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ABSTRACT Multiscale community detection algorithms can reveal the hierarchy of complex networks.
However, the existing algorithms are unable to realize full-resolution community detection, and the
hierarchy structure of the obtained community is overidealized. Aiming at these problems, we propose
an algorithm named label propagation algorithm with multiscale community detection (LPAMCD), which
introduces a two-phase propagation process and a tunable parameter, called the belonging coefficient
threshold, into the label propagation algorithm to realize full-resolution community detection. Moreover,
LPAMCD has the ability to find the mechanism of dynamic confrontation between adjacent communities
in absorbing boundary nodes, which implies that the community hierarchy of social networks is not an
idealized dendrogram. The extensive experimental results with real networks show that LPAMCD can detect
community structures at full resolution scales with high accuracy and stability. Furthermore, the novel finding
of dynamic confrontation is demonstrated in the experiments.

INDEX TERMS Label propagation, multiscale community detection, full resolution, dynamic confrontation.

I. INTRODUCTION
Research on complex networks, such as social networks
[1], [2], citation networks [1], biochemical networks [3],
and scientific cooperation networks [4], [5], has revealed
many critical laws and characteristics in scientific fields.
Community detection is always a hot topic, especially in
social complex networks that have modular structures. The
nodes in a community are connected more densely than
the nodes outside the network [6], inferring that the nodes
within the same community usually have similar properties,
for example, similar interests in social networks, the same
discipline in citation networks and a common function
in biochemical networks [7]. Therefore, identifying the
community structure in complex networks is significant and
helpful for analyzing modular characteristics [8].
In the real world, the community boundaries in net-

works, whether they are social, citation, biochemical or
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others, are usually elastic when considered from different
perspectives. The community structure may be quite different
when detected at multiple levels [2]. For example, in a
scientific cooperation network, scientists belonging to the
same community usually study similar scientific concepts
or have common research interests [5]. Scholars can be
divided into communities at different levels according to the
first-class disciplines, second-class disciplines and research
directions. In protein networks, nodes can be divided into
functional modules at different levels according to the
different functions of the organisms concerned. Similar
situations are more common in social networks. Different
detection scales will cluster people with different degrees
of intimacy, interests, etc. [1], [2] Multiscale commu-
nity detection can reveal the hierarchy of networks and
the dynamic confrontation between adjacent communities,
which enrich the concept of community structures [9].
Therefore, it is of practical significance to explore an
efficient method to detect multiscale communities in complex
networks.
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However, multiscale community detection is still a chal-
lenging task, as the size and number of communities can
vary simultaneously when viewed from different perspectives
[10]. In recent years, many algorithms have been developed
to detect multiscale community structures based on various
approaches, e.g., modularity optimization [3], [11], fitness
functions [6], [12], [13], coalition formation game theory
[14], density-based clustering [15] and DeepWalk [10],
[12]. However, there are still three essential challenges for
these algorithms. For example, some algorithms based on
optimizing quality functions may suffer from the resolution
limit problem and need prior knowledge on the sizes
of communities, especially those using modularity [14].
Some algorithms cannot detect overlapping communities.
Some algorithms using global optimization have high
computational complexity and instability, resulting in low
efficiency, especially when detecting large-scale networks.
More importantly, in current studies, very little is known
about the mechanism of dynamic confrontation between
adjacent communities in absorbing boundary nodes, which
means that the community boundary may vary with different
detection resolutions, as adjacent communities have different
levels of influence on the boundary nodes.

Motivated by epidemic spreading [16], the label propa-
gation algorithm (LPA) is a good candidate for detecting
overlapping communities at multiple scales quickly and
effectively. By iteratively propagating different labels among
nodes in a network until convergence, LPA can detect
communities constructed by nodes with the same labels [17]
without prior knowledge on the size and number of commu-
nities. This method has an obvious advantage of linear time
complexity, leading to a high-speed and efficient community
detection process in complex networks. Moreover, the label
propagation process can fully reflect the mutual influence
between nodes and the local characteristics of the network.
Therefore, an increasing number of algorithms based on
LPA have been used to detect nonoverlapping or overlapping
communities [18], [19], [20]. Nevertheless, the original LPA
has some shortcomings: (1) it only detects communities
with fixed boundaries, which means it cannot be applied
to multiscale community detection; and (2) the detection
results may be unstable due to randomness during label
propagation.

To fill these gaps, we propose an integrated framework
named LPAMCD (label propagation algorithm with multi-
scale community detection) to detect multiscale communities
in complex networks. The main contributions of the paper are
as follows:

(1) We define the Node Importance (NI), Degree Influence
(Dinf) and Propagation Indicator (PI) measures to compre-
hensively consider the influence of neighboring nodes in label
propagation. By fully utilizing these three new measures, the
multiscale community detection accuracy can be enhanced.

(2)We propose a novel label propagation strategy to realize
full-resolution community detection. Based on an introduced
tunable parameter named the belonging coefficient, our

algorithm has a unique capability to detect communities on
any scale continuously and stably.

(3) Through a number of experiments, we establish a
novel mechanism of dynamic confrontation between adjacent
communities in absorbing boundary nodes in social networks.
This reflects that the variations in the community boundary
may be nonlinear with detection scale changes.

This paper is organized as follows: Section II reviews the
literature. Section III describes several important terms, and a
new label update method is defined. Section IV introduces the
proposed LPAMCD approach in detail. Section V shows the
experimental results. Finally, we summarize the conclusions
of this paper.

II. RELATED WORK
A. MULTIRESOLUTION COMMUNITY DETECTION
Community structure has been found to be a significant
feature in many networks. The nodes within the same
community are densely connected with each other, while
they are sparsely connected with the nodes in the rest of the
networks. It has been proven that the community structure
in a network is not unique when the network is viewed from
different perspectives [3], [11], [21].

Various methods have been introduced to realize multires-
olution community detection. Some algorithms are based
on the relevance between dynamics and the multiscale
structures of networks [2], [22], [23], [24]. Some algorithms
optimize resolution based on the Potts model [25], [26].
Some algorithms are based on local optimization of the
quality function [6], [27]. Some algorithms make use of
novel strategies. For example, considering the computational
efficiency, Lin introduced an approach to detect hierarchical
communities based on integer programming [28]. Felfli
presented a density-based clustering strategy using the hill-
climbing procedure to unveil community structures [15].
Li proposed a framework to detect hierarchical communities
with the focused crawler algorithm [29].
Most of these studies are unable to achieve full resolution

community detection, and the community structure obtained
is overidealized, especially in social networks. However,
our algorithm has the capability to detect communities at
any scale continuously and stably. In reality, the community
size may vary nonlinearly with a change in the detection
scale, and the community cannot be considered a simple
combination of subgroups. Our algorithm reveals a novel
mechanism of the dynamic confrontation between adjacent
communities in absorbing boundary nodes, which indicates
that the community hierarchy of social networks is not an
idealized dendrogram.

