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ABSTRACT Introduction: In pattern recognition and data mining, feature selection is one of the most crucial
tasks. To increase the efficacy of classification algorithms, it is necessary to identify the most relevant
subset of features in a given domain. This means that the feature selection challenge can be seen as an
optimization problem, and thus meta-heuristic techniques can be utilized to find a solution. Methodology: In
this work, we propose a novel hybrid binary meta-heuristic algorithm to solve the feature selection problem
by combining two algorithms: Dipper Throated Optimization (DTO) and Sine Cosine (SC) algorithm.
The new algorithm is referred to as bSCWDTO. We employed the sine cosine algorithm to improve the
exploration process and ensure the optimization algorithm converges quickly and accurately. Thirty datasets
from the University of California Irvine (UCI) machine learning repository are used to evaluate the robustness
and stability of the proposed bSCWDTO algorithm. In addition, the K-Nearest Neighbor (KNN) classifier
is used to measure the selected features’ effectiveness in classification problems. Results: The achieved
results demonstrate the algorithm’s superiority over ten state-of-the-art optimization methods, including the
original DTO and SC, Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Grey
Wolf Optimization (GWO), Multiverse Optimization (MVO), Satin Bowerbird Optimizer (SBO), Genetic
Algorithm (GA), the hybrid of GWO and GA, and Firefly Algorithm (FA). Moreover, Wilcoxon’s rank-sum
test was performed at the 0.05 significance level to study the statistical difference between the proposed
method and the alternative feature selection methods. Conclusion: These results emphasized the proposed
feature selection method’s significance, superiority, and statistical difference.

INDEX TERMS Feature selection, dipper throated optimization algorithm, Sine cosine optimization
algorithm, meta-heuristic optimization.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Feature Selection is the process of selecting relevant fea-
approving it for publication was Claudia Raibulet . tures for the machine learning model based on the type of
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problem being solved. This process is also defined as isolat-
ing the most consistent and non-redundant features for use
in machine learning tasks [1]. Therefore, the primary goal
of feature selection is to improve predictive model perfor-
mance while lowering computational modeling costs [2]. The
advantages of feature selection can be briefly described as
follows (1) It helps simplify the machine learning models by
reducing the input features. (2) The training time of machine
learning models based on feature selection can be signif-
icantly reduced as the more precise collection of features
reduces the time required to train a model. (3) With the
help of feature selection, the precision of machine learning
models can be increased. (4) The curse of high dimension-
ality can be avoided by reducing the input features [3]. The
dimensionality of a problem is a significant problem that
might degrade classification efficiency. Large datasets with
a high number of features are essential for the success of
many applications. As a result, classification performance
is hampered since many of these features are redundant,
unnecessary, or noisy [4]. Thus, to properly prepare data for
machine learning algorithms, feature selection is a necessary
step [5], [6], [7]. Figure 1 depicts the typical feature selection
process. The dataset is usually preprocessed to handle miss-
ing values and outliers. Then, the selection of the best features
is applied through an iterative process. A subset of features
(solution subsets) is selected and evaluated using criteria to
decide whether to keep or remove. This iterative process’s
final output is the best feature set that can be assessed using
machine learning classifiers [8], [9].

On the other hand, multiple fields of study use optimiza-
tion techniques, including computing, agriculture, medicine,
engineering, and feature selection. Optimization aims to iden-
tify and pick the best solution to a problem from among
those that satisfy the problem statement requirements. Fur-
ther, in optimization methods, the goal is typically to reduce
or maximize criteria, depending on the nature of the situation
at hand [10]. The main feature selection approaches include
wrapper, filter, and hybrid-based methods [11]. Wrapper
techniques are accurate but time-consuming since they need
to incorporate learning methods into the selection function,
reducing the search space for choosing features. The speed
and scalability of the filter-based feature selection techniques
or the conventional feature selection approaches are an advan-
tage. In computer science, genetic algorithms are based on
the randomness of the natural selection process, which is the
basis for all biological evolution and can be used in numerous
areas, such as machine learning problems, optimization, and
feature selection [12]. Evolutionary computing methods are
being examined as an option to get the best solution. Nature,
biological behavior, and creatures’ social behavior, such as
birds, whales, bats, grasshoppers, fireflies, salp, fish, wolves,
etc., inspire swarm-based algorithms [13]. Researchers in
several fields have turned to optimization techniques to find
solutions to various problems.

As the feature selection method significantly impacts the
performance of machine learning classification models, it is
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crucial to provide an effective feature selection method to
realize this target. This represents the primary motivation
of this work. Therefore, in this paper, we proposed a novel
hybrid algorithm that effectively selects the most significant
set of features to improve classification performance. The
proposed algorithm is based on the original DTO and SC
algorithm. The effectiveness of the proposed approach was
validated in terms of 30 datasets from the UCI machine
learning repository, including seven datasets with more than
1000 features. In addition, statistical analysis is performed
to study the superiority and stability of the proposed hybrid
approach. The achieved results confirmed the findings of this
approach. Moreover, the proposed method is compared with
other popular metaheuristic algorithms, including the origi-
nal bDTO and bSC, bPSO, bWOA, bGWO, bMVO, bSBO,
bGWO-GA, bFA, and bGA for this research. To sum up the
main findings of this work:

« Anovel feature selection algorithm is proposed based on
hybrid SC and DTO algorithms.

« Evaluation of the proposed bSCWDTO in terms of thirty
UCI benchmark datasets.

« A comparison between the proposed approach and other
state-of-the-art feature selection methods.

« A statistical analysis of the proposed approach is per-
formed to prove its significance and statistical signifi-
cance.

o Evaluating the continuous version of the proposed
algorithm in terms of the CEC2017 benchmark func-
tions.

« Performing sensitive analysis of the proposed algorithm’s
convergence time and convergence fitness.

The structure of this paper is presented in six sections.
The literature review of the studies on feature selection is
provided in Section II. The preliminaries that form the basis
of the proposed method are introduced in Section III. The
proposed methodology is then explained in Section IV. The
achieved results are presented and discussed in Section V.
Finally, the conclusion and future perspectives are presented
in Section VI.

II. LITERATURE REVIEW

Eberhart and Kennedy first presented an evolutionary
algorithm based on swarm intelligence in 1995 as Parti-
cle Swarm Optimization (PSO) algorithm [14]. The PSO
approach, developed to tackle the feature selection problem,
has been widely used in multiple research since its inception.
The approach was motivated by the cooperative nature of
birds and fish. The PSO technique has several benefits, such
as its ease of use and quick convergence rate. However, this
strategy has a few problems, including local optimums and
a lack of population variety. As a result, some pieces have
discussed combining PSO with other algorithms to boost its
speed and apply it to feature selection problems. A PSO-
based hybrid feature selection technique using a local search
strategy is proposed, for instance, by the authors of [15]. The
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FIGURE 1. The typical process of feature selection.

proposed method uses a local search approach embedded in
particle swarm optimization to pick the least correlated and
most crucial subset of features. The local search strategy aims
to help the particle swarm optimization search process pick
relevant features by leveraging data on existing correlations.
It was tested on 13 distinct standard classification datasets
and compared to 5 popular feature selection techniques. Other
writers have employed PSO in their work as well [16],
[17]. For complex facial expression recognition problems,
the authors presented a genetic algorithm (GA) integrated
with PSO for feature selection. Using Gaussian mutation in
the equation for updating the particle’s velocity, a micro-GA
was incorporated into the original PSO technique to delay the
onset of convergence. Successful global and local search also
requires a system for updating velocity, which depends on the
average user’s experience [18], [19], [20].

The authors of developed wrapper-based techniques for
discovering the most important and optimal features citezR49
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using a PSO and a spiral-shaped mechanism (PSO-SSM).
The proposed technique is more effective than traditional
Gas and PSO-based feature selection algorithms in deter-
mining the emotional state of a face. The PSO-SSM made
three enhancements. To begin, finding a wide selection of
products was aided by logistical maps. Secondly, the posi-
tion quality of the subsequent generation was significantly
enhanced by adding two additional parameters to the original
position update method. After locating the ideal solution
region, a spiral-shaped mechanism was used as a local search
operator. Twenty well-known benchmark datasets were used
to analyze the performance of the proposed PSO-SSM using
a kNN classifier and to draw comparisons to the wrapper and
filter-based techniques [21], [22], [23].

The Grasshopper Optimization System (GOA) is an
innovative swarm intelligence algorithm that takes cues
from real-life grasshoppers’ foraging and hive-mind tactics.
Researchers in [24] found that a new binary hybrid algorithm
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may be developed by combining the GOA algorithm and
the mutation operator of GA. The authors could convert
continuous GOA to binary by applying transfer functions.
Moreover, a mutation operator with a moderate mutation rate
was used to provide a wide range of possible answers. Select
features were examined using k-NN for 25 reference datasets.
The about 92% accuracy in categorization was a substantial
improvement above standard benchmarking approaches. The
authors of [25] improved the version of GOA with additional
evolutionary-based operators for creating a productive wrap-
per feature selection method. On twenty-two UCI datasets,
the proposed approaches were evaluated. The effectiveness of
the GOA was shown to be significantly affected by the EPD.
By including the selection mechanism, the proposed method
became more effective than competing optimizers at locat-
ing optimal solutions and displaying superior convergence
trends.

The Salp Swarm Algorithm (SSA) is a cutting-edge meta-
heuristic algorithm that mimics the actions of salps in the
ocean’s depths and is invented by the authors of [26] and [27].
In some feature selection approaches, SSA has been used as a
search technique [28], [29]. Similar improvements in oppor-
tunistic search behavior were also noticed by the authors
of [30], who addressed problems with the SSA method.
Researchers improved SSA’s exploitability using the local
search (LS) method. The research also employed a chaotic
map and an original equation variable to determine the most
effective way of providing followers with their current posi-
tion. For the feature-selection problem, 20 standard-setting
classification datasets and three datasets were used to test the
effectiveness of the proposed approach. A dynamic SSA was
shown to be superior to other possible alternatives.

To solve global optimization problems, the authors of [31]
presented an algorithm called the Sine Cosine Algorithm
(SC) that takes advantage of the features of sine and cosine
functions. In [32], the authors develop a system combining
SSA and SC while introducing a new population diversifi-
cation mechanism called the “disruption operator.” When
combining SSA with SC to generate a pool of candidates
for a solution, more variety was included to prevent a
decline in solution quality. When applied to feature selection
problems for datasets with feature sizes between thirteen
and eleven thousand, the outcomes were encouraging. The
authors of [33] developed a novel hybridization strategy using
SC. They transformed traditional PSO into binary variations
using massive datasets and added SC to enhance exploration.
The clustering problem for seven high- and low-dimensional
datasets, including nine to over eleven thousand features, was
solved using the k-means approach after preliminary testing
with ten standard benchmark test functions. The proposed
technique incorporated the SC’s location update equation
into the PSO’s velocity equation [34]. In addition, the PSO’s
weighting factor was modified, with the value shifting with
each iteration. A select group of iterations was selected to
inject the maximum inertia weight to improve the capability
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of searching distant locations. The study claimed a signifi-
cant improvement in clustering accuracy compared to several
previous natural-inspired optimization approaches using sta-
tistical t-tests. It was proposed by the authors of [35] that
SC and Antlion Optimization (ALO) may be combined to
form a novel hybrid optimization method. The first group
was updated using SC, and the second was updated using
ALO. The position update equations also included numerous
random variables to boost the population’s diversity. Using
V- and S-shaped transport functions in feature selection,
the authors implemented a binary variant of the proposed
method [35], [36].

