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ABSTRACT Existing image processing methods usually divide image denoising and image fusion into
two directions for research, and even the best current image denoising methods such as DnCNN can
cause information loss during image processing, and the image fusion method mainly considers the fusion
between multiple source images to complement the image information, but does not take into account
the degradation of the fusion quality due to the noise in the source images. Therefore, aiming at the
problem that various existing image denoising methods cannot reduce noise efficiently in complex noise
situations while performing multi-source image fusion, preserving texture details, highlighting edge contour
structures, and enriching image energy, a method of reconstructing remote sensing images by simplified
adaptive dual-channel PCNN (Dual-PCNN) fusion in the NSCT transform domain is proposed to unify
image noise reduction and image fusion under the same framework to obtain a noisy image information
reconstruction method, which completes the complementary advantages between two image processing
methods. Firstly, the impulse noise in the image is removed using IMFLED filtering, and then the Gaussian
noise is processed by DnCNN and FFDNet respectively, and the results are imported into simplified
parametric adaptive dual-channel PCNN to fuse the preprocessed images respectively. Then the DnCNN
image and the preprocessed image are decomposed by NSCT to obtain each low-frequency sub-band and
high-frequency sub-band. The low-frequency sub-band is stimulated with detail using the guided filter,
and the high-frequency sub-band is enhanced by separating the detail layer through the guided filter to
obtain the energy-detail-enhanced high-frequency sub-band. Finally, the corresponding sub-bands are
fused into the simplified parametric adaptive dual-channel PCNN respectively, and the fused sub-band
coefficients are reconstructed by NSCT inversion to obtain the final reconstructed remote sensing image.
The experiments on grayscale images and remote sensing images show that this method achieves excellent
results in both visual subjective and quantitative index evaluation, and the reconstructed images perform
well in texture details, contour structure, and energy enrichment. After the information reconstruction of
remote sensing images, the quality and resolution of remote sensing images are effectively improved, so that
terrain information, landform features, and structural features can be extracted more accurately, which are
widely used in remote sensing and geographic information fields such as landform analysis, agricultural
monitoring, building inspection and environmental protection.

INDEX TERMS Image reconstruction, non-subsampled contourlet transform (NSCT), pulse-coupled
neural network (PCNN), convolutional neural network (CNN), guided filter.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kumaradevan Punithakumar .

I. INTRODUCTION
Optical remote sensing images have the characteristics of
low noise and high spatial resolution, and they are widely
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used in the fields of land agriculture and forestry monitoring,
urban construction planning, and wetland dynamic change
monitoring [1]. Remote sensing images are often subject to
external environmental factors and equipment limitations in
the process of optical imaging, transmission, and storage,
resulting in noise-contaminated images, so it is of certain
research value and significance to reconstruct remote sensing
images with noise reduction to improve image quality and
increase image interpretability when analyzing and interpret-
ing remote sensing images [2].

There are numerous methods for image denoising based on
different theories. The reference [3] proposed Block Match-
ing and 3D Filtering (BM3D) image denoising based on
Non-local Self Similarity (NSS),, which performs similar
block matching group denoising of images by minimum
Euclidean distance; the reference [4] used Nuclear Norm
Minimization (NNM) instead of low-rank matrix, and image
noise reduction by finding the global optimal solution of
non-convex optimized low-rank matrix, which has the prob-
lem of consistent treatment of singular values; the refer-
ence [5] proposed Weighted Nuclear Norm Minimization
(WNNM) to choose different weights for singular values,
which better recovers the low-rank matrix and has better
denoising with better results; in the reference [6], a Denoising
Convolutional Neural Network (DnCNN) was proposed, and
the network learning object is the image residual; in the
reference [7], the Fast and Flexible Denoising Convolutional
Neural Network (FFDNet) was proposed on DnCNN basis,
and the adaptability to different noises after adding noise lev-
els is higher than that of DnCNN; The reference [8] proposed
Wasserstein Generative Adversarial Networks (WGAN) and
applied it to cell image denoising to solve the problem
of blurred image texture details after CNN denoising, and
achieved certain results; the reference [9] used generative
adversarial networks and non-residual learning process for
blind image denoising application to solve image artifacts
and blurring problems; the reference [10] introduced an iter-
ative correction scheme and proposed an effective guided
feature domain denoising residual network for real-world
noise denoising with some progress. Each theoretical method
has different noise reduction effects, but basically, there are
problems such as loss of image texture details, blurred edge
contour structure, and insufficient image energy.

Image fusion is mainly divided into two categories: spatial
domain and transform domain. The main methods in the
spatial domain are Principal Component Analysis (PCA) [11]
and Gram-Schmidt (GS) [12], whose main feature is to con-
vert the image into a certain feature space for processing, such
as color and luminance space. The transform domain method
is to reconstruct the decomposed bands by fusing them with
relevant rules after transforming the image with multi-scale
decomposition. Contourlet Transform (CT) method in ref-
erence [13], through the directional anisotropy and local
information property of contour wave, solves the problem of
poor performance of sub-band directional information and

contour structure in image fusion; the reference [14] pro-
poses Non-Subsampled Contourlet Transform (NSCT) based
on CT solves the translation invariance while inheriting the
advantages of CT; the reference [15] completes the fusion
of multimodal medical images by NSCT; the reference [16]
fuses two difference remote sensing images by NSCT for nat-
ural disaster change detection. Meanwhile, artificial neural
networks [17] and convolutional neural networks [18] are also
widely used in image fusion to improve image fusion quality.

Pulse Coupled Neural Network (PCNN) [19] is an artificial
neural network that can extract image information features
without training and is widely used in image fusion, segmen-
tation, and denoising, and its performance is related to the
built-in parameters. PCNN can be used for image fusion alone
or fused jointly with other algorithms. The reference [20]
proposed a simplified parameter adaptive setting method for
SPCNN; the reference [21] optimized PCNN based on Mul-
tiple Features Grey Wolf Optimizer (MFGWO-PCNN) for
multimodal medical image segmentation; the reference [22]
proposed an adaptive parametric dual-channel PCNN based
on fractal dimension for multifocal image fusion; the ref-
erence [23] proposed a parametric adaptive unit-connected
dual-channel PCNN for infrared and visible image fusion,
incorporating fractal dimension and multiscale morpholog-
ical gradients into the connection coefficients; the refer-
ence [24] proposed a new parametric adaptive unit-connected
model (PAULPCNN) for MRI-PET/SPECT medical image
fusion; the reference [25] proposed a novel parameter-
adaptive dual-channel modified simplified pulse coupled
neural network (PA- DC-MSPCNN) for single image dehaz-
ing in intelligent transportation systems; the reference [26]
proposed a Dual Channel Pulse Coupled Neural Network
(DC-PCNN), which is applied to dual-channel parametric
adaptive image fusion, but it is less effective for remote sens-
ing image fusion and has serious loss of spatial information.

