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ABSTRACT In this paper, we propose a novel 3-D jerk system with three quadratic nonlinear terms and
demonstrate the dynamical properties of the proposed jerk system in terms of phase portraits, bifurcation dia-
grams, Lyapunov exponents, multistability and coexisting attractors. For practical implementations, we apply
Multisim version 14.0 to design an electronic model of the proposed 3-D jerk system. To demonstrate
the feasibility of the proposed chaotic jerk system, we implement the system using a field-programmable
gate array (FPGA), which shows high throughput and low power consumption. Furthermore, a new image
encryption scheme based on the proposed jerk system is developed, which involves permutation and diffusion
operations. Experimental results and security analysis show the effectiveness of our proposed algorithm in
terms of high security and excellent encryption performance.

INDEX TERMS Chaotic systems, jerk system, FPGA, image encryption, security analysis.

I. INTRODUCTION
Chaotic systems have been a trending topic for scientists
and researchers for decades. The study of such systems is
motivated by their complex dynamics and behavior, which are
determined by their initial conditions and parameter changes.
In recent years, chaotic systems have gained significant atten-
tion in various fields, such as control engineering, computer
science, information technology, and beyond. This is because
chaotic systems have a wide range of applications such as
data encryption, secure communication (see [1], [2]), image
encryption (see [3], [4]), speech transmission [5], quantum
chaos [6], [7], FPGA [8], [9], [10], robotics [11], energy
harvesting (see [12], [13]), etc.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yi Fang .

Bifurcation analysis is carried out for nonlinear dynamical
systems to understand the changes in the qualitative behavior
of the systems with respect to changes in the system param-
eters (see [14], [15], [16]). Electronic circuit designs of the
chaotic dynamic systems aid in the practical applications of
the systems (see [17], [18], [19]).

There has been a growing interest in using chaotic sys-
tems for secure communication and encryption. Chaotic
systems, with their complex dynamics, sensitivity to initial
conditions, and deterministic nature, provide inherent ran-
domness and unpredictability that can enhance the security
of communication channels [20]. The application of chaos
theory to cryptography, known as chaotic cryptology, has
attracted much interest in recent years. Chaotic synchro-
nization between identical systems has secured communica-
tion channels through chaotic modulation, multi-carrier and
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multiple access schemes, and encryption schemes (see [21],
[22]). Various encryption algorithms have been proposed
using different chaotic systems, combined with multi-shift
cipher encryption and double chaotic masking to improve the
security of communication channels (see [23], [24]).
Image encryption is a technique used to secure images by

transforming their contents into an unintelligible form that
can only be restored to its original form by authorized parties.
Chaotic systems have proven to be an effective method for
image encryption because of their excellent random proper-
ties and encryption performance (see [9], [25], [26]). In recent
decades, many researchers have devoted themselves to study-
ing image encryption based on chaotic systems and have
made significant strides in research because of their attrac-
tive features characterized by sensitive dependence on initial
conditions and aperiodic, seemingly random behavior [26].
In image encryption, chaotic systems generate a sequence

of numbers that can be used to scramble the image pixels [10].
These chaotic sequences have strong statistical characteris-
tics, which is the basis for the perfect success of the image
encryption system [10]. Existing image encryption algo-
rithms based on chaotic systems have shown some security
defects due to small key space or other security weaknesses.
New image encryption algorithms have been proposed to
address these issues using complex, chaotic systems, coupled
map lattice, or memristive chaotic systems. These algorithms
combine different chaotic maps with permutation and dif-
fusion techniques to increase the scrambling degree of the
image pixels.

In literature, there are many existing image encryption
schemes using chaotic systems. Zhou et al. [28] proposed a
new combination chaotic system (NCCS) for image encryp-
tion, which has a larger key space and better cryptographic
features than previous one-dimensional chaotic maps. The
proposed bit-level encryption scheme uses NCCS, SHA-512
Hash function, and random decimal points sequence to gen-
erate key streams and perform image confusion and diffusion
operations.

Sang et al. [29] developed a new image encryption method
using logistic chaotic systems and deep autoencoder. The
plaintext image is scrambled using a logistic chaotic system
and then encoded using a deep autoencoder to produce the
ciphertext image.

Zhu et al. [30] introduced a sinusoidal-polynomial com-
posite chaotic system (SPCCS) that satisfies Devaney’s defi-
nition of chaos,making it suitable for cryptography. An image
encryption algorithm was developed using SPCCS, which
involves pixel segmentation, block chaotic matrix confusion,
and pixel diffusion operations. The simulation results demon-
strated the effectiveness and superiority of the proposed
image encryption algorithm.