Authors in [37] present a Grey Wolf Optimizer algorithm
coupled with a Two-phase Mutation to address feature selec-
tion for classification problems based on wrapper approaches.
To fit the binary form of the feature selection problem, the
sigmoid function is utilized to convert the continuous search
space to the binary one. The two-phase mutation improves
the algorithm’s exploitation capacity. The initial mutation
phase aims to minimize the number of chosen features while
maintaining good classification accuracy. The second muta-
tion phase seeks to incorporate more informative features
that improve classification accuracy. Because the mutation
phase can be time-demanding, the two-phase mutation is less
likely to succeed [38], [39]. Because wrapper approaches
can produce high-quality results, authors employed one of
the most well-known wrapper methods, the k-Nearest Neigh-
bor (k-NN) classifier. To find the k-NN, they use Euclidean
distance is calculated. Each dataset is divided into training
and testing data using K-fold cross-validation to avoid over-
fitting. Several comparisons were made between the flower
method, particle swarm optimization algorithm, multi-verse
optimizer algorithm, whale optimization algorithm, and bat
algorithm. Thirty-five datasets are used in the studies. Statis-
tical analyses are performed to demonstrate the efficacy and
outperformance of the proposed method.

Grey Wolf Optimization (GWO) is a meta-heuristic
method based on a mathematical grey wolf leadership and
hunting model. Grey wolves often dwell in groups of 5-12
individuals and have a rigid social dominating structure. They
are classified into four categories based on their dominance:
alpha (@), beta (B), delta (8), and omega (w). This study
presents a feature selection technique for picture steganaly-
sis based on a novel levy flight-based grey wolf optimizer
(LFGWO). The method is verified using the BOSS-base ver.
1.01 image dataset, which contains cover and stego images.
The feature extraction techniques, such as AlexNet, were
used to extract 686 and 1000 features, respectively. The pro-
posed LFGWO-based feature selection strategy is compared
to PSO and GWO-based feature selection approaches [40].
Regarding mean fitness, standard deviation values, and con-
vergence behavior, LFGWO surpasses the meta-heuristic
algorithms GWO, PSO, and GSA. The proposed LFGWO
outperforms previous meta-heuristic algorithms according to
practical and statistical results.
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The authors of [41] present a hybrid approach to solving
function optimization and feature selection issues by combin-
ing the Grey Wolf Optimizer (GWO) and the Crowd Search
Algorithm. The suggested hybrid algorithm can success-
fully explore the search space since it combines GWO with
other approaches to overcome shortcomings. The suggested
approach accelerates the optimization process’s early stages
by making full use of both algorithms’ capabilities through an
adaptive balancing probability. While promising ideas may be
used early on in the optimization process, it is more probable
that they will be utilized later on. In practice, optimization
problems having more than three objectives are not unusual.
In evolutionary computing, many-objective optimization
issues pose significant obstacles. However, algorithm perfor-
mance analysis and comparison have received comparatively
less focus than the rapid development of algorithm design.
Many-objective optimization uses several test problem sets
initially created for multi-objective optimization [42], [43],
[44]. This contest presents a set of test issues that accu-
rately depict various real-world conditions by selecting and
designing 15 test problems with distinct qualities to further
evolutionary many-objective optimization research.

Ill. PRELIMINARIES

In this section, the feature selection problem formulation is
presented. In addition, the basics of the algorithms employed
in developing the proposed hybrid algorithm are demon-
strated.

A. FEATURE SELECTION PROBLEM FORMULATION

In this part, we describe the mathematical modeling of feature
selection. The typical dimensions of a dataset for classifica-
tion (i.e., supervised learning) are Ny x N, where N is the
total number of samples, and N is the number of features.
To accomplish its task, the feature selection algorithm first
divides the entire set of features Ng into smaller subsets (S)
whose combined dimensions are smaller than Nr. To get to
that subset of features, you may use the following objective
function:

S
Fit:kxys+(1—k)x(u) (1)
Nf
where X is selected from the range [0-1], and it is used to

IS]

balance between (N_F) and ys. The selected features are

denoted by |S|, and ys is the classification error [45].

B. DIPPER THROATED OPTIMIZATION ALGORITHM

There are three methods used in the explorer stage. Birds’
cooperative nature inspired a novel metaheuristic method
called DTO. Here, we offer a narrow mathematical mecha-
nism and give a detailed account of its discovery and use.
The DTO method uses three different techniques to improve
exploration: (1) flying to a new site, (2) switching to another
bird, and (3) flying efficiently over a known region. The
exploitation process involves watching the birds and trying
to out-hunt one another for food [46].
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When applying the DTO algorithm, a flock of birds swims
through the space to search for food. The positions and speeds
of the birds can be represented by the following two matrices,
referred to as P and V, respectively. Using these metrics, DTO
may probe the search space for the optimal answer. The fol-
lowing matrices explain the DTO algorithm’s computations
in further detail.

[Piy P12 Pz ... Pial
Py Py Pz ... Py
P=|P3; P3p P33 ... Pig )
_Pm,l Pna  Pm3 Pm,d_
[(Vii Viz Vizg ... Vid]
Vou o Voo Va3 ... Vay
V=|V1 Via Viz ... Viy 3)
_Vm,l Vm,2 Vm,3 ce Vm,d_

For the indexes i € 1,2,3,...,mandj € 1,2,3,...,d
and in the j dimension, the bird i" is referred to as by P; ,
and the speed of the bird is denoted by V; ;. The following
array determines the bird’s fitness f = f1, >, /3, ..., fu-

filP11, P12, P13, ..., Pra)
HP21,P22,P23,...,P24q)

f=1| fsP31,P32,P33,...,P34) 4)
fm(Pm,lv Pm,27 Pm,37 ce ,Pm,d)

Mother birds have the highest fitness among birds because
they provide the most offspring with the skills to find food and
survive. The best position denoted Ppes, is updated during
the search process. The P,4, which refers to the regular birds,
serves as followers to the mother birds. Pgpes; refers to the
most optimal solution available during the search process.
The optimizer uses the DTO strategy to follow the swimming
bird using the following equations to account for movement
within the population and time.

X = Pbest(i) - K1~|K2~Pbest(i) - P(l)| (5)

Y=P@O)+V(i+1) (6)
. _ X ifry <05
Pi+1)= I Y otherwise, )

V(@i+ 1) = K3V (i) + Kar1(Ppes: (i) — P(i))
+ Ks5r2(PGpes: — P() (8)

where the best birds’ position is denoted Pp, (i), the average
position of the birds for iteration i is referred to as P(i),
and V(i + 1) is the speed of the birds on iteration i + 1.
To clarify, K4 and K5 are constants with values 1.7 and 1.8,
respectively, and K, K7, and K3 are weight values selected
dynamically from the range of [0-2] during the optimization
process. Random numbers in the range [0, 1] make up the
values of rq, rp, and r3.
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C. SINE COSINE OPTIMIZATION ALGORITHM

The Sine Cosine (SC) algorithm was initially introduced
in [47]. This algorithm’s sines (and cosines) oscillate func-
tions are essential in determining the optimal solution posi-
tions. To express SC operations, the following random vari-
ables are employed [48].

o The location of the movements.

o The direction of the motion.

o The swapping among the components of sines and
cosines.

« Emphasizing/de-emphasizing the destination effect.

The update process of the candidate solutions is performed
using the following equation.

P(t+1) = P(t) + rs.sin(re).|r18*(1) = S(t)|  r4 < 0.5
| P@) + rs5.cos(re).1rS* (1) — S()| 4 = 0.5
©)

where the number of search iterations is represented by t.
The algorithm tracks two important solutions: the current
solution, denoted as S, and the best solution, denoted as
S*. Random variables r4, rg, and ry are allocated values in
the range of [0, 1]. These random variables play a crucial
role in the algorithm as they influence the positions of the
solutions. Specifically, the equation utilized in the algorithm
indicates that the location of the best solution obtained thus
far impacts the current solution’s position. This influence
facilitates the exploration of the search space and increases
the likelihood of converging to an optimal solution. During
the running iterations of the SC algorithm, the value of ry4 is
dynamically updated according to the following equation,
further enhancing the search process.

axt

r4=a-— (10)

tmax
where a is a constant, ¢ and #,,, represent the current and
maximum iterations, respectively.

The SC algorithm is a resilient metaheuristic approach
compared to many existing algorithms. Its ability to utilize
a single optimal solution to guide the other solutions sets
it apart. This approach contributes to a notable reduction
in convergence time and memory usage, distinguishing it
from alternative algorithms [48]. However, it is important to
acknowledge that the efficiency of the SC algorithm can be
compromised when confronted with an increasing number of
local optima. Stagnant local optima pose a challenge, which
can hinder the algorithm’s progress. We have integrated the
SC optimizer and the Dynamic Throated Optimization (DTO)
algorithm into our novel approach to address this issue.
By incorporating the fast convergence rates and memory
efficiency of the SC optimizer and DTO algorithm, we aim to
strike a healthy balance between exploration and exploitation
tasks throughout the optimization process, ensuring enhanced
performance and overcoming the limitations associated with
growing local optima.
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D. K-NEAREST NEIGHBOR

In this study, the k-Nearest Neighbor (KNN) classifier,
a supervised learning method, is employed as the basis for
a wrapper approach to feature selection [30]. KNN does not
rely on the construction of models but instead uses training
examples to determine the class of the unknown instance. The
KNN is employed in the conducted experiments to evaluate
the efficacy of the traits. Each sample is assigned to a category
based on the majority vote of its nearest K neighbors. Finding
the K nearest neighbors to a sample is done by computing the
Euclidean distance, Eucp, between features from the training
data and features from the testing data, which is calculated
using the following equation.

k
Eucp = | D (|Train_Fj| — |Test_F|)? (11)
i=1
where Train_F; and Test_F; are the sets of features in the

training and testing sets, respectively, and k refers to the
number of features.

IV. THE PROPOSED METHODOLOGY

The proposed feature selection algorithm is based on two
optimization algorithms, namely,s DTO and SC algorithms,
and is denoted by binary sine-cosine weighted dipper-
throated optimization (bSCWDTO). The proposed algorithm
exploits the advantages of both algorithms to improve the
exploration of the search space and better exploitation
of the intermediate solutions to find the best set of fea-
tures. The steps of the proposed algorithm are presented in
Algorithm 1.

A. BINARY OPTIMIZATION

By selecting the best set of features for improving the clas-
sification accuracy, the continuous output of bSCWDTO is
converted into binary (0 or 1) using the sigmoid function
represented by the following equation.