In summary, image noise reduction and fusion methods
are important for reconstructing high-quality remote sensing
images from noisy optical remote sensing images [27].
The research work in this article is as follows:
1. This article proposes a simplified parametric adap-

tive Dual-PCNN fusion model based on DC-PCNN,
where the input neuron matrix and Laplace operator do
two-dimensional convolution operation to obtain adaptive
link strength coefficients, simplify the internal activity terms
of neurons, improve computational efficiency, and enhance
image feature extraction performance.

2. This article proposes an Iterative Median Filter based
on Local Extreme value noise Detection (IMFLED) [28]
with DnCNN and FFDNet to jointly reduce impulse and
Gaussian mixed noise, and IMFLED-DnCNN and IMFLED-
FFDNet multi-source images by simplified parametric adap-
tive Dual-PCNN fusion to obtain low-noise images. The
DnCNN and FFDNet in the framework of this paper are
network models trained in advance by the original authors,
while the Dual-PCNN in this paper is a non-learning trained
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FIGURE 1. The architecture of the NSCT model.

neural network with a single re-run. In this paper, all the
modules are integrated under the unified framework.

3. This article design two separate sub-band fusion rules
in the NSCT domain. The original low-frequency sub-band
is used as the guide image by the guided filter [29] so that
the low-frequency sub-band stimulus produces more texture
detail information. The guided filter uses the original image
as the guided image and decomposes the detail layer after fil-
tering, which is enhanced by the enhancement coefficient and
fused with the high-frequency sub-band with high structural
similarity so that the contour structure of the high-frequency
sub-band is highlighted.

4. The enhanced sub-bands are reconstructed by simpli-
fied parametric adaptive Dual-PCNN fusion and the images
are reconstructed by NSCT inversion. In order to verify the
effectiveness and robustness of the method, the comparison
verification experiments are carried out by multiple sets of
grayscale images and optical remote sensing images respec-
tively, and the quantitative analysis is performed by using
multiple types of evaluation indexes.

The rest of this article is organized as follows. Section II
introduces related theories. Section III introduces the research
methodology of this article. Section IV extensive grayscale
image experiments and optical remote sensing image exper-
iments and ablation experiments are conducted to evaluate
this research method. Section V gives some discussions and
Section VI gives the conclusion about this article.

II. RELATED THEORIES
A. NON-SUBSAMPLED CONTOURLET TRANSFORM
NSCT has excellent characteristics of multi-scale, multi-
direction, and translation invariance for image decomposition.
Multi-scale and multi-directional image decomposition
is performed by Non-Subsampled Pyramid Filter Banks
(NSPFB) and Non-Subsampled Direction Filter Banks
(NSDFB). The original image is first decomposed into a
low-pass sub-band and a high-pass sub-band by NSPFB,
and the high-pass sub-band is decomposed into multiple

band-pass direction sub-bands by NSDFB, and then the low-
frequency sub-band is decomposed byNSPFB transform, and
the process is repeated. The size of each sub-band remains
unchanged while decomposing to avoid image distortion
during up-sampling and down-sampling. The decomposition
transform process is shown in the following Figure 1.

B. DUAL CHANNEL PULSE COUPLED NEURAL NETWORK
DC-PCNN, similar to PCNN, is a single-layer feedback-
type network model proposed based on the principle of
cat vision, which can effectively extract image information
without learning and training, and it is a strongly adaptive
system. It has multiple neurons, each of which contains three
parts: the received input domain, the connection modulation
domain, and the pulse generation domain, respectively. The
structure of the DC-PCNN model is shown in the following
Figure 2, and its mathematical expression is as follows:

FAij (n) = SAij (1)

FBij (n) = SBij (2)

UAij (n) = FAij ∗

1 + βAVL
∑
pq

WpqYpq (n− 1)

 (3)

UBij (n) = FBij ∗

1 + βBVL
∑
pq

WpqYpq (n− 1)

 (4)

Uij (n) = e−αuUij (n− 1) + max{FAij (n) ,FBij (n)} (5)

Yij (n) =

{
1, if Uij (n) > θij (n− 1)
0, otherwise

(6)

θij (n) = e−αθ θij (n− 1) + VθYij (n) (7)

In the above expressions: n is the number of iterations, SAij,
SBij are the two external input excitation, FAij, FBij is the
neural feedback input, βA, βB is the link strength coefficient,
VL , Vθ is the link amplification coefficient and the threshold
amplification coefficient, respectively, Wpq is the synaptic
link power coefficient matrix, Yij is the binary output result
of this neuronal pulse, Ypq is the binary output of neuron
impulses in the previous iteration, and the link strength of
this iteration is determined by the previous impulse output,
UAij, UBij, Uij is the neuronal internal activity term, αu, αθ

is the internal activity term decay coefficient and the thresh-
old decay coefficient, respectively, and θij is the dynamic
threshold.

Eq. 6 shows that when comparing Uij with θij the ignition,
the output of the completed neuron, whose value is 0 or 1,
so the PCNNproduces a binary image after each iteration, and
then θij will decay exponentially according to Eq. 7 to reach
the next ignition degree, and Uij is continuously adjusted by
a link strength and β. When PCNN performs image fusion,
PCNN is a two-dimensional single-layer laterally connected
neural network, and each image pixel is connected as a neu-
ron. Meanwhile, the link strength parameters, amplification
coefficient, attenuation coefficient, link weight matrix, etc.
are set by empirical values, which will have some influence
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FIGURE 2. The architecture of the DC-PCNN network.

FIGURE 3. The architecture of the DnCNN network.

on the image fusion effect, and the adaptive modification of
some of these parameters will be explained later to improve
the fusion effect and avoid the artificial influence of empirical
factors.

C. DENOISING CONVOLUTIONAL NEURAL NETWORK
DnCNN is a convolutional neural network built on the basis
of VGG, and its network structure mainly consists of three
parts, the first part is Conv+ReLU, the second part is several
layers of Conv+BN+ReLU, the third part is Conv, the number
of network layers is 17 or 20 layers. Inside the model does not
perform long jump connections like ResNet, but by learning
predictions for image noise and reducing to noise-free images
by subtracting noisy images from the input images after
residual learning, the network model is shown in Figure 3.
In the training process of the DnCNN network model, the
mean square error (MSE) between the real residual image
and the network output is used as the loss function to back
propagate to correct the network parameters.

L (θ) =
1
2N

∥R (yi; θ) − (yi − xi)∥2 (8)

In Eq. 8, L (θ) denotes the learning of the network param-
eter θ , N is the number of samples, R (yi; θ) is the network
residual output, yi is the noisy image, and xi is the noise-free
image.

D. FAST AND FLEXIBLE DENOISING CONVOLUTIONAL
NEURAL NETWORK
The FFDNet model is an optimization improvement based
on the DnCNN model, which has a higher requirement for
noise and requires uniformly distributed Gaussian noise,
but is also able to suppress a certain range of noise. Real
noise is inter-signal dependent and correlated across color
channels, and is not uniformly distributed Gaussian noise,
so the input to FFDNet is an estimated noise map, which
can effectively maintain image details and suppress noise,

FIGURE 4. The architecture of the FFDNet network.

and can handle higher complexity levels of noise and spatial
variation noise. Because optical remote sensing images have
very complex texture details, the noise reduction capability of
FFDNet is outstanding in the case of high-level noise, which
can also be verified in the subsequent experiments in this
paper.