In this paper, we propose a novel jerk system with
three quadratic nonlinear terms and demonstrate the dynam-
ical properties of the proposed jerk system in terms of
phase portraits, bifurcation diagrams, and Lyapunov expo-
nents, multistability and coexisting attractors. For practical

implementations, we apply Multisim version 14.0 to design
an electronic model of the proposed 3-D jerk system.
To illustrate the feasibility of the proposed chaotic jerk
system, we implement the new chaotic system by using a
field-programmable gate array (FPGA), which shows high
throughput and low power consumption. Furthermore, a new
image encryption scheme based on the proposed jerk sys-
tem is developed, which involves permutation and diffusion
operations. Experimental results and security analysis show
the effectiveness of our proposed algorithm in terms of high
security and excellent encryption performance. Our research
contributes to the ongoing efforts toward developing robust
and secure image encryption techniques that can be utilized
in various applications, such as secure communication and
data storage.

II. MODELING OF JERK SYSTEM
A new jerk differential equation is proposed in this research
paper, which is modelled by the third order differential
equation

d3x
dt2

= ax−b
dx
dt

−
d2x
dt2

−c
dx
dt
d2x
dt2

− x2 −

(
dx
dt

)2

(1)

where a, b, c are positive parameters. In mechanical systems,
the word ‘‘jerk’’ stands for the third order derivative of a
scalar variable x(t) with respect to t .

If we define the state variables y and z as

y =
dx
dt

and z =
d2x
dt2

, (2)

then the jerk ODE (1) can be put as the following jerk system
ẋ = y

ẏ = z

ż = ax−by−z−cyz− x2 − y2

(3)

where X = (x, y, z) is the system state.
The Lyapunov exponents of the 3-D jerk system (3) with

three quadratic terms can be calculated in MATLAB for
a = 7.5, b = 4, c = 0.3, X (0) = (0.3, −0.2, 0.3) and
T = 1E5 seconds as

τ1 = 0.1631, τ2 = 0, τ3 = −1.1631 (4)

which confirms that the jerk system (3) has a dissipative
chaotic attractor as illustrated in Figure 1.

To evaluate all the equilibrium points of the 3-D jerk
system (3), we are required to solve the following system of
equations:

3y = 0 (5a)

z = 0 (5b)

ax−by−z−cyz− x2 − y2 = 0 (5c)

From (5a) and (5b), we get y = z = 0.

VOLUME 11, 2023 78585



T. Bonny et al.: Multistability and Bifurcation Analysis of a Novel 3D Jerk System

FIGURE 1. The MATLAB simulation results depicting the state orbits of the
3-D jerk system (3) for a = 7.5, b = 4, c = 0.3 and X (0) = (0.3, −0.2, 0.3).

Substituting these values (y = 0, z = 0) into Eq. (5c),
we get

ax − x2 = x(a− x) = 0 (6)

Solving (6), we get the two roots x = 0 and x = a.
Thus, the 3-D jerk system (3) has two equilibrium points

given by E0 = (0, 0, 0) and E1 = (a, 0, 0).
For the chaotic case, the parameters take the values

a = 7.5, b = 4 and c = 0.3.
Hence, the 3-D jerk system (3) has two equilibrium points

given by E0 = (0, 0, 0) and E1 = (7.5, 0, 0) for the chaotic
case.

The Jacobian matrix of the 3-D jerk system (3) at E0 has
the eigenvalues

α1 = 1.1555,
α2 = −1.0778 + 2.3085 i,
α3 = −1.0778 − 2.3085 i

(7)

The Jacobian matrix of the 3-D jerk system (3) at E1 has
the eigenvalues

α1 = −1.5474,
α2 = 0.2737 + 2.1845 i,
α3 = 0.2737 − 2.1845 i

(8)

An equilibrium point E is called saddle-focus when it has
one real eigenvalue with the sign opposite to the sign of the
real part of a pair of complex-conjugate eigenvalues and this
type of equilibrium is always unstable [31].
Thus, we conclude that the equilibrium points E0 =

(0, 0, 0) and E1 = (7.5, 0, 0) are saddle-foci and unstable.
Hence, the jerk system (3) with three quadratic nonlinear

terms has a self-excited chaotic attractor for the chaotic case
(a, b, c) = (7.5, 4, 0.3).