B. LABEL PROPAGATION ALGORITHM
The label propagation algorithm (LPA) is a graph-based
semi-supervised learning algorithm [17]. Due to its high
speed and efficiency, many researchers have applied it to
community detection. In this algorithm, different labels are
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assigned to nodes, and then the labels iteratively spread from
labeled nodes to unlabeled nodes. After the iterations end,
the communities constructed by the nodes with the same
labels are detected. However, the original LPA can only
detect nonoverlapping communities. It also has the problem
of instability, as the initial label assignment and propagation
process are random. Some advanced versions of LPA have
been proposed to not only detect overlapping community
structures but also ensure the stability and accuracy of the
results [1], [19]. Nevertheless, no LPA algorithm capable of
detecting multiscale communities has been found.

SLPA [16], [30] is a traditional variant of LPA that uses
the speaker-listener rule during label propagation to detect
overlapping communities. The labels of each node are stored
in memory during each iteration. When iterations finish, the
frequency of one label appearing in the memory determines
the probability of this node belonging to the corresponding
community. To detect overlapping communities, a tunable
parameter γ should be predefined. However, when updating
node labels, SLPA treats the importance of neighboring
nodes the same, which may bring high randomness during
label propagation and lead to low accuracy and stability.
Furthermore, SLPA is not able to detect communities at
multiple scales.

COPRA [31] is also a popular advanced version of LPA
that can detect overlapping communities. It introduces a
parameter v to limit the number of labels of each node. With
the value of the belonging coefficient, the strength that a node
belongs to a community is determined. During the iteration
process of label propagation, the labels and the corresponding
belonging coefficients of nodes are updated. However, similar
to SLPA, COPRA also has the problem of instability and
cannot detect multiscale communities.

To detect overlapping communities while removing the
instability issue, Li proposed a parameter-free algorithm
based on LPA, named SFLPA [1]. Initially, it identifies nodes’
roles, among which the hub nodes are considered potential
community centers. Then, taking hub nodes as the starting
points, the labels propagate through nodes from high to low
according to centrality scores. The community hierarchy is
revealed after aggregating small communities. This algorithm
eliminates instability and improves speed by integrating the
theory of seed set expansion into label propagation, which
is also adopted in our algorithm in this paper. However,
when identifying hub nodes and propagating labels, only
the centrality score is considered, and the connection and
similarity between neighboring nodes is neglected. This
may decrease the accuracy of the community detection
results.

Among the existing LPA algorithms, there is no algorithm
that can realize multiscale community detection, including
the algorithms introduced above. In addition, although
most label propagation algorithms hold the advantage of
linear time complexity, assuring both stability and accuracy
simultaneously is still a critical problem. Considering these
issues, the main innovations of LPAMCD proposed in this

paper are as follows: (1) it presents a new metric, the
propagation indicator (PI), and a new function, the belong
coefficient (b(l, x)), to legitimately propagate labels among
nodes, thus simultaneously increasing both the stability and
accuracy during overlapping community detection; and (2) it
introduces a parameter bth as the threshold of the belonging
coefficient to realize multiscale community detection.

III. LABEL PROPAGATION UPDATE STRATEGY
In traditional multiscale community detection strategies, the
community hierarchy is usually fixed and unique, such as the
structure of a dendrogram. However, these algorithms have
different problems, for example, they have trouble detecting
overlapping communities, there are resolution limit issues
for algorithms based on modularity, and these algorithms
have high computational complexity. Therefore, this paper
introduces an enhanced LPA algorithm to detect multiscale
overlapping communities. Traditional LPA algorithms have
instability problems, including SLPA and COPRA, and no
LPA algorithm for multiscale community detection has been
produced. Based on this, we propose LPAMCD to detect
multiscale overlapping community structures and simultane-
ously improve the stability and efficiency. In particular, the
community hierarchy detected by our algorithm may not be a
dendrogram due to the nonlinear variation in the community
size.

In this section, three items are identified first: Node
Importance, Degree Influence and Propagation Indicator.
Then, the proposed label update method based on the
Propagation Indicator is described. The notations in the
problem formulation and equations are described in Table 1.

A. DEFINITION OF ITEMS
Definition 1 ((Node Importance (NI))): Node Importance

indicates the possibility that one node acts as the potential
community center.

In a given networkG= (V, E), where V represents vertices
(or nodes) in the networkG andE represents edges inG, there
is one node x∈ V, and the neighbor nodes of x comprise a
node set Neg(x). Generally, node x is identified as a potential
community center when it has the following two features:
(1) Neg(x)has more node elements; and (2) the nodes in
Neg(x)connect with each other densely [1], [19], [32]. That
is, when a node has a high degree and a high clustering
coefficient, it may be the center of a community. We propose
that these kinds of nodes are more important in networks
and can influence their neighboring nodes. Based on this, the
degree and clustering coefficient of node xare used tomeasure
its importance. The Node Importance equation is:

NI (x) = D(x)∗CC(x) (1)

where D(x) denotes the degree of node xand CC(x) denotes
the clustering coefficient of node x. The larger the NI of
a node is, the more likely it is to become the center of a
community.
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TABLE 1. Meanings of the notations.

FIGURE 1. Sample network.

Taking the network shown in Fig. 1 as an example, the
values of the degree, clustering coefficient and NI of each
node are listed in Table 2. Node 5 and node 11 have the
highestNI values compared with their neighbors, so these two
nodes are potential community centers.
Definition 2 ((Degree Influence (Dinf))): Degree Influ-

ence indicates the label propagation probability from one
node to another under the influence of the degree difference
between the two nodes.

Nodes with a higher degree usually have a stronger influ-
ence on label propagation to their neighbors [1]. For example,
in scientist cooperation networks, prominent scientists have
a stronger effect on their neighbors; in friendship networks,
such as Facebook and Twitter, internet celebrities have the
most influence on their fans. Therefore, Degree Influence
(Dinf) is used to assist the evaluation of label propagation,

andwe use equation (2) to calculate the degree influence from
one node to another.

Dinf (x, y) =
D(x)

D(x)+ D(y)
(2)

where Dinf(x, y) denotes the degree of influence from x to y.
The larger the degree of node x is compared to that of node y,
the higher the value of Dinf(x, y) is, meaning that it is more
likely for the label of node x to have an effect on node y.
According to the sample network in Fig. 1, Dinf(1,2)=0.625
and Dinf(2,1)=0.375, so the ability of labels propagating
from node 1 to node 2 is stronger than the reverse.
Definition 3 ((Propagation Indicator (PI))): The propa-

gation indicator reflects the capability of a label propagating
from one node to another.

We suggest that except for Dinf(x, y), the similarity
between nodes also affects the label propagation possibility.
Nodes with higher similarity are more likely to belong to the
same community. For example, in a scientist collaboration
network, scientists with stronger professional similarity are
more likely to be assigned to the same community; in a
friendship network, people with more common interests
are more likely to belong to the same community. Thus,
the Propagation Indicator mainly consists of the similarity
between nodes and the Degree Influence (Dinf) from one
node to another. If a node has a higher similarity and Dinf,
it should have a stronger label propagation capability.

We use the popular function named Jaccard Index [33],
which is shown in (3), to evaluate the similarity between two
nodes.

