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ABSTRACT Optical networks have undergone a remarkable transformation with the adoption of Artificial
Intelligence (AI) techniques such as Machine Learning (ML) and Deep Learning (DL). The Next Generation
(NG)-EPON is one such technology that is essential for supporting high-bandwidth applications like 4K
video streaming, ultra-high-definition (UHD) CCTV, and other emerging video-type applications that have
strict Quality-of-Service (QoS) requirements. In this paper, we present a ground-breaking Temporal Dynamic
Wavelength Bandwidth Allocation (T-DWBA)mechanism based on the Long-Short-Term-Memory (LSTM)
architecture. The T-DWBA uses past experiences to learn data as knowledge and predict time series with time
lags of unknown size. Our proposed mechanism reduces upstream control message overheads, eliminates
idle periods, and significantly improves bandwidth utilization, ensuring superior QoS specifically for video-
type applications. The simulation results show that the T-DWBA significantly enhances system performance,
reducing packet delay, and jitter, and improving bandwidth utilization. The use of AI techniques like ML and
DL coupled with the recent advancements in SDN-Enabled Broadband Access (SEBA), hardware/software,
and cloud technologies provide the perfect platform for deploying our proposed T-DWBA mechanism.
Overall, our research proposes a promising solution for boosting EPON performance, revolutionizing optical
networks, and providing seamless access to high-quality video streaming for a next-generation audience.

INDEX TERMS NG-EPONs, T-DWBA, LSTM, SEBA, system performance.

I. INTRODUCTION
Video is the 5G ‘‘killer app’’ for businesses and consumers.
Moreover, due to the COVID-19 pandemic, consumers and
enterprises have seen video capabilities as a significant ben-
efit of 5G. In [1], Nokia discovered that while 90 percent of
consumers would consider video to be a valuable component
of 5G, just 83 percent of enterprises saw it as a compelling
5G use case. Cisco predicts that 5G speeds will be 13 times
faster by 2023, while fixed broadband speeds will double.
Average speeds for 5G and broadband are expected to reach
575Mbps and 110.4Mbps, respectively, [2]. As these rates
increase, there is a growing opportunity for video use cases.
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However, the introduction of Internet-enabled Ultra-High-
Definition (UHD) or 4K video streaming has doubled the HD
video bit rate and is nine times higher than the Standard-
Definition (SD) video bit rate. Cisco predicts that by 2023,
two-thirds (66%) of flat-panel TV sets will be UHD instal-
lations, up from 33% in 2018. Furthermore, the increasing
use of Machine-to-Machine (M2M) connections in many
industries is also contributing to the demand for bandwidth.
Although there may be fewer M2M connections compared
to end-user devices such as smartphones, TVs, and PCs, the
traffic is growing at a faster rate due to the deployment of
video applications on M2M connections, telemedicine, and
intelligent car navigation systems.

The Cisco Annual Report predicts that video and
other applications will continue to be in high demand in
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average households. However, future application require-
ments, such as UHD camera security and streaming, VR
streaming, cloud gaming, 8K wall TV, and HD/UHD VR
streaming, will significantly increase the need for more
bandwidth. Additionally, the rise of immersive services
like remote learning, telepresence, and interactive graphical
applications, live 360 video streaming, volumetric video,
immersive gaming, and live immersive production services
such as free-viewpoint video (FVV) [3], can potentially strain
the network. As a result, the access network may be further
impacted by these new immersive video applications and
advancements in backbone network technology [2].
Passive Optical Networks (PONs) have emerged as a

promising solution for addressing access network gaps. Eth-
ernet Passive Optical Network (EPON) technology, known
for its cost-efficiency, high bandwidth efficiency, and effi-
cient QoS support, has been widely recognized as one of
the best PON technologies available. The IEEE 802.3ca
standard, approved in 2020 as the next-generation EPON
(NG-EPON), enables the expansion of EPONs to multiple
channels of 25 Gbps, facilitating data transmission at various
rates downstream and upstream [4]. The NG-EPONs can
distribute massive bandwidth and channel capacity, broaden
coverage, and speed up data transfer. Furthermore, it also can
deliver reliable and efficient communication compared to the
legacy/old EPON system.

EPON can utilize different multiplexing techniques such as
Time-Division-Multiplexing (TDM), Wavelength-Division-
Multiplexing (WDM), and Time-Wavelength-Division-
Multiplexing (TWDM), which combines the strengths of
TDM and WDM. The IEEE and FSAN groups chose the
TWDM approach for NG-EPON based on technology, per-
formance, and cost-efficiency. TWDM distributes time slot
frames to subscribers via wavelength channels, offering
TDM’s capability and WDM’s flexibility [5].
The IEEE 802.3ca working group has defined NG-EPONs

[4], which can provide a cost-effective and practical solution
for future EPONs, increasing the bandwidth fivefold of a
single channel to 25Gbps. Furthermore, the channel bond-
ing allows the NG-EPON to achieve higher data rates that
can provide aggregated data rates of N x 25Gbps. Figure 1
shows the architecture of a 25G NG-EPON with two 25G
wavelength channels {λ1, λ2} that are bonded to achieve
transmission of up to 50G between Optical Network Units
(ONUs) and an Optical Line Terminal (OLT). Connecting
several channels is recommended for increased data speeds
and flexibility, but it should be noted that the cost of an ONU
increases when more transceivers are deployed in the ONUs
[6]. It is important to consider these factors when designing
NG-EPON networks.

The NG-EPON architecture integrates the advantages of
both TDM and WDM by transmitting frames to ONUs via
multiple wavelengths [7], surpassing all other access tech-
nologies. Each wavelength pair can provide a data rate of
25Gbps for downstream and upstream transmission, result-
ing in a full operational NG-EPON with up to 50Gbps

FIGURE 1. Generic NG-EPON architecture.

for downstream and 50Gbps for upstream transmission [8].
Although the IEEE 802.3ca NG-EPON specifies two wave-
length channels, the NG-EPON standards are not limited to a
single generation. Therefore, subsequent generations beyond
100G will also be developed. Additionally, these multiple
generations of NG-EPONs will require different wavelength
deployment schemes and should coexist on the same network
to achieve cost-effective transmission. Hence, a proper wave-
length deployment scheme must be selected when designing
future coexisting NG-EPONs [8].

Furthermore, optical amplifiers (OAs) and WDM
Mux/Demux are located on theOLT side, creating in a passive
optical distribution network (ODN) [9]. The OAs on the
OLT side amplify the downstream signal and pre-amplify
the upstream signals. In addition, the transceiver in OLTs
should be able to adapt to changing traffic conditions. For
example, to optimize energy consumption, if traffic loads
are below 25%, the OLT’s transceiver can be configured to
activate only one of the two transceivers available in the
ONU [10].

In NG-EPON, several issues must be addressed: crit-
ical enabling technologies and device upgrades, security
assurance concerns due to the downstream broadcasting
nature, eavesdropping, and Dynamic Wavelength and Band-
width Allocation (DWBA) optimized bandwidth utilization.
DWBA is a mechanism used by the OLT to dynamically
allocate channel bandwidth between multiple wavelengths,
using time slots for upstream data transmission. Each ONU
can transmit the data at its specified wavelength during the
assigned time. DWBA helps prevent data transmission con-
flicts between different ONUs [11].

Furthermore, three different DWBA mechanisms have
been identified to address the traffic behavior issue:
1) wavelength-agile (WA)-EPON; 2) single-scheduling
domain (SSD)-EPON; and 3) multi-scheduling domain
(MSD)-PON. The conventional DWBA mechanism can be
applied to the SSD-PON or MSD-EPON, but not WA-PON.
MSD-EPON enables an ONU to transmit its desired traffic
on a single wavelength channel at a time, or multiple ONUs
simultaneously transmit on different wavelength channels.
In SSD-EPON, data transmission by multiple ONUs is not
possible on the same channel simultaneously.
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TABLE 1. Comparison of existing studies.

