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ABSTRACT Ultrasound is a major medical imaging modality that is widely used in healthcare because
of advantages such as the use of nonionizing radiation, ease of operation, real-time imaging from different
perspectives, and low operation costs. The most common ultrasound modality produces two-dimensional
images (2D) with a 1D-array transducer. However, in recent years, three-dimensional ultrasound (3D US)
imaging has become increasingly relevant. There are many reasons behind this shift. For example, 3D US
images are easier to register with 3D images from another modality while patients undergo procedures or
during presurgical planning. In particular, 3D freehand ultrasound (FUS) imaging yields 3D US images of
large anatomical regions at low cost. An area of interest is scanned with a conventional 1D-array transducer,
which is tracked with an attached device; the resulting 2D US images are input into a reconstruction
algorithm; and the brightness values are assigned to a 3D image. Several 3D reconstruction algorithms in
FUS imaging have been proposed and clinically used, and in the present work, we report a new neighbor
search-based approach for reconstructing 3D FUS images based on hierarchical octrees with Morton key
coding that can be implemented on GPUs using CUDA® kernels to exploit multithreading. Our approach
achieves considerably faster throughput for high-resolution 3D images and can reconstruct 3D US images
with dimensions of 128 × 128 × 128 voxels in approximately 0.5 s. The proposed approach is a viable
option for obtaining 3D US images in real time based on sets of freehand 2D ultrasound images acquired
with 1D-array transducers.

INDEX TERMS 2D and 3D ultrasound, CUDA, morton key, octree, reconstruction.

I. INTRODUCTION
Ultrasound (US) has become one of the most commonly used
medical imaging modalities in hospitals and clinics and is the
basis for one in five medical images used for diagnoses [1].
Whereas magnetic resonance imaging (MRI) and X-ray com-
puted tomography (CT) directly produce 3D images, con-
ventional handheld 1D-array US transducers produce only
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2D images. Furthermore, the 3D images produced by the
former modalities typically cover large areas of interest in
patient anatomies, with resolutions of up to 0.5 mm for CT
and 1 mm for 3 T MRI machines, while 2D US images show
only small sections of the human body. Nonetheless, US has
various advantages over other medical imaging modalities,
such as the use of nonionizing radiation, ease of operation,
the ability to obtain real-time images from different perspec-
tives, increased safety, and significantly lower acquisition
and operation costs [2]. In addition to these reduced costs,
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the size of US devices (equipment portability) makes them
flexible and suitable for various procedures and studies in
clinical environments. Hence, US has become an alternative
intraoperative imaging modality that obtains information that
is complementary to other modalities, such as MRI and CT.

Nevertheless, when using 1D-array US transducers, it is
challenging to select an appropriate plane to visualize the
desired internal structures. Furthermore, because these trans-
ducers produce only 2D images, radiologists and physicians
need to integrate several images to visualize 3D anatomical
information from patients. While this process is sufficient for
many clinical situations, it is unacceptable when US images
need to be registered with 3D images from another modality
while patients undergo surgical procedures (e.g., in intraop-
erative guidance dual-modality coregistration or augmented
reality-assisted procedures). Hence, real-time 3D US image
reconstruction is necessary to avoid needing new 3D images
from patients (either to refocus on a region of interest or
to scan a new region). Therefore, the reconstruction speed
and image quality are both relevant factors for 3D US image
reconstruction in clinical environments. 3D ultrasound imag-
ing has been used for many medical procedures, including
vascular imaging, cardiology, obstetrics, neurosurgery, and
image-guided surgery. Consequently, to address the limita-
tions and drawbacks of 2D US imaging, there have been
several efforts to develop 3D US imaging techniques [3],
which can be grouped into three categories based on the
applied hardware: 2D-array transducers, mechanical probes,
and 1D-array transducers.

Mechanical probes are not widely commercially available.
In addition, they are bulky and difficult to adjust because of
the mechanical framework necessary for automatic scanning.
Additionally, such machinery frequently introduces artifacts
in the final 3D images. Moreover, 2D-array transducers are
complicated to manufacture because they require numerous
small elements without crosstalk, increasing the difficulty of
impedancematching (very small elements lead tomuch larger
impedance than linear phased arrays) [4]. Consequently, the
volume and spatial resolution must be balanced because more
piezoelectric crystals need to be included to achieve stricter
impedance matching in 2D arrays [3]. Therefore, a single 2D
image slice obtained by a 2D-array US transducer has much
lower image quality than a 2D image slice obtained by a 1D-
array US transducer. As a result, 2D-array transducers are
rarely used in clinical settings [5].
As an alternative, researchers have developed 3DUS imag-

ing systems using existing conventional 1D-array transduc-
ers, which are available in almost all clinical environments,
to address the drawbacks and limitations of mechanical
probes and 2D-array transducers. This approach, known as
3D freehand ultrasound (FUS), has become a reliable sup-
plementary imaging modality in the clinic because of the
potential of offline reconstruction (i.e., reconstruction not
performed in real-time), the potential to acquire a large field
of view (FOV), the ability to investigate diverse and noncon-
ventional imaging planes, reduced operator dependence in the

acquisition process, and the wide availability of 1D-array US
transducers in clinical environments. Accordingly, 3D FUS
has been successfully implemented in clinical procedures
such as liver biopsies, neurosurgery, region-of-interest selec-
tion in radiation therapy, and spine interventions [6], [7], [8].
Nevertheless, despite these advantages, the quality of the
produced 3D images and the associated computing time are
still challenges in 3D FUS [9].

In recent years, medical image processing based on graph-
ics processing units (GPUs) has become increasingly popular
because this kind of hardware is affordable and capable of
computing many complex mathematical functions and meth-
ods; thus, sophisticated algorithms can be implemented and
computationally difficult tasks can be executed quickly in
clinical settings [10]. As a result, this technology has led
to the successful implementation of real-time, or near-real-
time, 3D FUS reconstruction methods [11], [12]. To take full
advantage of GPUs, an appropriate and efficient reconstruc-
tion algorithm is crucial, and the development of such an
algorithm is one of the most important tasks in 3D FUS using
GPUs [5].
In this paper, we propose a new method for optimizing

3D FUS reconstruction based on neighbor search to quickly
produce 3D US images without reducing image quality. This
optimization is achieved by using hierarchical octrees in com-
bination with Morton order indexing, which is also referred
to as Z-order indexing [13], resulting in considerably faster
reconstruction of high-resolution 3D images. Hierarchical
octrees have been extensively used in a variety of image pro-
cessing applications [14], [15], and these promising results in
combination with an efficient approach tomanaging access to
partitioned 3D spaces inspired us to use octrees with Morton
keys for 3D FUS reconstruction. To our knowledge, this
approach has not been previously used with 3D FUS.

