is as follows:

In addition to the application ofGNSS, INS is also included
in the survey of our paper, which is about the specific
application of GNSS/INS integrated navigation algorithm in
high-precision navigation and positioning.

Compared with bridge structural health monitoring
of [112] and Train location information acquisition of [113],
applying GNSS/INS integrated navigation algorithm in
high-precision navigation and positioning is more challeng-
ing due to the increasingly complex vehicle driving environ-
ment. Therefore, the review of the application of GNSS/INS
integrated navigation in autonomous driving navigation and
positioning technology is of specific significance.

At present, the application of GNSS in bridge structural
health monitoring and Train location information acquisi-
tion is developing slowly. With the rapid development of
autonomous vehicles, GNSS/INS integrated navigation has
sufficient development space in the aspect of high-precision
navigation and positioning of driverless vehicles. Therefore,
our paper accords with the development direction of GNSS
and INS.

B. OUTLOOK
Many innovative GNSS/INS integrated navigation algo-
rithms have been developed to solve autonomous vehicles’
navigation and positioning problems in recent years. How-
ever, the application of the GNSS/INS integrated navigation
algorithm to automatic driving is still in the developing stage.
In future research, it is still necessary to solve the problems
of GNSS/INS integrated navigation systems, strikingly
achieving high-precision navigation and positioning of self-
driving cars. In this paper, the possible research hotspots of
GNSS/INS integrated navigation are as follows:

Observation accuracy can affect the fixed performance
of ambiguity in the dynamic positioning of GNSS, so it is
necessary to research the stepwise ambiguity fixing method.

The filtering algorithm of GNSS/INS integrated navigation
converges to the ideal accuracy costing a more extended
period. Besides, the navigation and positioning results of the
integrated navigation will be affected by the unlocked GNSS
signal. To solve these problems, the research of a smoothing
algorithm can significantly improve the parameter estimation
accuracy of the filtering algorithm.

In the practical work of the GNSS/INS integrated navi-
gation system, data loss caused by the failure of hardware

equipment often happens. Because of this situation, it is
crucial to establish a prediction model for missing data and
improve the accuracy of filtering results.

In the dynamic environment of automobile driving, the
external environment will affect the accuracy of GNSS
observations and the ambiguity-fixing performance. To solve
this problem, INS can assist GNSS in fixing ambiguity. It can
enhance the intensity of ambiguity variance and improve the
precision of ambiguity floating point solution.

In GNSS/INS integrated navigation, different information
fusion algorithms will be used to fuse GNSS and INS
information. Thus, the navigation and positioning effects will
be different. For example, the Ultra-tightly Coupled scheme,
the accuracy of a dynamic model building of an integrated
navigation system, and the statistical characteristics of system
noise directly determine the accuracy and stability of KF
in system state estimation. Therefore, a better robustness
integrated navigation information fusion algorithm is needed
for navigation and positioning.
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