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ABSTRACT Social robots have recently gained popularity, and many human-aware navigation approaches
have emerged. This work presents a comprehensive benchmark for quantitatively assessing robot navigation
methods. As an automated quantitative approach, our Social Robot Planner Benchmark (SRPB) produces
invariable indicators of the algorithm’s performance that can assist the system designer in selecting the
best method for the specific application. Our benchmark extends state-of-the-art task performance scores
and proposes novel social metrics regarding robot motion naturalness and the perceived safety of humans
surrounding the robot. Our social metrics take human tracking reliability into account. Using the SRPB inte-
grated with the TIAGo robot, we assessed the robot’s behaviour operating with traditional and human-aware
trajectory planners in simulated and real-world environments. Our experiments tested whether state-of-
the-art human-aware trajectory planners significantly improve human-awareness indicators over traditional
approaches yet still maintain reasonable navigation performance. An open-source implementation of our
benchmark, compatible with the Robot Operating System, is provided.

INDEX TERMS Benchmark testing, human-aware robot navigation, human-robot interaction, mobile
robots, motion planning, social robotics, quantitative evaluation.

I. INTRODUCTION
Navigation is the fundamental skill of mobile robots that is
widely integrated into most complex tasks. Since the 1960s,
many approaches to robot navigation have been proposed [1].
The main objective of classical navigation algorithms is col-
lision avoidance, considering all objects as generic obstacles.
Social robot navigation, instead, relies on principles from
social sciences. Based on research from that domain, robot
systems designers try to deal with the presence of humans in
the environment considering multiple objectives to react in
a socially acceptable manner. Recently, due to the growing
popularity of social robots, many researchers focused on
creating human-aware navigation approaches [2], [3].
Since various navigation approaches are available, sys-

tem designers must choose the best algorithm for a spe-
cific robotic application. Selecting the optimal method
requires conducting comparative experiments that allow con-
fronting investigated methods. Such experiments also benefit
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developers of new human-aware navigation algorithms,
as they can reveal areas for potential improvement.

Robot navigation evaluation is difficult as demonstrat-
ing the overall advantage of one method over another is
challenging. However, different algorithms can be compared
regarding a single aspect, e.g., the undertaken path length or
the time required to reach a goal. The evaluation complexity
grows with the number of navigation objectives, as in human-
aware navigation.

Biswas et al. [4] discussed an ideal method of evaluating
social navigation. They state that qualitative methods pro-
viding a good approximation of facts are large-scale, costly,
and time-consuming. We agree that automated quantitative
methods are more appropriate for the iterative evaluation,
e.g., during the new algorithm development stage, since they
produce invariable indicators of the algorithm’s performance.

Quantitative assessment methods are useful for learning-
based approaches, where the reward of action must be
numeric. Similarly, benchmarking against other methodsmay
benefit planners that employ heuristics or optimise a single
criterion.
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FIGURE 1. The two-stage procedure of SRPB benchmark for assessing the
quality of the robot navigation. (a) Online stage: a navigating robot tracks
obstacle locations, humans (marked as bounding boxes in the figure),
F-formations and its own state, e.g., a pose and velocity. All the data is
recorded and saved to a file. (b) Offline stage: after a finished experiment
recordings are used to evaluate the quantitative results of the navigation
using multiple metrics. In (b), personal spaces are schematically depicted
with red ellipses, whereas F-formations’ O-spaces with orange ones.

Designing the appropriate benchmark requires knowl-
edge of the requirements for navigation systems from both
classical and human-aware perspectives. Navigation sys-
tems exhibiting socially acceptable robot behaviours can-
not remarkably sacrifice the general effectiveness of robot
motions in favour of social metrics maximisation.

To address the problem of the quantitative assessment of
social robot navigation, we developed SRPB – the benchmark
that evaluates both social and task performance aspects of
robot navigation (Fig. 1). Novel metrics proposed in SRPB
evaluate robot compliance with proxemics rules regarding
single humans [5] and F-formations [6], as well as other
social norms, e.g., avoidance of heading in the direction of
a human [2]. Another original aspect is that our metrics
are designed to account for the reduced tracking quality of
humans since robot perception systems are imperfect. Our
benchmark can be used to test robots operating in simu-
lated and real-world environments. Moreover, metrics were
formulated so as to allow benchmark usage with different
robot types (either with nonholonomic or holonomic drives).
We provide an open-source implementation of our bench-
mark system1 that is compatible with the Robot Operating
System (ROS) [21].
The rest of the paper is organised as follows: Sec. II

reviews state-of-the-art literature regarding robot navigation
benchmarks, whereas Sec. III briefly shows robot navigation
requirements that SRPB metrics are derived from. In the
Sec. IV, we present a mathematical formulation of met-
rics used in our benchmark. The results of our simulated
and real-world experiments with the TIAGo robot operating
with different short-term trajectory planning algorithms (tra-
ditional and human-aware) are presented and discussed in
Sec. V. Finally, we summarise our work in Sec. VI.

II. RELATED WORK
Due to a growing set of navigation algorithms available, the
importance of quantitative evaluation has increased. Several

1https://github.com/rayvburn/srpb

authors have recently proposed benchmarking frameworks
for evaluating robot motion planning algorithms [4], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18].

Heiden et al. [7] have introduced Bench-MR – a benchmark
concerning sampling-based motion planners for nonholo-
nomic, wheeled mobile robots. Bench-MR consists of two
main components: motion planning algorithms and evalu-
ation components. These latter indicate diverse navigation
scenarios in static environments along with basic perfor-
mance metrics assessing planning efficiency and path quality.

Another framework for comparing path planning algo-
rithms is PathBench proposed by Toma et al. [8]. It provides
implementations of classical and learned-based techniques
allowing evaluation using typical metrics, e.g., path length,
path deviation, success rate, and computational time. Path-
Bench is relevant for simulated and real-world applications.