This paper is organized as follows. In the next section,
we describe the most common 3D FUS-based image recon-
struction methods. Section III introduces hierarchical octrees
and our methods incorporating Morton keys for neighbor
search. Section IV presents our experiments with the octree-
based methods and the results. To supplement our experi-
ments, we also compare the time consumption and precision
of our methods with those of a Bézier-based method with
the best reported reconstruction times [16]. The final section
presents our concluding remarks and discusses future work
and potential upgrades.

II. BACKGROUND
The simplest conventional 3D FUS system consists of a 1D-
array transducer with an attached tracking sensor. In this
modality, the reconstruction of a 3D image starts by using
the US transducer to scan several planes in the object of
interest at different orientations and locations. This process
produces a set D of conventional 2D US images containing
the brightness values of all pixels and the data needed to
map them to 3D space (i.e., position and orientation). This
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FIGURE 1. Pipeline of the proposed method for generating 3D images after acquiring (a) a set of 2D US images.
(b) The pixels in all images are used to generate a bounded point cloud C. (c) An octree with Morton keys
completely encompassing the point cloud C. (d) The final 3D image f produced by the octree-based image
reconstruction method.

information is used to generate the final 3D US image. (In the
following sections, when there is no potential for confusion,
we refer to the brightness of a pixel or voxel simply as
the value of that pixel or voxel.) To ensure that the method
produces the highest quality 3D images, it is necessary to
precisely know the position and orientation of the 2D US
images with respect to the tracking sensor, which is an affine
transformation including three rotations and translations. The
parameters for this transformation are determined through
a calibration process, and several calibration methods have
been proposed in the literature. The mapping of all pixels in
the images inD to 3D space yields what is commonly referred
to as a point cloud, denoted by C; the region occupied by C
is then voxelized to produce the support vector V of the final
3D image f (i.e., f : V → R).
There are several methods for reconstructing 3D FUS

images based on the pixels in the 2D US images. These meth-
ods can be classified into three main groups: i) pixel-based,
ii) voxel-based, and iii) function-basedmethods. The first two
approaches are based on searching values in neighborhoods,
and the simplest of such approaches is a nearest-neighbor
scheme [17]. Voxel-based methods first create an empty vox-
elized 3D image with the necessary dimensions to enclose
C; then, the voxels in this image are traversed and assigned
a value based on the values of the neighboring pixels in
D. Conversely, pixel-based methods perform 3D FUS image
reconstruction by first mapping all pixels in D to voxels in
V and then assigning their corresponding values based on
predetermined rules (i.e., bin filling); although the computing
time for this step depends on the number of points in C
(i.e., the number and size of the acquired 2D images), this
process is generally fast. Subsequently, voxels that are not
traversed during the bin-filling process are assigned values
based on the values assigned to nearby voxels during the
bin-filling process (i.e., hole filling); this process is usually
computationally expensive because it depends on the number
of voxels with unassigned brightness values and the method
for computing their values [17].
The authors of [5] and [17] compared the quality of

the reconstructed 3D images produced by pixel- and voxel-
based methods and suggested that although basic methods,

such as the voxel nearest neighbor (VNN) and pixel nearest
neighbor (PNN) methods, achieve reasonable performance in
terms of the computing time, the resulting 3D images have
low-accuracy voxel values. In contrast, neighborhood search-
based methods can produce 3D images with higher accuracy
but with increased computational costs. Consequently, sev-
eral methods to optimize the process of assigning the final
voxel value by considering the values of nearby points have
been proposed. For example, the authors of [18] proposed a
method that identifies the two 2D US images in D that are
closest to a voxel in V and assigns the final value based on the
distance-weighted average of the values of the closest points
in the images. Moreover, a common approach is to assign
the final voxel value by considering the contributions of
points within a vicinity (usually in the form of a kernel). This
approach can improve the quality of the final 3D US image.
However, an important limitation of this approach is the high
computing cost of estimating the distance from a voxel to
all the points within the vicinity. Fortunately, efficient data
structures, such as octrees andMorton keys, can considerably
reduce the computing cost.

The increasing availability of powerful computing hard-
ware to efficiently perform parallel or distributed tasks and
the development of advanced programming techniques has
led to the development of GPU-based optimized methods
for 3D FUS image reconstruction. For instance, the authors
of [12] proposed two GPU-based reconstruction methods,
a PNN method and a novel Bayesian method. The former
can reconstruct 3D images with 161 × 104×232 voxels in
only 26.97 s, and the latter is 46.39 times faster than its
CPU version and 2.86 times faster than the CPU version of
the authors' own PNN implementation. Methods for intelli-
gently representing data, such as octrees, and methods for
parallelizing computing tasks have been widely adopted to
accelerate neighbor searches in many applications involving
large 3D datasets [14], [15]. The promising results produced
by these kinds of approaches in other applications inspired us
to develop an octree-based method to optimize the neighbor-
hood search performed during 3D FUS image reconstruction.
Furthermore, we used a neighborhood search-based approach
because of its low computing time demands and the accurate
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results reported when these methods have been used for
previous 3D US image reconstruction tasks.

III. METHODS
A basic scheme demonstrating the process of reconstructing
3D US images with octrees, from the set of acquired 2D US
images to the final 3D image f , is presented in Figure 1.
As previously mentioned, the process begins with mapping
the pixels in the acquired 2D US images in the set D to 3D
space, resulting in the creation of the set C. Notably, because
our method maps the pixels to a point cloud, it is applicable
with acquired 2D US images of different sizes. However,
large size differences may lead to longer computation times
and poorer accuracy. Then, the set V is created, which is
associated with an octree with Morton keys. Finally, the 3D
US image is generated based on the octree representation.
Althoughmany optimized 3DUS image reconstructionmeth-
ods that use neighbor search to compute the final brightness
values in the 3D image have been developed, improved meth-
ods are needed to analyze larger volumes of interest. This
is particularly important for neighbor search-based methods
using a kernel, as optimizing the use of computing resources
could lead to faster performance without reducing the image
quality. Hence, we use octrees with Morton keys because this
combination can improve the performance of neighborhood
search-based methods, such as pixel- and voxel-based recon-
struction methods.