In NG-EPONs, the Multipoint MAC Control (MPMC)
sublayer reconciles the 25Gbps or 50Gbps PON into the Eth-
ernet framework. TheMPMC consists of two main protocols:
the Multipoint Control Protocol (MPCP), responsible for
arbitration of TDM-based access to the Point-to-Multi-Point
(P2PM) medium. The second protocol is Channel Control
Protocol (CCP), which is responsible for querying and con-
trolling multiple channels within Nx25G-EPON PHY. The
MPCP is responsible for timing and arbitrating the ONU
transmissions. The arbitration is achieved by allocating trans-
mission windows (GATE Message) to ONUs. On the other
hand, the ONU will transmit its queued at the total line
rate based on the reporting queue occupancy state using a
REPORT message. The NG-EPONs do not specify specific
bandwidth allocation strategies, Quality of service (QoS)
definitions, provisioning, or management.

Therefore, numerous early studies have been conducted
to increase bandwidth efficiency by proposing a predic-
tive Dynamic Bandwidth Allocation (DBA) or DWBA
with various approaches such as constant predictive, credit-
based predictive, genetic expression programming [12], [13],
[14], or using multiple statistical predictive techniques [15]
(i.e., Bayesian estimation and others) or using multiple
combinations of double-phase polling, shortest propaga-
tion delay, and excess distribution [16]. While these early
approaches can significantly improve bandwidth efficiency
andQoS, they rely solely on estimating the number of arriving
packets for bursty traffic remains an open challenge. Simi-
larly, [17] argues that statistical predictive approaches suffer
from increased latency in predicting instantaneous traffic
variations.

In recent times, optical networks have embraced the use
of Artificial Intelligence (AI), particularly Machine Learning
(ML) and Deep Learning (DL), to address complex classi-
fication and prediction challenges in Dynamic Bandwidth
Allocation (DBA) and enhance Quality of Service (QoS).

Notably, a number of cutting-edge studies employingML/DL
in DBA have been conducted (as shown in Table 1) [17],
[18], [19], [20], [21], [22], [23], [24]. For example, [21],
uses the k-Nearest Neighbors (k-NN) method to adaptively
tune neighbors dynamically, which is essential in dynamic
environments with frequent changes that affect accuracy.

Moreover, the progress in Software-Defined Networking
(SDN), Graphics Processing Unit (GPU) technology, and
cloud computing has played a pivotal role in enabling the
necessary processing and storage capabilities for training
resource-intensive ML models such as DL. SDN, as a set
of design principles that structure the development of new
abstraction layers, encompasses three key architectural prin-
ciples: (1) separation of control and data plane functions,
(2) logical centralization of control, and (3) network function
programmability [25]. These principles greatly contribute to
the widespread adoption of ML and DL in optical networks,
offering increased flexibility and efficiency.

Several recent studies have explored the use of machine
learning techniques such as LSTM models to predict access
network traffic, without implementing DBA or considering
DiffServ [21], [22], [23], [24]. Another study proposed a
DWBA algorithm for WDM/TDM-PONs that leverages neu-
ral networks to predict network traffic and reduce RTT delay,
while improving bandwidth efficiency [20]. The OLT con-
troller predicts the next queue size by evaluating the previous
load condition and median queue size. However, this study
did not consider any specific application for their proposed
DBA. Table 1 provides a summary of the current state-of-the-
art studies.

Nevertheless, in contrast, our work addresses this chal-
lenge by developing a robust LSTM Multistep prediction
model specifically tailored for immersive video applications.
By incorporating sophisticated algorithms and techniques,
our model enables accurate predictions, thereby enhancing
bandwidth efficiency and ensuring a seamless and immersive
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video experience. Moreover, while previous studies have
explored the use of ML techniques like LSTM models to
predict access network traffic, they have not fully imple-
mented DBA or considered DiffServ. In our research, we not
only leverage the predictive capabilities of our LSTM model
but also integrate it seamlessly into the DWBA mechanism
within the NG-EPON architecture. This integration ensures
optimal resource allocation, improved network performance,
and enhanced user experiences in the context of immersive
video applications.

In our previous work [26], we demonstrated that applying
ML algorithms such as the k-Nearest Neighbors algorithm
(k-NN), Random Forest, Decision Tree, and Naive Bayes
achieves higher accuracy in predicting GATE/REPORT mes-
sage and queue length regardless of cycle time. However,
the basic machine learning model requires some guidance or
human intervention when it makes an incorrect prediction.
In contrast, a DL architecture was introduced, which uses its
neural network to determine whether a prediction is correct
or not. Although ML and DL are often used interchange-
ably, ML employs a collection of algorithms to analyze and
interpret data, learn from it, and make the best possible
decisions based on the learned information. In contrast, DL
architectures are divided into multiple layers to create an
artificial neural network that can self-learn from complex and
high-dimensional data and make intelligent decisions based
on the data.

Additionally, a study presented in [18] introduced an
LSTM neural network to predict future bandwidth require-
ments for multiple polling cycles, effectively reducing band-
width waste and enhancing EPON performance. To the best
of our knowledge, there is no current research proposing an
LSTM-based DWBA under a limited scheme that includes
DiffServ. Our work is similar to the aforementioned LSTM-
based DBA, which leverages sequential information instead
of the traditional neural network’s assumption that inputs
and outputs are independent of one another. In a real-time
network environment, traffic demand can change at any
time, and therefore, retaining temporal and historical user
data can aid the network in predicting end-user bandwidth
requirements.

The contribution of this paper is a novel Temporal Dynamic
Wavelength Bandwidth Allocation based on Long-Short-
Term-Memory in NG-EPONs, referred to as T-DWBA.
T-DWBA is a bandwidth allocation method in NG-EPONs
that utilizes LSTM to enhance bandwidth efficiency
(i.e., reduce control message overheads) and utilization,
leading to a better QoS, particularly for upcoming video
applications. The OLT has incorporated an LSTM that pre-
dicts ONUs bandwidth demand forC cycles based on the past
R ONUs REPORT messages. Moreover, the proposed inte-
gration of AI techniques, SDN-Enabled Broadband Access
(SEBA), and cloud technologies architecture provides a
promising platform for deploying and revolutionizing optical
networks and enabling seamless access to high-quality video
streaming for next-generation applications.

The remainder of this paper is organized in the following
manner. The LSTM architecture is presented in Section II.
T-DWBA’s model is described in Section III. Section IV dis-
cusses the performance evaluation and simulation. Section V
brings our work to a conclusion.

II. LONG-SHORT-TERM MEMORY ARCHITECTURE
LSTM, a boost for conventional RNNs [27], was created
to solve the problems of vanishing and exploding gradients
[28]. Unlike traditional RNNs, which rely on passing out-
puts between neural networks for prediction improvement,
LSTMs utilize previous data. However, LSTMs face chal-
lenges, such as the squishing effect of sigmoid functions
that can cause the vanishing gradient problem during back-
propagation. Additionally, traditional RNNs lack long-term
memory, storing only short-term memory. LSTMs address
this by incorporating both short-term and long-term memory,
combining them at each stage to generate new memory and
predictions. Consequently, LSTMs excel in preserving past
information, enabling neural networks to remember historical
data.

FIGURE 2. Generic architecture of LSTM.