Similarly, Rocha and Vivaldini [9] have proposed Plannie
framework for developing, testing, and benchmarking various
motion planning techniques in real-world 2D and 3D environ-
ments. The authors reimplemented classical, meta-heuristics,
and machine learning planning algorithms that can be scored
with commonmetrics such as a success rate, path length, time
to produce a trajectory, and time to complete the mission.

Tani et al. [10] have introduced a robotics research plat-
form focused on providing reproducibility of experiments.
Their framework integrates development and benchmarking,
enabling users to create, test, and evaluate various motion
planning algorithms in simulation and real robots. They
mainly concentrated on autonomous vehicles operating in
exemplary urban environments, validating the reproducibility
of experiments across different robots using basic spatial
metrics.

Mishkin et al. [11] proposed a method of evaluating classi-
cal and learning-based approaches to navigation. They tested
different navigation algorithms only in simulation environ-
ments using basic metrics regarding the success rate, path
length, and time required to reach the goal. Perille et al. [12]
proposed BARN method to examine mobile robot naviga-
tion systems in standardised test environments. To evaluate
the environment’s difficulty, they used Dynamic Window
Approach (DWA) [19] and Elastic Bands [20] algorithms
scored with simple metrics – traversal time and navigation
failures.

Wen et al. [13] proposed MRPB framework for evalu-
ating the general performance of mobile robot navigation.
Although their approach is suitable for simulated and real-
world tests, they did not incorporate any social metrics. Sim-
ilar features characterise Arena-Bench [14], whose authors
proposed a complete suite for benchmarking different navi-
gation algorithms but without any human awareness metrics.
MotionBenchMaker [15] is one more open-source tool for

benchmarking motion planning datasets. Their approach is
intended to ease the evaluation of motion planning algorithms
in typical manipulation tasks performed in a simulation. The
authors compared different planners using only the average
planning time metric. Another mainly performance-focused
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benchmark was proposed by Tafnakaji et al. [16], who
assessed the navigation of mobile manipulators. They eval-
uated, e.g., the robot’s accuracy of following the global path
or final pose accuracy.

On the other hand, several benchmarks focused on evaluat-
ing human awareness in robot navigation were also proposed.
For example, SocNavBench [4] is intended to regard social
aspects in robot navigation, but implements only two basic
indicators – distance to the closest pedestrian and time to col-
lision.Moreover, integrating navigation algorithms other than
those provided by the authors is considered tricky; therefore,
the approach is not yet for practical use.

Another approach, proposed by Tsoi et al. [17], is
SEAN 2.0 – a framework for evaluating robot navigation
using different metrics concerning motion efficiency and
human awareness. However, despite the variety of tools
provided and integration with the most popular robotic
framework, ROS [21], their approach is not applicable for
evaluating real-world experiments, as the metrics calculation
is integrated into the simulator.

Mavrogiannis et al. [18] have also quantified human
awareness of robot navigation in the work presenting their
Social Momentum planning framework. The authors used
known metrics – the topological complexity [22] and the path
irregularity index [23], to compare their Social Momentum
with other methods.

We state that the closest to our work is MRPB [13];
however, we extended that method concerning metrics diver-
sity, focusing on human awareness indices. Furthermore,
our benchmark allows evaluating different methods during
on-site tests (simulated or real-world); robot operation in
a preprepared environment is not required as in [10] and
[12]. Since robot navigation behaviours can be evaluated in
target environments, our benchmark allows a more accurate
algorithm selection for a specific application. Also, SRPB
aims not to reimplement state-of-the-art navigation meth-
ods (as in [7] and [9]) but relies on ROS-integrated, easily
swappable planning algorithms that are under constant devel-
opment. Furthermore, such an approach does not restrict
the usage of the SRPB with any specific class of planners.
Our benchmark allows comparing path planners [7], [8] and
trajectory planners in separation or as combined motion plan-
ning methods [9].

III. ROBOT NAVIGATION REQUIREMENTS
Benchmarking navigation algorithms can be named as check-
ing compliance with requirements. Classical navigation
mainly accounts for collision-free motions and reaching
a goal as fast as possible, whereas social navigation is more
complex. We studied relevant review works (referred to
below) and established a classification of important require-
ments in social navigation. Requirements were organised into
groups composed as follows:
1) robot task performance maximisation
1.1 avoid collisions with the environment
1.2 plan trajectories that are feasible for the mobile base

FIGURE 2. A general description of symbol composition method used in
the notation.

1.3 reach the goal as fast as possible
1.4 reach the goal taking the shortest possible path
1.5 avoid rotations along the path [3], [23], [24]

2) human discomfort minimisation
2.1 naturalness of the robot motion [2], [3]
2.1.1 smoothen the velocity profile [2], [3], [25]
2.1.2 avoid backward motions
2.1.3 avoid in-place rotations
2.1.4 avoid oscillating motions

2.2 perceived safety of humans [2], [3]
2.2.1 avoid intrusion into human’s personal space [2],

[26], [27]
2.2.2 avoid intrusion into F-formation’s O-space

space [2], [6], [28]
2.2.3 avoid leading straight into a moving human [3]

We extended classical robot motion naturalness require-
ments with a few indicators that, we argue, are important.
Firstly, avoidance of backwardmotions (Req. 2.1.2) as people
in public spaces rarely move backwards. Such movements
can also be dangerous collision-wise for mobile bases not
equipped with a rear range sensor. Secondly, in-place rota-
tions (Req. 2.1.3) reduce the motion naturalness since they
remind of typical robot behaviour from 80s science fiction
movies, where machines lacked motion coordination in mul-
tiple dimensions. Thirdly, oscillating motions, i.e., slightly
moving back and forth (Req. 2.1.4), produce a feeling of robot
unreliability.