A. OCTREES AND MORTON KEYS
We next introduce octrees andMorton keys, which are critical
components of our proposed methods. An octree O is a tree-
like data structure that is useful for efficiently partitioning 3D
spaces into octants through recursive subdivision. To create
such a representation based on a set such as C, it is first
necessary to obtain the minimal bounding box that surrounds
all the points in the set. This region of space is represented by
the tree's root node or . Then, the region of 3D space within
the bounding box is subdivided into eight regions of equal
size (octants), with each octant represented by a tree node o
called a leaf of . Each region of 3D space within an octant
(represented by a leaf node of ) is then further subdivided into
smaller octants, thus transforming the current leaf nodes of
into internal nodes o and adding new leaf nodes to the octree.
This process continues until a desired level of subdivision is
reached (e.g., the subdivisions correspond to the voxels in
V ) or a maximum octree level is reached (i.e., the maximum
number of subdivisions, or the resolution, of the octree).
In our work, our datasets led us to consider octrees with
a maximum of 10 levels, and these octrees are considered
complete when each leaf node is associated with a voxel in
V . Notably, once the octree is built with the above approach,
some cells (i.e., voxels) associated with leaf nodes might be
empty or contain more than one point c ∈ C.
In practice, there are several ways to implement an octree

for 3D space partitioning, such as methods using registers
with pointers to the tree nodes or Morton orders instead

FIGURE 2. Example of the generation of the Morton key representation of
a point c (red point) with coordinates of

(
10, 3, 15

)
; this representation is

equal to
(
1010, 0011, 1111

)
when using 4-bit coordinates. The Morton key

is obtained by merging and reordering all of the binary digits to produce
the sequence

(
a(3)

3 a(3)
2 a(3)

1 a(2)
3 a(2)

2 a(2)
1 a(1)

3 a(1)
2 a(1)

1 a(0)
3 a(0)

2 a(0)
1

)
. Hence,

the Morton key for the red point is
(
101100111110

)
or 0×B3E in

hexadecimal notation.

of pointers to the nodes. Although the former approach is
straightforward to implement, this implementation uses sig-
nificantly more computer memory than methods using the
latter approach. In practice, trivial implementations of octrees
are prohibitive in off-the-shelf GPUs. In contrast, approaches
using Morton keys instead of pointers to address the octree
nodes are at least as good at accessing the nodes but use
considerably less memory, which potentially allows their use
in GPUs.

AMorton order is a mapping from an n-dimensional space
to a linear list of numbers. In this mapping, coordinates
close to each other in the n-dimensional space have Morton
numbers, or keys, that are also close to each other. In our
application, aMorton keyM is a sequence of binary numbers
whose values are assigned using the coordinates of the point
to be represented. A point u ∈ Z3

+ can be represented by a
3-tuple (u1, u2, u3), where uj ∈ Z+ for 1 ≤ j ≤ 3; thus, every
coordinate uj can be represented by a sequence of binary
numbers a(m−1)

j , . . . , a(0)j , where a(l)
j ∈ {0, 1} for 1 ≤ l ≤ m.

As a result, the Morton keyMu corresponding to a position
u ∈ Z3

+ can be obtained by merging and interleaving all
the binary digits of its coordinates as follows: a(m−1)

3 a(m−1)
2

a(m−1)
1 . . . a(l)3 a(l)2 a(l)1 . . . a(0)3 a(0)2 a(0)1 (see Figure 2). This
coding scheme applies to any voxel v ∈ V with integer coor-
dinates (v1, v2, v3). However, for points c ∈ C, Morton keys
cannot be used directly. Hence, to use Morton keys for all
types of coordinates involved in the process of reconstructing
3D US images, we first normalize the coordinates based on
the size of the octree in every dimension and translate all
points in C to ensure that all points are in the positive octant.
Additionally, to ensure that the method can represent any
point with Morton keys, we use only two decimal places to
represent real numbers, and all coordinates are scaled by a
factor of one hundred. In the present implementation, we use
10 bits for every coordinate (i.e., m is equal to 10), which
allows for a maximum value of 1024. With this encoding,
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FIGURE 3. Usage of Morton keys as filters. From left to right, each frame shows how the 2D space is progressively
represented by a quadtree (a 2D equivalent of an octree), from the first-level division to the level at which the point p is
represented by a single node. In addition, we show how the Morton keys Mo are assigned to the subdivisions in each
level, demonstrating how the Morton keys of lower-level nodes serve as filters for their offspring nodes.

each Morton key uses 30 bits, which we store as 32-bit
integers, leaving two bits unused.

When Morton keys are used in an octree, each node is
assigned a unique code (i.e., a location code). For a node
o ∈ O, its key Mo is a sequence of digits tracing a path
from the root node or to o; additionally, this type of key
identifies the set of branches that must be traversed on the
given path [19]. Because the leaf nodes in an octree store
positions in space related to the voxels in V , we can refer to
the leaf nodes by using the coordinates of the corresponding
voxels (i.e., in this representation, a voxel v refers to both the
corresponding voxel and its associated leaf node).

Another advantage of using octrees with Morton keys is
that the Morton keys are arranged hierarchically in the nodes
based on their importance; this ranking improves computa-
tional efficiency by allowing regions to be quickly filtered out
when conducting searches in the octree. Each node o ∈ O has
a Morton key serving as both an identifier and a filter. In this
representation, the level occupied by any internal node o ∈ O
determines the region it represents as follows: the Morton
keys for the ith level nodes are created using the 3 × i most
significant bits of their coordinates' binary representations,
with one bit used for each axis. Thus, the bits associated with
theMorton key of an internal node o are shared by theMorton
keys associated with all descendant nodes of o. Moreover, the
Morton keys for each leaf node of ∈ O include all the bits of
the integer coordinates. Hence, this kind of Morton key and
its successive keys can be used as masks to efficiently filter
nodes (i.e., regions) and points (see Figure 3).
One final advantage of using an octree with Morton keys

is that the whole tree can be stored as a vector V (a one-
dimensional array in memory), in which the octree's root
node is the first element in the array and the nodes in the
following levels are stored sequentially. The nodes in the
ith level are stored sequentially based on their 3 × i most
significant bits (e.g., in level 1, three bits are used to store
eight positions, and in level 2, six bits are used to store
64 positions).