Sim(x, y) =
Neg(x) ∩ Neg(y)
Neg(x) ∪ Neg(y)

(3)

where Sim(x, y) is the similarity value between nodes x and
y. Neg(x) and Neg(y) denote the neighbor node sets of nodes
x and y, respectively. Therefore, the similarity of nodes x and
y is the ratio of the number of their common neighbors to the
number of all neighbors.

By combining the Jaccard Index and Degree Influence,
the formula of the Propagation Indicator can be expressed as
follows.

PI (x, y) = 0.5∗(
Neg(x) ∩ Neg(y)
Neg(x) ∪ Neg(y)

+
D(x)

D(x)+ D(y)
) (4)

where PI(x, y) denotes the probability of a label propagating
from node x to node y. As the value range of Sim(x, y) and
Dinf(x, y) is 0 to 1, their summation is multiplied by 0.5 for
normalization. In conclusion,PI(x, y) evaluates the possibility
of label propagation, and its value is in the range of 0 to 1.

B. LABEL UPDATE METHOD
Inspired by the idea in COPRA, we use the belonging
coefficient (b(l, x)) to control the label propagation between
nodes. b(l, x) indicates the probability of node xbelonging to
label l. For a given network G = (V, E), when the iteration of
label propagation ends, there will be a set LABto record the
labels for each node x ∈ V .
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TABLE 2. NI for the sample network in figure 1.

In our algorithm, different labels propagate simultane-
ously, meaning that during each iteration of the propagation
process, different labels spread from the newest updated
nodes synchronously. Compared with the algorithms pro-
posed in the literature [14], [19], [32], which propagate labels
from all the sorted nodes in the network in turn, our method
improves the propagation efficiency. Propagating labels from
the potential community centers can make the labels spread
far enough to form integrated communities, thus improving
the accuracy of the detected community structure.

To realize multiscale community detection, we introduce
a parameter named the belonging coefficient threshold (bth).
Only when b(l, x) is larger than bth, can label l be propagated
to node x successfully. By adjusting the value of bth, the
community structures can be detected at different scales.
Specifically, when the bth value is low, the b(l, x) value
of each node more easily meets the requirement of label
propagation, which is greater than the threshold bth. Thus,
the formed communities are increasingly larger. In contrast,
when the bth value is high, the b(l, x) value of each node has
difficulty exceeding bth. At this time, only densely connected
nodes, that is, only nodes with sufficiently large b(l, x) values,
can form communities. Thus, the community size in this
moment is small, and its number is relatively large. Therefore,
nodes with different closeness values can be distinguished
by changing the value of bth and further realizing multiscale
community detection.

To record the labels of each node, the array labi = [li]
is used to represent that node i belongs to label li. During
every iteration of the label propagation process, the tuple
LAB={labi} is updated to record the labels that each node
receives. The overlapping community appears when two or
more labels are propagated to the same node, that is, the
corresponding labi has more than one element. Nodes of this
kind form overlapping regions.

Suppose that at the beginning of an iteration, the label to
be spread is l and the node to be updated is x (x ∈ V ). The
algorithm to update label l for node x is defined as follows:
(1) The neighbors of node x comprise node set Neg(x).
(2) In Neg(x), the nodes with label l form node set N (l):

N (l) = {u ∈ Neg(x)|l ∈ labu} (5)

where labu represents the label set to which node u belongs.
(3) InNeg(x), the nodes with labels form node setN (Lnegx):

N (Lnegx) = {u ∈ Neg(x)|labu ̸= ∅} (6)

(4) Based on (4)-(6), calculate the belonging coefficient
b(l, x) of node x to label l:

b(l, x) =

∑
u∈N (l) PI (u, x)∑

v∈N (Lnegx ) PI (v, x)
(7)

where N (l) denotes the node set consisting of all the nodes
with label l in Neg(x), so the numerator

∑
u∈N (l) PI (u, x)

represents the sum of the influence of the nodes with label
l in Neg(x) on node x. The denominator

∑
v∈N (Lnegx ) PI (v, x)

represents the sum of the influence of all kinds of labels in
Neg(x) on node x. In addition, the nodes with no label do
not belong to N (Lnegx), so this kind of node has no effect on
node x during label propagation. From (7), it can be seen that
different labels will influence node x with different strengths.
The closer

∑
u∈N (l) PI (u, x) is to

∑
v∈N (Lnegx ) PI (v, x), the

higher the probability node x has of obtaining label l. Thus,
the node sets with different labels in Neg(x), namely, adjacent
communities, will all have an effect on the label propagation
results, which indicates that whether node x can acquire label
l is the consequence of the dynamic confrontation between
adjacent communities.

As a result, the community structure detected at different
scales by our algorithm is different from the traditional
dendrogram [15], [21], [28], [34], meaning that in some
small areas, when the belonging coefficient threshold (bth)
increases, the community size may become large and the
number may decrease. However, this novel phenomenon is
consistent with the reality of social networks. For example,
when a person decides to participate in one or more
communities, the influence of each community on the person
will be considered, including the closeness (alienation or
friendliness), impact (positive or negative), environmental
similarity and other realistic factors. Therefore, the decision
may not always be the same, especially when the internal
community structure changes. That is, the person may choose
to join a community depending on whether their friends are
members of the community. The mechanism of the dynamic
confrontation between adjacent communities is illustrated in
detail in Section V-C2 in combination with the experimental
results.

(5) Judging the relationship between b(l, x) and bth.
If b(l, x)> bth, node x can obtain label l, meaning that label

l is appended to labx . Otherwise, label l cannot be propagated
to node x.
Here, we propose a label update strategy that can over-

come the randomness of original label propagation strategy
and increase the efficiency by propagating multiple labels
simultaneously. The belonging coefficient threshold bth is

VOLUME 11, 2023 80007



X. Zheng et al.: Multiscale Community Detection Using a Label Propagation

introduced to realize multiscale community detection. That
is, we first calculate b(l, x) to evaluate the probability for
node x to obtain label l and then compare b(l, x) and
bth to determine whether l can be propagated to x. Thus,
adjusting bth can change the size and quantity of the detected
communities.

IV. ALGORITHM DESCRIPTION
According to the definitions and label propagation method
described in Section III, we propose a new multiscale
community detection algorithm using label propagation,
LPAMCD. It improves the stability and accuracy of tradi-
tional label propagation algorithms in two ways. First, it finds
the hub nodes, which are the potential community centers and
act as the initial points of label propagation. Second, we think
the updating node is influenced by its neighbors, and the
influence strength is determined by the sum of Propagation
Indicator (PI). In other words, a label will have a stronger
capability to propagate to the updating node when it affects
more neighboring nodes, and each neighbor has a larger value
of PI.

After completing the iteration process of label propagation,
the nodes are assigned multiple labels form overlapping
parts. Thus, LPAMCD can detect overlapped community
structures. By identifying hub nodes and updating labels
based on (7), the accuracy, stability and efficiency can be
observably improved by LPAMCD.