IV. SOCIAL ROBOT PLANNER BENCHMARK
This section presents metrics calculation methods focusing
on social navigation metrics derived from the require-
ments (Sec. III). Nevertheless, general navigation perfor-
mance aspects are also discussed briefly.

To describe the metrics for the robot navigation evalua-
tion, we developed a mathematical notation used in equa-
tions (Fig. 2). A value of any entity at time tn is referred to
as (·)n. Common symbols are presented in Tab. 1.

The ontology that we propose for social robot navigation
is organised as follows: the world configuration at each time
tn consists of the state of a single robot, rn, and the state of
its environment. The latter, recalculated at each time step,
aggregates: a set of obstacles, On, and a set of humans,
Hn, that may be arranged into F-formations, Gn. Therefore,
at time tn, the association of h-th human into g-th F-formation
can be expressed as hHn

∈
gGn, whereas gGn ∈ Gn. The hHn,
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TABLE 1. A dictionary of common symbols used for formulating
quantitative metrics.

being prone to collisions with the robot, can also be involved
in calculations related to generic obstacles, On.
Experiment time stamps, tn, where n = {1, . . . ,N },

are shared among the robot, humans and human groups.
We commonly refer to the summation of time differences
between subsequent time steps to consider that they may not
be equal-sampled in non-real-time systems, affecting average
values. Conditional summation is represented with the Iver-
son bracket operator [29].

A. METRICS FOR EVALUATION OF ROBOT NAVIGATION
PERFORMANCE
Socially acceptable robot behaviours should not signifi-
cantly degrade the general performance of the navigation
task (Req. 1). The problem of robot performance dur-
ing navigation was already discussed in multiple works,
as shown in Sec. II. However, we propose several metrics that,
we argue, are also crucial for a robot behaviour assessment.
In this section, metrics from literature are tied to require-
ments (Sec. III) without presenting relevant equations, but
their symbols in our notation are pointed out.

1) OBSTACLE SAFETY
Robot navigation benchmarks usually report the number of
collisions along the path to the goal [14], [17]. However,
we argue that for robust navigation approaches, assessing the
percentage of time the robot has spent in the dangerous area
around obstacles (nearer than the configurable distance of
r,Odmin) is more appropriate. The relevant metric was pre-
sented in [13], [14], which we refer to as mobs. We argue that
this metric is sufficient to assess compliance with Req. 1.1.

2) MOTION EFFICIENCY
A metric expressing the time required to reach the goal
pose (ours mmef) was proposed in [4], [11], [13], [14], [17],
[16] and is appropriate for verification of the goal-reaching
requirement (Req. 1.3).

3) PATH LENGTH
Classical navigation is often focused on minimising
of robot’s path length while traversing to the goal (Req. 1.4).
The path is determined by a sequence of poses. To evaluate
the path length, mplin, the sum of Euclidean displacements
of the mobile base during the scenario is computed [4], [14],
[16], [17].

4) CUMULATIVE HEADING CHANGE
A metric complementary to the mplin represents robot orien-
tation change along the path (Req. 1.5). For example, the path
irregularity metric was discussed in [23], providing a nor-
malised score of unnecessary turning per unit path length.
However, since it requires knowing the perfect path to the
goal, we argue that it applies only to very small or perfectly
known environments. Therefore, in our benchmark, we use
the cumulative heading change metric, mchc (1), as in [24],
[30], and [31].

mchc =

N−1∑
n=1

|
rθn+1 − rθn| (1)

5) COMPUTATIONAL EFFICIENCY
Trajectory planners for mobile base navigation have different
degrees of complexity. Therefore, it is adequate to verify the
average computation time the planner takes to accomplish
a new velocity command (Req. 1.2). Such a metric was
proposed in [13], which we refer to as mcef.

6) COMPUTATIONAL TIME REPEATABILITY
Evaluating how much computation times differ from the
mean value, c̄, is also important. It shows how likely the
planner will violate requested computation times and, thus,
whether it can be safely applied in robots operating in highly
dynamic environments. Therefore, we proposed the mcre met-
ric, constituting a standard deviation of all computational
times (n-th denoted as cn) during the scenario (2).

mcre =

√√√√1
n

N∑
n=1

(
cn − c̄

)2 (2)

B. METRICS FOR EVALUATION OF ROBOT MOTION
NATURALNESS
Social metrics are essential for robots operating in dynamic
and populated environments. This section discusses metrics
related to robot motion naturalness (Req. 2.1).
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1) VELOCITY SMOOTHNESS
The velocity smoothness metric, mvsm, defines how much
robot’s linear velocities, rvnx and rvny , differed in subse-
quent time steps, which indicates a presence of erratic
motions (Req. 2.1.1). A similar metric was proposed in [13];
however, their formulation lacks the holonomic drives sup-
port. Instead, in our approach, both linear velocity compo-
nents (along the x and y axes) are taken into consideration (3).
Investigated robot velocities are expressed in the mobile
base’s coordinate system.

mvsm =
1

N − 1

N−1∑
n=1

√ ∑
j∈{x,y}

(
rvn+1j − rvnj

)2
tn+1 − tn

(3)

2) HEADING CHANGE SMOOTHNESS
Another indicator of erratic motions (Req. 1.5), defines an
average rate of robot heading changes [30] during the sce-
nario. The mhsm metric is computed by comparing differences
of robot angular velocity, rω, in subsequent steps, as in (4).

mhsm =
1

N − 1

N−1∑
n=1

∣∣rωn+1
−

rωn
∣∣

tn+1 − tn
(4)

Similar metrics regarding robot motion naturalness (mvsm
and mhsm) were also discussed in [4], [14], and [17], yet the
authors did not show their calculation methods.