Although the usage of an octree in combination with Mor-
ton keys considerably improves the speed of searches and
assignments, the speed even be improved further by using a
list L to store all the points within the 3D region represented
by an octree O. This list can be created in either descending
or ascending order based on the Morton keys of the points.
Additionally, for every node o ∈ O, our method stores an
extra integer index that refers to the first point c ∈ C in L
that falls within the 3D region represented by o. Thus, the
Morton key-based sorting method guarantees that points in L
stored after c are also located within the region represented
by node o. Thus, it is sufficient to use part of a Morton
key to verify whether a point c is within a certain region of
space. As a result, our method can quickly search for points
inside the regions covered byO. To our knowledge, the use of
such an ordered list has not been proposed elsewhere in the
literature. In our present implementation, we use 3 Morton
key bits for each level in the octree, starting with the most
important bit (i.e., for the first level in the octree, we use the
three most significant bits; for the second level, we use the
six most significant bits). Because each Morton key contains
the three-dimensional coordinates associated with the center
of the corresponding voxel v, the search for the neighbors
of v becomes a search for their associated nodes, which can
be quickly performed with binary operations based on their
Morton keys, following by accessing the nodes from the
associated list L.

Finding all the neighbors of a voxel within a given radius is
an integral step in many existing 3D FUS image reconstruc-
tionmethods.When using an octree representation, the search
for all neighbors of a position u in 3D space produces the set

Qu =

{
of |Vv(of ) ∩ S (u, ρ) ̸= ∅

}
, (1)

where S is a kernel centered on u that tightly fits within
the ρ-radius sphere and Vv(of ) is the Voronoi neighborhood
of v in V associated with the leaf node of . The kernel can
have various shapes, including cubic or spherical, as long
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FIGURE 4. Neighborhood search using octrees. The distances to objects
(circles) within the overlapping octants (green) must be computed, while
the distances to objects in nonoverlapping octants (red) can be excluded.
(a) The undivided original region containing objects (i.e., only the root
node). (b) Neighborhood search in the first-level division, where all
octants overlap with the kernel (blue). (c) Second-level division; some
octants do not overlap. (d) Objects inside (blue) and outside (red) the
kernel.

as it fits inside the sphere. After obtaining the set Qu of all
neighboring voxels to u, the method searches for all the pixels
mapped to these voxels. This process creates the following set
for each leaf node of ∈ Qu:

Pu,of =

{
c ∈ C|c ∩ Vv(of ) ̸= ∅ and ∥u− c∥ ≤ ρ

}
. (2)

This approach restricts the search to points in the overlapping
leaf nodes of ∈ Qu; thus, large subsets of points that are
irrelevant to the query are discarded [14] (see Figure 4 for an
illustration of this neighbor search process).

As previously mentioned, an important limitation of
octrees is the potentially large amount of memory required
to store them, even when using Morton keys, because their
size increases exponentially as more subdivisions are added.
As a result, a prohibitive amount of computer memory may
be required to store complete octrees representing large 3D
images. This issue can be addressed by applying the sparse-
voxel octree method, in which only nodes with information
are represented, leaving the remaining nodes undefined and
thus not stored in memory [20].

Currently, modern computer hardware is designed with
parallel architectures with multiple processors or cores. Thus,
it would be desirable to exploit such an architecture and use
multiple processors or cores simultaneously to reconstruct 3D
US images. GPUs have become an alternative for parallel
computing because they have thousands of efficient cores
designed for handling multiple tasks simultaneously and can
perform many parallel tasks. Nvidia® GPUs have become
widely used, and Nvidia® also offers CUDA®, a platform
for general parallel computing. Therefore, we decided to use
this environment to implement our methods; however, it is
worth noting that our methods could be implemented on other
efficient and large-scale parallel computing platforms for
parallel data computations. The CUDA® architecture uses
a multithreaded programming model in which parallel tasks
in an application are executed on hardware as kernels; in turn,
several threads execute each kernel. Multithreading allows
the efficient generation and assignment of Morton keys by
quickly traversing all nodes in the octree. By using a vector
V of nodes, CUDA® kernels can be used to verify all nodes,
and their positions in the vector can be used to determine

their depth and, therefore, their Morton keys. Furthermore,
the use of Morton keys enables not only independent navi-
gation through nodes but also independent processing of the
information associated with these nodes. In addition, we can
exploit threads in CUDA® to independently process the
information associated with these nodes, and these threads do
not need to wait for other threads to finish. Importantly, our
implementations in CUDA® mainly exploit the properties of
Morton keys and the spatial relationships they have with both
nodes in O and points in C. The greater the extent to which
these relationships are used to reconstruct a 3D image, the
more fully neighbor search-based reconstructionmethods can
exploit our proposed octree- andMorton key-based strategies.

At this point, it is worth noting that we are not simply using
faster and more powerful hardware to solve the 3D image
reconstruction problem; such naive attempts would not take
full advantage of the hardware capabilities (e.g., failure to
make full use of independent parallel tasks would lead to
synchronization overhead). Instead, our method parallelizes
many octree-related tasks by following three main strategies.
First, our method stores all nodes in an octreeO in an ordered
linear array L based on their Morton keys. Therefore, the
properties of any node can be accessed and modified inde-
pendently, regardless of the level of the node. In addition,
for any node, it is straightforward to obtain its parent and
sibling nodes by calculating their respective Morton keys.
The properties of any leaf node can also be accessed or
modified by converting theMorton key representation used in
the octree into the corresponding node index representation
used in the linear array and vice versa. Thus, pointers and
other complex data structures are not required to indepen-
dently process the final elements in the linear array (those
representing the highest levels of the octree).

B. 3D IMAGE RECONSTRUCTION
Once the full octree with Morton keys has been constructed,
we apply a reconstruction method based on neighbor search
to produce the final 3DUS image. In our work, becausemeth-
ods based on neighbor search tend to produce high-quality 3D
US images, we implement a voxel-based method (referred
to as the voxel vicinity neighbor with octree and Morton
(VVN-OM) method) and a pixel-based method (referred
to as the pixel vicinity neighbor with octree and Morton
(PVN-OM) method) using a neighbor search-based strategy
to assign the final voxel values to the 3D US images. More-
over, we implement our proposed scheme with octrees and
Morton keys in both methods because there was no a priori
evidence that one of these methods performed better than the
other when optimized with such an approach.