Figure 2 shows the generic architecture of the LSTM
model, where the long-term memory (LTM) and short-term
memory (STM) from the previous time sequence t-2,
i.e., LTMt−2 and STMt−2, are fed into the model [29]. An
event and an output are received and produced in the cur-
rent time sequence t-1, i.e., LTMt−1 and STMt−1, which
are then passed to the next node. This process is repeated,
allowing the LSTM to keep track of the LTM and STM. The
updated output from LTMt−2 and STMt−2 and the predic-
tion Outputt−1 are used to generate the following output of
LTMt−1 and STMt−1. The LSTM architecture includes four
gates: the Learn Gate, the Forget Gate, the Remember Gate,
and TheUseGate. The Learn Gate takes the STM and the new
input information (E) and combines them, retaining only the
essential parts. The output of the Learn Gate is Nt it , where

Nt = tanh (Wn [STM t−1,Et ] + bn)

it = σ (Wi [STM t−1,Et ] + bi) (1)

Moreover, the Forget Gate takes an LTMt−1, deciding
what parts to keep and forget. The output of the Forget Gate
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is LTM t−1ft , where

ft = σ
(
Wf [STM t−1,Et ] + bf

)
(2)

The Forget gate in the LSTM module determines which
information to keep or forget based on the output value. If the
value is closer to 0 means to forget, and closer to one means
to retain the information.

The Remember Gate combines the LTM from the Forget
Gate and the STM from the Learn Gate. Therefore, the output
of Remember Gate is

LTM t−1ft + Nt it , (3)

where Nt , it and ft are calculated in Eq. (1) and (2). Finally,
the Use Gate will take what is helpful from the LTM and STM
and update the STM t , thus the output of the Use Gate isUtVt ,
where

Ut = tanh (WuLTM t−1ft + bu)

σVt = (STM t−1,E t + bv) (4)

Table 2 summarizes the symbols that are used in this paper.

TABLE 2. Summary of symbol.

A. LSTM MODEL FOR DWBA MECHANISM
In this section, we describe how the LSTM architecture
is used in the DWBA prediction mechanism. The goal
of using the LSTM architecture in DWBA is to pre-
dict ONU GATE messages based on the long-term history
of ONU REPORT messages (LTM), the short-term or
recent ONUREPORTmessages (STM), and the current ONU
REPORT messages (E). For example, let’s assume a new
ONU REPORT message E arrives at time t (Et). To predict
the GATEmessage for the ONU (Outputt ), the LSTMmodule
takes the LTMt−1, STMt−1, and Et to form a prediction
of ONU GATE messages at time sequence t . The LTMt−1
and STMt−1 provide hints or predictions of EF, AF, and
BE bandwidth in time sequence t . Additionally, the LTMt
and STMt modules are updated with these three pieces of
information (LTMt−1, STMt−1, and Et).

# Initialize the LSTM parameters
Wn,Wi,Wf ,Wu = initialize_weights 0
bn, bi, bf , b1, bv = initialize_biases 0
# Initialize the LSTM memory and states
LTMt−2,STMt−2 = initialize_memory_states 0
LTMt−1,STMt−1 = initialize_memory_states 0
# Define the LSTM model
function LSTM (Et):

# Calculate the Learn Gate output
Nt = tanh (Wn∗ concatenate

(
STMt−1,Et

)
+ bn

)
it = sigmoid (Wi∗ concatenate

(
STMt−1,Et

)
+ bi

)
# Calculate the Forget Gate output
ft = sigmoid

(
Wf ∗ concatenate

(
STMt−1,Et

)
+ bf

)
# Calculate the Remember Gate output
LTMt = LTMt−1 ∗ft + Nt ∗ it
# Calculate the Use Gate output
Ut = tanh (Wu ∗ concatenate (LTMt , ft ) + bu)
Vt = sigmoid

(
STMt−1 + Et + bv

)
# Update the memory and state for the next time sequence
LTMt−2 = LTMt−1
STMt−2 = STMt−1
LTMt−1 = LTMt
STMt−1 = Ut ∗ Vt

return Vt

In this pseudocode, Et is the current ONU REPORT
message, and Vt is the predicted ONU GATE message for
the current time sequence t. The LSTM model takes in the
previous memory states (LTMt−2 and STMt−2) and the
current memory states (LTMt−1 and STMt−1) to generate
the next memory states. The concatenate function is used
to combine the LTM and STM with the input sequence
for each gate calculation. The high-level overview of how
the proposed LSTM Model for DWBA mechanism is as
follows:

1. At the start of each cycle of the SSD frame, the OLT
collects information on the traffic demand and other
relevant metrics from the ONUs.

2. The OLT feeds this information into an LSTM neural
network, which has been trained to predict the optimal
allocation of time slots for each ONU based on past and
current traffic patterns.

3. The LSTM neural network processes the input data
and generates a set of output values, each representing
the number of time slots to be allocated to a particular
ONU.

4. The OLT uses these output values to generate grant
messages, which are sent to the ONUs to inform them
of their allocated time slots.

5. The ONUs use the allocated time slots to transmit data
to the OLT.

6. As the cycle progresses, the OLT continues to collect
data on the traffic demand and other relevant metrics,
and feeds this data back into the LSTM neural network
to update its predictions for the next cycle.

III. PROPOSED ARCHITECTURE
The proposed NG-EPON (Next-Generation Ethernet Pas-
sive Optical Network) architecture, outlined in section A,
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FIGURE 3. Proposed High-Level SEBA architecture of NG-EPON with cloud-Based Ml engine.

incorporates a cloud-based machine-learning engine along
with two essential components discussed in subsequent sec-
tions. Section B introduces the cloud-based ML engine and
edge cloud compute server, which leverage cloud com-
puting resources to enable advanced data processing and
machine learning capabilities at the network edge. Section C
focuses on the utilization of sliding windows within the
architecture, allowing for efficient data processing and anal-
ysis by dynamically adjusting the window size to capture
temporal patterns. Lastly, section D introduces the Temporal-
Dynamic Wavelength and Bandwidth Allocation (T-DWBA)
mechanisms, which consider the temporal characteristics of
network traffic and optimize resource allocation in real-time
using the power of the cloud-based ML engine and sliding
windows. Together, these components form an integrated
framework that enhances the performance and efficiency
of the NG-EPON system through cloud-based machine
learning, advanced data processing, temporal analysis, and
adaptive resource allocation.

A. HIGH-LEVEL OF THE PROPOSED NG-EPON
ARCHITECTURE WITH CLOUD-BASED
MACHINE-LEARNING ENGINE
The DBA in NG-EPON works cyclically, and the maximum
cycle time can be determined by the size of the REPORT
message from ONUs or can be limited by the OLT by setting
up the entire cycle time (e.g., 1.5 ms or 2 ms). In other
words, time series forecasting can be applied to this DBA
mechanism. It is important to note that relying solely on the
previous cycle to predict the GATEmessage for the next cycle
is not effective, as users’ traffic behavior in access networks

varies over time. For example, ONUs serving office buildings
may have higher bandwidth demands during the day than
ONUs serving residential areas. Additionally, traffic demand
can fluctuate due to specific events, such as lockdowns caused
by COVID-19, which may result in more employees work-
ing from home. Therefore, our proposed DWBA considers
not only the past ONUs REPORT messages but also uti-
lizes them to predict the GATE message for multiple future
cycles.