Besides, the network input of FFDNet is multiple sub-
graphs generated by down-sampling the input image, and
the final output is up-sampled through the subgraphs. This
is similar to part of the principle of this paper, which also
processes the subgraphs after sampling, but NSCT uses non-
down-sampling filtering decomposition when transforming
the decomposed images, which can avoid the image distortion
caused by up-sampling and down-sampling to some extent.
The purpose of this design of FFDNet is to increase the
perceptual field while down-sampling to obtain the appropri-
ate network depth. The FFDNet is designed with 15 layers
and the convolution of 3 × 3 will obtain the perceptual
field of 62 × 62, while the CNN with 15 layers will only
obtain the perceptual field of 31 × 31, which also makes
the FFDNet has better noise reduction ability in the case of
the high level of complex noise. The orthogonal matrix is
also used to initialize the network parameters and improve
the efficiency of network learning and training. The structure
of the FFDNet network model is shown in the following
Figure 4:

The purpose of using residual learning is that when the
residual is 0, the mapping between the stacking layers is
constant and easier to optimize, and at the same time, when
the image noise level is small, the residual between the noisy
image and the noiseless image is very small, so the original
authors introduced residual learning [30] into the image noise
reduction. The DnCNN model also has the advantage of
introducing Batch Normalization (BN) [31], in the process
of deepening with the depth of the network, its distribution
will gradually shift or change, which will cause the gradient
of the underlying neural network to disappear during back
propagation, while BN will normalize the network neuron
input values to a standard normal distribution with a mean
of 0 and a variance of 1 to avoid gradient disappearance,
accelerate the learning convergence efficiency, and improve
the training speed.
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E. GUIDED FILTER
The key point in the guided filter is the local linear model.
When a point on a function is linearly related to the adjacent
partial points, then multiple consecutive local linear models
can be used to form a complex function model, so that when
the value of a point on the model is needed, only the mean
value of the linear model at that point needs to be calculated.

Therefore, the guided filter starts from a linear model,
where the guided image has a linear connection with the input
image. And the input image is guided with the guided image
as the reference information image. Finally, the filtered image
is output by the mean filtering calculation model. When
filtering the image, the current pixel is set to have a linear
relationship with the neighboring pixels, and the guidance
formula is:

qi = akIi + bk , ∀i ∈ ωk (9)

In Eq. 9, qi is the guided image Ii centered on the pixel
i, the linear transform filtered image of the window ωk with
radius k , ak and bk are the coefficients to be determined.

The guided filter has the edge-preserving property of bilat-
eral filtering [32] and the avoidance of gradient inversion [33]
artifacts, which can effectively enhance the image details,
so it is introduced into the texture detail stimulation of
sub-bands under the NSCT domain in this paper.

III. PROPOSED METHOD
A. FRAMEWORK PROCESS
The framework of this paper is divided into the following
4 parts, and its flow chart is shown Figure 5.

Step1. Mixed noise preprocessing. Firstly, the image pixel
points are discriminated by IMFLED, and the pixel points
are divided into signal points and noise points, which are
removed iteratively after detection by local extreme noise.
Then, the images with only Gaussian noise are removed by
DnCNN and FFDNet respectively. After preprocessing, the
low-noise images DnCNN Image and FFDNet Image are
obtained for fusion reconstruction.

Step2. NSCT decomposition transforms the input image.
Firstly, the DnCNN Image is decomposed directly to
obtain the corresponding low-frequency sub-bands Low-
pass Subband-A and high-frequency sub-bands Highpass
Subband-A, while the noise-reduced images of DnCNN
and FFDNet, respectively, are used as the inputs of the
two channels of Dual-PCNN for fusion pre-processing to
obtain cleaner images Pretreatment Image, and then the fused
images are decomposed to obtain the corresponding low-
high-frequency sub-bands Lowpass Subband-B, Highpass
Subband-B.

Step3. The low and high-frequency sub-bands are fil-
tered by the guided filter for detail stimulation. The
GF-Lowpass Subband-A is obtained by filtering the Lowpass
Subband-A by guiding its own image, and for DnCNN high-
frequency sub-bands, the DnCNN noise-reduced guided fil-
tered detail layer GF-DnCNN Image-Detail layer is obtained
first, which is enhanced by beta parameter and then fused

to the high-frequency sub-bands to obtain the DnCNN high-
frequency sub-bands Enhance-Highpass Subband-A with
enhanced edge contours and detail information. The same
enhancement is applied to the fused image sub-bands to
obtain sub-bands with higher energy coefficients.

Step4. NSCT reconstructed images. Firstly, the two
enhanced low-frequency sub-bandsGF-Lowpass Subband-A,
GF-Lowpass Subband-B are imported into the two channels
of Dual-PCNN to obtain the low-frequency sub-bands Fuse-
Lowpass Subband with richer texture details after fusion, and
then the high-frequency sub-bands Fuse-Highpass Subband
are fused in the same way to obtain the high-frequency
sub-bands with clearer contour structure and richer energy
information. Finally, the sub-bands are reconstructed by
NSCT to obtain the final image.

B. IMAGE PREPROCESSING
1) IMPULSE NOISE PREPROCESSING
In this article, a mixture of impulse noise and Gaussian noise
is chosen to simulate the complex situation of image noise
reduction and reconstruction. In image noise reduction, the
purpose of mixing multiple noise types is to simulate the sit-
uation that multiple noise types may exist in the actual image.
Impulse noise and Gaussian noise are the most common
types of noise in the real world and also in remote sensing
images, so impulse noise and Gaussian noise are chosen to
be mixed for simulation. And usually image denoising algo-
rithms usually choose Gaussian noise for simulation, because
it is closer to the unknown real noise. In summary, this paper
chooses a mixture of impulse noise and Gaussian noise for
the algorithm study. After the experimental validation, it is
found that IMFLED combined with DnCNN and FFDNet
can obtain excellent denoising results. In the low-noise case,
DnCNN can achieve better performance due to its excellent
modeling ability, and in the high-noise case, FFDNet has a
larger perceptual field and ismore capable of removing strong
noise. In this case, the relevant parameters in IMFLED are set
according to the original literature.

Compared to the classic impulse noise removal method,
IMFLED is divided into noise detection and noise filtering,
first by setting a noise detection window, and then operating
with a pixel point as the center, if the maximum or minimum
value in the window for this pixel point itself, it is a noise
point, and vice versa is a signal point, noise detection will
finally generate a binary image that represents the image
noise. Noise filtering is the transformation of noise points
in the window into signal points by multiple iterations. The
connection domain property of PCNN will make the other
neurons in its domainwith approximate input excitationwhen
the neuron is ignited to activate the output pulse in the next
iteration, that is, the point is an impulse noise point, so PCNN
has an excellent ability for impulse noise removal. It has
been introduced into the field of image noise reduction. Also
to prove the sensitive property of PCNN for noise, it is
therefore selected as one of the comparison methods for
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FIGURE 5. The architecture of the proposed model.