Our VVN-OM method traverses every leaf node of in O
to compute the final value of its associated voxel v

(
of

)
; this

value is obtained by first searching for neighboring points
in C using a kernel Sv,ρ that is centered on the voxel v
(i.e.,

{
c ∈ C|c ∩ Sv,ρ ̸= ∅

}
). This search starts with the kernel

Sv,ρ whose size ρ covers only the voxels adjacent to v; if
there are no points in C within the kernel, the size ρ is
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FIGURE 5. (a) In the VVN-OM method, a kernel S (pink) is centered on a
voxel v ∈ V that does not have any pixel in C within its Voronoi
neighborhood. The size of this kernel is increased (blue) until it intersects
with pixels in C; the values of these pixels contribute to the value of v.
(b) In the PVN-OM method, first (left), the values of every mapped pixel
c ∈ C are assigned to their closest voxel v ∈ V (bin filling). Then (right),
every v ∈ V not previously visited is assigned a value as a
distance-weighted combination of values from all voxels that have
already been filled and intersect with the kernel S centered on v (hole
filling).

increased, and the search process is restricted to the newly
added voxels (see Figure 5(a)). The search for voxels within
the v-centered kernel Sv,ρ is expedited by the use of Morton
keys because all voxels in this region should have similar
keys; thus, the neighbors of a voxel v (i.e., leaf nodes) can
be quickly identified by applying binary operations to the
Morton key of v. This strategy uses the index of the first point
in L that falls within the region, and using the Morton keys
is straightforward method to identify the remaining points
in the region. Furthermore, the points c ∈ C within this
region of space should have similar Morton keys, making
them relatively easy to find. Once the search for neighboring
points is completed (see (1)), the final value is calculated
as [17]:

φ (v) =
1

|Sv,ρ |

∑
u∈Sv,ρ

g (u) e
−

(
∥u−v∥

σ

)2
, (3)

where |Sv,ρ | is the number of points in C discovered within
the kernel Sv,ρ , the function g yields the brightness value of
the corresponding point u ∈ C, ∥•∥ is the l2-norm, and σ is the
longest distance between the center of Sv,ρ and the farthest
valid position.

In contrast, our PVN-OMmethod starts by traversing every
point c ∈ C and assigning their values to their closest voxels
(i.e., the bin-filling process). Specifically, in this stage, the
method assigns the value of a pixel c ∈ C to a voxel v ∈ V
when the point c is within the Voronoi neighborhood Vv of
the voxel v ∈ V . Through parallelization, this process can
be efficiently carried out by independently processing the
Morton key of every internal node o ∈ O as a mask. This
process also helps determine the corresponding associated
leaf nodes. When there is more than one point c ∈ C inside
Vv (i.e., |{c ∈ C|Vv ∩ c ̸= ∅}| > 1), the associated values
of all points are averaged to determine the final value of v.
Following the bin-filling process, all nonvisited voxels (i.e.,
holes) are visited, and their values are computed following a
process similar to the one used in our VVN-OMmethod using
Equation (3). However, instead of identifying points u ∈ C

intersecting with the kernel Sv,ρ , this method searches for
voxels v

(
of

)
for of ∈ O whose values were assigned during

the bin-filling process that intersect with Sv,ρ . Crucially, any
voxel whose value is assigned during the hole-filling process
is considered a synthetic node and is excluded from the
remaining process (see Figure 5(b)).

Finally, because all points in C are also stored in a sorted
linear array based on the Morton keys, it is easy to move back
and forth between the point space and the voxel space. In our
CUDA® implementation, this design allows us to rapidly
transfer information between C and V , fill the octree O, and
perform other operations in our methods. In our implemen-
tations of the PVN-OM and VVN-OM methods, we use 4
CUDA® kernels to prevent conflicts among the different
stages of the algorithms. One of the kernels is responsible
for creating the octree by processing every node in the linear
array. During this process, the necessary Morton keys are
also created. The second kernel processes all the points and
assigns and sorts their Morton keys. Finally, the bin- and
hole-filling processes are performed by the third and fourth
kernels, respectively. The VVN-OM method uses a single
CUDA® kernel employing one thread per leaf node of ∈ O.
Furthermore, every thread uses theMorton key of of to search
for the Morton keys of its neighboring nodes; these keys are
then used to filter points within the neighborhood. The PVN-
OM method uses a single CUDA® kernel employing one
thread per point u ∈ C. A thread uses the Morton key of a
point u to obtain its position in the vector V of nodes. This
approach straightforwardly determines the leaf node of where
u is located and where its information should be processed.
Notably, in the PVN-OMmethod, atomic operations are used
in CUDA® to ensure that different threads do not concur-
rently access the same node. In both methods, a different
CUDA® kernel is response for the hole-filling process, and
one thread is used for each leaf node of ∈ O.

IV. EXPERIMENTS AND RESULTS
In this section, we report on the experiments designed to
test the performance of our VVN-OM and PVN-OM meth-
ods. We developed software implementing these methods
on GPUs. For comparison purposes, we also implemented
versions of these methods without using octrees or Morton
keys on GPUs; we refer to these versions as VVN and PVN,
respectively. These implementations use CUDA® to effi-
ciently exploit the resources of the Nvidia® hardware in
our computer systems. As mentioned in INTRODUCTION,
there is usually a tradeoff between speed and accuracy when
reconstructing 3D US images; hence, we also present an
experiment designed to measure the accuracy of our two
methods. Finally, we present an experiment to compare our
methods to a recently proposed function-based method.

For our experiments, we use two desktop systems using
a single Intel® Core™ i7 processor with 4 cores, running at
4.2 GHz, with 16 GiB of RAM. One of these systems uses a
GeForce® GTX 1080 as its GPU, powered by the Pascal™

architecture, with 6 GiB of memory, while the other uses a

78976 VOLUME 11, 2023



C. Victoria et al.: Real-Time 3D Ultrasound Reconstruction Using Octrees

TABLE 1. Times needed to reconstruct the 3D US images of different
dimensions based on the 2D US images with dimensions 387 × 400 px
using our pixel- and voxel-based methods with and without octrees and
Morton keys.

GeForce® RTX 2060, powered by the Turing™ architecture,
also with 6 GiB of memory. Importantly, all our experiments
were executed using only a single CPU core.

To produce the necessary data for the experiments,
we employed a 3D FUS system using an optical tracker
(Polaris Spectra by Northern Digital Inc., Canada) and a 2D
US system (Aloka SSD-1000 Diagnostic Ultrasound System
by ALOKA Co., Ltd., U.S.A.) to generate experimental data.
As mentioned in Section II, the system must be calibrated
to obtain a set C of points. For the spatial calibration of our
FUS system, we used a crosswire phantom (a tray filled with
water with two submerged wires crossing at their center).
We selected this phantom due to the simplicity and ease
of construction. To calibrate our system, we followed the
procedure described in [21]; a 1D-array US transducer was
used to acquire a set of 2D images with different orientations
in the region where the wires cross to compute values for the
affine transformation from the scanning plane to the dynamic
reference frame.