III. BIFURCATION ANALYSIS
In this section, we conduct a detailed investigation into
how the behavior of the 3-D jerk system (3) with three
quadratic nonlinear terms changes in response to variations
in its parameters a, b and c, using bifurcation diagrams and
Lyapunov exponents spectra. As the parameters a, b and c are
altered separately, the jerk system (3) displays both periodic
and chaotic behavior, which are visualized through phase
plots. Various behaviors are identified through numerical
simulations in MATLAB.

A. THE PARAMETER a VARYING
If we keep b = 4, c = 0.3 and change of the value of a in
the interval [6, 7.5], then we can examine the impact of the
variation of a on the jerk system (3). Figure 2(b) presents the
Lyapunov exponents spectrum and the associated bifurcation
diagram for the jerk system (3). The visualizations in Figure 2
demonstrate that the jerk system (3) can exhibit periodic or
chaotic behavior as a is increased from a = 6 to a = 7.5.
The jerk system (3) displays periodic behavior for a ∈

[6, 7.03]. This conclusion is based on the presence of one zero
Lyapunov exponent and two negative Lyapunov exponents
for the jerk system (3) when a ∈ [6, 7.03]. For instance, when
a = 6, the Lyapunov exponents of the jerk system (3) take on
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FIGURE 2. Bifurcation diagram (a) and Lyapunov exponents
spectrum (b) of the new jerk system (3) when b = 4, c = 0.3 and
a ∈ [6, 7.5].

the following values:

LE1 = 0, LE2 = −0.282, LE3 = −0.722 (9)

The jerk system (3) displays chaotic behavior for a ∈

[7.03, 7.5]. This conclusion is based on the presence of one
positive Lyapunov exponents for the jerk system (3) when
a ∈ [7.03, 7.5]. For instance, when a = 7.45, the Lyapunov
exponents of the jerk system (3) take on the following values:

LE1 = 0.169, LE2 = 0, LE3 = −1.174 (10)

Additionally, the bifurcation diagram presented in
Figure 2(a) illustrates that the jerk system (3) experiences
the famous period-doubling route to chaos. Specifically as
a increases within certain parameter ranges, the jerk sys-
tem (3) undergoes a series of period-doubling that progresses
from period-1 to period-2, then to period-4, and eventually
period-8 before reaching chaotic behavior.

When a ∈ [6, 6.5], the jerk system (3) has a period-1
attractor.

When a ∈ [6.5, 6.9], the jerk system (3) has a period-2
attractor.

When a ∈ [6.9, 7.01], the jerk system (3) has a period-4
attractor.

When a ∈ [7.01, 7.03], the jerk system (3) has a period-8
attractor.

FIGURE 3. Visual representation of the attractors of the jerk system (3)
for parameter a varying.

Finally, when a falls within the range [7.03, 7.5], the jerk
system (3) has a chaotic attractor.
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TABLE 1. Period-doubling route to chaos with parameter a varying for
the jerk system (3).

FIGURE 4. Bifurcation diagram (a) and Lyapunov exponents spectrum (b)
of the new jerk system (3) when a = 7.5, c = 0.3 and b ∈ [4, 5].

The attractors observed through MATLAB simulations are
summarized in Table 1, which illustrates the period-doubling
route to chaos described earlier. Furthermore, Figure 3 pro-
vides a visual representation of the attractors of the jerk
system (3).

B. THE PARAMETER b VARYING
To study the impact of changes in the ‘‘b’’ parameter on
system (1), the values of ‘‘a’’ and ‘‘c’’ are fixed at 7.5 and 0.3,
respectively, while ‘‘b’’ is varied between 4 and 5. Figure 4
displays the Lyapunov exponents spectrum and the bifurca-
tion diagram of system (3), demonstrating that the 3-D jerk
system (3) can display both periodic and chaotic behavior as
‘‘b’’ increases within this range.

TABLE 2. Reverse period-doubling route with parameter b varying for the
jerk system (3).