FIGURE 6. Denoising results of the Woman and Man image from Set12 with the pulse noise density 0.01.

impulse noise removal methods. PCNN is a neural network
that can extract image features without training, and the set-
ting of its network parameters is extremely important. In this

article, we set the connection neuron weights

0.5 1 0.5
1 0 1
0.5 1 0.5

,

connection strength 0.09, decay time constant 0.1, dynamic
threshold 323. Finally, in order to verify the pulse removal
capability of IMFLED, this paper will be compared with the
classical adaptive median filtering and PCNN algorithms to
verify the quantitative evaluation by the Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity ratio (SSIM) [34].
Adaptive median filter (AMF), which introduces adaptivity
based on the conventional median filter, is a very classical
nonlinear filter for removing impulse noise, so it is selected
as one of the comparison methods for impulse noise removal
methods. The experimental impulse noise densities are 0.001,
0.005, 0.01, and 0.05, where the impulse noise density indi-
cates the proportion of noisy pixels, that is, the proportion
of pixels affected by noise in the image. An impulse noise

density of 0.001 means that only 1 out of 1000 pixels is
affected by impulse noise, 0.005means that 5 out of 1000 pix-
els are affected by impulse noise, 0.01 means that 10 out of
1000 pixels are affected by impulse noise, and 0.05 means
that 50 out of 1000 pixels are affected by impulse noise.

From the bolded black font data in Table 1 and Table 2,
we can find that IMFLED has the most stable and best
performance for different degrees of impulse noise removal,
and its PSNR value and SSIM value are the highest. It is
also found that PCNN has a good effect on the removal of
impulse noise, which indicates to a certain extent that PCNN
has a certain effect on the recognition and extraction of image
features. Overall, IMFLED has a greater enhancement effect
compared to PCNN and AMF for impulse noise preprocess-
ing. In Figure 6, the image in the red box is the enlarged image
of the green box image, which is convenient for comparative
observation and can verify the conclusions obtained in the
table. In the Woman image, it can be found that the detailed
structure in Figure 6(e) is most similar to Figure 6(a), and
some noise remains in Figure 6 (c) and Figure 6(d). In the
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TABLE 1. The woman experimental results: the evaluation index of PSNR (dB)/SSIM.

TABLE 2. The man experimental results: the evaluation index of PSNR (dB)/SSIM.

Man image, it can be found that Figure 6(h) has the worst
effect, and it cannot effectively judge the pixel points close
to or extreme values of the original image, resulting in large
black spots remaining in the image, while Figure 6(j) can
effectively distinguish the noise points from the signal points
by multiple iterations, and after detecting the noise, it can
remove the noise while retaining the complete texture details
to avoid blurring the image.

2) GAUSSIAN NOISE PREPROCESSING
Gaussian noise removal is mainly divided into several types
of spatial domain filtering [35], transform domain filter-
ing [36], denoising based on Partial Differential Equation
(PDE) [37], denoising based on non-local self-similarity [38],
and denoising based on deep learning [39]. They have their
own characteristics, such as PDE can retain the image edge
structure information better, but the step effect will occur, and
the diffusion equation method will show an overfitting phe-
nomenon, while the denoising effect decreases significantly
with the increase of noise level. Non-local self-similarity-
based denoising such as the BM3D algorithm, which is one
of the current standards of denoising algorithms, can effec-
tively preserve similar texture information of images globally.
At present, deep learning performs very well in the field of
image denoising, such as DnCNN and FFDNet optimized on
this basis can achieve more excellent results compared with
PDE and BM3D, which are fully verified by experiments in
the original literature of them.

There are some differences between them. DnCNN bene-
fits from its excellent modeling ability and has better noise
reduction ability in the low-noise case, but as the noise
intensity increases, the noise reduction ability of FFDNet
performs more outstandingly because its perceptual field is
larger compared with other CNNs and its ability to acquire
image features is stronger. The network structures and related
parameters of DnCNN and FFDNet are set according to the
original literature.

Therefore, they are used for Gaussian noise reduction
of the image after IMFLED processing respectively in this

article, and then fusion preprocessing is performed to obtain
preprocessed images with better image clarity, texture details,
and structural contours for reconstruction.

C. SIMPLIFIED PARAMETRIC ADAPTIVE DUAL-CHANNEL
PCNN MODEL
PCNN and DC-PCNN require the artificial empirical setting
of multiple parameter values, which affects the fusion effect
to some extent, while simplified adaptive Dual-PCNN is a
direct matrix operation on thematrix of pixel points in the two
images in the dual channel, which can be adaptively obtained
for the relevant part of parameters.

The link input of DC-PCNN in Eq. 3 and Eq. 4 are deter-
mined by the synaptic link power coefficient matrix Wpq
and the link amplification coefficient VL . Firstly, the pulse
output matrix Y is set as the matrix zeros, and then the
link input matrix is set as the matrix ones if the sum of the
elements Y in the iterative loop is less than or equal to 0,
and vice versa set as the matrix zeros. The adaptive link
intensity coefficient β ′

A is obtained by convolving the image
pixel matrix of channel A with the Laplace operator in two
dimensions, and the adaptive link intensity coefficient β ′

B is
obtained for the same reason. At the same time, the decay
term of the internal activity term Uij of the neuron in Eq. 5
is simplified, and the empirical setting of the internal activity
term decay coefficient is avoided to speed up the operation
efficiency. The modifications of Eq. 3, Eq. 4, and Eq. 5 are as
follows:

The Laplace operator template is


−1 −1 −1

−1 8 −1

−1 −1 −1

.

L =

{
ones, if

∑ ∑
Ypq ≤ 0

zeros, otherwise
(10)

UA (n) = FA ∗
(
con + β ′

AL
)

(11)

UB (n) = FB ∗
(
con + β ′

BL
)

(12)

U (n) = max{FA (n) ,FB (n)} (13)
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FIGURE 7. Decomposing results of the Castle image from BSD68.

Eq. 10, L is the link input, Eq. 11 and Eq. 12 are the matrix
with all 1. After obtaining the pulse ignition matrix U, the
ignition pixel points are determined by comparing UA with
UB, and then assembled into the new pixel matrix to obtain
the final fused image Fuse. The Eq. 14 is as follows:

Fuseij=

 SAij, ifUAij = Uij

SBij, ifUBij = Uij

(14)

D. LOW AND HIGH FREQUENCY SUB-BAND
FUSION RULES
1) IMAGE DECOMPOSITION
In this experiment, the image decomposition is performed
by NSCT pair with a decomposition level of [0,1].Firstly,
the original image is divided into 1 low-frequency sub-band
and 1 high-frequency sub-band, and this high-frequency sub-
band is decomposed in one direction. Then the low-frequency
sub-band is decomposed, and the high-frequency sub-band
is decomposed in two directions for the 2nd time. Finally,
a total of 1 low-frequency sub-band and 3 high-frequency
sub-bands are generated. The pyramid filter is chosen as
maxflat and the direction filter is chosen as dmaxflat7, with
the decomposition level of D= [0,1]. The image with impulse
noise of 0.001 and Gaussian noise level of 10 is noise reduced
by using IMFLED andDnCNN through the framework of this
paper, and then decomposed by NSCT as shown in Figure 7.