A. HUB NODE IDENTIFICATION
To detect the overlapped or nonoverlapped community
structures, we try to find the potential community central
nodes that are recorded as hub nodes by adopting the idea of
seed set expansion [1]. We think that the nodes with a larger
NI have a higher possibility of being potential community
centers, and this kind of node is recorded as a hub. In our
algorithm, the hub node is screened based on the local peak
of NI, i.e., the NI value is no less than that of all its neighbors.
In the rare case, when the NI values of adjacent nodes that
are also local peaks are the same, we choose one of the nodes
as the hub node. Taking Fig. 1 as an example, it can be seen
from Table 2 that the NI values of node 5 and node 11 are
local peaks. Therefore, the set of hub nodes for this network
is {5, 11}.

The hub node set, recorded as Source, contains the
community center nodes. At the beginning of the label
propagation process, each hub is assigned a unique label
and acts as the starting point for label spreading. To lower
the community detection instability caused by label random-
ness in the original label propagation algorithm, we will
propagate labels from the screened hub nodes or according
to the sequence of nodes sorted in descending order
of NI, ensuring the uniqueness of the label propagation
result. Furthermore, different labels are propagated simul-
taneously from each hub, which improves the spreading
efficiency.

B. LABEL PROPAGATION PROCESS
In the label propagation algorithm, nodes with the same
label belong to the same community. As mentioned above,
we use array labx=[l] to indicate that node x has label l.
By extending the elements in labx , all the labels obtained
by node x can be recorded. labx=∅ indicates that node x has
not received any label and belongs to no community, while
| labx |≥ 2 means that node x belongs to the overlapping
part. In addition, the array ci={(x, t)} denotes that node x
joins community ci at time t , and ci can be appended when
other nodes join community ci. The tuple C={ci} denotes the
overall community structure detected in the network and is
updated during the label propagation process. Note that the
timestamps of label infection are recorded by t; therefore,
the synchronization of label propagation in our algorithm is
guaranteed.

1) LABEL PROPAGATION FROM HUB NODES
There are two phases in the label propagation process of
LPAMCD. In the first phase, the hub nodes construct the
set Source, and each hub is assigned a unique label, that is,
labu=[s] (u∈ Source),where s is the label allocated to hub
node u. Other nodes except the hub nodes are not assigned
any label, so labx=∅ (x/∈ Source). Initially, taking each hub
node as the starting point, the labels of all the hub nodes
propagate simultaneously. Then, we regard the newly affected
nodes as new starting points in the next iteration of label
propagation. It should be noted that the starting points only
affect their immediate neighbors during each iteration, and
the detailed label propagation rule is as follows: During the
t-thround of the propagation process, for node x, suppose
the label set of its neighbor nodes is {l1, l2, . . . , lm}. Then,
calculate the belonging coefficient b(li, x) according to (5)-(7)
and compare the result with the threshold bth. As noted earlier,
only when b(li, x)>bth can node x obtain label li and join
community ci at time t , meaning that ci and labx are updated.
After several such iterations, the labels propagate from hub
nodes to their surroundings. The infection of a certain label
will stop when b(l, x) is not larger than bth or when the
updating node has receives the label. When the tuple C for
the whole network is no longer changed or the iteration time
t reaches the upper limit T , the label propagation iteration
ends.

Specifically, if the label of one hub is propagated to
other hubs, the communities developed by these hub nodes
will be merged into one, meaning that the nodes in these
communities will have the same label. We integrate this
merging process into the label propagation algorithm, and
the process is as follows: Before label propagation from
hub node i, we check the element number in labi, that is,
|labi|. Only when |labi|=1 can label propagation from node
i proceed normally. If there are two or more elements in
labi, it indicates that the corresponding community, which
is ci, should be merged into the others. That is, the original
community ci is a subset of another community to which
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node i belongs. Therefore, the label propagation process
starting from this hub node i is skipped by setting the
corresponding community ci to an empty community (∅).
Through experimental validations, this operation effectively
avoids repeated detection for communities that need to be
merged. Thus, the efficiency is greatly improved, and the
detection time is reduced. The label propagation process from
hub nodes is detailed in Algorithm 1.

Algorithm 1 Label propagation process from hub nodes
Input: Network G = (V, E), Maximum iteration number T ,
The set of hub nodes Source, The set of Sourcelabels LAB
= {labi | labi = [li], i ∈ Source}, The set of community
C = {ci | ci = {(i, 0)}, i∈ Source}
Output:Community set C and label set LAB
for all nodes x∈ V do

for y∈ Neg(x) do
DI(x, y)← Calculate Degree Influence according to (2)
Sim(x, y)← Calculate Similarity according to (3)
PI(x, y)← Calculate Propagation Indicator according

to (4)
end for

end for
t=0
while t<T do
t=t+1
for node i ∈ Source do
if |labi| =1 then

if ∀ node i s.t. (i, t-1) ∈ cithen
for node x ∈ Neg(i) do

N(li) = {u∈ Neg(x)| li ∈ labu}
N(Lnegu) = {u∈ Neg(x)| labu ̸= ∅}
b(li, x)← Update the belong coefficient label

of li propagating to node x according to (7)
if b(li, x) > bth then
Add li to labx
Add {x, t} to ci

end if
end for

end if
else ci =∅ /∗Skip the community detection for the

hub node i which have labels propagated from other hubs /
end if

end for
if C does not change then

break
end if

end while
Output community set C and label set LAB

Taking the sample network in Fig. 1 as an example, the hub
nodes identified are {5, 11}, as described in Section IV-A.
To distinguish the number of nodes and labels, we use n to
represent the node name and ln to denote the label name in
this paper. Therefore, the labels assigned to the hub nodes are
lab5 =[l5] and lab11 =[l11], meaning that node 5 is assigned

label l5 and node 11 is assigned label l11. Then, we calculate
Dinf, Sim and PI between different node pairs of the sample
network, as shown in Table 3. Note that the horizontal and
vertical node IDs in Table 3 represent node x and node y
in (2)-(4), respectively. Table 3 and Table 3 show the values
of DI and Sim from node x to node y, and Table 3 shows the
value of PI to evaluate the probability of the label propagating
from node x to node y.
The label propagation process of the sample network in

Fig. 1 is illustrated in Fig. 2. As described above, only hub
nodes {5, 11} have labels, which aremarked in blue and red in
Fig. 2(a). Then, labels l5 and l11 start to propagate from node
5 and node 11 to their immediate neighbors synchronously.
For node 1, Neg(1)={2, 4, 5, 6, 8}, N(l5) ={5} and
N (Lneg1) = {5}. Then, we calculate b(l5, 1) according to (7)
and obtain b(l5, 1)=1. In the same way, b(l5, 2)= b(l5,
3)= b(l5, 4)=1 and b(l11, 6)= b(l11, 7)= b(l11, 8)= b(l11,
9)=1. Therefore, labels l5 and l11 are propagated to their
neighbors in the first iteration, as shown in Fig. 2(b). In the
next iterations, the labels keep propagating from the newly
updated nodes to their neighbors, which either have no label
or have not obtained the spreading ones. Taking node 6 as an
example, Neg(6)={1, 8, 9, 11}, N (l5) ={1} and N (Lneg6) =
{1,8, 9, 11}. Therefore, b(l5, 6) is computed as follows:

b(l5, 6) =
PI (1, 6)

PI (1, 6)+ PI (8, 6)+ PI (9, 6)+ PI (11, 6)
= 0.227 (8)

In the same way, we calculate the new label belonging
coefficient for each node, which is shown in Fig. 2(c). The
belonging coefficient of label l5 propagating to node 6 or
8 is 0.227, and that of label l11 propagating to node 1 is
0.39, so whether the label can affect the nodes successfully
is related to the belonging coefficient threshold, that is, bth.