3) OSCILLATIONS
The oscillations metric, mosc, defines the percentage of
the total time that the robot has spent oscillating, i.e.,
has not developed significant linear and angular veloc-
ities (Req. 2.1.4). The oscillating behaviour in a given
time step occurs when robot velocities, rvn, and oscillation
threshold velocities, rvosc, fulfil conditions shown in (5).
The linear speed of the robot at time tn is represented as

rvnlin =

√(
rvnx
)2
+

(
rvny
)2
.

mosc =
100%
tN − t1

N−1∑
n=1

(
tn+1 − tn

)
r vnlin<

r
linvosc

∧|rvnx |<
r
xvosc

∧

∣∣∣rvny ∣∣∣<r
yvosc

∧|rωn|<rωosc

 (5)

4) BACKWARD MOVEMENTS
The backward movements metric, mbwd, defines the per-
centage of the total execution time that the robot has been
advancing in the backward direction (Req. 2.1.2) with a speed
of at least rxvosc (6).

mbwd =
100%
tN − t1

N−1∑
n=1

(
tn+1 − tn

) [rvnx ≤ − r
xvosc

]
(6)

5) IN-PLACE ROTATIONS
The in-place rotations metric, miprot, defines the percent-
age of the total time that the robot has spent rotating in
place (Req. 2.1.3). In-place rotation is an action of the robot

when its linear velocities are kept at 0, but the angular velocity
is maintained above the threshold value of rωosc (7).

miprot =
100%
tN − t1

N−1∑
n=1

(
tn+1 − tn

)[ r vnx=0
∧
r vny=0

∧|rωn|≥rωosc

]
(7)

It is crucial that mosc, mbwd and miprot metrics are orthogonal
to each other, i.e., in each time step robot’s action can be
qualified as fulfilling conditions of only one of these metrics.

C. METRICS FOR PERCEIVED SAFETY EVALUATION
AMONG HUMANS
In this section, our metrics for the evaluation of the robot’s
intrusiveness and disturbance to adjacent people are dis-
cussed.

1) PERSONAL SPACES INTRUSION
The personal space concept was adopted in social robotics
from the proxemics theory [5]. Our personal space intrusion
metric, mpsi, defines the scale of robot intrusions into any
human’s personal space [2] throughout the scenario execu-
tion (Req. 2.2.1).

Recent studies show that Gaussian functions are legitimate
for modelling personal spaces [27], [32]. Therefore, we repre-
sent the human’s personal space as a multivariate asymmetric
Gaussian function, f mag, centred at the h-th human’s position,
hxn and hyn, oriented according to the human’s heading hθn.
Variances along the front (hvarnfr), side (hvarnsd), and rear
(hvarnrr) directions of the human pose were estimated in [32].

The variance along the heading axis, r,hvarnhd, is selected
(hvarnfr or

hvarnrr) in a three-step procedure, so the symmetrical
variant of the multivariate Gaussian, f mg, can be used in
calculations. Firstly, to evolve, where the robot is located
compared to the human’s heading direction, the angle of
the vector connecting the centres of the human and the
robot, r,hφn, is computed (8). Then, the relative location
r,hδn of the robot r , compared to the human’s h heading
direction, is calculated as in (9) and presented in Fig. 3a.
Finally, using the r,hδn indicator, the variance is selected as
in (10).

r,hφn = atan2
(
ryn − hyn, rxn − hxn

)
(8)

r,hδn = r,hφn − hθn (9)

r,hvarnhd =

{
hvarnfr, if

∣∣r,hδn∣∣ ≤ π
2

hvarnrr, otherwise
(10)

To compute a value of f mg, the h-th human’s personal space
covariance matrix needs to be created. Variances defining the
personal space are expressed in the human’s coordinate sys-
tem; therefore, the personal space covariance matrix, r,h6n

psi,
must be rotated according to the h-th human’s orientation,
hθn, as in (11).

r,h6n
psi = R

(
Z, hθn

) [r,hvarnhd 0
0 hvarnsd

]
RT

(
Z, hθn

)
(11)
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FIGURE 3. Processing of the h-th human data. Angles of an example arrangement along with lines reflecting the orientation of the global coordinate
system (the x-axis pointing upwards) are presented in (a) . Gaussians of: position uncertainty (b), personal space (c), and resultant distribution (d) are
shown with the mean of the estimated h-th human pose. The personal space model was created using hvarnfr = 3.0, hvarnrr = 0.75, hvarnsd = 1.33.

In the evaluation process, we also account for human tracking
reliability. It aims to prevent excessive penalisation of robot
states when, e.g., a tracked human becomes occluded. The
covariance matrix of the estimated human position, h6n

p,
is obtained from the robot perception system. The sum of
independent normal random variables is applied to compute
the resultant covariance matrix, r,h

16n
psi (12). It accounts

for position estimation uncertainty and the personal space
model (Fig. 3).

r,h
16n

psi =
h6n

p +
r,h6n

psi (12)

The scale of r robot intrusion into the personal space of h-th
human in time tn is referred to as r,hpsin (13). It represents
a value of the f mg function (modelling the h-th human’s
personal space) at the robot’s pose at that time, rpn. Equation
(13) presents arguments that the f mg function takes – a pose
and a multivariate normal distribution, the value of which
will be computed at the given pose. The multivariate normal
distribution, described by a mean of, e.g., p, and covariance
matrix of 6 , is denoted as N

(
p, 6

)
.