Figure 3 illustrates the high level of the proposed NG-
EPON with a Cloud-Based ML Engine. The OLT and ONUs
are enhanced with Software Defined Networking (SDN)
and divided into three different services, namely applica-
tion services, connection services, and transport services.
The application services comprise a cloud-based ML engine,
SDN controller, and DWBA module. The connection ser-
vices consist of the OLT and ONUs. Lastly, the transport
services are responsible for transporting services over NG-
EPON using Channel bonding technology that can bond
several wavelength channels to achieve high peak data rates
[6]. As depicted in Fig. 3, two 25G wavelength channels are
bonded to provide an aggregate transmission of up to 50G. To
support the bandwidth assignment in these two wavelength
channels, each ONU has two transceivers, i.e., {λ1, λ2}.
The OLT employs the Channel Control Protocol (CCP) to
activate or modify the state of ONU’s upstream or down-
stream channel(s) through the exchange of CC_REQUEST
and CC_RESPONSE Channel Control Protocol Data Unit
(CCPDU). Afterward, the OLT identifies the upstream chan-
nel(s) granted to the ONU in a given GATE Multi-Point
Control Protocol Data Unit (MPCPDU). Furthermore, the
Single Scheduling Domain (SSD) mechanism is selected in
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FIGURE 4. Illustration of multistep time series LSTM of ONU report message.

our architecture. Each ONU must transmit on all upstream
wavelengths [8].

1) APPLICATION SERVICES
The application services consist of a VOLTHA, SDN con-
troller, and NEM module. The OLT can obtain all the ONUs
REPORT messages since the DBA offline approach is uti-
lized. The SDN controller is used to produce an intelligently
governed network capable of supporting network slices
for different technologies. With SEBA, operators can use
open-source software to build a flexible and programmable
access network that supports advanced traffic management
and QoS capabilities [30]. By integrating LSTM into the
SEBA framework, operators can use predictive analytics
to optimize the allocation of bandwidth in NG-EPON net-
works. LSTM can be used to analyze traffic patterns and
predict future demand, enabling operators to allocate band-
width dynamically in real-time. This can help to improve
network efficiency, reduce congestion, and improve the user
experience.

2) CONNECTION SERVICES
The OLT is equipped with two transceivers with different
wavelengths (λ1 and λ2). The ONU connects subscribers to
the OLT via two transceivers that can be bonded. The LSTM
model can identify and learn the deep numerical dependen-
cies of multistep time series, allowing it to predict future
network behavior with high accuracy based on historical
network granularity. Some studies have shown that the LSTM
proved efficient for predicting network traffic granularity
[18], [24], [26]. Lastly, the DWBA module is to deliver
efficient packets and data. The scheduler based on Machine
Learning will be designed.

The offline scheduling is chosen so that the OLT can have
all the traffic patterns of each ONUs, store them in the ML-
Engine, and use this data to improve the prediction model.
All the information, such as traffic patterns and ML-Engine,
is informed to the OLT by the SDN controller, which is
orchestrated with the SDN app in the application services
[31]. In this way, the DWBA is always adapted according to

the network conditions. Consequently, the proposed LSTM-
based DWBA model is adaptive, meaning it will be acting
according to the behavior or characteristics in the optical
distribution networks (ODN).

3) TRANSPORT SERVICES
The transport services would integrate all services (appli-
cation and connection services) in a single hybrid access
network. NG-EPON uses the SDN to adaptively support
network slices in various systems, applications, and vendors.
The ONUs have two bonded transceiver channels to provide
aggregate transmission of up to 50G between ONUs and an
OLT.

B. CLOUD-BASED ML ENGINE/EDGE CLOUD COMPUTE
SERVER
The cloud-based ML engine plays a critical role in the SDN-
enabled NG-EPON architecture, particularly in the dynamic
wavelength and bandwidth allocation process. The ML
engine utilizes the historical data of the network to predict
the required bandwidth for each ONU in the next cycle. To
achieve this, the ML engine employs a Long Short-Term
Memory (LSTM) algorithm. The proposed LSTM algorithm
uses sliding windows to process the historical data, where
each window contains the bandwidth utilization data of all
ONUs for a certain period (see Fig. 4). The ML engine
then analyzes the data within the window to predict the
required bandwidth for the next cycle. The size of the window
determines the accuracy of the prediction, whereas a larger
window size may result in more accurate predictions at the
cost of increased computational complexity.

To ensure that the ML engine is always up-to-date with the
latest network data, the cloud-based ML engine is periodi-
cally updated. However, updating the ML model in real-time
may introduce delays and impact the performance of the net-
work. To address this issue, the proposed approach involves
updating the LSTM model in the cloud, rather than in
real-time within the network. This means that the early
version of the LSTM model will be used to conduct DWBA,
while the cloud ML engine continuously updates the model
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with new data to improve its accuracy. At predetermined
intervals, the cloud ML engine will send the updated LSTM
model back to the NG-EPON network, which will then
replace the old model with the new one. This approach helps
to reduce the delay in the system, as the updates to the LSTM
model are done offline in the cloud, rather than in real-time
within the network.

Figure 4 employs a multi-step LSTM time-series data
prediction model using sliding windows with the concept of
SSD. The basic idea behind using sliding windows is to have
a fixed-size window that slides over the past ONUs REPORT
messages in order to capture the most recent traffic patterns.
This window can then be used to feed into an LSTMmodel to
predict the GATEmessage for the next cycle. In the context of
SSD, each ONU must transmit on all upstream wavelengths.
This means that the sliding window should also take into
account the past REPORT messages from all the ONUs in
the same scheduling domain, which can be viewed as a single
entity for the purpose of bandwidth allocation. To ensure that
the sliding window covers a sufficient amount of data, its
size should be set to be at least as large as the maximum
cycle time. In addition, since the proposed mechanism uses
the SSD mechanism, which requires each ONU to transmit
on all upstream wavelengths, the sliding window should also
cover all upstream wavelengths for each ONU. Therefore,
by combining these two, i.e., the LSTM model can better
capture the traffic patterns across all ONUs in the scheduling
domain, leading to more accurate predictions of the GATE
message. Additionally, this approach can be adapted to handle
fluctuations in traffic patterns over time such as those caused
by changes in user behavior or external events like COVID-19
lockdowns.

C. SLIDING WINDOWS
For instance, let’s say, we have time series data of bandwidth
demand over a period of 24 hours, with 50-cycle time inter-
vals between each data point. The LSTM model is trained
to predict future demand based on the previous data points.
We want to use this model to conduct DWBA with sliding
windows approach. Firstly, we set the window size to 50 cycle
data points. This means we will use the previous 50 cycles’
data points to predict the next data point, and this window
will slide every 50 cycles times to update the prediction.
At time t , the LSTM model takes in the previous 50 cycle
data points, Et−50 to Et , and produces a predicted demand
valueVt. Afterward, we update the LSTMmodel with the new
data point, Et+1, and the window slides to include data points
from Et−49 to Et+1. We repeat the process for the next time
interval, and thewindow slides include data points fromEt−48
to Et+2, and so on. By using the sliding window approach,
we can continuously update the LSTM model with new data
points and adjust the bandwidth allocation in real time based
on the predicted demand. This allows for more efficient use
of network resources and reduces the likelihood of network
congestion.

D. TEMPORAL-DWBA (T-DWBA) MECHANISMS
The overhead associated with the employed DBA scheme can
vary. Online schedulers, such as IPACT [32], schedule grants
on-the-fly without waiting for all REPORT messages to be
received. This eliminates idle time and reduces packet delays.
However, ensuring fairness among ONUs and supporting
QoS can be difficult because the OLT lacks a holistic view
of all ONU demands. This problem is addressed by offline
schedulers where the OLT waits for all REPORT messages
before performing DBA and scheduling grants. This enables
the OLT to support QoS and fosters fairness among ONUs,
but at the cost of increased channel utilization due to control
overhead between transmission cycles.