Here, with the following two bth values, we discuss the
different community detection processes in detail. Case one,
when bth =0.45, as shown in Fig. 2(d1), label l5 and label l11
cannot affect node {6, 8} and node {1}, respectively, as their
belong coefficients, which are 0.227, 0.227 and 0.39, are
smaller than 0.45. Therefore, label propagation stops, and the
network is partitioned into two communities: {1, 2, 3, 4, 5},
which are marked in blue, and {6, 7, 8, 9, 10, 11}, which are
marked in yellow.

Case two, when bth =0.3, as shown in Fig. 2(d2), label
l11 can be propagated to node 1, as its belonging coefficient
0.39 is larger than 0.3, which is marked by (l11, 0.39, 2). Then,
we calculate the belonging coefficients of label l11 on node
{2, 4, 5}, which are 0.31, 0.31 and 0.75, respectively. The
three nodes are all affected by label l11, and the calculation
results are all larger than 0.3, as shown in Fig. 2(d2). As hub
node 5 obtains label l11, community {1, 2, 3, 4, 5} will be
merged into community {6, 7, 8, 9, 10, 11}. Thus, the whole
network forms one community. Based on the above analysis,
it is demonstrated that adjusting the value of bth can change
the community structure and realize multiscale community
detection.
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TABLE 3. (a) Degree Influence (Dinf) matrix of the sample network. (b) Jaccard similarity (Sim) matrix of the sample network. (c) Propagation indicator
(PI) matrix of the sample network.

FIGURE 2. Label propagation process of LPAMCD on the sample network. The marker (la, b, c) next to each node
represents (label, belonging coefficient, time). For example, (l5, 1, 1) beside node 2 means that label l5 is propagated
to node 2 with b(l5, 2)=1 at time 1.
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2) LABEL PROPAGATION AMONG PENDING NODES
In some cases, especially in large networks, there are still
some nodes that have no label after the process of label
propagation from hub nodes in the first phase. These kinds
of nodes are called pending nodes in our paper, and the
node set is denoted by P. In the second label propagation
phase, we focus on partitioning the pending nodes, and the
propagation loops through the following steps:

1. Sort the pending nodes in descending order of NI to
obtain the array pQueue. The node with the highest NI value
in P (pQueue[0]) is treated as the center of a new community,
so a new label is assigned to pQueue[0], and the node is
the starting point of label propagation. Moreover, the new
element {(pQueue[0], t)} is appended to the end ofCto update
the community structure.

2. As in phase one, calculate b(l, x) of each updating
node and compare the results with bth. The label l can be
propagated to node x only when b(l, x)>bth,, and then the
array ci and labx are updated. Iterate the process several
times until community detection from node pQueue[0] is
completed.

3. Similar to the merger cooperation in phase one, if the
label of node a1 (a1 ∈ P) propagates to node a2 (a2 ∈ P),
the communities corresponding to nodes a1 and a2 can be
merged. We remove all the nodes like node a2 from set P.
In this way, the community detections for these nodes are
skipped. This operation can greatly improve the efficiency
of the detection process and decrease the complexity of the
algorithm.

With the above three-step iteration process, the community
partition for pending nodes, which are the remaining
unsigned nodes, is realized until the iterations reach T or the
set pQueue becomes ∅.
It should be noted that in the first phase of the algorithm,

the community detection for some nodes is skipped with the
corresponding ci=∅ (ci ∈ C). Therefore, the final accurate
community structure can be acquired by removing the empty
collections inC after the two-phase label propagation process
is completed. The label propagation process among pending
nodes is detailed in Algorithm 2.

C. COMPUTATIONAL COMPLEXITY
Consider a network with V nodes and E edges. In the first step
of LPAMCD, the time complexity includes calculating NI,
Dinf and PI. The time complexity for computing the degree
and clustering coefficient is O(V ) and O(V 2),respectively,
so the time complexity forNI isO(V 2). According to (2),Dinf
is the ratio of the degree, so the time complexity for Dinf is
O(V ). The time complexity for the Jaccard Index is O(V 2k),
where k is the average degree of network nodes. According
to (4), PI is linear to Jaccard andDinf, so the time complexity
of PI is O(V 2k+V ) ≃ O(V 2k).
At step 2, hub nodes are identified based on the local peak

of NI. This procedure is realized by comparing the NI of each
node to all its neighbors, which incurs a time cost O(E).

Algorithm 2 Label propagation process among pending
nodes
Input: Network G = (V, E), Maximum iteration number T
community set C and label set LAB
Output:Community structure C and label set LAB
P = {x | labx =∅ }← identify the set of pending nodes
pQueue← sort P in descending order according to NI
while pQueue ̸= ∅ do

Assign a label to pQueue[0]
Append C to include cp = {pQueue[0], t}
t=t+1
while t < T do

for ∀ node is.t. (i, t-1)∈ cp do
for node x∈ Neg(i)do

N(li)={u∈ Neg(x) | li ∈ labu}
N(Lneg)={u∈ Neg(x) | labu ̸= ∅}
b(li, x)← update belonging coefficient of label

li propagating to node x according to (7)
if b(li, x) > bth then
Add li to labx
Add {x, t} to cp

end if
end for

end for
if C does not change then
break
end if
end while
Remove nodes with labels from pQueue
end while
Remove ∅ from C
Output community structure C and label set LAB

Step 3 is to perform the label propagation process,
including labels propagating from hub nodes and pending
nodes. Regardless of the value of bth, after the last iteration
of label propagation, every node is visited, and each visit
accesses the neighbors of all the nodes. Intuitively, the
propagation path from hub nodes or pending nodes is one-
way. Therefore, the time complexity for this process is
O(V+E).

Thus, the overall time complexity of LPAMCD is
O(V 2

+V+V 2k+E+(V+E)). Commonly, k ≪Vin most
complex networks, so the final time complexity isO(V 2

+E).
Compared with traditional LPA (O(E)), our algorithm has
a certain increase in computational complexity. However,
LPAMCD can realize full-resolution community detection
with higher stability and efficiency, and it can eliminate
randomness and accelerate the convergence rate.

V. EXPERIMENTS
In this section, we use three real-world networks to evaluate
the accuracy, efficiency and stability of the algorithm.
First, the qualitative analysis of LPAMCD in a small real
network shows the effectiveness of multiscale community
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detection. Second, to test the accuracy and efficiency of
our algorithm, a quantitative analysis with three real-world
networks is provided to illustrate the community structure
variation with bth and demonstrate the high accuracy and
stability of LPAMCD. Specifically, the new finding about the
dynamic confrontation between adjacent communities is also
discussed in detail.