For easy observation, Figure 7(d), (e), and (f) are shown
enhanced, as shown in Figure 8:
Figure 7(c) shows that the low-frequency sub-band mainly

retains most of the image information, Figure 7(d) indi-
cates all the high-frequency contour structure informa-
tion in one direction for the high-frequency sub-band, and
Figure 7(e) and (f) indicate the high-frequency information
in two directions after decomposing the high-frequency sub-
band from the second time. It can be found that NSCT
can effectively separate the low-high frequency image infor-
mation, and at the same time, the high-frequency image
possesses the complete contour edge structure within, which
provides effective help for the subsequent image edge struc-
ture enhancement in this article.

2) SUB-BANDS ENHANCEMENT
This experiment is to enhance the image edge texture details
by guided filtering. Since the guide filter requires the guide
image and the input image to be set as the same image if
the edge-preserving effect is to exist, and also the processing
window radius and the adjustment parameter have a relatively
large impact on the filtering effect, the optimal parameters
should be selected according to the requirements [40]. After
several experiments, the radius was set to 4 and the adjust-
ment parameter to 0.2 based on the combined effect.

The output of the guided filter is the linearly transformed
image of the input imagewith the reference information of the
guided image, which has an excellent smoothing effect and
edge preservation ability. The base layer image q is obtained
by Eq. 9, and then the detail layer image d is obtained by
operation with the input image p, as shown in Eq. 15:

d = p − q (15)

Figure 9(a) is the base layer image after smoothing by
guided filtering, which effectively preserves the texture infor-
mation of the image, so Figure 7(c) will be guided filtered
to enhance the detailed texture representation. The edge
contour information has higher structural similarity between
Figure 7(d) and Figure 9(b), and Figure 9(b) retains more
complete texture details, so this paper will enhance and
improve the high-frequency contour and texture information
in Figure 7(d) by Figure 9(b).

E = q + βdd (16)

Eq. 16, E denotes the enhanced image and βd denotes the
enhancement factor. Figure 9(d) is the display of Figure 9(b)
after enhancement by coefficients, and it can be found that
for the image edge contour information, structural infor-
mation is highlighted to a greater extent, but there is a
halo phenomenon [41], produced by the bootstrap filter-
ing. Figure 9(c) is the display of the original image after
enhancement, its image brightness is enhanced and energy
information is abundant.

Figure 10(a) is all the pixel values of Figure 7(d) in
156 columns, while Figure 10(b) is all the pixel values
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FIGURE 8. Enhancing high frequency sub-bands.

FIGURE 9. Filtering and Enhancing results of the Castle image from BSD68.

of Figure 9(d) in 156 columns are shown, and it can be
found that there are many similarities in the extreme part
of Figure 10(a) and 10(b), while the peak fluctuation of
Figure 10(b) is larger, which indicates that it is more sensitive
to the change of pixel gradient, reflecting the characteristics
of guided filtering, and the information retained in the detail
layer is more perfect, which can effectively enhance the
high-frequency sub-bands. Figure 10(c) is the enhanced high-
frequency sub-band after the NSCT decomposition.

3) SUB-BANDS FUSION RULES
The low-frequency sub-band contains most of the image
energy and some of the texture details, while the image energy
can determine the spatial relationship of the fused image and
the texture details can determine the clarity of the image. The
high-frequency sub-band contains the high-frequency con-
tour information of the image and reflects the edge structure
of the image. In this paper, the image is reconstructed by
enhancing the fusion sub-bands in the following 4 steps:

Step1. The image after DnCNN preprocessing is set as IA,
and the image after DnCNN and FFDNet fusion is set as

IB. After the image IA is decomposed by NSCT, the low-
frequency sub-band La1 is generated, and the high-frequency
sub-bands Ha2, Ha3, Ha4 are generated. After the image IB
is decomposed by NSCT, the low-frequency sub-band Lb1 is
generated, and the high-frequency sub-bands are Hb2, Hb3,
Hb4 are generated.

Step2. The low-frequency sub-band L′

a1 is obtained by
guided filtering as the guiding and input image La1, and
the detail layer image is obtained by guided filtering as the
guiding and input image IA, and then fused with Ha2 after
enhancement by the method in section III-D2. After that,
we can obtain the enhanced high-frequency sub-band H′

a2.
Similarly, the enhanced low-frequency sub-band L′

b1 can be
obtained as Lb1, and the enhanced high-frequency sub-band
H′

b2 is obtained by IB, Hb2.
Step3. The final low-frequency sub-band Ls1 is obtained

by fusing L′

a1 with L′

b1 the simplified adaptive Dual-PCNN
fusion model, the high-frequency sub-band Hs2 is obtained
by fusing H′

a2 with H′

b2, the high-frequency sub-band Hs3
is obtained by fusing Ha3 with Hb3, the high-frequency sub-
band Hs4 is obtained by fusing Ha4 with Hb4.
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FIGURE 10. Grayscale values of the Castle image column 156 from BSD68.

Step4. Ls1, Hs2, Hs3 and Hs4 are reconstructed by NSCT
with inverse conversion to obtain the reconstructed fused
images.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
To verify the performance effectiveness of the framework
method in this article, six sets of grayscale images from
BSD68 were selected for the experiments, as well as a
one-view single-band image of the Landsat 8 satellite in
Guilin City, Guangxi Province, China. Grayscale images are
generalized as source images for simulation experiments.
Grayscale image processing can be involved in fields such as
computer vision and medical image processing, which facili-
tates universal communication betweenmultiple fields.When
the simulation experiments are completed using grayscale
images, they can be applied to other fields, such as remote
sensing image processing in this paper. Meanwhile, the infor-
mation on grayscale images is more focused on image bright-
ness, contrast, and texture, which is more suitable for the
verification of algorithm models and is less computationally
intensive and more efficient. Therefore, after completing the
simulation experiments using grayscale images, the method
model is applied to the experiments of optical remote sensing
images.

Remote sensing images are wide-area, comprehensive, and
multifaceted, and can use multiple waveband data in a wide
range to obtain feature information from different angles
and dimensions, including the spatial distribution, types, and
characteristics of features. Meanwhile, optical remote sens-
ing images have strong research value from the perspective
of image processing with complex texture information and
spatial energy information. Meanwhile, the reason for choos-
ing impulse noise and Gaussian noise for hybrid modeling
is that these two types of noise are common noise types
in remote sensing images, which can have a large impact
on the visual quality and quantitative analysis of remote
sensing images, as well as cause local discontinuities in the
images and interfere with the segmentation and classification
of images. Therefore, removing the noise can make the image
clearer and enable a series of operations such as feature
identification, feature extraction, and feature classification to
be performed accurately.