The above equipment was used to scan two phantoms.
The first phantom was a polyvinyl alcohol (PVA) phantom
simulating a breast with a lesion. The second phantom was a
General-Purpose Ultrasound Phantom Model 044 manufac-
tured by CIRS, Inc., U.S.A.; this phantom is a cuboid block
measuring 18 × 13×20 cm3, with several short cylinders
arranged in two planes, and is designed to simulate the US
properties of human liver tissue. However, we used only one
of these planes for our experiments.

To produce the necessary 2D US data for our experiments,
we acquired several US images, all 387 × 400 pixels (px)
in size, of the aforementioned phantoms using the Aloka
system at a frequency of 7 MHz. For the PVA phantom,
we obtained a single dataset containing 131 images. For the
CIRS phantom (GPUP), we acquired two datasets. The first
dataset contained 66 images of the region of the planewith the
1.5-mm-diameter cylinders, covering only 6 of the cylinders.
The second dataset contained 51 images of the region of the
plane with the 3-mm-diameter cylinders, covering only 9 of
the cylinders.

A. RECONSTRUCTION TIME AND MEMORY USAGE
We assessed the computational times of our proposed PVN-
OM and VVN-OM methods by measuring the time they

FIGURE 6. Maximum intensity projection on the axial plane of a 3D
image with dimensions of 256 × 256×256 voxels produced using the PVA
phantom dataset. The voxel values in the 3D image are assigned by (left)
using only the 2D images acquired with a 1D-array transducer and (right)
applying the VVN-OM method to the acquired 2D images.

needed to reconstruct 3D images with dimensions of 128 ×

128×128, 256 × 256×256, and 512 × 512×512 voxels.
Then, we compared their execution times with those of the
octree-less PVN and VVN methods. To run these experi-
ments, we used the computer systemwith the GTX 1080GPU
and the 2D US images obtained from the CIRS and PVA
phantoms as input for our methods. In Table 1, we show the
times needed by these methods to reconstruct the various 3D
images. To visually evaluate these results, Figure 6 shows an
example of a reconstructed 3D image of the PVA phantom
with 256 × 256×256 voxels.
To evaluate the sppedup achieved by using octrees and

Morton keys, we used the following measure:

SpeedUp =
Tn
To

, (4)

where Tn is the time used by an octree-less method and To is
the time used by a method using octrees with Morton keys.
The results in Table 1 show that the best acceleration was
10.28×, whichwas obtainedwith the PVN-OMmethodwhen
the dataset with 51 2D US images was used to reconstruct
a 3D US image with 128 × 128×128 voxels. The worst
acceleration was 1.25×, which was obtained with the VVN-
OMmethodwhen the dataset with 51 2DUS images was used
to reconstruct a 3D US image with 128 × 128×128 voxels.
It is worth noting that Huang and Zeng [5] reported that the

fastest sequential implementation of the pixel-based method
using nearest-neighbor searches required 0.031 s to process
302 × 268 px 2D US images to reconstruct a 3D US image
with 90 × 81×192 voxels. In comparison, our PVN-OM
method needed only 0.005 s for every 387 × 400 px 2D US
image to reconstruct a 3D US image with 128 × 128×128
voxels (approximately 40% more voxels).

Furthermore, we note that one of the most computationally
demanding tasks is assigning the points in C to each voxel in
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TABLE 2. Memory in megabytes used to reconstruct 3D US images of
different dimensions using our PVN-OM and VVN-OM methods.

TABLE 3. Mean measured values of the diameter and separation of the
cylinders in the reconstructed 3D images of the CIRS phantom (GPUP).

V . When using our approach with octrees and Morton keys,
this process is not performed as a separate task because of the
spatial relationships among the Morton keys.

In many computer applications, there is a tradeoff between
memory usage and computing time. Thus, we also deter-
mined the memory usage of our two methods when recon-
structing the 3D US images, and the results are shown in
Table 2. In our proposed methods, the number of octree
nodes increases exponentially by 8n, where n is the depth of
the octree. In our implementations, every octree node uses
0.015625 KiB, and an 8-level octree (256 × 256×256 cells)
requires 292.57 MiB of storage. When the octree's depth is
increased by one, the number of additional cells is equal to
512 × 512×512, and the required memory is increased to
2.28 GiB. Current off-the-shelf GPUs can easily handle such
memory demands.

B. RESOLUTION ASSESSMENT
We also assessed our methods in terms of the resolution they
can achieve when reconstructing various 3D images using the
datasets acquired in the GPUP planes. These 3D images had
dimensions of 64×64×64, 128×128×128, 256×256×256,
and 512 × 512×512 voxels. During the reconstruction pro-
cess, a maximum kernel size of 9× 9×9 voxels was used for
both methods. After obtaining the 3D images, we manually
measured the diameters of all small cylinders and their sep-
aration distances. In Table 3, we present the average values
of the cylinder diameters and their standard deviations for
the different reconstructed 3D images. Figure 7 shows two
reconstructed 256×256×256.3D images of the region where
the 3-mm cylinders are located.

C. ERROR ASSESSMENT
Finally, we assessed the accuracy of our methods by measur-
ing how well they reconstructed the values in several sets of
3D US images, which were taken as ground truth. For each

FIGURE 7. Reconstructed 3D images with dimensions of
256 × 256 × 256 voxels in the region of the CIRS phantom in which the
3-mm cylinders are located; note the straight lines delimiting the region
containing the cylinders. The reconstructions were obtained with the
(a) VVN-OM and (b) PVN-OM methods. The yellow lines and text illustrate
the acquired dimensional measurements and their corresponding
measured values.

FIGURE 8. (a) The sagittal plane in a ground-truth 3D fetal image. (b) The
same plane in a 3D image with 30% of the voxels removed. (c, d) The
corresponding planes in the reconstructed 3D images obtained with the
(c) PVN-OM and (d) VVN-OM methods.

of the 3D US images, we selected several slices perpendic-
ular to the xy, xz, or yz planes. We followed this approach
because it resembles the method for generating datasets of 2D
US images using freehand probes with uniform acquisition
schemes. Moreover, to better simulate a realistic scenario,
we created gaps in the information by randomly removing
different numbers of 2DUS images from the acquired dataset.
This methodology allowed us to assess the error associated
with the reconstruction algorithms while canceling out any
errors introduced during the acquisition of the 2DUS images.
Another advantage of this approach is that these robustness
tests allow a common frame for comparison with other 3D
US reconstruction methods.