The final formulation of the personal space intrusions
metric, mpsi, is shown in (14). Our method investigates the
maximum intrusion in a given time step tn, provided that
some human was detected. The scale of the robot intrusion is
normalised to the Gaussian value at the h-th human’s centre,
hpsin, so the metric value in each time step corresponds to
a percentage of the maximum intrusion. If no human was
observed during the scenario, mpsi = 0.

r,hpsin = f mg

(
rpn,N

(
hpn, r,h16n

psi

))
(13)

mpsi =

N−1∑
n=1

((
tn+1 − tn

)
max

hHn∈Hn

r,hpsin
hpsin

)
N−1∑
n=1

(
tn+1 − tn

) [
Hn = ∅

] (14)

2) F-FORMATIONS’ O-SPACES INTRUSION
The O-spaces of F-formations were proposed in [6] to reflect
the elliptical spaces created by a group of humans involved in
a focused interaction [28]. Our mfsi metric aims to penalise
a robot for traversing through O-spaces (Req. 2.2.2).

Firstly, to find the pose of the g-th O-space’s ellipse, gpn,
we employ Taubin’s algebraic method of ellipse fitting [33],
supplied with mean positions of g-th F-formation members.
Then, to assess the cost of robot movement in terms of
human groups’ presence, we model O-spaces as bivariate
Gaussians (Fig. 4). The span of the 2-dimensional O-space’s
Gaussian model is derived from the lengths of semi-axes
(gdnx and

gdny) of the F-formation’s ellipse (Fig. 4a). Using the
2σ rule, the variances along the direction of the semi-major
and semi-minor axes are derived, gxvarnd and g

yvarnd , accord-
ingly (15). The O-space model’s covariance matrix, g6n

fsi,
expressed in the global coordinate system, is computed
by applying a rotation (by the angle of the F-formation’s
ellipse orientation, gθn) to a matrix composed of variances
as in (16).

∀j ∈ {x, y} , gjvar
n
d =

(
gdnj
2

)2

(15)

g6n
fsi = R

(
Z, gθn

) [gxvarnd 0
0 g

yvarnd

]
RT (Z, gθn

)
(16)

In the spatial model of an F-formation, we also incorporate
the uncertainty of the g-th F-formation’s position estima-
tion (Fig. 4b), arising from position uncertainties of members,
gHn. The uncertainty is represented by the variances: gxvarnp,
g
yvarnp,

g
xyvarnp, and

g
yxvarnp, computed as in (17) and (18). The

composition of the F-formation’s position covariance matrix,
g6n

p, is shown in (19).

∀j ∈ {x, y} , gjvar
n
p = max

hHn∈gGn
h
j6

n
p (17)

g
xyvarnp =

g
yxvarnp = max

hHn∈gGn

(
max

j∈{xy,yx}

h
j6

n
p

)
(18)

g6n
p =

[ g
xvarnp

g
xyvarnp

g
yxvarnp

g
yvarnp

]
(19)

The covariance matrix that accounts for F-formation’s
O-space and members’ position estimation uncertainties,
g
16n

fsi, is formulated as a sum of normally distributed random
variables (20). The computation method of the intrusion,
r,gfsin, of r robot into the O-space of g-th F-formation in
time tn, along with arguments that the Gaussian function
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FIGURE 4. Processing of an exemplary F-formation consisting of 4 members. The mean of an estimated pose obtained from ellipse fitting is shown in (a) .
The remaining figures present corresponding Gaussians of the: position uncertainty (b), O-space model (c), and resultant distribution (d).

takes, is presented in (21). The final formulation of the
O-spaces intrusions metric, mfsi, is shown in (22). The scale
of the robot intrusion is normalised to the value of Gaussian at
the g-th group’s centre, gfsin, so the metric value in each time
step corresponds to a percentage of the maximum intrusion.
If no F-formation was observed during the scenario, mfsi = 0.

g
16n

fsi =
g6n

p +
g6n

fsi (20)
r,gfsin = f mg

(rpn,N (gpn, g
16n

fsi
))

(21)

mfsi =

N−1∑
n=1

((
tn+1 − tn

)
max

gGn∈Gn

r,gfsin
gfsin

)
N−1∑
n=1

(
tn+1 − tn

) [
Gn = ∅

] (22)

3) HEADING STRAIGHT INTO A HUMAN
Reactive approaches to robot navigation usually suffer from
late trajectory adjustment in dynamic environments causing
the robot to turn just before the imminent collision with, e.g.,
a human, diminishing their perceived safety (Req. 2.2.3). The
problem was initially investigated by Truong and Ngo [26],
who tried to assess the robot’s approach direction to the
humans. However, their approach does not account for human
position estimation uncertainty and a robot’s dynamics.

Thus, we propose a new metric, mdir, to evaluate the scale
of the problem in different algorithms. The metric penalises
a robot for undertakingmotion directions leading straight into
humans, especially when the robot moves with a decent speed
near a human.

To compute the metric, we investigate a geometrical
arrangement of the human h and the robot r . Namely, we com-
pare the robot’s current heading to directions leading into
the centre of the human. The span of cross-human robot
heading angles arises from the space physically occupied
by the human (modelled by the circle with a configurable
radius of docp) and the human position estimation uncertainty
(represented by a covariance matrix, h6n

p). Both effects are
visualised in Fig. 5.
The variance of the bivariate Gaussian representing the

circular occupancy model, varocp, is computed by applying
the 2σ rule to the docp (23). The resultant covariance matrix,
h
16n

dir, aggregating the occupancy model and the position

uncertainty, is defined as in (24).

varocp =
( docp

2

)2

(23)

h
16n

dir =
h6n

p +

[
varocp 0
0 varocp

]
(24)

The value of the Gaussian at the r,hpnisc point, r,hdirncc,
represents how much the robot’s direction leads into the
centre of the human (26). The r,hpnisc is an intersection

point of the robot’s direction axis (ray),
−→
rpn, and the line,

r,hlncc, defined by the crossed point and the direction angle
in (25). The geometrical representation of finding the r,hpnisc
is depicted in Fig. 5.