The quantitative indexes were evaluated by the Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM),
and Edge Preservation Index (EPI) [42], which reflect the
difference between the reconstructed image and the ideal
reference image, and the Average Gradient (AG) [43], Spatial
Frequency (SF) [44], and information Entropy (EN) [45],
which measure the good or bad image quality based on the
statistical feature values of the reconstructed image itself,
where the larger the value of AG, SF, EN, and PSNR the better
the effect, and the closer the value of SSIM and EPI to 1 the
better the effect. The experiments in this study were run in
Matlab (R2020a) environment with 13th Gen Intel(R) Core
(TM) i9-13900HX 2.20 GHz and 16 GB RAM.

A. GRAYSCALE IMAGE EXPERIMENT
The experimental data set is 6 grayscale images with a pixel
size of 321×481 in BSDS [46], impulse noisewith the density
of 0.001 and Gaussian noise with the noise level of 10, 15,
and 20 are added to each image respectively, and a total of
18 noisy images have experimented.

Gaussian noise levels of 10, 15, and 20 are the standard
deviations of Gaussian noise. The standard deviation indi-
cates the degree of dispersion of a random variable or data
set, and its larger value indicates a wider scattering of the data
and a greater intensity of the noise. The Gaussian noise used
in this study is incremented by 5 units on a scale of 0-255, and
then the different levels of Gaussian noise are normalized to
between 0 and 1 to facilitate computation and improve the
performance of the algorithm.

At the same time, the reason for choosing the 0.001 value
of pulse noise density for the experiment is that from Table 1
and Table 2, it can be found that the effect of IMFLED is
the best at different pulse noise densities, and the purpose
of choosing 0.001 pulse noise density for the experiment
in this paper is to ensure that the framework proposed in
this paper is useful for mixed noise removal while mini-
mizing the interference with the original image information.
Although IMFLED can effectively identify noise points, its
principle of replacing noise points based on neighboring
pixels still interferes with the original image information.
Meanwhile, under normal circumstances, the impulse noise
density of remote sensing images will not be at a very

VOLUME 11, 2023 78093



P. Hu et al.: Remote Sensing Image Reconstruction Method Based on Parameter Adaptive Dual-PCNN

FIGURE 11. The 6 widely used testing images from BSD68.

high density, so a noise density of 0.001 is chosen for the
experiment.

The method in this article is compared with BM3D,
DnCNN, FFDNet, BM3D-DnCNN-Dual-PCNN, BM3D-
FFDNet-Dual-PCNN, and DnCNN-FFDNet-Dual-PCNN for
experiments to evaluate qualitative and quantitative aspects.

Figure 12 shows the image fusion reconstruction results of
the above seven algorithmmodels, from top to bottom row 1 is
six mixed noise images with impulse noise density 0.001 and
Gaussian noise level 20, from row 2 to row 8 are BM3D,
DnCNN, FFDNet, BM3D-DnCNN-Dual-PCNN, BM3D-
FFDNet-Dual-PCNN,DnCNN-FFDNet-Dual-PCNN and the
noise reduction fusion reconstructed images of the method
in this paper. BM3D-DnCNN-Dual-PCNN, BM3D-FFDNet-
Dual-PCNN, and DnCNN-FFDNet-Dual-PCNN are to retain
the denoising processing part in the framework of this paper,
and then directly fuse the denoised images from different
denoising methods by the Dual-PCNN method proposed in
this paper for multi-source image fusion, but which does It
does not include the sub-band fusion enhancement part in the
NSCT domain.

From the images, it can be found that the worst BM3D
effect can be clearly observed in the red box region, where
there is blurring of the image and loss of image texture details.
This is because BM3D is an algorithm based on non-local
similarity theory, which possesses good results for images
with high structural repetition but performs poorly in the case
of complex textures.

The images in the third and fourth rows are the recon-
structed images with noise reduction from the DnCNN and
FFDNet network models, respectively. In the red area of
Oldman, it is found that FFDNet retains more texture detail
in the middle of the forehead and wrinkles, and has higher
contrast, making the portrait more three-dimensional; in the
red area of Antelope, it is found that the overall brightness of
FFDNet is lower, closer to the original image, and the overall
visual effect is better.

The fifth and sixth rows show the images after BM3D
is fused with DnCNN and FFDNet through Dual-PCNN,
respectively, because the image quality acquired by BM3D
is poor, so although good results are obtained in some areas
with high structural similarity, such as the window area of
the Building image, the overall reconstruction effect of the

image is pulled down, such as in the Mushroom image In
the red box, the longitudinal fold texture information of the
mushroom surface is severely lost.

In the seventh row, DnCNN and FFDNet are fused
with Dual-PCNN to reconstruct the images, and the red
box areas from Oldman, Mushroom, Pottery, and Ante-
lope images, especially the horizontal and vertical striped
areas, have clearer contours and are more consistent with
the visual observation. Our conclusion can be verified from
Figure 13which shows that Dual-PCNN is effective for image
reconstruction.

The deep learning-based network model and the associated
fusion model can extract image features well by modeling
and expanding the perceptual field [47], which can effectively
preserve the detailed textures of the image. Therefore, from
the experimental results, the DnCNN-FFDNet-Dual-PCNN
fused image quality by Dual-PCNN has some improvement
compared with the original DnCNN and FFDNet images,
which indicates the effectiveness of Dual-PCNN in fusing
reconstructed images. Also separating the sub-band fusion
module in the NSCT domain illustrates the excellent perfor-
mance of the sub-band fusion rules and bootstrap filtering
proposed in this paper.

The proposed method in this paper can be seen in the
red-boxed area to retain the details well, and at the same time
can show the contour information of the image well such as
the stripes in the red box of Pottery in Figure 12(e) is more
prominent, thanks to the enhancement of the high-frequency
sub-bands. The texture information on the forehead surface
of the portrait in the red frame area of Oldman is more fully
preserved compared with methods such as DnCNN-FFDNet-
Dual-PCNN, and the contrast between the rocks in the red
frame area of Antelope is stronger, and the difference between
them can be clearly observed, and the rock reconstruction
effect is more three-dimensional. In addition, after the image
fusion by Dual-PCNN, the energy information is well pre-
served and the visual effect is better.