P(H‘l) — 1 if Sigmoid (Ppes) > 0.5
b 0 otherwise,

1
1 + e_lo(PBest_O-S)

Singid(PBest) = (12)

In the algorithm context, the symbol Pp,, represents the
best position achieved thus far in the optimization process.
The iteration number is denoted by ¢, indicating the current
stage of the algorithm. A fitness function is employed to
assess the quality of candidate solutions during the feature
selection process. This function serves as a measure of the
suitability or effectiveness of a particular set of selected
features. The following equation mathematically represents
the fitness function:

Number of selected features

F, = wiError(P) +w 13
" ! #) > Total number of features (13

where P is a solution, w; € [0,1], and wp = 1 — wq,
which are used to control the importance of the number of the
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selected feature for the population of size n and to maintain
the classification error rate.

Algorithm 1 The Proposed Binary bSCWDTO Algorithm
1: Initialize birds’ positions P;(i = 1, 2, ..., n) for n birds,
birds’ velocity V;(i = 1, 2, ..., n), objective function f;,
iterations ¢, Ty, parameters of ry, ra, 13, ra, rs, e, 17,
K1, K>, K3, K4, K5
: Calculate fitness of f;, for each bird P;
: Find best bird position Ppes
: Convert best solution to binary [0, 1]
Setr =1
while ¢ < Tmax do
fori=1:i<n+1)do
if (1%2 == 0) then
if (3 < 0.5) then
Update the current swimming bird’s position
as:
P(i+ 1) = Ppest (i) — K1.|Ka-Ppest (i) — P()]
11: else
12: Update the current flying bird’s velocity as:
V(i+1) = K3V(@) + Kgr1(Ppes: (i) — P(i) +
K512 (PGpest — P(i))

R A A A

_
=4

13: Update the current flying bird’s position as:
Pi+1)=PO+V(i+1)

14: end if

15: else

16: Update current agents’ positions as

17: if (r7 < 0.5) then

18: Update agent position by:

Pt + 1) = P(t) + rasin(rs)|re PGoest ()P (1)
19: else
20: Update agent position by:
P(t + 1) = P(t) + r4c0s(rs)|r6 PGpes: (1) P(1)]
21: end if
22: end if
23:  end for
24: Update r1, 12, 3, 14, 15, 16, 77, K1, K2, K3
25:  Convert to binary the updated solution by Equation
(12).
26:  Calculate objective function f; for each bird P;
27:  Find the best position Ppg
28: end while
29: Return the best solution Pgpes:
30: Setr=1t+1

B. COMPLEXITY ANALYSIS

The complexity of the proposed bSCWDTO is calculated
in the following steps, where T},,, refers to the maximum
iterations and n number of agents.

« Initialize parameters of the bSCWDTO algorithm: O(1).
o Calculate F), for each bird P;: O(n).

o Update positions of swimming birds: O(Tqx X n).

o Update positions of flying birds: O(Ty,qx X 1).

« Update velocities of flying birds: O(Tjpqx % n).
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TABLE 1. Configuration parameters of the competing algorithms.

Algorithm  Parameter Value
DTO [46] Tterations 500
Number of runs 30
Exploration percentage 70
PSO [49] Acceleration constants [2, 12]
Inertia Wiax, Winin [0.6, 0.9]
Number of particles 10
Number of iterations 80
WOA [50] r [0, 1]
Number of iterations 80
Number of whales 10
a 2to0
GWO [51] a 2to0
Number of iterations 80
Number of wolves 10
SBO [52] Step size 0.94
Mutation probability 0.05
Lowe and upper limit difference ~ 0.02
GA [53] Cross over 0.9
Mutation ratio 0.1
Selection mechanism Roulette wheel
Number of iterations 80
Number of agents 10
FA [54] Number of fireflies 10
MVO [55]  Wormhole existence probability [0.2, 1]
SC [56] Inertia factor [0, 1]

« Update positions Investigating area around best solution:
O(Tinax X n).

« Calculate updated best solution: O(T}yqx X n).

o Calculate F, for each agent S;: O(Tyax)-

o Update bSCWDTO parameters: O(Tyax)-

« Convert solution to binary: O(Tyax)-

o Obtain best bird Ppeg: O(Tiax).

« Obtain the global best bird Pgpess: O(1)

Based on the above steps of complexity analysis, the com-
plexity of the proposed bSCWDTO is measured as O(Tqx X
n). So our algorithm has O(n) time complexity.

V. EXPERIMENTAL RESULTS

The experimental evaluations were performed on a Win-
dows 11 PC with an Intel(R) Core(TM) i7 CPU operating
at 2.40 GHz and 16GB of RAM. To implement the proposed
approach, Python 3.9 was utilized. To assess the effectiveness
of the proposed bSCWDTO method, thirty datasets from
the UCI machine learning repository were selected. The
datasets were divided into training, validation, and testing
subsets, all assigned identical random sizes. The KNN classi-
fier was trained using the training subset during the learning
phase. The performance of the resulting model was evaluated
using the testing subset, while the validation subset was
employed for calculating the fitness function of a given solu-
tion. The experimental setup for the proposed approach and
the competing methods are presented in Table 1 and Table 2,
respectively. Each optimizer utilized ten search agents and
executed 80 iterations over 20 independent runs. A k-fold
cross-validation with a value of 10 was applied, using a
k-nearest neighbors approach with a neighborhood size of
5 and employing the KNN classifier.
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TABLE 2. Configuration parameters of the proposed bSCWDTO algorithm.

Parameter Value

Iterations 100

Agents 10

Repetitions 20

Dimension Number of features

Inertia factor of SC 0.1
Domain of Search [0, 1]
wi in Eq. (13) 0.99
wa in Eq. (13) 0.01

TABLE 3. Evaluation metrics used in assessing the proposed feature
selection method.

Metric  Value

1 M *
Mean - ¥, S;

min™, S*

Best Fitness i=15;

Worst Fitness max{‘;’ 157
1 M - *
37 Liz1 Size(S}")

3w Il & Ty mse(Vi - Vi)

Vs XM (87 - Mean)®

Average fitness size

Average Error

Standard deviation

A. EVALUATION METRICS

The achieved results were evaluated based on the criteria
outlined in Table 3. These criteria were employed to assess
the performance of the proposed feature selection method,
as indicated by [57], [58], [59], [60], and [61]. Moreover,
Table 3 provides information on the number of runs (M)
performed by both the proposed algorithm and the competing
optimizers. Within this table, the best solution obtained dur-
ing the jth run is denoted as SJT", and its length is represented
by size(Sj*). The variable N corresponds to the number of

data points in the test set. Additionally, V,, and V,, refer to the
predicted and actual values relevant to the evaluation process.

B. THE DATASETS

Experiments were run on thirty datasets in the UCI repos-
itory [62] to assess the efficacy of the proposed algorithm.
A low-dimensional data set with low and high dimensions
and following and small and small in this document has
been accepted for evaluating the performance of the method
provided herein regarding features and samples. Regarding
compression, the KNN classification (with K = 5) employed
in the packing approach is superior. Each dataset is then
evaluated using a cross-comparison technique in the proposed
method. K—1 is used for drilling and verification throughout
the inspection process, while the rest of the stocks are put
through folding tests. The sample size used for testing is iden-
tical to the training data size. Table 4 displays information
about the utilized data set, including the feature and sample
counts.
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To ensure the accuracy and reliability of the feature selec-
tion algorithm, it is crucial to preprocess the dataset, consid-
ering the potential presence of missing values. When missing
values are encountered in the dataset features, a prepro-
cessing step is performed to handle them effectively. The
missing values are imputed by averaging the previous and
next non-missing values, providing a reasonable estimate.
Additionally, scaling and normalization of the dataset values
play a vital role in ensuring equitable consideration of all
features by the machine learning model.

This study adopts the min-max scaler as a fundamental data
scaling technique. This approach transforms and constrains
the data features to a standardized range between 0 and 1.
Using the min-max scaler, the data values are rescaled pro-
portionally to their original range, preserving the distribution
characteristics of the dataset. The min-max scaler equation
utilized in this article is as follows:

X = X — Xmin
Xmax — Xmin

where X' represents the scaled value, X denotes the original
value, Xpin represents the minimum value in the dataset, and
Xmax represents the maximum value in the dataset. Applying
the min-max scaler transforms the dataset to a consistent
scale, enabling effective feature selection and subsequent
analysis.

C. THE ACHIEVED RESULTS

The effectiveness of the proposed bSCWDTO optimizer is
measured in terms of the evaluation criteria, including stan-
dard deviation, mean error, worst fitness, best fitness, mean
fitness (Mean), and mean select size, and based on the thirty
UCIT machine learning datasets. Several optimization meth-
ods, both single and hybrid methods, are tested along with
the proposed bSCWDTO algorithm to find which of them is
performing best. The single methods are the binary variants of
bDTO [46], bSC [56], bPSO [49], bWOA [50], bGWO [51],
bMVO [55], bSBO [52], bGA [53], and bFA [54], where b
denotes the binary output of the optimization method. To fur-
ther elucidate the efficacy of the proposed algorithm, a hybrid
algorithm, bGWO_GA [63], is included in the conducted
experiments.

Table 5 displays the average error, Table 6 presents the
average select size, and Table 7 presents the average fit-
ness achieved by each optimization method. These tables
show that the proposed bSCWDTO method achieves the
best results for all the evaluation criteria and when tested
on all UCI datasets. The proposed algorithm uses the pro-
posed hybrid approach to the best solution, which includes
the optimal subset of features that minimizes error. In these
tables, the average of the chosen features serves as evidence
of the efficiency of the proposed method. The selection of
fewer features indicates that the optimizer is engaging in
feature selection; nonetheless, keeping the error rate as low
as possible is crucial.
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TABLE 4. List of UCI datasets employed in this work.

No. Dataset No. Attr.  No. Inst. | No. Dataset No. Attr.  No. Inst.

1 700 17 101 16 IonosphereEW 34 351

2 Breast cancer tissue 9 106 17 Fri_c0_500_10 10 500

3 Breast cancer Coimbra 9 116 18 Kc2 21 522

4 Lymphography 18 148 19  Climate 20 540

5 Hepatitis 10 155 20 WDBC 30 569

6 WineEW 13 178 21 Australian 14 690

7 Parkinsons 22 195 22 Breast_Cancer 8 700

8 SonarEW 60 208 23 Blood 4 744

9 Seeds 7 210 24 Segment 19 2310

10 Glass 9 214 25 Space-ga 6 3207

11 Lung cancer 21 226 26  WaveformEW 21 5000

12 SpectEW 22 267 27 Diabetic 19 1151

13 HeartEW 13 270 28 Mofn 10 1324

14 Vertebral 6 310 29 HAR 561 10299

15 Ionosphere 34 351 30 ISOLET 617 7797

TABLE 5. The average error measurements based on the selected features using various algorithms.