r,hlncc =
←−−−−−−−−−−−−→
hpn, ∡

(
r,hφn +

π

2

)
(25)

r,hdirncc = f mg

(
r,hpnisc,N

(
hpn, h

16n
dir

))
(26)

We also investigate how much the human can notice the
robot’s movement (potentially disturbing), the scale of which
is represented by r,hfovn. Applying the 2σ rule to the config-
urable field of view angle, ϕfov, the variance, varfov, is com-
puted. The relative location indicator, r,hδn (9), determines
directly how far the robot is situated from the centre axis
of human’s sight. Then, the value of the Gaussian appointed
in the normalised angle domain, f ang, is computed for the
current arrangement of the human and the robot (27).

r,hfovn = f ang
(
r,hδn,N

(
0, varfov

))
(27)

The mdir metric also accounts for the speed of the robot, rvnlin,
and the distance between the human and the robot, r,hdn.
The final formulation of the robot heading direction penalty,
r,hdirn, defined for a single human-robot pair, is presented
in (28).

The normalisation of the metric value relies on comparing
the current arrangement to the worst possible case. To accom-
plish that, platform-specific features must be determined,
namely the circumradius of the mobile base, dcr, and the
maximum linear speed of the robot, r

maxvlin. Moreover, it is
assumed that the robot’s heading points straight into the
human position (r,hpnisc =

hpn, computed in r,h
maxdir

n
cc) and

the robot is located along the human’s sight axis (r,hδn = 0,
calculated in r,hfovnmax). The formula for the normalisation
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FIGURE 5. An exemplary human-robot arrangement and corresponding: distribution of the human physical space occupancy model (a) , position
estimation uncertainty (b), and resultant distribution (c). The robot’s and human’s heading directions are represented by arrows – red and blue,
accordingly. Green dashed lines, constituting r ,hln

cc, are defined to find the intersection point, r ,hpn
isc, represented by green circles. Magenta dashed lines

indicate the robot’s direction with the maximum likelihood of heading straight into the human. Blue circles with a radius of docp represent the human
occupancy model, whereas in (b), the grey ellipse represents human position estimation uncertainty (cut-off determined by the 2σ rule).

factor, r,hdirnnrm, is shown in (29). The metric for the whole
scenario, mdir, is calculated as in (30) and corresponds to
the average percentage of heading disturbance generated by
the robot. If no human was observed during the scenario,
mdir = 0.

r,hdirn =
r,hdirncc ·

r,hfovn · rvnlin
r,hdn

(28)

r,hdirnnrm =
r,h
maxdir

n
cc ·

r,hfovnmax ·
r

maxvlin
dcr + docp

(29)

mdir =

N−1∑
n=1

((
tn+1 − tn

)
max

hHn∈Hn

r,hdirn
r,hdirnnrm

)
N−1∑
n=1

(
tn+1 − tn

) [
Hn = ∅

] (30)

V. EXPERIMENTS
Our experiments intend to determine whether tested human-
aware trajectory planners perform superior to traditional ones
regarding human presence in the environment. To accomplish
that, we evaluate the perceived safety of humans and robot
motion naturalness. Simultaneously, we examine if evaluated
social planners perform significantly worse than traditional
planners regarding overall robot performance.

A. EXPERIMENTS DESIGN
Scenarios were designed so that the robot operating with
each examined trajectory planner could reach a goal pose,
navigating collision-free from the shared start pose. Thus,
we started with evaluating the capabilities of the planners
while the robot operated in partially unknown static and
dynamic environments. Our test environment was a robotics
laboratory at Warsaw University of Technology (Fig. 6, 7).
We decided to compare real results with ones obtained from
the simulation; therefore, we also performed trials in a virtual
equivalent of the environment.

We conducted experiments in which humans participate
as static or dynamic elements of the robot environ-
ment; therefore, tests are identified as static in a simula-
tion (Fig. 6a), static in the real world (Fig. 6b), dynamic in a

FIGURE 6. An overview of the static scenario.

FIGURE 7. An overview of the dynamic scenario.

simulation (Fig. 7a), and dynamic in the real world (Fig. 7b).
These scenarios are later referred to as 1a, 1b, 2a, and 2b.

In the static scenario (Fig. 6), an F-formation of two
humans stays near the robot’s goal. Reaching the goal by the
robot requires passing the humans, so when approaching the
final pose, the robot is foreseen not to distract the humans
involved in a focused interaction and take an outside path.
Instead, in the dynamic scenario (Fig. 7), the robot moving
to the goal pose along a narrow corridor encounters a moving
human followed by another moving human, both going oppo-
site to the robot. The robot is expected to avoid collisions and
maximise the perceived safety of humans.2

Each trajectory planner was tested in each scenario’s simu-
lated and real-world variants. At least five representative trials

2A video presenting test scenarios https://vimeo.com/805337193
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TABLE 2. Trajectory planners’ parameters that were constant throughout
the experiments.

were benchmarked for each case, and then, themedian of each
metric was computed to score a trajectory planner (Tab. 4).
For our comparative experiments, we had to replicate the

environment configuration in the following trials to test dif-
ferent trajectory planners under the same conditions. The
challenging task in the real-world dynamic scenario (2b) is
to make participating humans move similarly in each trial.
To maximise path similarity, the paths of dynamic actors
were indicated with a tape glued to the floor. Further, for
trajectory similarity, paths were equipped with subsequent
pose markers (Fig. 7b) and entrants were asked to finish each
step with a tick of a metronome that was programmed to
60 beats per minute.