We measured the difference between the values in a recon-
structed 3D image and the corresponding ground-truth values
by calculating the following normalized mean square error
(MSE):

MSE =
1
N

N∑
i=1

(fr (ci) − fb (ci))2 , (5)
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FIGURE 9. Increase in MSE as a function of the amount of information eliminated from the dataset
(represented by different shades of the corresponding hue) when producing 3D US images with the
(red) PVN-OM and (blue) VVN-OM methods. For these tests, we used the Fetal Brains, Fetuses, Fetal
Hearts, and Breast datasets.

where fr (ci) and fb (ci) are the values for the ith voxel c in the
reconstructed and ground-truth 3D US images, respectively,
and N is the total number of voxels. For a given ground-
truth 3D US image, we created several datasets of 2D US
images with different amounts of deleted information, rang-
ing from 100% exclusion to no information removed. The
error produced with the zero-information-removed dataset
was used to normalize the errors obtained in reconstructing
the remaining 3D US images. We denote this baseline error
as MSEM; hence, the final reported error for a reconstructed
3D US image is the ratio between its MSE and MSEM, and
we denote this ratio as MSE.

For this task, we obtained 92 ground-truth 3D US images
of 20 brains, 61 fetuses, and 11 fetal hearts; these images
were generated with a General Electric Voluson 3D US sys-
tem using a frequency ranging from 2 to 7 MHz. We also
obtained 31 ground-truth 3D US images representing breasts
with different characteristics. These images are available in a
public database coauthored by the Department of Radiology
at Tahammasat University and the Queen Sirikit Center of
Breast Cancer of Thailand [22]. In Figure 8, we present
several sagittal planes in the fetal images illustrating the error
measurement process.

For this assessment, we ran our VVN-OM and PVN-
OM implementations on the computer system with the
RTX 2060 GPU, and we report the MSE values and standard
deviations for all 3D US images reconstructed with these
methods in Figure 9.

The question remains as to whether the utilization of
octrees and Morton keys introduces errors in the pixel-
and voxel-based methods. To investigate these potential
errors, we compared the PVN and VVN methods with
their corresponding versions using octrees and Morton keys.
In Figure 10, we compare the MSE values obtained by
the PVN and PVN-OM methods, and the VVN and VVN-
OMmethods show similar behaviors. The average difference
between the errors produced by both methods is 0.00089,
with the PVN-OM method having a smaller error; hence,
we can consider these values negligible. The errors of both
methods are mainly due to precision in computing the dis-
tances and neighbors; in particular, the method using octrees
and Morton keys quantifies distances. These results suggest
that our methods using octrees and Morton keys do not
introduce significant errors during the reconstruction process.
We emphasize that the aim of these experiments was to have
a comparison excluding the noise introduced in acquiring the
US images to enable a fair comparison between methods with
and without octrees.

D. COMPARISON WITH A BÉZIER-BASED METHOD
Although our proposed approach is limited to optimizing
neighbor search-based reconstruction methods, we comple-
ment our assessment with a comparison with an algorithm
using Bézier interpolation [16]. In Table 4, we compare the
time performance of our two methods with that of the Bézier-
based method when reconstructing a 256×256× 256.3D US
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FIGURE 10. Comparison between the increase in MSE as a function of the amount of information
eliminated from a dataset (represented by different shades of the corresponding hue) when producing
3D US images with the PVN and PVN-OM methods. For these tests, we used the Fetal Brains, Fetuses,
Fetal Hearts, and Breast datasets.

FIGURE 11. The MSE values for the Bézier-based reconstruction algorithm when different amounts of
information were eliminated from the dataset, represented by different shades. We tested this algorithm
using the same datasets as in Figure 9.

image. For this test, we used the CIRS phantom (GPUP)
dataset. Additionally, we measured the MSE results for the

Bézier-based method based on the same datasets used to
assess our methods, and we present these results in Figure 11.
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TABLE 4. Comparison of the time needed to reconstruct a 3D US image
with dimensions of 256 × 256×256 using a Bézier-based method and our
PVN-OM and VVN-OM methods for datasets with different numbers of 2D
US images.

According to the results in Table 4, the Bézier-based
method achieves a better time performance; however, this
reduced computing time is balanced by the increased error
compared with our PVN-OMmethod. Conversely, our VVN-
OM method always performs worse than the Bézier-based
method. In the Bézier-based method, four consecutive 2D US
images are used for interpolation [16]. Four pixels with the
same position in the corresponding consecutive images are
used as the control points for the 3rd-degree Bézier curve.
Then, this curve is used to compute the final values of the
voxels intersecting the curve. This method achieves excellent
performance when the input images have the same dimen-
sions and are not too separated. However, the Bézier-based
method is sensitive to the orientations and distances among
the acquired 2D US images.

The Bézier-basedmethod requires that the acquired images
do not deviate much from a given orientation to yield a
satisfactory 3D US image, whereas our methods do not have
such a restriction, providing more leeway in the acquisition
process. The Bézier-based method also encounters problems
when the input images cross with the underlying Bézier spline
because ensuring the continuity of the curve is difficult with-
out increasing the number of control points; images crossing
each other are not unlikely in 3D FUS because the orientation
of the scanned 2D images depends on the dexterity of the
technician acquiring them and the shape of the surface being
scanned.

V. DISCUSSION AND CONCLUSIONS
Despite recent developments in 3D US image reconstruction
algorithms and their GPU implementations, there is still a
need to develop faster reconstruction methods because 3D
US images must be obtained in real time in clinical appli-
cations. Hence, several approaches have been proposed to
achieve better performance, and in this work, we propose an
approach based on neighbor search. Our approach accelerates
the reconstruction process and achieves faster image recon-
struction times by optimizing the local search for information
necessary to fill the gaps in 3D images during the reconstruc-
tion process. This approach uses the leaves in an octree to
represent the voxels in a 3D image and uses Morton keys
to efficiently track the voxel positions in the data structure.
This approach enables more direct implementations of recon-
struction algorithms. Notably, the methods implemented with
our proposed approach achieve faster reconstruction times
and use memory more efficiently than previous methods.