All the experiments are programmed in Python, simulated
by PyCharm and conducted on a computer with a 2.4 GHz
Intel Core i5 CPU and 16 GB RAM. The community
structures of the networks are drawn in Gephi.

A. DATASETS
We test LPAMCD with three real-world networks, including
the karate club network, dolphin network and Facebook
network. To evaluate the quality of the community structure,
themost popularmetric is modularity, whichwas proposed by
Newman and is based on the assumption that the links inside
communities are denser than those outside the communities
[35]. Although modularity is not a reasonable characteri-
zation for all communities of all real-world networks, it is
still a widely accepted metric to evaluate the performance of
community detection algorithms [36]. However, this metric
is mainly focused on nonoverlapping communities. As the
detected community structure in this paper may overlap,
we choose EQ, proposed by Shen, to evaluate the community
partition quality [21]. EQ is a quality function extension
of modularity [35] to evaluate the goodness of overlapped
and nonoverlapped community decomposition. It reduces
to the traditional modularity (Q) [35] when the community
has no overlap. The profiles of each network are shown
in Table 4.

TABLE 4. Profiles of real networks.

B. QUALITATIVE ANALYSIS
The main merit of our algorithm is that it has the capability
to detect communities on any scale continuously and stably.
This is in light of the tunable parameter bth. Therefore,
bth allows users to obtain community structures of any
resolution based on their actual needs. Due to different users
having different needs, there is no ‘‘optimal’’ choice for
bth theoretically. To show the characteristics of community
structures at multiple scales, we conduct experiments on the
karate club network and dolphin network with ground truths,
and the values of EQ and NC(number of communities) for
different bth values are listed.

FIGURE 3. Community structures across different detection scales.
We seek to reveal the changes in community structures in this synthetic
graph. The belonging coefficient bth varies between 0.1 and 1 with a step
size of 0.1, and the communities are detected independently for each bth
value. Different colors in the graph represent different communities, and
the area of the color block denotes the scale of each community.

1) KARATE CLUB NETWORK
The traditional karate club network is a social network
consisting of friendships between 34 members from a karate
club at a US university. Due to a dispute between the president
and the instructor in the club, the members are split into
several parts. The community structures across different
detection scales are displayed in Fig. 3. The size and amount
of the color blocks in Fig. 3 illustrate the scale and number of
communities, respectively. It can be observed that at different
bth values, the community structures detected vary frequently
in the community size and number. With an increase in bth,
there is a general trend that the number of communities
increases and the size of each community decreases.

To verify the effectiveness of the algorithm and analyze the
variation in the community structure, we present four typical
community detection results in Fig. 4, where the values of
bth are 0.4, 0.51, 0.68 and 0.9. In addition, the community
partition quality (EQ) and the community number (NC) of
each structure are annotated. Referring to (1), the hub nodes
found in the karate club are nodes 17, 4, 9 and 30, which are
marked yellow in Fig. 4.

With the increase in bth, the number of communities in
Fig. 4(a)-(d) changes from 2, 3, 6 to 9, showing a trend
of decreasing the size of each community and increasing
the number of communities. When bth =0.4, there are two
communities, and nodes 10 and 20 overlap. When bth =0.51,
the left community in Fig. 4(a) splits into two subgroups: {5,
6, 7, 11, 17} and {1, 12, 2, 18, 20, 22, 4, 8, 13, 14}. When
bth increases to 0.68 and 0.9, subgroup {1, 12, 2, 18, 20, 22,
4, 8, 13, 14} continues to divide, while subgroup {5, 6, 7,
11, 17} remains unchanged. These results reveal that nodes
{5, 6, 7, 11, 17} have higher tightness among themselves.
Even though bth is as high as 0.9, community {5, 6, 7,
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FIGURE 4. Community structures of the karate club network at multiple scales. Different colors of
nodes represent different communities. With the increase in bth, there is a general trend that the
number of communities increases and the size of each community decreases.

FIGURE 5. Community structures of the dolphin network for bth =0.37 and bth
=0.45. With the increase in bth, community A is unchanged, while community B splits
into three subcommunities, B1, B2 and B3, indicating that the increase in bth makes
the communities partitioned with higher compactness.

11, 17} is still maintained. Similarly, subgroups {1,12}, {2,
18, 20, 22} and {4, 8, 13, 14} are also very tight clusters.
In conclusion, when bth is low, the requirement for closeness
between nodes inside a community is weak. Thus, as shown in
Fig. 4(a), communities with large scales and small numbers
are obtained. In contrast, when bth is high, only the nodes
connected closely enough can form communities. As shown
in Fig. 4(d), the scale of each community decreases, and the

number of communities increases. Therefore, by adjusting
bth, communities with different levels of compactness can be
screened out, and then multiscale community detection can
be realized.

2) DOLPHIN NETWORK
The dolphin network is a social network based on the frequent
associations among 62 dolphins living off Doubtful Sound
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in New Zealand. The nodes are dolphins, and the edges
represent relationships between dolphins that associate more
frequently. The dolphin network has obviously modularized
characteristics.

Fig. 5 illustrates two typical community structures under
different detection scales, where the values of bth are
0.37 and 0.45, showing the efficiency of our algorithm and
the variation in the community structure. The hub nodes
found by LPAMCD in the dolphin network are nodes 14,
17, 19, 26 and 48, which are marked yellow. When bth
increases from 0.37 to 0.45, the number of communities
change from 2 to 4. This illustrates that high bth values
improve the resolution of community recognition. That is,
the nodes inside a community have closer connections with
each other, resulting in the number of communities becoming
large and the scale of each community decreasing. As shown
in Fig. 5, when bth =0.37, two large communities, named
A and B, are detected, and nodes 20, 8 and 40 overlap.
This community structure is basically consistent with the
traditional community detection results [1], [6]. When bth
=0.45, the scale of community A is unchanged, while
community B splits into three subcommunities, B1, B2 and
B3, indicating that an increase in bth makes the communities
partitioned with higher compactness.

C. QUANTITATIVE ANALYSIS
1) VARIATION IN EVALUATION PARAMETERS WITH BTH
To understand the influence of the bth value on community
structure detection more comprehensively, we quantitatively
discuss the variations in the community partition quality (EQ)
and community number (NC) with bth based on three real-
world networks (karate club network, dolphin network and
Facebook network), which further verify the effectiveness
and accuracy of this algorithm.

a: KARATE CLUB NETWORK
As shown in Fig. 4(b), when bth =0.51, EQ reaches
the maximum value of 0.3991, meaning that from the
view of the partition quality, the community structure at
this time is the most significant. This proves that our
algorithm can find the optimal decomposition at certain
detection scales. When the value of bth is 0.4, 0.68 and 0.9,
as shown in Fig. 4(a), (c) and (d), EQ is 0.3649, 0.3408 and
0.249, respectively. The first two values of EQ are above
0.3, indicating that the algorithm can correctly recognize
different community structures. Although in the last case,
the value 0.249 is relatively low, the community structure in
Fig. 4(d) still has practical significance, as the community
partition target at this time is to screen out nodes with high
compactness rather than find the best community partition
structure. This helps the model to obtain communities with
different closeness levels according to different actual needs.