In traditional NG-EPON bandwidth assignment, the
grant/report mechanism is implemented using GATE and
REPORTmessages exchanged between OLT and ONUs [33].
Control channel overhead is introduced by the GATE and
REPORT messages, and it is affected by the number of
scheduled ONUs and the cycle time. The proposed T-DWBA
aims to improve QoS and reduce the overhead associated
with the control channel in the traditional grant/report mecha-
nism.Other overhead components inNG-EPON include burst
mode overhead, Forward-Error-Correction (FEC) encod-
ing overhead, guard-band overhead, etc. Specifically, the
T-DWBA can reduce the downstream overhead by predicting
the upcoming traffic demands of ONUs and allocating the
bandwidth resources accordingly. By using a sliding win-
dow technique and LSTM network to analyze the traffic
history, the T-DWBA can predict the upcoming demands
with high accuracy. In contrast, IPACT DBA uses a simple
threshold-based method to allocate bandwidth, which does
not take into account the traffic history or the future demand.
This often leads to underutilization or overutilization of the
bandwidth, resulting in higher overhead. For simplicity, let’s
assume that the downstream overhead can be calculated by

Downstream Overhead = (G/T )x100,

where G represents the total number of grant messages sent
by the OLT to the ONUs. T represents the total number of
time slots used in the downstream cycle 100 is a constant used
to express the overhead as a percentage. Assuming a cycle
time of 1 ms, ONUs generating traffic demand according
to a Poisson process with an average rate of 500 Mbps,
sliding window size of 10, stride of 5, and an LSTM model
with 2 hidden layers of 32 units each trained for 10 epochs,
Table 3 shows a comparison of the downstream overhead
improvement between T-DWBA and IPACT. To guarantee a
delay of 1.5 ms for voice traffic in the access network, the
cycle time should be about 1 ms [34].

IV. EXPERIMENT AND EVALUATION
A. DATASET
The proposed T-DWBA mechanism is validated and eval-
uated in this section using an OPNET simulator with
64 Software-Defined (SD)-ONUs and an SD-OLT with
two wavelengths to run a comprehensive simulation and
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TABLE 3. Overheads comparison of T-DWBA vs. IPACT.

create the dataset. The SD-OLT and SD-ONU have down-
stream/upstream channel rates of 25 Gbps, and they were
evenly distributed over a range of 10 km to 20 km, with
the ONU buffer size set at ten megabits. The maximum
transmission cycle was set at 1.0 ms, and the AF and BE
traffic network traffic models were set as self-similarity and
long-range dependence [35]. To generate high-burst AF and
BE traffic, the model used a Hurst parameter of 0.7 and a
packet size uniformly distributed between 64 and 1,518 bytes.
The EF traffic was modeled using a T1 circuit-emulated
line with IP/UDP encapsulation and a constant frame rate of
1 frame/125µs with a fixed packet size of 70 bytes.

This work aims to validate the practicality of the proposed
T-DWBA mechanism by generating traffic for the limited
offline DWBA, which is the most extensively used legacy
in the DBA mechanism. The traffic generator installed at
each ONU develops a self-similar and long-range dependent
network traffic model for AF and BE traffic, which has the
potential to create a significant amount of Internet traffic
in a short period. The simulation produced approximately
250,000 data points, including cycle duration, EF, AF, BE
REPORTmessage, GATEmessage, and the number of wave-
lengths. To ensure the quality of the dataset, the acquired
data was pre-processed to identify and remove any missing,
inconsistent, or noisy data.

The pre-processed data was then converted to a matrix to
evaluate the proposed T-DWBA mechanism. The matrix was
converted to a vector, and the vectors were concatenated to
obtain the N×N traffic-over-time matrix M . The M matrix
was divided into two sections: 80% of training Mtrain and
20% of testingMtesting, which were used to train and validate
the proposed T-DWBA based on the LSTM model. Finally,
the data was normalized by dividing it by the maximum
value. Table 4 summarizes the simulation parameters. More
than 250.000 data points were returned from the simulation,
including cycle time, EF, AF, BE REPORT message, GATE
message, and the number of wavelengths.

B. EVALUATION
The dataset contains seven features: EF Report, AF Report,
BE Report, EF Grant, AF Grant, BE Grant, and Cycle time.
Each feature was collected every 1 ms. We used 24 hours of
observations to train the LSTM regressor for our prediction

TABLE 4. Simulation parameters.

model. To avoid biased performance estimates, we removed
duplicate entries that can ruin the split between train and test
sets. From the original data, the training dataset will make
up 80% of the rows, while the testing dataset will make up
the remaining 20% of approximately 250.000 data points. We
chose three critical features, namely AF GATE, BE GATE,
and Cycle-Time as the feature index since the T-DWBAmust
assign bandwidth to all ONUs.

We used the mean and standard deviation to standardize
the dataset. The multi-Step model predicts a range of future
values, i.e., AF GATE and BE GATE, based on the given
past historical data of EF REPORT, AF REPORT, and BE
REPORT. In other words, the multi-step model predicts a
sequence of the future. In our model, the T-DWBA learns
to predict the AF GATE and BE GATE for multistep cycles
ahead based on the sliding windows of history cycles. The
T-DWBA based on the LSTM model should be designed to
be less complex but with higher accuracy to produce speedy
learning. Because complex models require more processing
and take longer to learn, they may be inefficient.

As the proposed T-DWBA model is designed to forecast
multi-steps, we use two LSTM layers along with a dense
layer. The Mean Squared Error (MSE) is used to measure
the difference between the predicted and actual values of EF
Grant, AF Grant, and BE Grant. We use RMSProp, an opti-
mizer that combines gradient descent and AdaGrad, to train
the models. Moreover, we adjust the hyperparameters of the
LSTM network accordingly. The proposed LSTM algorithm
needs to learn from the entire training data, so we train the
models for 100 epochs (refer to Table 5 for details). We
use TensorFlow and Keras backends along with Scikit-learn
(Sklearn) tools for building and training the LSTMmodels as
our regressors.

Figure 5 shows the actual versus predicted features of AF
and BE grant messages in the testing dataset over time, which
were used by the LSTM regressor to make predictions. The
training and validation losses aremetrics used to evaluate how
well an LSTMmodel fits the training data, as well as to assess
the performance of the validation set by summing the errors
for each traffic type in the datasets (the training and validation
sets of GATE messages for AF and BE traffic types). The
actual AF grant (AF grant real test set) refers to the GATE
message for the AF traffic type, while the predicted AF
grant (AF grant predicted test) refers to the expected GATE
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TABLE 5. Performance comparison on a different number of epochs
using the proposed LSTM model.

message for the AF traffic type generated by the proposed
LSTM model. The model successfully predicted future steps
of the AF and BE grant with a loss of less than 0.02. The loss
can be seen as the distance between the valid values of the
actual Grant Messages and the values predicted by the model.

FIGURE 5. Predicted vs. Actual AF and BE grant messages features of
testing dataset across time using LSTM regressor.

C. PERFORMANCE EVALUATION
In this section, we analyze the performance of the proposed
T-DWBA under a limited scheme and compare it to a typical
limited scheme, with various traffic profiles to evaluate its
effectiveness. Notably, to the best of our knowledge, there
is currently no research that proposes a Machine Learning-
based DWBAunder a limited scheme that considers DiffServ.
Although previous studies such as [17], [18], and [36] have
utilized Machine Learning techniques, they do not account
for DiffServ, which is a crucial component in providing
Quality-of-Services (QoS) in current IP networks [37]. To
address this, we conduct an extensive simulation with dif-
ferent scenarios, including Traffic profile 1 (TP1), Traffic
profile 2 (TP2), and Traffic profile 3 (TP3), which have vary-
ing levels of EF, AF, and BE upstream traffic. Additionally,

we incorporate heavy loads in the simulation to provide a
comprehensive performance assessment, which can aid in
network engineering and user provisioning [18].

FIGURE 6. Packet delay (a) EF Delay; (b) AF Delay; (c) BE Delay.