When the value of ‘‘b’’ is within the range of [4, 4.24], sys-
tem (3) displays chaotic behavior with one positive Lyapunov
exponent. In addition, the system’s Kaplan-Yorke dimension
is a fractional value of 2.133. For instance, when b=4.1, the
Lyapunov exponents of the of the jerk system (3) take on the
following values:

LE1 = 0.154, LE2 = 0, LE3 = −1.159 (11)

The behavior of System (3) is periodic when ‘‘b’’ is in
the range of [4.24, 5]. In this range, one Lyapunov exponent
is zero, while the other two are negative. Specifically, when
b=4.8, the Lyapunov exponents of the of the jerk system (3)
take on the following values:

LE1 = 0, LE2 = −0.205, LE3 = −0.800 (12)

Additionally, the bifurcation diagram presented in Figure 4
illustrates that the jerk system (3) experiences the famous
period-doubling route to chaos. This leads to the occurrence
of the reverse period-doubling phenomenon in certain ranges
of ‘‘b,’’ wherein the system transitions from chaotic behavior
to period-8, then to period-4,period-2, and finally to period-1.

When b ∈ [4, 4.24], the jerk system (3) has a chaotic
attractor.

When b ∈ [4.24, 4.258], the jerk system (3) has a period-8
attractor.

When b ∈ [4.258, 4.31], the jerk system (3) has a period-4
attractor.

When b ∈ 4.31, 4.58], the jerk system (3) has a period-2
attractor.

Finally, when b falls within the range [4.58, 5], the jerk
system (3) has a period-1 attractor.
The attractors observed through MATLAB simulations are

summarized in Table 2, which illustrates the period-doubling
route to chaos described earlier. Furthermore, Figure 5 pro-
vides a visual representation of the attractors of the jerk
system (3).

C. THE PARAMETER c VARYING
If we keep a = 7.5, b = 4 and change of the value of c in
the interval [0.04, 3], then we can examine the impact of the
variation of c on the jerk system (3). Figure 6 presents the
Lyapunov exponents spectrum and the associated bifurcation
diagram for the jerk system (3). The visualizations in Figure 6
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FIGURE 5. Visual representation of the attractors of the jerk system (3)
for parameter b varying.

demonstrate that the jerk system (3) can exhibit periodic or
chaotic behavior as c is increased from c = 0.04 to c = 3.

FIGURE 6. Bifurcation diagram (a) and Lyapunov exponents spectrum (b)
of the new jerk system (3) when a = 7.5, b = 4 and c ∈ [0.04, 3].

The jerk system (3) displays periodic behavior for c ∈

[0.04, 0.077]. This conclusion is based on the presence of
one zero Lyapunov exponent and two negative Lyapunov
exponents for the jerk system (3) when c ∈ [0.04, 0.077].
For instance, when c = 0.05, the Lyapunov exponents of the
jerk system (3) take on the following values:

LE1 = 0, LE2 = −0.022, LE3 = −0.982 (13)

The jerk system (3) displays chaotic behavior for c ∈

[0.077, 3]. This conclusion is based on the presence of one
positive Lyapunov exponents for the jerk system (3) when
c ∈ [0.077, 3]. For instance, when c = 0.2, the Lyapunov
exponents of the jerk system (3) take on the following values:

LE1 = 0.149, LE2 = 0, LE3 = −1.155 (14)

Additionally, the bifurcation diagram presented in
Figure 6(a) illustrates that the jerk system (3) experiences
the famous period-doubling route to chaos. Specifically as c
increases within certain parameter ranges, the jerk system (3)
undergoes a series of period-doubling that progresses from
period-3 to period-6, from period-6 to period-12 and eventu-
ally to a chaotic attractor.

When c ∈ [0.04, 0.055], the jerk system (3) has a period-3
attractor.
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TABLE 3. Period-doubling route to chaos with parameter c varying for the
jerk system (3).

When c ∈ [0.055, 0.072], the jerk system (3) has a
period-6 attractor.

When c ∈ [0.072, 0.077], the jerk system (3) has a
period-12 attractor.

Finally, when c falls within the range [0.077, 0.3], the jerk
system (3) has a chaotic attractor.

The attractors observed through MATLAB simulations are
summarized in Table 3, which illustrates the period-doubling
route to chaos described earlier. Furthermore, Figure 7 pro-
vides a visual representation of the attractors of the jerk
system (3).

D. MULTISTABILITY AND COEXISTING ATTRACTORS
The dynamic behavior of the 3-D jerk system (3) is affected
by changes in the initial conditions (x0, y0, z0), while the
parameters of the system are kept fixed. This can lead to
the emergence of coexisting chaotic attractors for the jerk
system (3). To explore this multistability phenomenon for
the jerk system (3), we generated a bifurcation diagram by
varying z0 in the range −0.5 < z0 < 0.5 as depicted in
Figure 8 (a). The obtained results indicate that the jerk sys-
tem (3) exhibits a distinctly different chaotic attractor colored
in red in the range −0.5 < z0 < −0.1, when compared to the
chaotic attractor colored in blue and observed in the range
−0.1 < z0 < 0.5.