B. SETUP
Real-world experiments were conducted with PAL’s TIAGo
Iron robot, and simulation results were obtained with the
robot’s digital twin provided by PAL. The main sensors of
the robot are: a Sick TIM571 LiDAR (0.05 – 25 m scan
range, 180◦ field of view, 0.33◦ step angle) and an Orbbec
Astra RGBD camera (depth stream with a resolution of 640 x
480 pixels and a 0.6 – 8 m depth sensor range).

Since our robot has factory-installed ROSMelodic, we per-
formed simulated trials with the same framework version.
We have chosen Gazebo (version 9) as the simulation plat-
form due to its integration with ROS. Simulation experiments
were performed on a laptop with an Intel Core i7-4720HQ
CPU and 16 GB RAM.

Our test setup uses the ROS navigation system, whose
structure consists of a global and a local [2], [34] planners.
As the robot’s global path planner in all experiments, we have
been using wavefront Dijkstra’s algorithm.3 Only trajectory
planners were swapped, utilising public ROS implementa-
tions of the benchmarked algorithms. Parameters related to
kinematic and dynamic constraints of the mobile base, shown
in Tab. 2, were common for all planners. In all scenarios, the
robot operated with the same preprepared map. Nevertheless,
environment obstacles were detected in real-time by the robot
sensors and added to the costmaps (of global and local plan-
ners), making the robot resistant to the changes not captured
in the map. For the global pose estimation, the AMCL4 [35]
algorithm was used.

3http://wiki.ros.org/navfn
4http://wiki.ros.org/amcl

TABLE 3. Configurable parameters of metrics that were used in the
experiments.

In all experiments, we used SPENCER human percep-
tion stack,5 mainly relying on vision data, as LiDAR-based
detections were often false positives. Tracked humans were
embedded as bivariate Gaussians into the costmaps represent-
ing the robot’s environmentmodel used for planning.6 During
the tests, no other types of dynamic objects (obstacles) were
present in the environment besides humans.

Moreover, we used the HuBeRo framework7 [36] for con-
trolling humans in the simulation. In all virtual experiments,
human agents used the same path planner as the robot and the
Timed Elastic Band (TEB) [37] trajectory planner.
In our experiments, social metrics were computed based on

data gathered by the robot’s onboard sensors during the run
to a goal pose. That approach is appropriate for rapid pro-
totyping and often sufficient to obtain representative results;
however, still prone to poor performance of the limited-range
robot sensors, e.g., RGBD cameras. Thus, integrating a robot
with an external, e.g., vision-based system, can increase the
evaluation robustness, decreasing metric deviations between
subsequent trials. We argue that external systems for human
tracking can be used for benchmarking once the robot control
system is integrated with them. Otherwise, planners may be
penalised for actions disregarding surrounding humans that
the planners are unaware of. Nevertheless, our benchmark
can be interfaced with any source of aggregated information
about humans surrounding the robot.

C. EVALUATION
We integrated multiple planning approaches with the TIAGo
robot and evaluated their operation under the same envi-
ronmental conditions. In each scenario, we tested tradi-
tional trajectory planners for mobile robots, namely: Elastic
Bands [20], DWA [19], Trajectory Rollout [38], TEB [37],
as well as human-aware trajectory planners: Human-aware
TEB (HaTEB) [39] and Co-operative Human-Aware Navi-
gation (CoHAN ) [40]. The SRPB’s parameters used for the
evaluation are shown in Tab. 3. The results of our experi-
ments, shown in Tab. 4, are discussed in the remainder of this
section. Examples of trajectories performed by each planner
are shown in Fig. 8.

a: PERFORMANCE METRICS
In terms of keeping a safe distance from obstacles (mobs),
HaTEB planner was the safest in all scenarios, which is

5https://github.com/spencer-project/spencer_people_tracking
6http://wiki.ros.org/social_navigation_layers
7https://github.com/rayvburn/hubero
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FIGURE 8. Robot trajectories generated by different planners in the static scenario. The colour of a symbol represents its occurrence in time (g) . Solid
circles with dark edges represent humans, whereas partially transparent circles indicate F-formations. Due to the perception inaccuracy, human
positions float over time, especially, after robot rotation at the very end of the scenario.

related to its characteristic of taking wide paths at corners
(similar to going along the centre line of the available space).
However, it came at the cost of the time required to reach the
goal (mmef). By contrast, the robot operating with DWA plan-
ner traversed closer to obstacles (a higher percentage of time
spent by the robot within the r,Odmin distance from obsta-
cles along the path). Still, it reached the goal significantly
faster (Req. 1). The reason behind such timing performance
is that cost functions ofDWA and Trajectory Rollout planners
were tuned with a focus on approaching the goal with the
shortest possible path avoiding high-cost areas (humans and
obstacles) along the way. The best timing results (mmef) are
confirmed by the values of path-related metrics, mplin and
mchc, which DWA and Trajectory Rollout planners have the
lowest.

The results of mcef and mcre must be analysed, remember-
ing that the simulated scenarios were performed on a different
PC than real-world experiments. Nevertheless, data show
that sampling-based methods (DWA and Trajectory Rollout)
exhibit a higher computational burden (mcef) than force-
based (Elastic Bands) and optimisation-based (TEB, HaTEB,
CoHAN ) approaches. These latter, mainly TEB, have much
more stable computation times in different scenarios (mcre).

An interesting observation concerns the values of mcef
and mcre metrics between TEB and its human-aware vari-
ants. Namely, HaTEB and CoHAN have longer computation
times due to the increased number of optimisation objectives
regarding humans.

b: NATURALNESS OF ROBOT MOTION
Sampling-based planners provide smoother trajectories
(smallest mvsm and mhsm), increasing motion naturalness
of the robot (Req. 2.1). In terms of oscillations (mosc) and
backward movements (mbwd), the traditional trajectory plan-
ners performed the best in most cases, avoiding unnatural
motions. However, in the real-world dynamic scenario (2b),
DWA planner often performed recoveries moving backwards.