The mean packet delay of the T-DWBA vs. limited scheme
is depicted in Fig. 6(a)-(c). The packet delay comprises three
components: polling delay, grant delay, and queueing delay.
As can be seen, the T-DWBA may significantly improve
the limited DWBA in all traffic profiles in terms of packet
delay, thanks to the LSTM-based prediction of future band-
width requirements. This helps reduce bandwidth waste due
to overheads and idle periods, by adding extra timeslots
to each ONU’s bandwidth requirements. Additionally, the
LSTM model allows for more accurate prediction of band-
width requirements, leading to reduced queueing delay and
improved packet transmission rates. It is worth noting that
the simulation depicts the network under extreme load condi-
tions, i.e., greater than 80% load. When traffic loads exceed
80%, the BE packet delay becomes saturated since limited
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or LSTM-based DWBA prioritizes the EF and AF packets,
forcing the BE packet to wait for the next cycle time or until
there are available timeslots to transmit.

Apart from packet delay, jitter is critical for the network’s
temporal performance, as high latency makes interactive
applications such as voice and two-way video ineffective.
Moreover, jitter also affects all real-time communication,
such as video conferencing and VoIP conversations, stream-
ing media, online video games, and desktop-as-a-service
employing virtual desktop infrastructure (VDI) [38]. A good
jitter performance should be 50ms or less for triple-play
services.

Figure 7 depicts the jitter performance of EF and AF
packets when the traffic loads are highly loaded. As can
be seen, the jitter performance of T-DWBA has a minimal
delay variation in all scenarios. For instance, a stable network
typically experiences a 15% or less jitter percentage. The
jitter of TP1, TP2, and TP3 in T-DWBA for EF and AF traffic
percentage is below 5%, meaning that the packets of EF and
AF are almost transmitted at equal intervals so that the users
can experience seamless communications or video streams.

FIGURE 7. Jitter performance of proposed T-DWMA.

Figure 8 illustrates the total system throughputs of TP1,
TP2, and TP3 as a function of the offered load. The study
defines system throughput as the number of packets trans-
mitted by ONUs with two wavelengths. Cycle time, unused
residual, and guard time all affect system throughputs.
Because the T-DWBA can forecast multiple steps, upstream
overheads such as guard time can be eliminated, enhanc-
ing upstream bandwidth efficiency. As illustrated in Fig. 8,
the T-DWBA system’s bandwidth utilizations exceed 89%,
whereas the Limit system’s bandwidth utilizations are 84%.

In our analysis, we simulated various hurst parameters for
video with 4K resolution i.e., 2160p to evaluate their impact
on our proposed architecture (see Fig. 9). For pre-recorded
video playback or offline video streaming with less bursty
traffic patterns, a hurst parameter of 0.3 is suitable. On the
other hand, video-sharing platforms like YouTube or Vimeo,
where users upload and share videos, benefit from a hurst
parameter of 0.5, which accounts for moderate burstiness
caused by content and user interactions. When it comes to
real-time streaming of events, sports, or live video broadcasts,

FIGURE 8. System throughputs.

such as YouTube Live or Twitch, a hurst parameter of 0.7 is
preferred due to the burstiness resulting from dynamic con-
tent and viewer engagement. Finally, interactive and real-time
experiences like video conferencing or VR/AR require a hurst
parameter of 0.8. By considering these different hurst param-
eters, we can assess their respective effects on our proposed
architecture.

FIGURE 9. Average delay for different hurst parameters.

The simulation results reveal that the average delay
increases with higher traffic load and Hurst parameter values,
indicating increased congestion and queuing delays. More-
over, the impact of bursty traffic, represented by the Hurst
parameter, becomes more significant at higher traffic loads.
Bursty traffic patterns with higher Hurst parameters exhibit
stronger long-range dependence, resulting in longer delays.
However, even in the face of higher traffic loads, the pro-
posed LSTM DWBA (Dynamic Wavelength and Bandwidth
Allocation) method demonstrates its effectiveness in main-
taining the Quality of Service (QoS) requirements for video
traffic. By leveraging LSTMmodels, the method intelligently
allocates wavelengths and bandwidth resources to mitigate
delays and ensure satisfactory video streaming experiences.
This highlights the potential of advanced techniques in man-
aging bursty and high-load traffic scenarios while meeting
the specific QoS demands of video applications, paving the
way for improved network performance and reliable video
services in demanding environments.

Finally, these simulation results demonstrate that the pro-
posed T-DWBA architecture based on LSTM is adaptable
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to various network environments and settings. As shown in
Table 6, the proposed LSTM model in deep learning was
compared with other regression algorithms such as Deci-
sion Tree Algorithm, k-NN Algorithm, Linear Regression
(linear function for regression), Random Forest, AdaBoost
Algorithm, Gradient Boosting, and Multi-layer Perceptron
(MLP). The proposed T-DWBA architecture based on LSTM
model can solve the problems of non-linear data from pre-
vious AF REPORTs and BE REPORTs to better predict
the AF GATE and BE GATE for multistep cycles in this
regression analysis. Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) were used to measure the error
rate of regression models. However, we compared those
models with errors measured in the same units. During the
experiments, the proposed LSTM model outperforms other
regressors for predicting AF GATE, achieving the minimum
MAE of 0.02 and RMSE of 0.03, and for predicting BE
GATE, achieving the minimum MAE of 0.03 and RMSE of
0.06. The cloud-based deep learning engine using LSTM that
performs the function of building the model can store data
created by real-world traffic or simulations and improve the
performance predictions of traditional regression models.

TABLE 6. Performance evaluation using different types of regression
algorithms.

V. CONCLUSION
In conclusion, the proposed T-DWBA scheme based on
LSTM for NG-EPON, integrated with the SDN-based SEBA
architecture, shows great promise in addressing the chal-
lenges of QoS provisioning in modern communication net-
works. The LSTM model demonstrates high accuracy with
minimal MSE loss, enabling accurate forecasting of future
bandwidth requirements using historical data. The T-DWBA
protocol, in combination with the SEBA architecture, pro-
vides reliable QoS in terms of packet delay, jitter, and system
throughput even under high network loads. However, it is
important to acknowledge that this study does not explore
the computational and resource costs associated with imple-
menting the proposed scheme. Future work should investigate
the potential computational overhead and resource require-
ments, particularly considering the increasing sophistication
of DWBA algorithms and the emergence of cloud-based
machine learning engines. This will contribute to a more
comprehensive understanding of the practical feasibility and

scalability of the T-DWBA scheme integrated with the SEBA
architecture in NG-EPON and other communication net-
works, providing valuable insights for further improvements
in the field of DWBA.

REFERENCES
[1] S. Condon. Video is the 5G ‘Killer App’ for Both Enterprise and

Consumers, Survey Shows. ZDNet. Accessed: Aug. 8, 2021. [Online].
Available: https://www.zdnet.com/article/video-is-the-5g-killer-app-for-
both-enterprise-and-consumers-survey-shows/

[2] Cisco Annual Internet Report—Cisco Annual Internet Report
(2018–2023) White Paper. Cisco. Accessed: Aug. 8, 2021. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[3] P. Pérez, D. Corregidor, E. Garrido, I. Benito, E. González-Sosa, J. Cabrera,
D. Berjón, C. Díaz, F. Morán, N. García, J. Igual, and J. Ruiz, ‘‘Live
free-viewpoint video in immersive media production over 5G networks,’’
IEEE Trans. Broadcast., vol. 68, no. 2, pp. 439–450, Jun. 2022, doi:
10.1109/TBC.2022.3154612.

[4] IEEE Standard for Ethernet Amendment 9: Physical Layer
Specifications and Management Parameters for 25 Gb/s and
50 Gb/s Passive Optical Networks, Standard 802.3ca-2020, 2020,
doi: 10.1109/IEEESTD.2020.9135000.

[5] A. Rafiq and M. Hayat, ‘‘QoS-based DWBA algorithm for NG-EPON,’’
Electronics, vol. 8, no. 2, p. 230, Feb. 2019, doi: 10.3390/electron-
ics8020230.