Dataset bSCWDTO bDTO bSC bPSO bBWAO bGWO bMVO bSBO bGWO_GA bFA bGA
700 0.364 0.377 0.371 0.368 0.365 0.374 0.365 0.382 0.386 0.372  0.365
Breast cancer tissue 0.301 0.314 0.315 0.342 0.327 0.303 0.336 0.322 0.362 0.333  0.322
Breast cancer Coimbra 0.373 0.386 0.384 0.391 0.383 0.375 0.399 0.406 0.392 0.398  0.387
Lymphography 0.454 0.464 0417 0.447 0.459 0.424 0.446 0.425 0.425 0.457 0.447
Hepatitis 0.302 0.320 0.321 0.318 0.309 0.318 0.321 0.296 0.330 0.308 0.314
WineEW 0.317 0.332 0.320 0.324 0.326 0.348 0.327 0.331 0.324 0.334 0.322
Parkinsons 0.407 0416 0421 0.423 0.416 0.416 0.415 0.416 0.405 0410 0422
SonarEW 0.209 0.215 0.216  0.211 0.210 0.216 0.211 0.214 0.216 0.213 0.213
Seeds 0.438 0.435 0.423 0.442 0.442 0.442 0.438 0.426 0.425 0.441 0.450
Glass 3.432 3.595 3482 3.664 3.765 3.423 3.929 3.723 3.585 3.658 3.358
Lung cancer 0.301 0.313 0305 0314 0.334 0.313 0.312 0.324 0.336 0.324 0.319
SpectEW 0.324 0.326 0.330 0.332 0.330 0.327 0.327 0.332 0.334 0.330 0.332
HeartEW 0.389 0.412 0.398  0.399 0.396 0.397 0.391 0.381 0.388 0.398 0.393
Vertebral 0.199 0.216  0.210 0.233 0.201 0.200 0.213 0.219 0.236 0.224  0.236
Ionosphere 0.559 0.570  0.595 0.593 0.563 0.603 0.583 0.581 0.603 0.590 0.610
TonosphereEW 0.424 0.439 0.441 0.436 0.423 0.429 0.427 0.467 0.456 0.442  0.440
Fri_c0_500_10 0.432 0.445 0.439 0.436 0.433 0.442 0.433 0.450 0.454 0.440 0433
Kc2 0.369 0.382 0.383 0410 0.395 0.371 0.404 0.390 0.430 0.401  0.390
Climate 0.441 0.454 0.452  0.459 0.451 0.443 0.467 0.474 0.460 0.466 0455
‘WDBC 0.385 0.400 0.388  0.392 0.394 0.416 0.395 0.399 0.392 0.402  0.390
Australian 0.277 0.283 0.284 0.279 0.278 0.284 0.279 0.282 0.284 0.281 0.281
Breastcancer 0.369 0.381 0.373  0.382 0.402 0.381 0.380 0.392 0.404 0.392 0.387
Blood 0.392 0.394 0.398  0.400 0.398 0.395 0.395 0.400 0.402 0.398  0.400
Segment 0.267 0.284 0.278  0.301 0.269 0.268 0.281 0.287 0.304 0.292  0.304
Space-ga 0.627 0.638 0.663  0.661 0.631 0.671 0.651 0.649 0.671 0.658 0.678
WaveformEW 0.506 0.503 0491 0.510 0.510 0.510 0.506 0.494 0.493 0.509 0.518
Diabetes 3.500 3.663 3.550 3.732 3.833 3.491 3.997 3.791 3.653 3.726  3.426
Mofn 0.296 0.351 0372 0.368 0.361 0.332 0.353 0.343 0.367 0370 0.376
HAR 0.648 1.222 1.122  1.054 1.809 0.900 1.980 2.079 1.012 1.559 1.123
ISOLET 0914 1.120 0.924 1.147 1.235 0.989 1.203 1.231 1.051 1.200 0.924

Table 8 shows the best fitness values, Table 9 displays
the worst fitness values, and Table 10 presents the standard
deviation values obtained from several distinct optimiza-
tion strategies. From these tables, the proposed bSCWDTO
algorithm is clearly shown to be the most stable and resilient
of the algorithms tested, as evidenced by its low standard
deviation compared to other algorithms. Based on the data,
the proposed bSCWDTO algorithm can consistently outper-
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form other optimization methods in fitness. All the datasets
show a superior performance from the proposed bSCWDTO
algorithm, demonstrating the proposed approach’s capability
to discover the best subset of features better than the other
strategies.

Statistical analysis is performed to profoundly investi-
gate the performance of the proposed optimization algorithm
based on the achieved results. Table 11 presents the analysis
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TABLE 6. Average select size of the selected features.

Dataset bSCWDTO  bDTO bSC bPSO DWAO bBGWO bMVO bSBO bGWO_GA bFA bGA

Zoo 0.4735 0.5375 0.5325 0.6675 0.7625 0.5837 0.6375  0.6525 0.6125 0.6725  0.6325
Breast cancer tissue 0.2689 0.3992  0.4234 0.6234 04643 03866  0.6037 0.5628 0.5567 0.6204  0.5234
Breast cancer Coimbra 0.5391 0.6325 0.6325 0.6408 0.6408 0.6212  0.6492  0.5655 0.8325 0.6408  0.6408
Lymphography 0.6611 0.6396  0.6745 0.8325 0.8182  0.6937 0.6611  0.7325 0.6465 0.7182  0.6825
Hepatitis 0.3887 0.5439  0.5234  0.6007 0.6166 0.4415  0.6689  0.6225 0.6325 0.6030  0.5802
WineEW 0.4046 0.5611 0.5896 0.6646 0.8111 0.5039  0.6468  0.7039 0.6611 0.6575  0.6396
Parkinsons 0.7750 0.8325 0.7325 0.7825 0.9075 0.6761  0.8700  0.7825 0.7825 0.8950  0.9075
SonarEW 0.6090 0.6575 0.6325 0.7263  0.7700  0.6539  0.7263  0.7825 0.7825 0.7700  0.7138
Seeds 0.4758 0.6450 0.6575 0.7388 0.7700  0.5575  0.7200  0.6575 0.6575 0.7075  0.6950
Glass 0.6525 0.5075 0.4103  0.6158 0.6408 0.6536  0.6103  0.6658 0.6658 0.5908  0.5631
Lung cancer 0.3916 04939 05143 0.6257 0.6325 05234  0.6075  0.6234 0.6143 0.6234  0.5916
SpectEW 0.4325 04525 04725 04925 04575 04536 04675 0.4725 0.4525 0.4875  0.4675
HeartEW 0.9325 0.9325 09992 09492 09825 09636 1.0158  0.9465 0.9325 1.0158  0.9825
Vertebral 0.7725 0.9850 09825 0.8225 1.1100  0.8625  0.9825  0.9225 0.8025 0.8800  1.0025
Ionosphere 0.7809 0.8643 0.8500 09167 1.2309 09357 09762 0.9357 1.0214 0.9428  0.9881
IonosphereEW 0.4594 0.6146  0.5941 0.6714 0.6873 0.5122 0.7396  0.6932 0.7032 0.6737  0.6509
Fri_c0_500_10 0.4753 0.6318 0.6603 0.7353  0.8818 0.5746 0.7175 0.7746 0.7318 0.7282  0.7103
Kc2 0.8457 0.9032  0.8032 0.8532 0.9782 0.7468  0.9407 0.8532 0.8532 0.9657  0.9782
Climate 0.6797 0.7282  0.7032  0.7970  0.8407 0.7246  0.7970  0.8532 0.8532 0.8407  0.7845
WDBC 0.5465 0.7157  0.7282  0.8095 0.8407 0.6282  0.7907  0.7282 0.7282 0.7782  0.7657
Australian 0.7232 0.5782 04810 0.6865 0.7115 0.7243  0.6810  0.7365 0.7365 0.6615  0.6338
Breastcancer 0.4623 0.5646  0.5850 0.6964 0.7032  0.5941  0.6782  0.6941 0.6850 0.6941  0.6623
Blood 0.5032 0.5232  0.5432 05632 0.5282 0.5243  0.5382  0.5432 0.5232 0.5582  0.5382
Segment 1.0032 1.0032  1.0699 1.0199 1.0532 1.0343 1.0865 1.0172 1.0032 1.0865  1.0532
Space-ga 0.8432 1.0557 1.0532 0.8932 1.1807 0.9332 1.0532 0.9932 0.8732 0.9507  1.0732
WaveformEW 0.6484 0.7318 0.7175 0.7842 1.0984 0.8032  0.8437  0.8032 0.8889 0.8103  0.8556
Diabetes 0.6643 0.7365 0.6778 0.8143  0.9532 0.6766  0.8143  0.6735 0.7929 0.8365  0.8143
Mofn 0.3849 0.8032  0.4008 0.8682 1.0632 0.4102 0.8482 0.6111 0.6356 0.8782  0.8882
HAR 0.7703 1.0877 0.9784 1.0826 1.1067 0.9019 1.1197 1.1582 0.9153 1.1593  0.9746
ISOLET 0.9019 1.0803 09817 1.0173 1.1683 09745 1.1388 1.1846 0.9897 1.1364  0.9984

TABLE 7. The average fitness of the selected features.