As shown in Tab. 2, we allowed planners to command the
mobile base backwards to verify how they will behave against
an unexpected human agent.

As for in-place rotations (miprot metric), TEB and derived
planners – HaTEB and CoHAN , generally outperform oth-
ers due to the feature of this class of planners that adjust
the final part of the trajectory to reach the goal position
and orientation simultaneously. Instead, DWA and Trajectory
Rollout rotate the mobile base according to the goal orienta-
tion after reaching the goal position. Another situation when
the robot executes in-place rotations is when it encounters a
dynamic obstacle along the path. This issue may be addressed
with human trajectory prediction that has been employed in
HaTEB and CoHAN.

c: PERCEIVED SAFETY OF HUMANS
Our human-perceived safety metrics (Req. 2.2) are novelties
amid robot planning benchmarks. We evaluated the planners
against personal space intrusion (mpsi), F-formation space
intrusion (specifically, O-spaces, mfsi), and robot heading
direction relative to a human position (mdir). Surprising
results are related to mpsi metric, where generally the human-
unaware TEB planner outperformed its human-aware special-
isations – HaTEB and CoHAN . Only in the simulated static
scenario (1a), HaTEB performed better than the traditional
DWA planner only by 1 p.p.

Although none of the planners explicitly accommodate
human formations, we expected that in the static scenario
(1a and 1b), the robot’s behaviour will emerge to F-formation
avoidance due to regarding personal spaces of single humans.
It did not happen with any planner, as the robot has crossed
through the O-space of the F-formation in each trial (Fig. 6b).
The phenomenon is reflected in mfsi metric, remember-
ing from (22) that the robot escaping from the O-space
sooner obtains a smaller metric value. In the static scenarios,
the human-aware CoHAN planner stopped and often oscil-
lated when crossing through the O-space of the F-formation
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TABLE 4. Results of simulation and real-world experiments conducted in
the WUT laboratory environments.

(therefore increased mfsi values). In the dynamic scenarios
(2a and 2b), the robot’s perception did not qualify moving
humans as an F-formation (as expected); thus values of mfsi
are 0.0.

The metric representing human disturbance induced by
a robot heading direction (mdir) is useful for evaluating
whether a planner is capable of adjusting the trajectory head-
ing towards a human as soon as it detects such an agent.
Again, human-aware trajectory planners performed similarly
to traditional ones across all scenarios. Here, Elastic Bands

accomplished the best metric scores, which are caused by its
frequent heading changes (mchc).

In our tests, examined state-of-the-art human-aware tra-
jectory planners do not improve robot navigation regard-
ing social metrics over the traditional approaches that treat
humans as generic obstacles.

d: ROBUSTNESS
The results of our experiments are based on successful trials
of the robot navigating from the initial pose to the goal
pose. However, we performed multiple test runs beyond the
benchmarked trials to find the start and goal poses accessible
for all planners. During these tests, we could observe the
robustness of each planner. TEB planner outperforms others
with 0% of failed runs, whereas HaTEB commonly aborted
further navigation being stuck, e.g., before an F-formation in
the static scenario. By contrast, although the Elastic Bands
planner appeared to be as robust as TEB and performed well
in terms of the perceived safety of humans, it is impractical to
use due to generating multiple erratic motions (reflected by
mchc and mhsm metrics). These, in turn, cause much longer
times needed to reach the goal (mmef metric).

e: COMPARISON STRATEGY
We have found that comparing different planners in a simula-
tion generally allows finding the one that will also perform
best in a similar real-world scenario regarding a particular
metric. We observed the robot operating with different plan-
ners during our simulation and real-world experiments, and
some distinctive behaviours of certain planners are visible
in both cases. These include, e.g., wide turns of HaTEB,
mostly straight trajectories of DWA, and smooth stopping of
Trajectory Rollout .

VI. SUMMARY
In this work, we presented SRPB, the social robot naviga-
tion benchmark that evaluates both the performance and the
human-awareness aspects. It was designed to verify the fulfil-
ment of the robot navigation requirements and assist system
designers in selecting the best method for the application. Our
approach allows comparing different navigation algorithms
rapidly in both simulated and real-world environments. It also
ensures easy integration with popular ROS-driven robots.
We focused on implementing quantitative metrics to eval-

uate common robot behaviour patterns. Most of the metrics
in our benchmark allow confronting navigation algorithms,
provided that the initial and final conditions of the evaluated
scenario are the same in each trial. Therefore, path and tra-
jectory similarities must be guaranteed in subsequent tests
for a given scenario. Although physical sensors’ inaccuracy
impacts bigger metrics dispersion in real-world scenarios, our
results show that, in general, comparing planners in a simula-
tion environment is a legitimate and effective way to find the
best planner for an equivalent real-world application.
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In this work, we compared local (short-term) trajectory
planners, but an analogical assessment of global path planners
is also reasonable.

Our method investigates only non-focused interactions,
so only the movement behaviours of humans and the robot
in a shared space are evaluated. Extending our benchmark
for evaluating focused human-robot interactions would be
another significant contribution to social robotics. Initial
research on this topic has already started and relates to, e.g.,
the approach pose of a robot that initiates an interaction with
a human [26].

The results obtained with our benchmark show that
state-of-the-art human-aware trajectory planners do not sig-
nificantly improve the social aspects of robot navigation.
Therefore, we argue that properly including social behaviour
patterns in novel trajectory planners is still an open problem.
We hope that our benchmark gives a good foundation for the
further development of human-aware navigation algorithms.
We also plan to add ROS2 compatibility to SRPB.
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