[6] C. Zhang, M. Yang, W. Zheng, Y. Zheng, Y. Wu, and Y. Zhang, ‘‘Analysis
of wavelength deployment schemes in terms of optical network unit cost
and upstream transmission performance in NG-EPONs,’’ J. Opt. Commun.
Netw., vol. 13, no. 9, p. 214, Sep. 2021, doi: 10.1364/JOCN.425722.

[7] H. S. Abbas and M. A. Gregory, ‘‘The next generation of passive opti-
cal networks: A review,’’ J. Netw. Comput. Appl., vol. 67, pp. 53–74,
May 2016, doi: 10.1016/j.jnca.2016.02.015.

[8] L. Wang, X. Wang, M. Tornatore, H. S. Chung, H. H. Lee, S. Park, and
B.Mukherjee, ‘‘Dynamic bandwidth andwavelength allocation scheme for
next-generation wavelength-agile EPON,’’ J. Opt. Commun. Netw., vol. 9,
no. 3, pp. B33–B42, Mar. 2017, doi: 10.1364/JOCN.9.000B33.

[9] Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and
Y. Ma, ‘‘Time- and wavelength-division multiplexed passive optical net-
work (TWDM-PON) for next-generation PON stage 2 (NG-PON2),’’
J. Lightw. Technol., vol. 31, no. 4, pp. 587–593, Feb. 15, 2013, doi:
10.1109/JLT.2012.2215841.

[10] A. F. Pakpahan, I.-S. Hwang, and A. A. Nikoukar, ‘‘OLT energy savings
via software-defined dynamic resource provisioning in TWDM-PONs,’’
J. Opt. Commun. Netw., vol. 9, no. 11, pp. 1019–1029, Nov. 2017, doi:
10.1364/JOCN.9.001019.

[11] A. Rafiq, M. F. Hayat, and M. U. Younus, ‘‘Efficient bandwidth man-
agement (EBM) algorithm for NG-EPON,’’ in Proc. IEEE 4th Int. Conf.
Comput. Commun. (ICCC), Chengdu, China, Dec. 2018, pp. 663–667, doi:
10.1109/CompComm.2018.8780835.

[12] C.-H. Chen, H.-T. Wu, and K.-W. Ke, ‘‘Predictive credit based dynamic
bandwidth allocation mechanisms in Ethernet passive optical network,’’
in Proc. IEEE Region 10 Conf., Mar. 2006, pp. 1–4, doi: 10.1109/TEN-
CON.2006.343756.

[13] J.-Y. Lee, I.-S. Hwang, A. T. Liem, K. R. Lai, and A. Nikoukar, ‘‘Genetic
expression programming: A new approach for QoS traffic prediction in
EPONs,’’ Photon. Netw. Commun., vol. 25, no. 3, pp. 156–165, Jun. 2013,
doi: 10.1007/s11107-013-0399-x.

[14] J.-R. Lai and W.-P. Chen, ‘‘High utilization dynamic bandwidth allocation
algorithm based on sorting report messages with additive-polling thresh-
olds in EPONs,’’ Opt. Switching Netw., vol. 18, pp. 81–95, Nov. 2015, doi:
10.1016/j.osn.2015.04.003.

[15] M. P. I. Dias, B. S. Karunaratne, and E. Wong, ‘‘Bayesian estimation and
prediction-based dynamic bandwidth allocation algorithm for sleep/doze-
mode passive optical networks,’’ J. Lightw. Technol., vol. 32, no. 14,
pp. 2560–2568, Jul. 15, 2014, doi: 10.1109/JLT.2014.2327629.

[16] M. P. McGarry and M. Reisslein, ‘‘Investigation of the DBA algorithm
design space for EPONs,’’ J. Lightw. Technol., vol. 30, no. 14,
pp. 2271–2280, Jul. 12, 2012, doi: 10.1109/JLT.2012.2196023.

[17] L. Ruan, M. P. I. Dias, and E. Wong, ‘‘Machine learning-based bandwidth
prediction for low-latency H2M applications,’’ IEEE Internet Things J.,
vol. 6, no. 2, pp. 3743–3752, Apr. 2019, doi: 10.1109/JIOT.2018.2890563.

82106 VOLUME 11, 2023

http://dx.doi.org/10.1109/TBC.2022.3154612
http://dx.doi.org/10.1109/IEEESTD.2020.9135000
http://dx.doi.org/10.3390/electronics8020230
http://dx.doi.org/10.3390/electronics8020230
http://dx.doi.org/10.1364/JOCN.425722
http://dx.doi.org/10.1016/j.jnca.2016.02.015
http://dx.doi.org/10.1364/JOCN.9.000B33
http://dx.doi.org/10.1109/JLT.2012.2215841
http://dx.doi.org/10.1364/JOCN.9.001019
http://dx.doi.org/10.1109/CompComm.2018.8780835
http://dx.doi.org/10.1109/TENCON.2006.343756
http://dx.doi.org/10.1109/TENCON.2006.343756
http://dx.doi.org/10.1007/s11107-013-0399-x
http://dx.doi.org/10.1016/j.osn.2015.04.003
http://dx.doi.org/10.1109/JLT.2014.2327629
http://dx.doi.org/10.1109/JLT.2012.2196023
http://dx.doi.org/10.1109/JIOT.2018.2890563


A. T. Liem et al.: Novel Temporal Dynamic Wavelength Bandwidth Allocation Based on LSTM in NG-EPON

[18] J. A. Hatem, A. R. Dhaini, and S. Elbassuoni, ‘‘Deep learning-
based dynamic bandwidth allocation for future optical access
networks,’’ IEEE Access, vol. 7, pp. 97307–97318, 2019, doi:
10.1109/ACCESS.2019.2929480.

[19] B. Cao, X. Zheng, K. Yuan, D. Qin, and Y. Hong, ‘‘Dynamic bandwidth
allocation based on adaptive predictive for low latency communications
in changing passive optical networks environment,’’ Opt. Fiber Technol.,
vol. 64, Jul. 2021, Art. no. 102556, doi: 10.1016/j.yofte.2021.102556.

[20] B. Liu, L. Zhang, F. Wang, M. Liu, Y. Mao, L. Zhao, T. Sun, and X. Xin,
‘‘Adaptive dynamic wavelength and bandwidth allocation algorithm based
on error-back-propagation neural network prediction,’’ Opt. Commun.,
vol. 437, pp. 276–284, Apr. 2019, doi: 10.1016/j.optcom.2018.12.064.

[21] P. Sarigiannidis, D. Pliatsios, T. Zygiridis, and N. Kantartzis, ‘‘DAMA:
A data mining forecasting DBA scheme for XG-PONs,’’ in Proc. 5th
Int. Conf. Mod. Circuits Syst. Technol. (MOCAST), Thessaloniki, Greece,
May 2016, pp. 1–4, doi: 10.1109/MOCAST.2016.7495169.

[22] A. Tomasov, M. Holik, V. Oujezsky, T. Horvath, and P. Munster, ‘‘GPON
PLOAMdmessage analysis using supervised neural networks,’’ Appl. Sci.,
vol. 10, no. 22, p. 8139, Nov. 2020, doi: 10.3390/app10228139.

[23] Z. Yang, D. Zhang, and J. Tang, ‘‘Predicting PON networking traffic flow
based on LSTM neural network with periodic characteristic data,’’ in Proc.
IEEE 5th Optoelectron. Global Conf. (OGC), Shenzhen, China, Sep. 2020,
pp. 39–42, doi: 10.1109/OGC50007.2020.9260441.