Dataset bSCWDTO  bDTO bSC bPSO  bBWAO bGWO bMVO bSBO bGWO_GA bFA bGA

Zoo 0.3816 0.4175 03998  0.4039 0.4049 03833 0.4049 04118 0.3758 0.4117  0.4049
Breast cancer tissue 0.3033 0.3382 03048 03657 0.3509 03349 03598 0.3118 0.3508 0.3564  0.3458
Breast cancer Coimbra 0.4994 0.5474 03738  0.5526  0.5445 03798  0.5603  0.4948 0.4818 0.5589  0.5483
Lymphography 0.5211 0.5510 0.6108 0.5347 0.5460  0.5445  0.5333  0.5848 0.6048 0.5439  0.5340
Hepatitis 0.3272 03196  0.3098 03364 0.3272 03281 03387  0.3458 0.3198 0.3265 0.3318
WineEW 0.4698 0.4847 03098 0.4765 0.4788 03385 0.4801 0.3211 0.3142 0.4870  0.4748
Parkinsons 1.0087 1.0285 04114 1.0357 1.0289 0.4062 1.0279  0.4058 0.3954 1.0206  1.0345
SonarEW 0.4802 0.4961 0.5066 0.4922 0.4912 0.5036 0.4918  0.7040 0.5057 0.4939  0.4944
Seeds 0.7335 0.7425 0.7431 0.7496  0.7491 0.7426  0.7452  0.7502 0.7427 0.7485  0.7570
Glass 3.2304 3.5789 45446  3.6466 3.7466  3.6466  3.9092  4.8956 5.4058 3.6405  3.3435
Lung cancer 0.3189 0.3310  0.3353 03318 0.3516 03230  0.3303  0.3337 0.3260 0.3425  0.3371
SpectEW 1.5460 1.5479 03203 15535 1.5520 02971  1.5492  0.3225 0.3241 1.5517  1.5538
HeartEW 2.8234 2.8466  2.8741 2.8331 2.8306 2.8760 2.8256  3.1041 2.8781 2.8327  2.8273
Vertebral 1.3326 1.4391  1.5996 1.4560 14244 15051 1.4359 1.7092 1.8264 1.4467  1.4586
Ionosphere 1.3393 1.3498  1.5854 1.3726 1.3426 1.4804 13624 1.5716 0.5933 1.3695 1.3891
IonosphereEW 0.7668 0.7821 0.9468 0.7791 0.7662  0.8006  0.7698  0.7771 0.8465 0.7852  0.7827
Fri_c0_500_10 0.4698 0.4847 03098 04765 04788 03385 0.4801 0.3211 0.3142 0.4870  0.4748
Kc2 0.8519 0.8717 02546 0.8789 0.8721 0.2494 0.8711  0.2490 0.2386 0.8638  0.8777
Climate 0.5249 0.5408 0.5513  0.5369 0.5359 0.5483  0.5365  0.7487 0.5504 0.5386  0.5391
WDBC 0.7782 0.7872  0.7878  0.7943  0.7938  0.7873  0.7899  0.7949 0.7874 0.7932  0.8017
Australian 3.2751 3.6236  4.5893  3.6913 37913  3.6913  3.9539  4.9403 5.4505 3.6852  3.3882
Breastcancer 0.3636 0.3757 03800 03765 0.3963 03677 03750 0.3784 0.3707 0.3872  0.3818
Blood 1.5907 1.5926 03650 1.5982 1.5967 03418 1.5939  0.3672 0.3688 1.5964  1.5985
Segment 2.8681 2.8913 29188 2.8778 2.8753 29207 2.8703 3.1488 2.9228 2.8774  2.8720
Space-ga 1.3773 1.4838  1.6443 15007 1.4691 1.5498 1.4806 1.7539 1.8711 1.4914  1.5033
WaveformEW 1.3840 1.3945  1.6301 1.4173 13873  1.5251 1.4071 1.6163 0.6380 14142 1.4338
Diabetes 0.8115 0.8268 09915 0.8238 0.8109 0.8453  0.8145 0.8218 0.8912 0.8299  0.8274
Mofn 0.7051 0.7587 0.7194  0.7751  0.7685  0.7229  0.7604  0.7809 0.7339 0.7774  0.7837
HAR 0.7458 1.0582  0.9906 1.0571 1.1150 09669 1.1363  1.1760 0.9909 1.1240  0.9756
ISOLET 0.8786 1.0458 09771 1.0827 1.1471 09780 1.1327 1.1871 1.0016 1.1163  1.0027

results. This table shows that the proposed algorithm is stable
as the values 10%, 25%, 75%, and 90% corresponding to the
proposed approach are better than those achieved by the other
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methods. In addition, the values of mean, median, standard
deviation, lower, upper, Skewness, and Kurtosis are all the
best for the proposed algorithm if compared to other methods.
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TABLE 8. The best fitness of the selected features.

Dataset bSCWDTO  bDTO bSC bPSO bWAO bGWO bMVO bSBO bGWO_GA bFA bGA

Zoo 0.2766 02960 0.3736  0.2960  0.3348  0.3242  0.3542  0.3542 0.3542 0.3348  0.2960
Breast cancer tissue 0.2416 0.2585 0.2839  0.2924 0.2670  0.2917  0.2501  0.2754 0.3262 0.2416  0.2754
Breast cancer Coimbra 0.4548 0.4740  0.5221 0.4644 04644 04632 04836 0.5221 0.4932 0.4836  0.4644
Lymphography 0.2469 0.3318 0.3883 0.3035 03035 03136 0.3742 0.3742 0.4166 0.3883  0.3318
Hepatitis 0.2074 0.2221  0.2526  0.2678  0.2374 03135 0.2374 0.2374 0.2983 0.2221  0.2374
WineEW 0.4231 0.4360 0.4446 04317 04274 04403 0.4446 0.4532 0.4532 0.4403  0.4360
Parkinsons 0.9787 09787 0.9826 0.9866 0.9787  1.0036  0.9866  0.9847 0.9747 0.9747  0.9747
SonarEW 0.4556 0.4594 04764 0.4636 0.4552 04619 04594 04721 0.4764 0.4509  0.4636
Seeds 0.6758 0.6951  0.7105 0.7028 0.6835 0.7011  0.7028  0.6951 0.6989 0.6912  0.6912
Glass 2.1143 2.0537 3.0032 2.0537 1.6294 1.5688  1.8112 3.9730 4.0337 2.1143  1.8920
Lung cancer 0.2374 0.2374 0.2678 0.2374 0.2526  0.2811  0.2374  0.2526 0.2983 0.2374  0.2526
SpectEW 1.5161 1.5173  1.5318 1.5310 1.5289  1.5318  1.5273  1.5313 1.5378 1.5173  1.5326
HeartEW 2.7908 27908  2.7827 277908  2.7908  2.7835  2.7840  2.7927 2.7827 2.7908  2.7908
Vertebral 1.3401 1.4177 14141 14201 14085 13587 14109 1.4274 1.4282 1.4254  1.4306
Ionosphere 1.2640 1.3014  1.3484  1.2955 1.2747 13548 1.3145 1.3109 1.3359 1.2877  1.3204
IonosphereEW 0.7969 0.7969 0.8155 0.8000 0.8124 0.8221  0.7969  0.8186 0.8155 0.8062  0.8093
Fri_c0_500_10 0.5096 0.5225 05311 05182  0.5139  0.5268  0.5311  0.5397 0.5397 0.5268  0.5225
Kc2 1.0652 1.0652  1.0691 1.0731 1.0652 1.0901 1.0731 1.0712 1.0612 1.0612  1.0612
Climate 0.5421 0.5459  0.5629 0.5501 0.5417 0.5484 0.5459 0.5586 0.5629 0.5374  0.5501
WDBC 0.7623 0.7816  0.7970  0.7893  0.7700  0.7876  0.7893  0.7816 0.7854 0.7777  0.7777
Australian 2.2008 2.1402  3.0897 2.1402 1.7159 1.6553  1.8977 4.0595 4.1202 22008  1.9785
Breast_Cancer 0.3239 0.3239  0.3543 0.3239 0.3391 03676  0.3239  0.3391 0.3848 0.3239  0.3391
Blood 1.6026 1.6038 1.6183 1.6175 1.6154 1.6183 1.6138 1.6178 1.6243 1.6038  1.6191
Segment 2.8773 28773  2.8692 2.8773 28773 2.8700 2.8705 2.8792 2.8692 2.8773  2.8773
Space-ga 1.4266 1.5042  1.5006 15066  1.4950  1.4452 14974 15139 1.5147 1.5119  1.5171
WaveformEW 1.3505 1.3879 14349 13820 1.3612 1.4413 1.4010 1.3974 1.4224 1.3742  1.4069
Diabetes 0.7969 0.7969  0.8155 0.8000 0.8124  0.8221  0.7969  0.8186 0.8155 0.8062  0.8093
Mofn 0.6844 0.7181 0.7113  0.7315 0.7562  0.7013  0.7181  0.6956 0.7966 0.7719  0.7472
HAR 0.7335 1.0666  0.9957 1.0477 1.1438 0.9400 1.1141 1.1341 0.9389 1.1449  0.9953
ISOLET 0.8437 1.0379 09445 1.0790 1.1457 0.9668  1.1461 1.0330 1.0113 1.1227  1.0229

TABLE 9. The worst fitness of the selected features.

Dataset bSCWDTO  bDTO bSC bPSO bBWAO bGWO bMVO bSBO bGWO_GA bFA bGA

Zoo 0.5116 0.5306  0.4918 0.5500 0.5500 0.5306  0.5112 0.5112 0.5112 0.5695  0.5112
Breast cancer tissue 0.4334 0.4429 0.3921 04514 04683 04514 0.4344 04175 0.4768 0.4852  0.4937
Breast cancer Coimbra 0.6371 0.6203  0.5819 0.6491 0.6491  0.6587 0.6876  0.6876 0.6299 0.7933  0.6876
Lymphography 0.6974 0.8390  0.6269 0.7966  0.7966  0.6069  0.7259  0.6269 0.6269 0.7400  0.8107
Hepatitis 0.4286 0.4150 0.4302 0.4607 0.4455 0.4455 0.4455 0.4302 0.4607 0.4302 0.4302
WineEW 0.5343 0.5842  0.5282 0.5670 0.5497 0.6229 0.5325  0.5239 0.5239 0.6832  0.5411
Parkinsons 1.1226 1.1226  1.1067  1.1226  1.1027 1.1067 1.1226  1.1067 1.1067 1.0828  1.1226
SonarEW 0.5476 0.5637  0.5467 0.5424 0.5382  0.5552 0.5424  0.5424 0.5339 0.5509  0.5552
Seeds 0.8154 0.8439 0.7666 0.8091 0.8284  0.8130  0.8323  0.7743 0.7820 0.8207  0.8942
Glass 5.4700 54279 52258 6.1148 5.6501 5.8148 5.6703  6.8422 7.4887 5.2865  5.3067
Lung cancer 0.4163 0.4607 04150 04759 0.5064 0.4555 0.4302 0.4455 0.4659 04302  0.4759
SpectEW 1.5892 1.5912  1.5980 1.6024 1.5984  1.5754 1.5956  1.6004 1.5932 1.6036  1.5996
HeartEW 2.6732 3.2959 2.8651 2.9205 29677 2.8394 29056 2.8745 2.8772 3.0488 29191
Vertebral 1.3532 1.4860 1.4703  1.5277 14752 14832 1.4832 1.4800 1.5004 14912 1.5277
Tonosphere 1.3761 14780 1.4376 1.4561 1.3984  1.4323 1.4430 1.4471 1.4323 1.4644  1.4792
IonosphereEW 0.8465 0.8813  0.8720 09371 0.8471  0.8751  0.8689  0.8937 0.8782 0.8689  0.8565
Fri_c0_500_10 1.2396 1.2396  1.2237 1.2396 12197  1.2237 1.2396  1.2237 1.2237 1.1998  1.2396
Kc2 0.6646 0.6807 0.6637 0.6595 0.6552  0.6722  0.6595  0.6595 0.6510 0.6680  0.6722
Climate 0.9324 0.9609 0.8836 0.9261 0.9455 0.9300 0.9493 0.8913 0.8990 0.9377 1.0112
WDBC 5.5870 5.5449 5.3429 6.2318 57672 59318 5.7874  6.9592 7.6057 54035 5.4237
Australian 0.5334 0.5777 05320 0.5929 0.6234 0.5725 0.5473  0.5625 0.5829 0.5473  0.5929
Breast_Cancer 1.7062 1.7082  1.7150 1.7194 1.7154 1.6924 1.7126 1.7174 1.7102 1.7206  1.7166
Blood 2.7902 34129 29821 3.0375 3.0847 29564  3.0226 2.9915 2.9942 3.1658  3.0361
Segment 1.4702 1.6030  1.5873  1.6448 1.5922 1.6002 1.6002 1.5970 1.6175 1.6082  1.6448
Space-ga 1.4931 1.5951 1.5547 15731 1.5154 1.5493 1.5600 1.5642 1.5493 1.5814  1.5963
WaveformEW 0.9635 0.9983 09890 1.0542 0.9642 0.9921 0.9859 1.0107 0.9952 0.9859  0.9735
Diabetes 0.6513 0.7012  0.6452 0.6840 0.6668  0.7399  0.6495  0.6409 0.6409 0.8002  0.6582
Mofn 0.8847 0.9328 0.8767 09440 09104 0.9052 0.9328 0.8879 0.8857 0.9059  0.9328
HAR 0.8721 1.1709  1.1723  1.1821 1.2922  1.0926  1.2500  1.1501 1.1049 1.2369  1.1145
ISOLET 0.9844 1.1656  1.1178 1.1944 12690 1.1191 1.2589  1.4285 1.1468 1.2416  1.1378

These results emphasize the superiority of the proposed opti- On the other hand, the one-way analysis-of-variance
mization algorithm for solving the feature selection problem. (ANOVA) test is conducted to study whether there is any
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TABLE 10. The standard deviation fitness of the selected features.