We present the curves of EQ and NC with bth in Fig. 6,
where the range of bth is [1, 0] and the step size is 0.01.

FIGURE 6. Variation in EQ and NC against bth in the karate club network.

As shown in Fig. 6, when bth ranges from 0 to 0.33, NC
is 1 and EQ is 0, meaning that the given threshold bth is
relatively low at this time and the compactness between any
nodes in the network can exceed it. Therefore, all nodes
form one large community. With the increase in bth, EQ
shows an upward trend. When bth ranges from 0.34 to 0.73,
the corresponding values of EQ are all above 0.3 with the
maximum value up to 0.3991, and the variation range of NC
is 2∼9. In this interval, although the community structure
changes with bth, the community clustering quality is high.
It shows that our algorithm can accurately identify various
community structures under different detection scales. When
bth is greater than 0.65, EQ decreases with increasing bth,
indicating that the given bth value is relatively high and that
the compactness between some nodes cannot exceed it. The
communities detected at this moment are small in size and
large in number. In this way, the node sets with high closeness
values are identified.

When bth =1, the compactness between all pairs of
nodes cannot exceed it, as the belonging coefficient of
nodes must be less than 1. Therefore, each node forms a
community; that is, the 34 nodes in the karate network
constitute 34 communities. There is no community partition
for the network, and the corresponding EQ is negative.
However, the detection results at this time still have practical
significance because this special case represents the lowest
resolution of community detection.

In conclusion, the algorithm proposed in this paper can
not only identify various community structures with different
compactness at different scales but also realize full resolution
detection from all nodes forming a whole community to each
node forming an independent community.

b: DOLPHIN NETWORK
In the two community structures shown in Fig. 5, the
values of EQ are 0.3577 and 0.5261, demonstrating that
the two communities have high partition quality and that
our algorithm is efficient and accurate. Fig. 7 illustrates the
changes in EQ and NC with bth. In the range of [0, 0.324] for
bth,NC is 1, and the corresponding EQ is 0 since the given bth
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FIGURE 7. Variation in EQ and NC against bth in the dolphin network.

at this time has no requirement for the compactness between
nodes, leading to all nodes forming one community. As bth
increases, EQ shows an overall upward trend. In Fig. 7, when
the bth value is within the large range of [0.328, 1), the values
of EQ are all above 0.3, indicating that at different scales, i.e.,
with different values of bth, the clustering qualities of various
community structures detected by LPAMCD are all relatively
high. Especially when the range of bth is [0.443, 0.46], EQ
reaches the maximum value of 0.5261, and the community
structure is shown in Fig. 5(b). As each node constitutes
a community when bth is 1, there are 62 communities in
total, and the corresponding EQ value is negative. Again, it is
verified that this algorithm can achieve full resolution (from
a whole community to a single node community) community
structure detection while ensuring high community partition
quality.

c: FACEBOOK NETWORK
The Facebook network is a large social network whose data
were collected from survey participants through the Facebook
app. The nodes represent people, and edges represent inter-
actions between people. After applying LPAMCD, we found
13 hub nodes, which are potential community centers. As the
Facebook network is a large network with 4039 nodes and
88234 edges, it is unrealistic to show the node distribution of
each community. Therefore, we use the community quality
criterion (EQ) and number of communities (NC) to illustrate
the effectiveness and efficiency of LPAMCD, as shown in
Fig. 8(a).

When the value of bth ranges from 0 to 0.078, the given
belonging coefficient threshold is low, resulting in NC being
1 and EQ being 0. As bth increases, NC increases, and the
corresponding EQ presents an overall upward trend. For a
large range [0.108, 1) of bth, the values of EQ are all above
0.3, indicating that the community structures detected by
LPAMCDare reasonable and the clustering qualities are high.
The EQ value reaches a maximum of 0.7449 when bth is
0.53. When bth =1, as shown in Fig. 8(a), 4093 communities
constructed by a single node appear, and the EQ value
is negative. Fig. 8(b) shows in more detail the change

FIGURE 8. Variation in EQ and NC against bth in the Facebook network.

in NC in the range [0,1) of bth. The experiment on the
Facebook network demonstrates that our algorithm has high
performance in multiscale community detection.

From the experiments, it can be seen that bth can realize
full-resolution community detection of networks, and the
value is determined by practical demand. However, in the
case of detecting the best community partition structure,
the optimal bth value corresponds to the maximum EQ.
Figures 6-8 show that the bth values at the maximum EQ are
different, which reflects the unique properties of the different
networks. Therefore, the determination of the optimal bth
requires EQ-bth analysis, and there is no uniform value. The
recommended value based on the existing analysis results is
bth =0.4∼0.6.

2) DYNAMIC CONFRONTATION BETWEEN ADJACENT
COMMUNITIES
Unexpectedly, Fig. 6 and Fig. 8(b) show that the number of
communities (NC) does not strictly change linearly with the
belonging coefficient threshold (bth); that is, in some small
areas, NC decreases slightly with the increase in bth. Taking
the karate club network as an example, as shown in Fig. 9,
when bth increases from [0.69, 0.73] to [0.74, 0.86], NC
decreases from 9 to 8. It can be seen that with an increase
in bth, the subcommunity A-{24, 25, 26, 27, 28, 29, 30, 32,
15, 16, 19, 21, 23, 33, 34}with label A on the right of Fig. 9(a)
is split into three smaller subcommunities in Fig. 9(b):
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FIGURE 9. Community structures with bth ∈ [0.69, 0.73] and bth ∈ [0.74,
0.86]. With the increase in bth, the large community A splits into three
small communities, namely, A1, A2 and A3. Therefore, the influence of
community A is reduced. Then, the single nodes {10} and {20} are
included in community B, and the single node {31} is included in
community C. It can be seen that the total number of communities
decreases from 9 to 8, although bth increases. This small-scale nonlinear
phenomenon is expressed by the dynamic confrontation between
adjacent communities in absorbing boundary nodes, which is a novel
finding in this paper.

A1-{24, 25, 26, 27, 28, 29, 30, 32}, A2-{15, 16, 19,
21, 23, 33} and A3-{34}. It is obvious that the nodes in
subcommunities A1 and A2 have higher compactness, and
the sizes of the communities decrease while the number
increases. However, the communities {20}, {10}, {9}, and
{31} constituted by single nodes in Fig. 9(a) are merged into
the communities B-{3, 4, 8, 13, 14, 2, 18, 22, 20, 10} and
C-{9, 31} in Fig. 9(b), resulting in the expansion of com-
munity scales and the reduction in the community number.
This is very different from the traditional structure of a den-
drogram [15], [21], [28], [34]. As described in Section III-B,
this small-scale nonlinear phenomenon is caused by the
dynamic confrontation between adjacent communities in
absorbing boundary nodes, which is also a novel finding in
this paper. In some networks, especially social networks, this
phenomenon is consistent with real life. We will discuss it
from two aspects: algorithm principle and social laws.