To provide futher clarification, we consider two starting
points as X01 = (0.3, 0.2, −0.3) and X02 = (0.3, −0.2, 0.3),
which belong to separate basins of attraction. For each start-
ing point, we generated a bifurcation diagram within the
parameter range of 0.04 < c < 0.1 to visualize the dynamic
behavior of the jerk system (3). We used blue color for X01
and red color for X02. Figure 8 (b) effectively demonstrates
that the new jerk system (3) exhibits two distinct behaviors
within the specific interval of the parameter c.
A bifurcation diagram was then generated for the jerk

system (3) for each of these starting points for the jerk
system (3) within the range of 0.04 < c < 0.1 to visualize
the behavior of the system and depicted in Figure 8, where
the blue color corresponds to the trajectory starting from
X01, while the red color corresponds to the trajectory starting
from X02.
For example, when the parameters are chosen as a =

7.5, b = 4 and c = 0.08, the 3-D jerk system (3) dis-
plays two coexisting attractors as depicted in Figure 8 (c).

FIGURE 7. Visual representation of the attractors of the jerk system (3)
for parameter c varying.

These results are in complete agreement with the observations
in Figure 8 (a).

IV. CIRCUIT DESIGN
The circuit implementation of their respective mathemati-
cal models is frequently employed to explore dynamics and
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FIGURE 8. Multistability for the jerk system (3) where a = 7.5, b = 4 and
c = 0.08: (a) Bifurcation diagram of the system (3) for z0, (b) Bifurcation
diagram of the system (3) for X01 (blue color) and X02 (red color) and
(c) MATLAB plots of the coexisting chaotic attractors of the system (3).

confirm the viability of a theoretical chaotic model. Because
electronic circuits are widely used in engineering, it is feasi-
ble to utilise them to simulate chaotic systems. In this section,
the electronic circuit of the new Jerk chaotic system (15) is
designed and confirmed.

The relevant circuit state equation set of the proposed
new Jerk chaotic system can be described as by applying
Kirchhoff principles to the electronic circuit

C1ẋ =
1
R1
y

C2ẏ =
1
R2
z

C3ż =
1
R3
x −

1
R4
y−

1
R5
z−

1
10R6

yz−
1

10R7
x2 −

1
10R8

y2

(15)

where x, y, z are the voltages across the capacitorsC1,C2,C3,
respectively. The entire circuit is put into practise on the Mul-
tisim electronic simulation platform, where Figure 9 shows
the planned circuit put into practise using Multisim simu-
lation. The values of all electronic components in Figure 9
are determined as follows: R3 = 13.33 k�, R4 = 25 k�,
R6 = 33.33 k�5 R7 = R8 = 10 k�, R1 = R2 = R5 =

R9 = R10 = R11 = R12 = R13 = R14 = 100 k�. The
simulation results, which are phase portraits of the new Jerk
chaotic system, are shown in Figure 10.
Figure 11 shows the spectral distribution for three coor-

dinates of chaotic signals: x, y and z. The power spectra of
the produced signals span to a frequency range that goes
beyond 5 kHz. The peak of the frequency spectrum was
measured to be at 1.05 kHz (for y and z). Signal x has two
peaks of the frequency spectrum: I - 0.3 kHz, II - 1.05 kHz.

V. FPGA HARDWARE IMPLEMENTATION
We describe the chaotic oscillator system with the set of
equations in (16) where a, b, and c are constant coefficients.

ẋ = y

ẏ = z

ż = ax−by−z−cyz− x2 − y2 (16)

Regarding the numerical solutions of the above system,
we will apply the forward Euler integration method. Thus, the
numerical solution for the chaotic oscillator system would be
as follows (17).

x[n+ 1] = x[n] + hy[n]

y[n+ 1] = y[n] + hz[n]

z[n+ 1] = z[n] + h(ax[n] − by[n] − z[n] − cy[n]z[n]

−x2[n] − y2[n]) (17)

here, h is the discretization step size. The digital FPGA
implementation of the chaotic oscillator system will be based
on the discrete-time equations provided above.

We provide the Python code for the chaotic oscillator
system to create a high-level perspective of the algorithm and
to aid us in designing the VHDL code for the system, as well
as verifying the behavior when comparing the results of the
VHDL system to the Python system.