Dataset bSCWDTO  bDTO bSC bPSO bWAO bGWO bMVO bSBO bGWO_GA bFA bGA
Zoo 0.1785 0.1975 0.1811 0.2052 0.1918 0.1880  0.1854  0.1931 0.1899 0.1962  0.1959
Breast cancer tissue 0.1786 0.1881 0.1839 0.1789 0.1879 0.1833  0.1853  0.1832 0.1921 0.1936  0.1931
Breast cancer Coimbra 0.1716 0.1744  0.1742 0.1856 0.1833 0.1832 0.1860  0.1967 0.1812 0.2096  0.1906
Lymphography 0.2386 0.2618  0.2271 0.2494  0.2528 0.2407 0.2250  0.2450 0.2315 0.2287  0.2513
Hepatitis 0.1775 0.1869 0.1973 0.1885 0.1981 0.1810 0.1984 0.2032 0.1933 0.1900 0.1831
WineEW 0.1610 0.1776 ~ 0.1645 0.1675 0.1692 0.1797 0.1610 0.1623 0.1649 0.1911  0.1635
Parkinsons 0.1659 0.1707  0.1794 0.1741  0.1704 0.1682  0.1706  0.1859 0.1817 0.1665 0.1770
SonarEW 0.1583 0.1598  0.1582 0.1549 0.1567 0.1563  0.1571  0.1572 0.1520 0.1588  0.1589
Seeds 0.1614 0.1758  0.1631 0.1626  0.1681 0.1772  0.1723  0.1621 0.1646 0.1711  0.1807
Glass 0.9864 1.0470 1.0260 1.2820 0.9928 1.9081 1.1177  1.2778 1.5125 1.0470  1.0836
Lung cancer 0.1863 0.1910 0.1900 0.1951 0.2014 0.1902 0.1921  0.2088 0.2016 0.1910  0.1932
SpectEW 0.1523 0.1540 0.1555 0.1534 0.1550 0.1523 0.1534 0.1564 0.1515 0.1573  0.1519
HeartEW 0.1604 0.2453 0.1610 0.1726  0.1777 0.1904 0.1649 0.1643 0.1685 0.1917  0.1671
Vertebral 0.1516 0.1543  0.1521 0.1619 0.1522 0.1563  0.1539  0.1540 0.1582 0.1531  0.1603
Ionosphere 0.1668 0.1772  0.1662  0.1750 0.1711 0.1770  0.1769  0.1881 0.1686 0.1790  0.1793
IonosphereEW 0.1660 0.1801  0.1852 0.1693 0.1750 0.1677  0.1660  0.1890 0.1875 0.1752  0.1755
Fri_c0_500_10 0.2510 0.2676  0.2545 0.2575 0.2592 0.2697 0.2510 0.2523 0.2549 0.2811  0.2535
Kc2 0.2559 0.2607 0.2694 0.2641 0.2604 02582  0.2606  0.2759 0.2717 0.2565  0.2670
Climate 0.2483 0.2498 0.2482 0.2449 0.2467 0.2463  0.2471  0.2472 0.2420 0.2488  0.2489
WDBC 0.2514 0.2658 0.2531 0.2526 0.2581 0.2672  0.2623  0.2521 0.2546 0.2611  0.2707
Australian 1.0764 1.1370 1.1160 1.3720 1.0828 1.9981 1.2077  1.3678 1.6025 1.1370  1.1736
Breast_Cancer 0.2763 0.2810 0.2800 0.2851 0.2914 0.2802  0.2821  0.2988 0.2916 0.2810  0.2832
Blood 0.2423 0.2440 0.2455 0.2434 0.2450 02423  0.2434  0.2464 0.2415 0.2473  0.2419
Segment 0.2504 0.3353  0.2510 0.2626  0.2677 0.2804  0.2549  0.2543 0.2585 0.2817 0.2571
Space-ga 0.2416 0.2443  0.2421 0.2519 0.2422 02463  0.2439  0.2440 0.2482 0.2431  0.2503
‘WaveformEW 0.2568 0.2672  0.2562 0.2650 0.2611  0.2670  0.2669  0.2781 0.2586 0.2690  0.2693
Diabetes 0.2560 0.2701  0.2752 0.2593 0.2650 0.2577 0.2560  0.2790 0.2775 0.2652  0.2655
Mofn 0.2655 0.2740 0.2764 02818 0.2691 0.3047 0.2567 0.2847 0.2424 0.2752  0.2522
HAR 0.2525 0.2690  0.2655 0.2668 0.2900 0.2578  0.2812  0.2857 0.5367 0.2801  0.2657
ISOLET 0.2589 0.2770  0.2734  0.2755 0.2979 0.2657 0.2868  0.2879 0.5596 0.2880  0.2658
TABLE 11. The statistical analysis of the achieved results using the proposed and other competing methods.

bSCWDTO bDTO bSC bPSO bWAO bGWO bMVO bSBO bGWO_GA  bFA bGA
Number of values 12 12 12 12 12 12 12 12 12 12 12
Minimum 0.6072 0.6451 0.6256 0.6489 0.6782 0.6167 0.7054 0.6769 0.6427 0.6742 0.6237
25% Percentile 0.6072 0.6551 0.6356 0.6589 0.6835 0.6267 0.7054 0.6969 0.6527 0.6774 0.6337
Median 0.6072 0.6551 0.6356 0.6589 0.6882  0.6267 0.7054  0.6969  0.6527 0.6774 0.6337
75% Percentile 0.6072 0.6551 0.6356 0.6589 0.6882 0.6267 0.7054 0.6969 0.6527 0.6849 0.6337
Maximum 0.6072 0.6651 0.6561 0.6789 0.6882 0.6467 0.7254 0.6969 0.6727 0.6974 0.6687
Range 0 0.02 0.03049  0.03 0.01 0.03 0.02 0.02 0.03 0.02318  0.04501
10% Percentile 0.6072 0.6481 0.6286 0.6519 0.6782 0.6197 0.7054 0.6799 0.6457 0.6752 0.6267
90% Percentile 0.6072 0.6621 0.6499 0.6759 0.6882 0.6437 0.7224 0.6969 0.6667 0.6974 0.6612
Actual confidence level 96.14% 96.14%  96.14% 96.14%  96.14%  96.14%  96.14%  96.14%  96.14% 96.14% 96.14%
Lower confidence limit 0.6072 0.6551 0.6356 0.6589 0.6819  0.6267 0.7054  0.6969  0.6527 0.6774 0.6337
Upper confidence limit 0.6072 0.6551 0.6356 0.6589 0.6882 0.6267 0.7054 0.6969 0.6527 0.6874 0.6337
Mean 0.6072 0.6551 0.6365 0.6605 0.686 0.6284 0.7079 0.6944 0.6535 0.6813 0.6366
Std. Deviation 0 0.0042  0.0068 0.0071 0.0040  0.0071 0.0062  0.0062  0.0066 0.0081 0.0109
Std. Error of Mean 0 0.0012 0.0019 0.0020 0.0011 0.0020 0.0017 0.0017 0.0019 0.0023 0.0031
Lower 95% CI of mean 0.6072 0.6524 0.6322 0.656 0.6834 0.6238 0.704 0.6904 0.6493 0.6762 0.6296
Upper 95% CI of mean 0.6072 0.6578 0.6408 0.6651 0.6886  0.633 0.7119 0.6983 0.6578 0.6865 0.6436
Coefficient of variation 0.000% 0.650% 1.070% 1.087%  0.593% 1.142%  0.878%  0.895% 1.023% 1.194% 1.723%
Geometric mean 0.6072 0.6551 0.6364 0.6605 0.686 0.6284 0.7079 0.6944 0.6535 0.6813 0.6365
Geometric SD factor 1 1.007 1.011 1.011 1.006 1.011 1.009 1.009 1.01 1.012 1.017
Lower 95% CI of geo. mean 0.6072 0.6524 0.6322 0.656 0.6834 0.6239 0.704 0.6904 0.6493 0.6762 0.6297
Upper 95% CI of geo. mean 0.6072 0.6578 0.6408 0.6651 0.6886 0.6329 0.7118 0.6984 0.6577 0.6864 0.6434
Harmonic mean 0.6072 0.6551 0.6364 0.6605 0.686 0.6283 0.7079 0.6943 0.6535 0.6812 0.6364
Lower 95% CI of harm. mean  0.6072 0.6524  0.6322 0.656 0.6834  0.6239 0.704 0.6903 0.6493 0.6762 0.6298
Upper 95% CI of harm. mean ~ 0.6072 0.6578 0.6407 0.665 0.6886 0.6329 0.7118 0.6984 0.6577 0.6864 0.6432
Quadratic mean 0.6072 0.6551 0.6365 0.6606 0.686 0.6284 0.7079 0.6944 0.6536 0.6814 0.6367
Lower 95% CI of quad. mean ~ 0.6072 0.6524  0.6321 0.656 0.6834  0.6238 0.7039 0.6905 0.6493 0.6761 0.6296
Upper 95% CI of quad. mean 0.6072 0.6578 0.6409 0.6652 0.6886 0.633 0.7119 0.6983 0.6579 0.6866 0.6438
Skewness 0 2.157 1.508 -1.501 1.508 2.555 -2.555 2.104 1.57 2.565
Kurtosis 5.5 7.813 4.065 0.5225 4.065 6.242 6.242 7.698 1.014 7.85
Sum 7.286 7.861 7.638 7.927 8.232 7.541 8.495 8.333 7.843 8.176 7.639

statistical difference between the means of optimization
methods included in the conducted experiments. Table 12
depicts the test results. From this table, it can be noted the
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p-value is less than 0.05, and F is 255.9. Therefore, there
is a statistically significant difference between the means of
the optimization methods. Moreover, there is a statistically
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TABLE 12. ANOVA test results when the proposed feature selection method and the other methods are applied to the adopted datasets.