Our analysis of our two implementations suggests that the
pixel-based method performs better because it depends more
on the voxels in the reconstructed 3D image. This informa-
tion allows our method to take full advantage of the octree
representation with Morton keys, resulting in a more direct
and efficient implementation that takes utilizes the parallel
processing capabilities of GPUs.

Errors may occur in reconstructed 3D US images due
to various factors, such as the interpolation method used
to obtain the voxel's final value or the size of the kernel
used for the neighbor search. Our results indicate that we
can produce complete reconstructed 3D images even when
60% of the information is missing, although the images
contain some artifacts. The shape, form, and number of
these artifacts depend on the number and size of the gaps
in the reconstructed 3D image and the size of the kernel.
In our experiments, we can observe some blurred borders, but
the general appearance of the 3D images is preserved. The
blurred borders in the 2D images during the reconstruction
process are considered artifacts, and these blurred borders are
why we report a reconstruction error greater than zero when
no information is removed from the ground-truth 2D image
datasets. Between our two methods, the VVN-OM method
obtains worse reconstruction accuracy even when no infor-
mation is removed; however, this method produces images
that are more visually appealing in some circumstances (see
Figure 8(d)). This visual effect occurs because of how the
VVN-OM method works; the method averages the voxel
values within the kernel to assign the final values in the 3D
image. In our methodology, this process modifies the values
in the ground-truth 3D image, leading to differences between
the ground-truth image and its corresponding reconstructed
3D image. Thus, a larger error is found when the two images
are compared. Our experiments show that parallelization and
the use of octrees and Morton keys do not lead to signifi-
cant errors in comparison with the parallel versions without
octrees.

While octrees offer several advantages, an important limi-
tation is that at a given level, the represented space is equally
divided among the child nodes. When the distribution of
points is unbalanced, it might be necessary to increase the
octree's depth to obtain the necessary resolution. This clearly
increases the processing time because more voxels are pro-
cessed in each direction. Nonetheless, based on our results,
the longest time was 79.79 s for the PVN-OM method to
produce a 3D image with 512 × 512×512 voxels based
on an input set of 131 2D US images with dimensions of
387 × 400 px. On the other hand, the same method needed
0.44 s to produce a 3D image with dimensions of 128 ×

128×128 voxels based on an input set of 51 images with
dimensions of 387 × 400 px, corresponding to a frame rate
of 2 fps. This rate is acceptable for performing reconstruction
while scanning US images. Importantly, this is an acceptable
time for preoperative planning and even for most surgical
procedures. Clinically acceptable reconstruction times are on
the order of seconds because these values do not significantly
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extend the duration of 3D US imaging studies. For instance,
Hiep et al. [24] reported that 2D US image acquisition times
from 3.5 ± 0.8 to 16.9 ± 6.9 minutes are considered accept-
able overhead times for surgical procedures. On the other
hand, Atesko et al. [23] reported that for intraoperative pro-
cedures, 14 min is the average time added due to assisted
2D navigation; this time does not represent a significant
burden for surgeons, although it is not insignificant. Finally,
the review presented by Zheng and Li [25] reported times
for preoperative preparations (including acquisition and data
processing) for several surgical procedures, and most of them
take hours. This evidence indicates that there is no established
time for every surgical procedure, and our reported times
are within the constraints of these procedures. Furthermore,
our methods have a relatively low memory consumption
(although their memory requirements increase with the depth
of the octree), with a maximum memory usage of 3.554 GiB.
This memory requirement can be easily met with recent
and unexceptional commercially available GPUs. Hence, the
proposed approach is a viable option for obtaining 3D US
images in real time based on a set of 2D FUS images.

While our objective is to improve the speed of 3D image
reconstruction methods using neighbor search, we compared
the reconstruction performance of our methods with the per-
formance of a method using Bézier interpolation for the same
reconstruction task. Our implementation of the Bézier-based
algorithm produces 3D images faster than our two proposed
methods, but our experiments suggest that our pixel-based
method produces 3D images with fewer errors. Additionally,
during our experiments, we discovered that the Bézier-based
method is more sensitive to the orientation of the acquired 2D
US images, while our two proposed methods are more robust
with respect to the image orientation. This situation is relevant
in clinical environments, where restricting the direction of
scanning might not be practical. Hence, our approach is a
good alternative to Bézier-based methods and a competitive
choice for reconstructing 3D FUS images.

Our methods were implemented using Nvidia® hard-
ware and CUDA®, commercial multithreading off-the-shelf
GPUs and their APIs. This hardware allows voxels and points
to be processed with a single CUDA® thread (depending on
the kernel). In our implementations, the final reconstruction
task is carried out by CUDA® kernels executing a single
thread for every node in the octree to be processed. Every
thread searches for points in neighboring nodes and pro-
cesses the necessary data, and every thread (i.e., octree node
processing) is executed in parallel by the GPU core. This
data independence enables a scalable design that depends
on the number of available GPU cores and their processing
characteristics. For example, the RTX 2060 GPU used in
some of our experiments has a total of 1,920 CUDA® cores;
thus, our methods can use an octree with 2,097,152 nodes
(128 × 128×128 voxels) requiring 1,093 ‘‘calls’’ to finalize
the reconstruction results, whereas the GTX 1080 GPU has
2,560 CUDA® cores, which would require 820 ‘‘calls’’ to
reconstruct the same octree.

Our experiments show that our approach accelerates the
reconstruction of 3D US images and can improve the recon-
struction times of pixel- and voxel-based neighbor search
methods. However, as previously mentioned, the acceleration
differs for the two methods, with the pixel-based method out-
performing the voxel-based method. Importantly, our meth-
ods using octrees with Morton keys can produce 3D US
images in real time without reducing image quality. Notably,
our methods are scalable to meet changes in hardware, and
they do not require large amounts of memory. Furthermore,
they can obtain larger FOVs than direct 3D US systems used
in clinical settings, making them an affordable alternative
to direct 3D US systems. Additionally, our reconstruction
time results suggest that our neighbor search-based methods
have similar time performance as the Bézier-based method,
although our methods are slightly slower. Thus, we can
conclude that our methods are applicable in various image-
assisted surgical procedures (including clinical systems and
applications requiring the reconstruction and visualization of
3D US images) and are suitable for use in clinical settings.
The additional time required to obtain a 3D US image with
our methods does not represent a significant overhead for
surgical procedures, during which medical experts have lim-
ited time to examine patients and it is frequently necessary
to repeat scans to assess injuries and diseases. Additionally,
we suggest that some of the techniques presented here can
be incorporated into Bézier-based methods, which will be
explored in future work.
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