Using Python we are going to describe (17) in Algorithm 1.
For the simulation, the coefficient parameters will take the
following values a = 7.5, b = 4, and c = 0.3. The initial
values of the variables are going to be xinit = 0.3, yinit = 0.2,
zinit = 0.3.

The Top Level Hardware implementation of the chaotic
oscillator system is shown in Figure 12; the top level block
has three input buses and three output buses: xinit , yinit , zinit ,
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FIGURE 9. Electronic circuit schematic of the proposed the new Jerk chaotic system (15).

xout , yout , zout . Additional inputs are the coefficient param-
eters a, b, and c. Note that the output buses are being fed back
into the block to generate the values of the following iteration
of the system.

Regarding the implementation in VHDL code, we are
going to use an architecture that takes in all system coeffi-
cients and values as inputs. Variables and constants possess
high precision in which 32 bits are used to represent them in

78592 VOLUME 11, 2023



T. Bonny et al.: Multistability and Bifurcation Analysis of a Novel 3D Jerk System

FIGURE 10. Chaotic attractor of new Jerk chaotic system (15) using
MultiSIM circuit simulation.

fixed point; the sign is represented with 1 bit, the integer part
with 7 bits, and the fractional part with 24 bits as shown in
Figure 13.
To implement the equations described in (17) on an FPGA

platform, the basic building blocks are the adder, subtractor,
multiplier, and the D flipflop (DFF) as in Figure 14. All
basic block components are sequential, taking in a clock
(clk) and an asynchronous reset (rst) as inputs; each block
requires one clock pulse to generate output. The DFF is used
to delay the output of a system. All systems are delayed with
DFF blocks such that their delay matches the system’s with
the greatest number of clock cycles required to generate its

FIGURE 11. The spectral distribution of the x, y, z signals of the chaotic
jerk circuit (15).

output. The basic components’ VHDL codes are provided in
Algorithms 2-5.

According to the equation described in (17), the variables
x and y are implemented as per the schematic shown in
Figure 15. Two operations are required for these systems,
a multiplication and an addition(i.e., two hardware blocks).
At the bottom of the figure is a graph of the number of
clock cycles required to generate the output, which shows
the propagation time of two clocks for the x and y systems.
The z system on the other hand, requires seven multipliers,
three adders, and three subtractors, as shown in Figure 16,
which results in a total number of six clock cycles for the

VOLUME 11, 2023 78593



T. Bonny et al.: Multistability and Bifurcation Analysis of a Novel 3D Jerk System

Algorithm 1 Chaotic Oscillator System
Input : Initial states xinit , yinit , and zinit . Coefficient

parameters a, b, and c.
Output: xout , yout , and zout

1 i = 0
2 x = xinit
3 y = yinit
4 z = zinit
5 while i < step do
6 xout .insert(i, x + h ∗ y)
7 yout .insert(i, y+ h ∗ z)
8 zout .insert(i, z+ h ∗ (a ∗ x − b ∗ y−z− c ∗ y ∗ z−

x ∗ x − y ∗ y))
9 x = xout[i]
10 y = yout[i]
11 z = zout[i]
12 i = i+ 1

FIGURE 12. Top Level map of the VHDL implementation.

FIGURE 13. Full Precision Fixed Point Representation.

propagation time since some of the blocks can work in paral-
lel. Because synchronization is important to generate correct
values, we delay the output of both the x and y systems by
four clock cycles by connecting four D flip flops in series to
the output, as shown in Figure 17.

Figure 18 illustrates the x − y, x − z, andy − z attractors
obtained from the oscilloscope. Note that the cursor must
have ‘‘trace’’ on in the Oscilloscope settings so that the cursor
draws the plot as it goes through the values.

VI. IMAGE CRYPTOGRAPHY SCHEME BASED THE
PROPOSED JERK SYSTEM
This section presents a novel image cryptography scheme
based on the Jerk system. Figure 19 depicts the encryption
scheme that utilizes the state vector [x, y, z] generated by the

Algorithm 2 Adder VHDL Code

1 entity adder is port(
2 clk, rst: in std_logic;
3 in1, in2: in std_logic_vector(31 downto 0);
4 out1: out std_logic_vector(31 downto

0):=(others => ‘0’)
5 );
6 end entity;
7 architecture adder_arch of adder is
8 begin
9 process(clk,rst,in1,in2)
10 begin
11 if rst = ‘0’ then
12 out1 <= (others => ‘0’);
13 elsif (clk’event and clk = ‘1’) then
14 out1 <= std_logic_vector(signed(in1)

+ signed(in2));
15 end if;
16 end process;
17 end architecture;

FIGURE 14. Basic Components used to build the Chaotic Oscillator
System.