ANOVA table  SS DF MS F (DFn, DFd) P value
Treatment 0.1146 10 0.01146 F (10, 121) =2559 P<0.0001
Residual 0.005419 121  0.00004478

Total 0.12 131

TABLE 13. p-values of Wilcoxon’s rank-sum using the proposed approach compared to other methods (p > 0.05 are underlined).

Dataset bDTO bSC bPSO bWAO bGWO bMVO bSBO bGWO_GA bFA bGA
Zoo 6.69E-05  7.58E-05  7.58E-05 1.80E-01  6.69E-05  6.26E-02  7.58E-05 6.59E-05 6.69E-05  7.89E-02
Breast cancer tissue 6.69E-05 7.58E-05 7.58E-05 6.69E-05 7.62E-02 6.69E-05  7.58E-05 6.69E-05 6.69E-05  6.69E-05
Breast cancer Coimbra  6.69E-05  7.58E-05  7.58E-05 6.69E-05 7.82E-02 6.69E-05  7.58E-05 6.69E-05 6.69E-05  6.69E-05
Lymphography 6.69E-05 7.58E-05 7.58E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 6.69E-05 6.69E-05  6.69E-05
Hepatitis 6.69E-05  7.58E-05 7.58E-05 6.69E-05 6.69E-05 6.69E-05  7.58E-05 6.69E-05 6.69E-05  6.69E-05
WineEW 6.69E-05 7.58E-05 7.58E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 6.69E-05 6.69E-05  6.59E-05
Parkinsons 3.67E-04 7.58E-05 7.58E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 7.85E-02 6.69E-05  6.69E-05
SonarEW 3.67E-04 7.58E-05 7.58E-05 6.34E-02 6.69E-05 6.69E-05 7.58E-05 6.69E-05 6.69E-05  6.59E-05
Seeds 3.67E-04 7.58E-05 7.58E-05 6.69E-05 6.69E-05 6.62E-02  7.58E-05 6.59E-05 6.69E-05  6.69E-05
Glass 3.67E-04 7.58E-05 7.58E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 6.59E-05 6.69E-05  6.06E-02
Lung cancer 3.67E-04 7.58E-05 7.58E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 6.59E-05 6.69E-05  6.69E-05
SpectEW 3.67E-04 7.58E-05 7.58E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 6.59E-05 6.69E-05  6.69E-05
HeartEW 3.67E-04 7.58E-05 8.90E-02 6.69E-05 6.69E-05 6.69E-05 7.58E-05 9.92E-02 6.69E-05  6.69E-05
Vertebral 3.67E-04 7.58E-05 6.69E-05 6.69E-05 5.88E-02 6.69E-05 7.58E-05 6.69E-05 6.69E-05  6.69E-05
Tonosphere 3.67E-04 7.58E-05 8.72E-02 6.69E-05 6.69E-05 6.69E-05  7.58E-05 6.69E-05 6.69E-05  6.69E-05
TonosphereEW 3.67E-04  7.58E-05 6.69E-05 8.86E-02  6.69E-05 6.69E-05 7.58E-05 6.69E-05 6.69E-05  6.69E-05
Fri_c0_500_10 3.67E-04 7.58E-05 6.69E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 6.59E-05 6.69E-05  6.69E-05
Kc2 3.67E-04 7.58E-05 6.59E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 6.59E-05 6.69E-05  6.69E-05
Climate 9.16E-02  3.25E-01 6.69E-05 6.69E-05 6.59E-05 6.69E-05  7.58E-05 6.59E-05 6.69E-05  7.33E-02
WDBC 3.67E-04 7.58E-05 6.59E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 6.59E-05 6.69E-05  6.69E-05
Australian 3.67E-04 7.58E-05 6.59E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 6.59E-05 6.69E-05  6.69E-05
Breast_Cancer 3.67E-04 7.58E-05 6.59E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 6.59E-05 6.69E-05  6.69E-05
Blood 3.67E-04 7.58E-05 6.59E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 6.59E-05 6.69E-05  6.69E-05
Segment 3.67E-04 7.58E-05 6.59E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 6.59E-05 6.69E-05  6.69E-05
Space-ga 3.67E-04 7.58E-05 6.59E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 6.59E-05 6.69E-05  6.69E-05
WaveformEW 3.67E-04 7.58E-05 7.58E-05 7.58E-05 7.58E-05 7.58E-05 7.58E-05 7.58E-05 7.58E-05  6.69E-05
Diabetes 3.67E-04 6.59E-05 6.59E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 6.59E-05 6.69E-05  6.69E-05
Mofn 3.67E-04 6.59E-05 6.59E-05 9.78E-02  6.69E-05 6.69E-05  7.58E-05 6.59E-05 6.69E-05  6.69E-05
HAR 3.67E-04 6.59E-05 6.59E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 6.59E-05 6.69E-05  6.69E-05
ISOLET 3.67E-04 6.59E-05 6.59E-05 6.69E-05 6.69E-05 6.69E-05 7.58E-05 6.68E-02 6.69E-05  6.69E-05
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FIGURE 2. Convergence time of the proposed approach with comparison gog NS

to other approaches.

significant difference between the means of the optimization
methods.

In addition, the Wilcoxon rank-sum test is performed to
determine the significance levels of the proposed bSCWDTO
algorithm concerning existing meta-heuristic algorithms.
When comparing the proposed algorithm’s output to other
algorithms, this test can assist in revealing whether or not the
results differ significantly. The proposed algorithm’s findings
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FIGURE 3. Average error of the results achieved by the proposed and
other optimization algorithms.

differ substantially from the compared methods if the p-value
is less than 0.05. In contrast, insignificant results are indicated
by a p-value greater than 0.05. The worst p-values in Table 13
are those larger than 0.05, which is the significance level
used. When comparing the proposed technique to others, the
table shows that the p-values obtained using this test are less
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TABLE 14. The time (seconds) consumed by the feature selection algorithms applied to the UCI benchmark datasets.

Dataset bSCWDTO bDTO  bSC bPSO bWAO bGWO bMVO bSBO bGWO_GA  DbFA bGA
Zoo 391 4.55 4.14 4.23 5.63 4.04 4.32 4.49 4.96 4.68 5.26
Breast cancer tissue 4.32 6.26 5.39 5.83 5.58 5.16 4.86 5.77 5.79 6.06 5.84
Breast cancer Coimbra 3.58 4.77 5.01 4.85 4.94 3.59 4.27 4.54 473 5.05 5.10
Lymphography 3.58 4.24 4.37 5.09 4.60 3.68 3.0.2 4.86 4.32 4.22 4.18
Hepatitis 3.58 4.52 3.97 4.30 4.81 4.26 4.31 443 542 4.58 4.51
WineEW 5.65 6.91 7.02 6.83 8.16 7.00 5.97 6.81 7.55 7.07 7.02
Parkinsons 5.66 5.38 5.96 3.86 6.48 5.77 6.07 6.91 5.73 6.81 7.22
SonarEW 5.46 6.77 5.96 7.08 6.40 6.45 6.28 7.12 7.14 6.84 6.66
Seeds 8.32 9.33 9.95 8.82 10.64 8.95 9.32 9.30 10.05 9.83 8.89
Glass 5.62 5.94 6.30 6.63 7.03 7.50 6.50 7.83 7.52 6.61 8.48
Lung cancer 6.10 6.74 6.33 6.42 7.82 6.23 6.51 6.68 7.15 6.87 7.45
SpectEW 6.51 8.44 7.58 8.02 7.77 7.35 7.05 7.96 7.98 8.25 8.03
HeartEW 5.77 6.96 7.20 7.04 7.13 5.78 6.46 6.73 6.92 7.24 7.29
Vertebral 5.77 6.43 6.56 7.28 6.79 5.87 3.0.2 7.05 6.51 6.41 6.37
Tonosphere 5.77 6.71 6.16 6.49 7.00 6.44 6.50 6.62 7.61 6.77 6.70
TonosphereEW 7.83 9.10 9.21 9.02 10.35 9.19 8.16 9.00 9.74 9.26 9.21
FriQ 500 10 7.84 7.57 8.15 6.05 8.67 7.96 8.26 9.10 7.92 9.00 9.41
Kc2 7.65 8.96 8.15 9.27 8.59 8.64 8.47 9.31 9.33 9.03 8.85
Climate 10.51 11.52 12.14 11.00 12.83 11.14 11.51 11.49 12.24 12.02 11.08
WDBC 7.81 8.13 8.49 8.82 9.22 9.69 8.69 10.02 9.71 8.80 10.67
Australian 10.51 11.52 12.14 11.00 12.83 11.14 11.51 11.49 12.24 12.02 11.08
Breastcancer 6.43 6.97 7.35 8.12 9.15 6.63 7.27 7.15 7.68 7.93 7.70
Blood 10.56 11.81 12.01 10.61 13.11 11.71 12.34 11.06 13.34 12.35 11.06
Segment 54.57 108.47 11893  83.41 138.81  76.18 62.58 83.52 91.05 86.15 84.39
Space-ga 14.51 19.28 17.31 17.84 22.26 18.70 19.06 20.75 96.82 34.83 20.31
WaveformEW 102.78 13522 139.79 14471 15324  730.11 107.33  165.38  153.20 143.16  172.33
Diabetes 35.86 55.51 66.09 61.92 87.35 71.81 74.06 57.30 62.24 53.44 59.52
Mofn 12.92 14.41 14.58 14.40 13.45 13.90 15.15 14.16 15.61 15.12 14.43
HAR Using Smartphones  326.69 46326 443.07 474.04 606.82 631.05 42345 620.34 61491 466.79  607.34
ISOLET 433.01 496.45 48436 46276  621.26 737.21  453.07 643.23 673.81 496.16  699.33
Average Time 37.64 48.74 48.46 47.52 60.96 81.44 46.76 59.35 62.98 49.11 61.19

than 0.05. The results prove the statistical significance and
superiority of the bSSCWDTO method.

To prove the efficiency of the proposed algorithm, addi-
tional experiment is conducted to measure the convergence
time of the feature selection process consumed by the pro-
posed approach and the other feature selection methods.
Figure 2. In this figure, it can be noted that the proposed
algorithm can reach the optimal set of features in less number
of iterations when compared to the other methods. In addi-
tion, the measurement of the run time consumed by each
algorithm when applied to each set of the 30 benchmark
datasets is presented in Table 14. This table clearly shows that
the proposed algorithm achieves the smallest time required
to find the best set of features for each dataset. The average
time in the last row of this table emphasizes the speed of
the proposed approach when compared to the other feature
selection methods.

D. VISUAL REPRESENTATION OF THE RESULTS
The visual representation of the results achieved by the pro-
posed method in comparison to the other methods is depicted
in Figure 5, Figure 4, and Figure 3. The comparison depicted
in these figures emphasizes the proposed approach’s effec-
tiveness and superiority compared to the other methods.

The proposed algorithm’s stability is depicted here com-
pared to existing methods. Figure 6 shows the averaged error,
average size, average mean, best fitness, worst fitness, and

VOLUME 11, 2023

standard deviation fitness across all the thirty datasets inves-
tigated using the various optimization methods. It is clear
from these results that the proposed bSCWDTO algorithm
outperforms all of the competing optimization methods.