In Figure 13, the blackened data indicate the optimal data.
The method in this paper is always optimal in PSNR and EPI,
and PSNR is only lower than FFDNet in Pottery and is also
optimal or suboptimal in SSIM. The most obvious reason for
the difference between EPI and other algorithms’ EPI values
is that this paper is based on NSCT and optimizes its fusion
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FIGURE 12. Grayscale image rebuilding results by different methods on Mixed noise.

rules for low-frequency sub-bands and high-frequency sub-
bands, which can effectively preserve the edge and detail

information of the image. At the same time, this paper also
introduces guided filtering to preserve the image edge detail
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FIGURE 13. Quantitative evaluation index for grayscale image reconstruction.

information and prevent it from being lost in the decompo-
sition process. By fusing the detail layer with the sub-bands,
the edge contour information of the image can be highlighted
more effectively. The edge contour structure has outstanding
performance.

In Figure 13, the method of this paper has also been in the
best performance in AG and SF, and the reconstructed image
retains rich image energy information and high-frequency
information, while it is also in an optimal or sub-optimal
situation in EN, which comprehensively can strongly indicate
that the method of this paper achieves better results in image
fusion quality.

Overall, through six quantitative evaluation indexes and
visual subjective experience [48], the method in this paper
performs image noise reduction processing under the interfer-
ence of multiple complex noise situations, and then fuses and
reconstructs the multi-source images to obtain outstanding
results, which illustrates the effectiveness of the method in
this paper.

B. REMOTE SENSING IMAGE RECONSTRUCTION
EXPERIMENT
A Landsat 8 satellite single-band orthophoto of a view
in Guilin City, Guangxi Province, China, in September
2018was cropped to a pixel size of 784×760 for experiments.
And impulse noise with a density of 0.001 andGaussian noise
with noise levels of 10, 15, 20, 25, 40, and 50 were added to

the images, respectively, for a total of four remote sensing
images.

Figure 14 shows the fused reconstructed remote sens-
ing images of the above seven algorithm models, and the
same from top to bottom part 1 shows six mixed noise
images with impulse noise density of 0.001 and Gaussian
noise levels of 10, 15, 20, 25, 40, 50, and part 2 to part 8
shows the reconstructed remote sensing images of BM3D,
DnCNN, FFDNet, BM3D-DnCNN- Dual-PCNN, BM3D-
FFDNet-Dual-PCNN,DnCNN-FFDNet-Dual-PCNN and the
reconstructed remote sensing images of the method in this
paper, respectively.

From the red box in the image, we can see that the method
performs well for complex details, especially in the river
area, and can effectively preserve the texture after image
reconstruction, and the detailed contour reconstruction effect
is better, and the comparison with other methods shows that
the method has higher clarity, more complete contour struc-
ture, and higher sensitivity to the texture detail information
in the image. From the green box of the image, it can be
seen that the overall brightness of the image reconstructed by
this method is higher, the high-frequency energy information
is richly retained, and the parallax contrast effect is better.
For example, in the green box, there is a big difference in
height between the mountain top and the mountain pass in the
mountain range area, and there is a big difference between
the pixels of the image, which can be intuitively felt by the
algorithm of this paper, and the visual effect is the best, which
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FIGURE 14. Remote sensing image rebuilding results by different
methods on Mixed noise.

provides effective help for visual interpretation of remote
sensing images.

Table 3 shows that the method in this paper has the best
results among the compared algorithms in PSNR, SSIM, and

FIGURE 14. (Continued.) Remote sensing image rebuilding results by
different methods on Mixed noise.

EPI, and a few cases are sub-optimal values, which once again
verifies the excellent performance of themethod in improving
image sharpness, preserving texture details, and highlight-
ing edge contour structures, thanks to the enhancement of
image details by guided filtering and the effective separation
enhancement of high-frequency sub-bands by NSCT, and at
the same time can be compared with This is attributed to
the enhanced image detail by guided filtering and the effec-
tive separation enhancement of high-frequency sub-bands by
NSCT, and can be verified with the reconstructed remote
sensing images of each method in Figure 14. One of the
highlights of this method is that compared with DnCNN
and FFDNet, which have very good performance in the field
of image noise reduction, there is a breakthrough in both
PSNR and SSIM, especially in Figure 13, we can see a
very obvious improvement in PSNR, which indicates that the
reconstruction method in this article is outstanding in image
noise reduction.

The AG, SF, and EN of this paper are the best among
all algorithms in Table 4. The AG and SF indicate that the
remote sensing image is clearer, and the EN indicates that
the remote sensing image itself has high information content.
Therefore, it shows that the fusion reconstruction of remote
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TABLE 3. Experimental results: the evaluation index of PSNR(dB), SSIM, EPI with pulse noise density 0.001 and gaussian noise level.

TABLE 4. Experimental results: the evaluation index of AG, SF, EN with pulse noise density 0.001 and gaussian noise.

sensing images by Dual-PCNN in the NSCT domain is more
adequate in retaining spatial information, richer in energy
information, and better in intuitive visual perception, which
fully indicates the excellent quality of remote sensing image
fusion.

As the noise level increases, the effect of this algorithm
is very good at different levels in the normal noise range, but
after the Gaussian noise reaches 50, the effect decreases in the
extreme noise case. The reason for this is that the denoising
ability of DnCNN and FFDNet for high-density Gaussian
noise still needs to be improved, but the reconstruction ability
of this algorithm for image details is still trustworthy in the
non-extreme noise case.

In conclusion, after passing the grayscale image recon-
struction experiment and remote sensing image fusion

reconstruction experiment, a total of six quantitative eval-
uation indexes of two different types and subjective visual
observation are integrated, and the reconstructed images are
characterized by clear texture details, high-frequency edge
contours, and rich spatial energy information, indicating that
the method in this paper achieves excellent performance in
noise reduction and fusion reconstruction of remote sens-
ing images under complex noise conditions, with better
Robustness [49], universality and excellence.

C. OTHER EXPERIMENT
In order to fully verify the generalizability of the method in
different datasets of this paper, four images with pixel sizes
of 256×256 and 512×512 in the Set12 dataset are selected
for experiments. Also, add impulse noise with a density of

78098 VOLUME 11, 2023



P. Hu et al.: Remote Sensing Image Reconstruction Method Based on Parameter Adaptive Dual-PCNN

TABLE 5. Experimental results: the evaluation index of PSNR(dB), SSIM, EPI, AG, SF, EN with pulse noise density 0.001 and gaussian noise level 20.

0.001 and Gaussian noise with a noise level of 20 to each
image respectively for the experiments.

Figure 15 shows the reconstruction effects of the above
seven algorithm models in four images, the same image
from left to right in the first row is the original image,
noisy image, BM3D, DnCNN, FFDNet reconstructed image,
and the second row from left to right is divided into
BM3D-DnCNN-Dual-PCNN, BM3D-FFDNet-Dual-PCNN,
DnCNN- FFDNet-Dual-PCNN and the reconstruction effect
of the method in this paper. The red frame is the zoomed
image of the blue frame, and we can clearly observe that
the texture information of this method is richer than other
algorithms, and it is also more consistent with the human eye
visual observation.