[24] M. Zhang, B. Xu, X. Li, Y. Cai, B. Wu, and K. Qiu, ‘‘Traffic estimation
based on long short-term memory neural network for mobile front-haul
with XG-PON,’’ Chin. Opt. Lett., vol. 17, no. 7, 2019, Art. no. 070603.

[25] A. S. Thyagaturu, A. Mercian, M. P. McGarry, M. Reisslein, and
W. Kellerer, ‘‘Software defined optical networks (SDONs): A comprehen-
sive survey,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2738–2786,
4th Quart., 2016, doi: 10.1109/COMST.2016.2586999.

[26] A. T. Liem, G. A. Sandag, I.-S. Hwang, and A. Nikoukar, ‘‘Delay analysis
of dynamic bandwidth allocation for triple-play-services in EPON,’’ in
Proc. 5th Int. Conf. Cyber IT Service Manage. (CITSM), Aug. 2017,
pp. 1–6, doi: 10.1109/CITSM.2017.8089260.

[27] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi:
10.1162/neco.1997.9.8.1735.

[28] A. Azzouni and G. Pujolle, ‘‘A long short-term memory recurrent neu-
ral network framework for network traffic matrix prediction,’’ 2017,
arXiv:1705.05690.

[29] E. Ganesan, A. T. Liem, I.-S. Hwang, M. S. Ab-Rahman, S. W. Taju, and
M. N. A. Sheikh, ‘‘LSTM-based DWBA prediction for tactile applications
in optical access network,’’ Photonics, vol. 10, no. 1, p. 37, Dec. 2022, doi:
10.3390/photonics10010037.

[30] S. Das, ‘‘From CORD to SDN enabled broadband access (SEBA),’’
J. Opt. Commun. Netw., vol. 13, no. 1, pp. A88–A99, Jan. 2021, doi:
10.1364/JOCN.402153.

[31] M. Robinson, M.Milosavljevic, P. Kourtessis, G. P. Stafford, M. J. Burrell,
and J. M. Senior, ‘‘Software defined networking for heterogeneous access
networks,’’ in Proc. 18th Int. Conf. Transparent Opt. Netw. (ICTON),
Trento, Italy, Jul. 2016, pp. 1–4, doi: 10.1109/ICTON.2016.7550412.

[32] G. Kramer, B. Mukherjee, and G. Pesavento, ‘‘IPACT a dynamic protocol
for an Ethernet PON (EPON),’’ IEEE Commun. Mag., vol. 40, no. 2,
pp. 74–80, Feb. 2002, doi: 10.1109/35.983911.

[33] R. Roy, G. Kramer, M. Hajduczenia, and H. J. Silva, ‘‘Performance of
10G-EPON,’’ IEEE Commun. Mag., vol. 49, no. 11, pp. 78–85, Nov. 2011,
doi: 10.1109/MCOM.2011.6069713.

[34] G. Kramer, ‘‘How efficient is EPON?’’ IEEE802.org, Tech. Rep., 2003.
[Online]. Available: https://www.ieee802.org/3/efm/public/p2mp_email/
pdf00001.pdf

[35] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, ‘‘On the self-
similar nature of Ethernet traffic (extended version),’’ IEEE/ACM Trans.
Netw., vol. 2, no. 1, pp. 1–15, Feb. 1994, doi: 10.1109/90.282603.

[36] J. A. Hernandez, R. Sanchez, I. Martin, and D. Larrabeiti, ‘‘Meeting the
traffic requirements of residential users in the next decade with current
FTTH standards: How much? How long?’’ IEEE Commun. Mag., vol. 57,
no. 6, pp. 120–125, Jun. 2019, doi: 10.1109/MCOM.2018.1800173.

[37] QoS:DiffServ for Quality of ServiceOverviewConfigurationGuide, Cisco,
San Jose, CA, USA, 2017.

[38] J. A. Hernandez, A. Ebrahimzadeh, M. Maier, and D. Larrabeiti, ‘‘Learn-
ing EPON delay models from data: A machine learning approach,’’
J. Opt. Commun. Netw., vol. 13, no. 12, pp. 322–330, Dec. 2021, doi:
10.1364/JOCN.437414.

ANDREW TANNY LIEM received the B.S.
degree from the Department of Computer Sci-
ence, Adventist University of Indonesia, Bandung,
Indonesia, in 2003, the M.S. degree, in 2006, and
the Ph.D. degree in computer science and engi-
neering fromYuan-ZeUniversity, Taiwan, in 2014.
He is currently with the Department of Computer
Science, Universitas Klabat, Manado, Indonesia.
His recent work focuses on NGN, SDN, and
P2P over EPON, intelligent networks, and fault
tolerance.

I-SHYAN HWANG received the B.S. and M.S.
degrees in electrical engineering and electronic
engineering from Chung-Yuan Christian Univer-
sity, Chung-Li, Taiwan, in 1982 and 1984, respec-
tively, and the M.S. and Ph.D. degrees in electrical
and computer engineering from The State Uni-
versity of New York at Buffalo, NY, USA, in
1991 and 1994, respectively. Since February 2007,
he has been a Full Professor with the Department
of Computer Science and Engineering, Yuan-Ze

University, Chung-Li. His current research interests include high-speed
networks, fixed mobile convergence, and heterogeneous multimedia ser-
vices over fiber optic networks, optical green computing, NGN, and optical
networks-based infrastructure over cloud computing.

ELAIYASURIYAN GANESAN received the B.Sc.
degree in computer science from the Tamilavel
Umamakeshwaranar Karanthai Arts College,
Thanjavur, Tamil Nadu, India, in 2010, and the
M.C.A. degree from the Dhanalakshmi Srinivasan
Engineering College, Perambalur, Tamil Nadu,
in 2013. He is currently pursuing the Ph.D. degree
with Yuan Ze University, Chung-Li, Taiwan. His
research interests include high speed networks,
FiWi, SDN, the IoT, tactile internet, and machine
learning.

SEMMY WELLEM TAJU received the B.S. degree
from the Faculty of Computer Science, Klabat
University, Indonesia, in 2013, and the M.S. and
Ph.D. degrees from the Department of Computer
Science and Engineering, Yuan Ze University,
Taiwan, in 2016 and 2020, respectively. He is
currently with the Faculty of Computer Science,
Klabat University, as a Lecturer. His research inter-
ests include machine learning, deep learning, and
bioinformatics.

GREEN ARTHER SANDAG received the B.S.
degree in computer science from Universitas Kla-
bat, Airmadidi, Indonesia, in 2012, and the M.S.
degree in computer science and engineering from
Yuan Ze University, Taoyuan, Taiwan, in 2016.
Since August 2016, he has been a Lecturer with
Universitas Klabat. His research interests include
computer vision and natural language process-
ing, with a particular interest in vision and lan-
guage topics, such as sentiment analysis, emotion
classification, and image classification.

VOLUME 11, 2023 82107

http://dx.doi.org/10.1109/ACCESS.2019.2929480
http://dx.doi.org/10.1016/j.yofte.2021.102556
http://dx.doi.org/10.1016/j.optcom.2018.12.064
http://dx.doi.org/10.1109/MOCAST.2016.7495169
http://dx.doi.org/10.3390/app10228139
http://dx.doi.org/10.1109/OGC50007.2020.9260441
http://dx.doi.org/10.1109/COMST.2016.2586999
http://dx.doi.org/10.1109/CITSM.2017.8089260
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.3390/photonics10010037
http://dx.doi.org/10.1364/JOCN.402153
http://dx.doi.org/10.1109/ICTON.2016.7550412
http://dx.doi.org/10.1109/35.983911
http://dx.doi.org/10.1109/MCOM.2011.6069713
http://dx.doi.org/10.1109/90.282603
http://dx.doi.org/10.1109/MCOM.2018.1800173
http://dx.doi.org/10.1364/JOCN.437414