FIGURE 15. Connections of the basic blocks to implement the x and y
systems of the chaotic oscillator.

jerk system to encrypt the original grayscale image. Firstly,
the x state variable is used to permute the original image,

78594 VOLUME 11, 2023



T. Bonny et al.: Multistability and Bifurcation Analysis of a Novel 3D Jerk System

Algorithm 3 Subtractor VHDL Code

1 entity sub is port(
2 clk, rst: in std_logic;
3 in1, in2: in std_logic_vector(31 downto 0);
4 out1: out std_logic_vector(31 downto

0):=(others => ‘0’)
5 );
6 end entity;
7 architecture sub_arch of sub is
8 begin
9 process(clk,rst,in1,in2)

10 begin
11 if rst = ‘0’ then
12 out1 <= (others => ‘0’);
13 elsif (clk’event and clk = ‘1’) then
14 out1 <= std_logic_vector(signed(in1) -

signed(in2));
15 end if;
16 end process;
17 end architecture;

Algorithm 4Multiplier VHDL Code

1 entity mul is port(
2 clk, rst: in std_logic;
3 in1, in2: in std_logic_vector(31 downto 0);
4 out1: out std_logic_vector(31 downto

0):=(others => ‘0’)
5 );
6 end entity;
7 architecture mul_arch of mul is
8 signal sig_64:signed(63 downto 0);
9 begin
10 process(clk,rst,in1,in2)
11 begin
12 if rst = ‘0’ then
13 out1 <= (others => ‘0’);
14 elsif (clk’event and clk = ‘1’) then
15 sig_64 <= (signed(in1) * signed(in2));
16 out1 <= std_logic_vector(sig_64(55

downto 24);
17 end if;
18 end process;
19 end architecture;

while the y state variable is utilized to diffuse the permuted
image. Finally, an XOR operation is performed between the
diffused images and the z state variable generated by the Jerk
system to produce the encrypted image.

A. SECURITY ANALYSIS
This section analyzes the security of the proposed cryp-
tography system using different tests; histogram analysis,

Algorithm 5 D FlipFlop VHDL Code

1 entity D_Flip_Flop is port(
2 clk, rst: in std_logic;
3 in1: in std_logic_vector(31 downto 0);
4 out1: out std_logic_vector(31 downto

0):=(others => ‘0’)
5 );
6 end entity;
7 architecture D_Flip_Flop_arch of D_Flip_Flop is
8 begin
9 process(clk,rst,in1)
10 begin
11 if rst = ‘0’ then
12 out1 <= (others => ‘0’);
13 elsif (clk’event and clk = ‘1’) then
14 out1 <= in1;
15 end if;
16 end process;
17 end architecture;

FIGURE 16. Connections of the basic blocks to implement the z system of
the chaotic oscillator.

FIGURE 17. x and y systems delayed by four clock cycles for propagation
time delay synchronization.

correlation distribution, information entropy, key space anal-
ysis, and NIST test.

1) HISTOGRAM
To display the distribution of image pixel intensity, a his-
togram is used. When an image is properly encrypted,
it should have a uniform frequency distribution. This makes
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it difficult for attackers to extract any useful statistical infor-
mation. Figure 22 illustrates the histogram distribution of
various images, indicating the uniformity of gray values in
the results. where is the intensity level and represents the
observed frequency and the expected occurrence frequency
for each gray value, respectively.

For a given image in Figure 22a, the histogram is
shown in 22c. After applying the proposed system’s encryp-
tion algorithm, we got the encrypted image as shown
in Figure 22b. The histogram of the encrypted image is
shown in Figure 22d, which is fairly uniform and dif-
ferent from the original histogram. Therefore, the pro-
posed system is effective against attacks and provides high
security.

Subsequently, Figure 20 illustrates the image decryption
scheme. Firstly, the encrypted image is XOR-ed with the
z-state variable generated by the Jerk system. Then, the
y-state variable is used to un-diffuse the obtained image.
Finally, the x state variable is used to un-permuted the image
producing the recovered image.