From the perspective of the algorithm principle, referring
to (7), the value of b(l, x) is determined by both the label types
of neighboring nodes and the Propagation Indicator (PI) from
every neighboring node to x. In the neighbors of node x, there
are multiple node sets with different labels, and each node
set has a certain influence on the propagation of label l to
node x. Only the labels whose influence exceeds the threshold

bth can be propagated to node x successfully, which leads to
the phenomenon of dynamic confrontation between adjacent
communities with different labels. In Fig. 9(a), node 9 is
a hub node with label C. When labels A, B, and C are
propagated to nodes 20, 10 and 31, communities A and
B produce two strong influences that are evenly matched.
Therefore, nodes 20, 10, 9 and 31 form four single node
communities, rather than belonging to community A or B.
However, in Fig. 9(b), with the increase in bth, community
A is split into three smaller communities A1, A2 and A3.
Obviously, the influence of labels A1, A2 and A3 on nodes
20, 10, 9 and 31 is greatly reduced, while the influence of
label B on nodes 20 and 10 and that of label C on node 31 are
relatively enhanced; therefore, nodes 20 and 10 are included
by community B, and node 31 is included by community C.
This explains that at some small scales, with the increase
in the belonging coefficient threshold (bth), the number of
communities (NC) decreases slightly.

The phenomenon of dynamic confrontation between
adjacent communities can also be interpreted from the
perspective of real life. Social networks are different
from biochemical networks, transport networks, etc. The
connection relationship between each node of the latter is
usually fixed, and the hierarchy is strict, so networks of this
kind have dendrogram structures [15]. However, in social
networks, the interpersonal relationship is delicate, and the
decision of a person about whether to join a certain club
is flexible and changes with variations in the surrounding
environment. For example, if there are several communities
around a person, before deciding to join one or more, the
person will consider the influence from each community,
including various practical factors such as the comparison and
competition of two strengths, that is, which community can
provide more benefits. Therefore, this paper quantitatively
explains that communities in social networks do not follow
the strict dendrogram structure and that the hierarchy of
community members is variable.

3) ACCURACY AND STABILITY
We compare the proposed algorithm LPAMCD with SLPA
and COPRA, which are found to have better performance
for overlapping community detection [37], and SFLPA [1],
which stably detects overlapping communities in large social
networks.

For accuracy, to obtain reliable experimental results,
we apply the four algorithms LPAMCD, SLPA, COPRA and
SFLPA to three real-world networks: the karate club network,
dolphin network and Facebook network. The quality of the
community detection results is evaluated by EQ, as shown in
Fig. 10. Considering that the detection results of SLPA and
COPRA are unstable, we run the experiments 50 times and
choose the highest value of EQ. With increasing bth, the EQ
curves of LPAMCD under different networks have similar
features. That is, the initial value is 0, and then it gradually
increases until it reaches the peak value. After this point,
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FIGURE 10. Quality of the community detection results evaluated by EQ.
(a) karate club network; (b) dolphin network; (c) Facebook network.

the EQ value decreases to negative, as each community is
composed of a single node when bth is 1.
In Fig. 10, the EQ values of LPAMCD vary with bth

in a parabolic shape. Near the top of the parabola, the
corresponding EQ values of LPAMCD are the highest
compared with the other three algorithms, indicating that the
community quality of LPAMCD is the best. Although the
EQ value decreases at both ends of the parabola, the slopes
on both sides differ greatly. On the left side of the parabola,
as bth increases, EQ suddenly increases at a certain value of
bth. On the right side, nevertheless, EQ decreases gently. This
means that the influence of bth on the community detection
results is nonlinear. Within a range on both sides of the

TABLE 5. Standard deviation (SD) and Range of different algorithms for
four real networks.

parabolic peak, the corresponding EQ values of LPAMCD
are between those of SLPA and COPRA. Furthermore,
in a large range of bth, the EQ values of LPAMCD are
larger than those of SFLPA. These results demonstrate that
the community structure obtained by LPAMCD has high
reliability and effectiveness, followed by the SLPA and
COPRA algorithms, and the effectiveness of the SFLPA
algorithms is comparatively low.When bth becomes too small
or too large, the EQ values of LPAMCD approach zero.
However, this does not mean that the community structure has
no practical significance. As described in Section V-C1.A,
the target of community detection is to partition communities
with different closeness values, such as searching for nodes
with high compactness, rather than looking for the best
community structure. This is exactly the innovation of this
article, so the community structures within this range are in
line with practical needs.

The LPAMCD overcomes the instability problem of the
traditional LPA algorithm; that is, the label propagation
results of each round of the latter are different. In the
LPAMCD algorithm, we first select the hub nodes (com-
munity centers) and then start to synchronously propagate
different labels from each hub node. During the propagation
process, the quantitative relation between b(l, x)of each node
and bth is judged by referring to (5)-(7). After multiple
iterations, the label propagation range is determined, and then
the community structure is finally obtained. In this process,
if the threshold bth is fixed, the starting points and label
propagation paths are definite. Therefore, the community
detection result of label propagation is unique, overcoming
the problem of instability.

For other algorithms, including SLPA and COPRA,
instability problems exist. In Fig. 10, the EQ values of SLPA
and COPRA are the maximum values of the 50 experiments.
And the SD (standard deviation) and the range (the difference
between minimum and maximum) of EQ in 50 experiments
are shown in Table 5. These data shows that the instability
of SLPA and COPAR is the strongest. Since both the SD
and range of LPAMCD are 0, this algorithm overcomes
the instability problem of traditional LPA, as discussed
above. That is, for the same network, when bth is fixed,
the community structure detection result is unique. SFLPA
adopts the LPA algorithm based on the idea of seed set
expansion, so its detection result is also fixed. Nevertheless,
combined with Fig. 10, the accuracy of this algorithm is
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obviously lower than that of the other three algorithms.
Therefore, the LPAMCDalgorithm proposed in this paper has
both high accuracy and stability.

VI. CONCLUSION
A novel multiscale community detection algorithm
(LPAMCD) is proposed in this paper based on label propaga-
tion.With the variation in bth, LPAMCDcan detect multiscale
overlapping community structures according to different
compactness values between nodes at full resolution.
In addition, it is found that there exists dynamic confrontation
between adjacent communities, which indicates that the
community structure is not a strict dendrogram, especially
in social networks. By identifying hub nodes based on Node
Importance as the starting points of label propagation and
adopting a novel label update method based on Propagation
Indicator and belonging coefficient, LPAMCD significantly
increases the accuracy and stability for community detection
at multiple scales.

However, LPAMCD is currently mainly applied in social
networks. We will try to extend it to other kinds of networks,
such as signed networks and heterogeneous networks.
In addition, we currently use EQ to evaluate the quality
of the community structure. Next, we will try to explore
other metrics for overlapping community evaluation, such
as a metric based on link prediction [36], to verify the
effectiveness of our algorithm more comprehensively.
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