From Table 5, it is found that the six indexes of PSNR,
SSIM, EPI, AG, SF, and EN are optimal or suboptimal solu-
tions on all four images, which can illustrate the effectiveness
of this paper’s algorithm. At the same time, it can be observed
that on the House image with a simple image structure, some
of the index results are not optimal, but after the image
structure becomes complex, instead, the performance of this
paper’s algorithm becomes more excellent, and on the Cou-
ple image with the most complex structure, all indexes of
this paper’s algorithm are optimal, which can show that this
paper’s algorithm has very good results for the extraction and
retention of complex texture information features. In sum-
mary, this algorithm has certain generalization abilities in
different fields and different data sets.

D. ABLATION STUDY
To fully consider the importance of each module in the
method, an Ablation Study is performed. the following
cases are mainly considered: (a) missing IMFLED Mod-
ule, (b) missing DnCNN and FFDNet Module, (c) miss-
ing GUIDED Module, (d) missing Dual-PCNN Module,
(e) Missing GUIDED and Dual-PCNN Module. the experi-
mental results are shown in Figure 16 and each evaluation
metric is shown in Table 6.

In the absence of the Impulse Noise and Gaussian Noise
removal modules, the impact on the image quality is very

significant, and therefore the metrics are less informative.
In the absence of GUIDEDMedule and Dual-PCNNMedule,
a significant gap can be found in the metrics other than PSNR
and EN values. The method in this paper enhances the image
texture details and capability information while maintaining
efficient noise reduction.

Besides, in this paper, different SOTA image fusion algo-
rithms are chosen for the ablation study, the noise preprocess-
ing module is kept and only the fusion module is replaced to
verify the effectiveness of the image fusion module in this
paper. In the literature [50], a new multimodal medical image
fusion method in the non-subsampled shearlet transform
(NSST) domain is proposed for the high-frequency subband
using a parameter-adaptive pulse-coupled neural network
(PA-PCNN) model. In the literature [51], a novel multimodal
medical image fusion algorithm is proposed, incorporating
boundary measurement pulse-coupled neural network and
energy properties. The same metrics mentioned above were
used for validation and the results are shown in Table 7.
From the Table 7, all the metrics are found to be optimal,

which fully illustrates the excellent performance of the image
fusion module in the algorithm of this paper. In summary,
the experiments in this chapter show to a certain extent that
the modules in the algorithm play an important role in the
operation of the overall algorithm.

V. DISCUSSIONS
A. DEAL WITH IMPULSE AND GAUSSIAN MIXED NOISE
For impulsive noise, CNN-based models cannot be effec-
tive, but excellent for Gaussian noise, while IMFLED can
efficiently identify impulsive noise and has better capability
compared to other algorithms for removing impulsive noise.
Therefore, IMFLED is selected to remove composite noise
jointly with DnCNN and FFDNet to obtain excellent results.

The reconstructed image in this article has better perfor-
mance in PSNR, SSIM, EPI metrics, higher image sharpness,
fuller texture information, and more complete edge contour
structure compared with the current state-of-the-art two types
of noise reduction algorithms such as BM3D, DnCNN, and
FFDNet. Therefore, the method in this article can also be
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FIGURE 15. Set12 dataset image rebuilding results by different methods on Mixed noise.

applied as an excellent image noise reduction method in other
multi-type hybrid noise reduction fields in the future.

The limitation is that it is difficult to apply directly by
DnCNN and FFDNet for unknown levels of noise in the
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TABLE 6. Experimental results: the evaluation index of PSNR(dB), SSIM, EPI, AG, SF, EN with the Couple images in the Set12 dataset.

FIGURE 16. The results of ablation experiments.

TABLE 7. Experimental results: the evaluation index of PSNR (dB), SSIM, EPI with pulse noise density 0.001 and gaussian noise level 20 (Comparison with
SOTA method).

real world, both of which need to know the noise level to
achieve the best results. For example, FFDNet needs to pro-
vide the exact noise level to fit the model when denoising.
Therefore, the introduction of noise level estimation methods
or noise blind denoising by generating adversarial networks
is considered in the subsequent studies. While DnCNN and
FFDNet, as two deep learning denoisingmodels, have limited
generalization ability with their effectiveness on images in the
real world yet to be verified.

B. IMAGE FUSION AND RECONSTRUCTION
Both NSCT and PCNN can be used for image fusion alone
or jointly for image fusion to achieve better results. In this
article, the method provides basic information for image
fusion by using the guided filter to stimulate low-frequency

sub-bands in the NSCT domain and enrich the sub-band
texture information. After analyzing the guided filtering of
the detail layer image, it is found that it has high structural
similarity with the unidirectional high-frequency sub-bands
of NSCT, and the detail layer is richer in high-frequency
information. Therefore, after enhancing the detail layer image
by magnification coefficient, it is fused with the high- fre-
quency sub-bands with high structural similarity to enrich the
high-frequency information and make the contour structure
more complete.

The NSCT reconstructed images using simplified paramet-
ric adaptive Dual-PCNN to fuse each information-enhanced
sub-band showed excellent performance in terms of AG, SF,
and EN indexes, indicating high image information content
and rich spatial energy retention. Therefore, the sub-band
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fusion rules in this research method, and the simplified para-
metric adaptive Dual-PCNN model have excellent image
fusion capability.

The limitation lies in how to ensure the continuous corre-
lation between sub-bands in multi-scale decomposition, and
the spectral characteristics of optical remote sensing images
should be paid attention to in the subsequent research. Mean-
while, remote sensing images are large-scale images, and
the algorithm of this paper needs to improve its operational
efficiency when reproducing them in the real world.

VI. CONCLUSION
To address the problem that the existing methods cannot
effectively preserve the image energy texture details and
highlight the edge contour structure while reducing noise in
the case of optical remote sensing images with composite
noise, a method is proposed to enhance the multi-source
image frequency sub-bands with noise reduction by DnCNN
and FFDNet in NSCT domain using the guided filter, and
then reconstruct them by fusion with simplified parametric
adaptive Dual-PCNN. In this article, we combine the advan-
tages of IMFLED and CNN for noise identification and the
advantages of NSCT domain and PCNN for image fusion
and incorporate the improved guided filter for excellent
image detail stimulation. After the experimental validation
with grayscale images and optical remote sensing images,
excellent results are achieved in the evaluation of different
types of quantitative indexes, indicating the superiority of this
research method in image noise reduction and reconstruction.

The limitations of this article are the inadequate adaptive
selection of parameters and sub-band enhancement coef-
ficients for the guided filter, the need to reduce the halo
artifacts caused by mutual interference of edge pixels, and the
combination of multi-scale multi-feature image information
fusion sub-band to improve image quality are the future target
research directions.In our future research, we will focus on
the reconstruction of remote sensing image information from
different satellite sources and different resolutions, and apply
the adversarial neural network in deep learning to the recon-
struction of remote sensing image information as well as
focus on the 3D reconstruction of remote sensing images [52].
Besides, we also focus on applying the research methods
proposed in this paper to the research of noise reduction and
fusion reconstruction of multimodal medical images, visible
and infrared light images, and multi-focus images.
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