Figure 21 shows the proposed cryptography system’s
results on the standard cameraman image. The proposed
image encryption scheme offers enhanced security features,
owing to the use of the Jerk system, and is expected to find
applications in various fields, such as secure communication
and image processing.

2) CORRELATION
The correlation coefficient measures the degree of linear
correlation between adjacent pixels in an image. Typi-
cally, plain images strongly correlate with adjacent pix-
els, whereas encrypted images should not exhibit any such
correlation. We experimented on both the original and
encrypted images and analyzed the correlation between adja-
cent pixels to investigate this. Figures 23a and 23b show
the correlation distribution in the original and encrypted
images, respectively. The correlation distribution in the
original image is linear, indicating a strong correlation
between adjacent pixels. In contrast, the encrypted image
shows a random and scattered contribution, suggesting no
correlation between pixels. Therefore, we can conclude
that our cryptography system is secure against correlation
analysis.

3) INFORMATION ENTROPY
Information entropy, denoted by H(X), measures the ran-
domness or uncertainty in a data set. In image encryption,
information entropy can measure the amount of random-
ness or unpredictability in the encrypted image. In image
encryption, the original pixel values of an image are trans-
formed to produce an encrypted image that appears random
to an observer without the encryption key. The information
entropy of the encrypted image is used to measure the amount
of unpredictability or randomness in the encrypted image.
A higher information entropy of an encrypted image indicates

FIGURE 18. Oscilloscope images of the chaotic oscillator plot from three
perspectives.

a higher level of security against attacks, making it more
challenging for an attacker to extract useful information from
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FIGURE 19. The proposed image encryption scheme using Jerk system.

FIGURE 20. The scheme of the proposed image decipher.

FIGURE 21. The results of applying the proposed cryptography scheme on the standard cameraman image.

it. Therefore, high information entropy is desirable in image
encryption schemes. The entropy of the original image is
calculated to be 7.0412, whereas the encrypted image exhibits
an entropy of 7.9667. It is evident from the outcomes that
the entropy value of the encrypted image closely approxi-
mates the ideal value of 8. In contrast, the entropy of the
unencrypted image markedly deviates from the theoretical
expectation.

4) KEY SPACE ANALYSIS
Keyspace analysis is a type of cryptanalysis that exam-
ines the total number of possible encryption keys and
the size of the key space to evaluate the security of an
image encryption algorithm. In our proposed cryptogra-
phy system, the keystream length matches that of the
image, comprising 50176 values image of size 224 × 224.
The vast number of potential combinations resulting from
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FIGURE 22. Histogram analysis for the proposed cryptography scheme.

FIGURE 23. Correlation of two adjacent pixels in the original and encrypted images of size 224 × 224.
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TABLE 4. NIST SP 800-22 tests for the x,y, and z key streams that are
generated from the jerk system.

this makes it difficult for a brute-force attack to pose a
threat.

5) NIST
The NIST SP800-22 is a statistical test suite developed by
the National Institute of Standards and Technology (NIST)
for evaluating the randomness of binary sequences, such
as those generated by cryptographic algorithms. The suite
consists of 15 statistical tests designed to detect specific types
of non-randomness or patterns in the binary sequence. This
test is often used in cryptography to assess the quality and
randomness of cryptographic keys, random number gener-
ators, and other cryptographic primitives. It is important to
ensure that cryptographic keys and other parameters used in
encryption are truly random, as attackers could exploit any
predictable patterns or biases in the generated values to com-
promise the security of the encryption. The chaotic sequence
generated by the Jerk was tested for randomness using NIST
SP800-22 in Table 4, where the three random sequences
generated from the jerk system have been extensively tested
and found to exhibit a high degree of randomness, with no
discernible patterns or correlations.

VII. CONCLUSION
In this paper, we presented a novel 3-D jerk system with three
quadratic nonlinear terms and demonstrated the dynamical
properties of the proposed jerk system in terms of phase
portraits, bifurcation diagrams, Lyapunov exponents, multi-
stability and coexisting attractors. For practical implementa-
tions, we designed an electronic model of the proposed 3-D
jerk system using Multisim version 14.0. To demonstrate the
feasibility of the proposed chaotic jerk system, we imple-
mented the proposed jerk system using a field-programmable
gate array (FPGA), which shows high throughput and
low power consumption. Security analysis shows the

effectiveness of our proposed algorithm in terms of high
security and excellent encryption performance. Our research
contributes to the ongoing efforts toward developing robust
and secure image encryption techniques that can be utilized
in various applications, such as secure communication and
data storage.
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