E. DISCUSSION

The primary objective of our research was to evaluate the
performance of the proposed feature selection algorithm,
bSCWDTO, compared to other existing algorithms, includ-
ing the original SC and DTO algorithms. Our experiments
were conducted using thirty datasets, and the results indi-
cate that the proposed algorithm consistently outperformed
the compared algorithms in terms of fitness value for the
selected features. Notably, the bSCWDTO algorithm demon-
strated exceptional performance by achieving the lowest
fitness value among all tested algorithms. This achieve-
ment highlights the algorithm’s ability to identify the most
optimal subset of features across diverse datasets. Further-
more, the proposed algorithm exhibited the lowest standard
deviation compared to the other algorithms, which empha-
sizes its stability and robustness. The quantitative evaluation
metrics further support the superiority of the proposed fea-
ture selection algorithm. On average, it achieved an error
rate of 0.607174, a select size of 0.615652, and a fitness
value of 1.09021. Additionally, it achieved the best fitness
value of 0.991305 and the worst fitness value of 1.34082.
These results surpass state-of-the-art feature selection meth-
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FIGURE 5. The Residual, Homoscedasticity, QQ, and Heatmap plots of the ANOVA test resuilts.

ods when applied to the thirty benchmark datasets. The using the bSCWDTO algorithm for various feature selection
outcomes of our research confirm that the proposed approach tasks. Its superior performance, stability, and robustness make
significantly improves the quality of the selected features. it a valuable tool in improving classification accuracy and
Based on these compelling results, we highly recommend enhancing the overall efficiency of machine learning models.
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TABLE 15. The measured best fitness, worst fitness, median fitness, mean fitness, and standard deviation fitness resulted from the application of the
proposed SCWDTO to CEC2017 in 10k.

TABLE 16. Experimental results of GWO, PSO, SFS and SCWDTO over 51 independent runs on 29 test functions of 10 variables with 100,000 FES.

Best Worst Median Mean Std

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

6 0 0 0 0 0

7 0 5.514270671  4.215750798  6.398642505 10.26361419
8 0 12.32450769  13.22356022  13.23418264 13.39175701
9 0 0 0 0 0

10 0.116954116  178.5530942  0.295919969  8.544988267 0

1 0 0 0 0 0

12 0.09749966 210.9195507 0O 14.12308169 39.30065309
13 0 9.321175672  10.21412352  11.38184232 0

4 0 0 0 0 0

15 6.14685E-05 0 0 0 0

16 0.098012892  110.2678942 0 0 2.713094934
17 0.954609002  18.29334262  5.904828528  4.161463056 7.468256503
18  0.002058369  8.462249376  0.333393784 0 5.614939499
19 0 0 0 0 0

20 0 7.080770399  4.236071263  -2.278109116  6.056449327
21 9891012039  181.9922845  178.539683 173.7738568 2.129324934
22 0 80.476085 80.476085 73.35120359 9.938441953
23 97.31951488  281.6734604  276.2583036  276.544148 13.32914834
24 171.54 307.6833607  302.6321954  299.8577142 3.308961838
25  293.233049 407.714545 364.4786519  367.0407102 4.557444475
26 219.19 316.0094203  271.076085 271.9571308 8.531989557
27  180.1222668  359.4048268  356.3867297  356.4001372 14.07429484
28  190.6 568.2422681  338.9184334  364.7679322 95.1929238
29  110.0336364  250.4418952  209.5127665  212.5760269 5.616896406

NelNeLEEN le WU BN NS S

GWO PSO SES SCWDTO
1.50E+08 £+ 6.50E+07  2.30E+03 &+ 3.05E+03  5.60E+03 + 3.26E+03  0.00E+00 £ 0.00E+00
5.28E+02 4+ 7.98E+02  0.00E+00 4 0.00E+00  2.05E02 + 1.17E02 0.00E+00 £ 0.00E+00

1.84E+01 £ 1.62E+01
3.01E+01 =+ 4.85E+00
7.81E+00 £ 1.09E+00
4.35E+01 £ 5.14E+00
2.38E+01 =+ 4.44E+00
1.10E+01 =+ 3.79E+00
8.53E+02 +£ 2.50E+02

2.82E+00 £ 1.21E+00
1.59E+01 + 7.08E+00
8.27E02 £ 3.36E01

1.72E+01 =+ 4.46E+00
1.23E+01 =+ 5.33E+00
0.00E+00 =+ 0.00E+00
6.30E+02 £ 2.64E+02

9.37E01 =+ 6.74E01
8.68E+00 =+ 3.30E+00
5.35E03 + 1.59E03
2.33E+01 =+ 3.60E+00
7.42E+00 £ 2.76E+00
6.68E06 + 4.34E06
3.63E+02 £+ 1.91E+02

0.00E+00 =+ 0.00E+00
0.00E+00 =+ 0.00E+00
0.00E+00 £ 0.00E+00
0.00E+00 £ 0.00E+00
3.91E+01 =+ 2.98E+00
2.34E+01 =£ 2.53E+00
0.00E+00 £ 0.00E+00

10 4.03E+01 &£ 9.91E+00
11 2.58E+06 £ 3.10E+06
12 1.16E+04 +£ 8.11E+03
13 5.91E+02 £ 1.21E+03
14 8.04E+02 £ 1.12E+03
15 8.52E+01 £ 9.41E+01
16 5.42E+01 £ 8.45E+00
17 3.68E+04 £ 2.11E+04
18  1.75E+03 + 3.81E+03
19 7.76E+01 £ 3.83E+01
20 2.03E+02 £ 4.93E+01
21 1.25E+02 +£ 6.03E+00
22 3.33E+02 £ 3.86E+00
23 3.63E+02 +£ 4.56E+00
24 4.42E+02 £ 1.56E+01
25  4.09E+02 £ 1.47E+02
26 3.96E+02 +£ 1.15E+00
27 5.39E+02 &£ 9.99E+01
28 2.94E+02 =+ 3.04E+01
29 4.84E+05 + 7.31E+05

1.10E+01 =+ 7.27E+00
1.33E+04 £ 1.24E+04
6.45E+03 £+ 5.72E+03
4.57E+01 & 1.93E+01
5.62E+01 £ 5.89E+01
2.05E+02 + 1.19E+02
4.56E+01 £ 2.30E+01
5.10E+03 =+ 5.76E+03
9.57E+01 + 2.95E+02
5.51E+01 £ 5.42E+01
1.79E+02 £ 5.65E+01
9.38E+01 =+ 2.55E+01
3.28E+02 £ 1.24E+01
3.24E+02 £ 8.33E+01
4.25E+02 4+ 2.29E+01
2.74E+02 + 7.63E+01
4.03E+02 £+ 1.97E+401
4.54E+02 £+ 1.57E+02
3.05E+02 £ 4.50E+01
2.00E+05 + 3.79E+05

4.61E+00 + 1.25E+00
5.04E+03 £ 2.11E+03
4.55E+01 + 9.83E+00
2.20E+01 + 3.82E+00
1.00E+01 =+ 2.14E+00
4.17E+00 + 3.16E+00
2.34E+01 £ 5.66E+00
5.22E+01 £ 1.05E+01
5.84E+00 + 8.94E01

1.21E+01 £ 3.31E+00
1.00E+02 £ 5.06E02

9.24E+01 =+ 3.00E+01
3.03E+02 £ 4.35E+01
2.18E+02 £ 1.18E+02
4.21E+02 + 2.30E+01
2.92E+02 £ 4.40E+01
3.92E+02 £ 1.85E+00
3.06E+02 £ 3.97E+01
2.59E+02 £ 1.18E+01
2.03E+03 £ 1.63E+03

0.00E+00 =+ 0.00E+00
0.00E+00 =+ 0.00E+00
7.66E+00 £ 1.81E+00
0.00E+00 =+ 0.00E+00
0.00E+00 =+ 0.00E+00
3.12E+00 =+ 3.65E+00
1.11E+01 £ 6.08E+00
3.14E01 £ 1.9E-01
3.38E+00 =+ 3.877E+00
0.00E+00 £ 0.00E+00
2.33E+02 £ 5.88E+01
1.13E+02 £ 5.27E01
4.123E+02 £ 3.62E+00
2.14E+02 £ 1.07E+01
7.22E+02 + 2.15E+401
3.62E+02 £ 0.11E+00
3.72E+02 £ 1.111E01
3.88E+02 £ 4.93E+01
2.94E+02 =+ 3.99E+00
4.62E+02 + 3.17E+01

VI. CONCLUSION
Applying feature selection to the data set before the learning
phase is crucial to increase the effectiveness of the classifi-

cation process. To extract the most relevant features from a
dataset, a feature selection method first explores all potential
subsets of features. It then picks the best one based on an
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TABLE 17. The convergence of time resulting from different values of SCWDTO's parameters.

rl 2 r3 4 5 16 K2
Values  Time Values  Time Values  Time Values  Time Values  Time Values  Time Time Values  Time
0.05 7.744  0.05 7.604  0.05 7.498  0.05 7.542  0.05 7.377 0.1 7471 7411 0.1 7.420
0.1 7742 0.1 7.380 0.1 7.742 0.1 7.377 0.1 7.865 0.2 7.440 7.651 0.2 7.746
0.15 7.837 0.15 7.709  0.15 7.616 0.15 7.366  0.15 7.859 0.3 7.342 7373 03 7.450
0.2 7496 0.2 7.738 0.2 7.597 0.2 7.811 0.2 7.504 04 7.376 7773 04 7.847
0.25 7465 0.25 7.636  0.25 7.685 0.25 7.626  0.25 7.550 0.5 7.466 7.528 0.5 7.851
0.3 7595 03 7441 03 7349 03 7.704 0.3 7.622 0.6 7.765 7.781 0.6 7.597
0.35 7.810 0.35 7353 035 7.866  0.35 7.608 0.35 7.534 0.7 7.837 7717 0.7 7.388
0.4 7.614 04 7.835 04 7373 04 7472 04 7.689 0.8 7.366 7.683 0.8 7.814
0.45 7.891 045 7431 045 7.651 045 7.887 045 7.853 09 7.816 7.761 0.9 7.513
0.5 7.656 0.5 7.806 0.5 7364 05 7439 0.5 7.660 1 7.404 7.433 1 7.811
0.55 7.381 0.55 7.533  0.55 7.836  0.55 7.897 0.55 7412 1.1 7.396 7774 1.1 7.669
0.6 7.388 0.6 7.491 0.6 7.650 0.6 7.641 0.6 7.548 1.2 7.380 7377 1.2 7.784
0.65 7.738  0.65 7.485  0.65 7.369  0.65 7.634  0.65 7.594 13 7.544 7.423 1.3 7.756
0.7 7.701 0.7 7464 0.7 7.457 0.7 7.888 0.7 7.857 1.4 7.677 7584 1.4 7.722
0.75 7363  0.75 7.459  0.75 7343  0.75 7.763  0.75 7.453 1.5 7.765 7.832 1.5 7.796
0.8 7.737 0.8 7.407 0.8 7.703 0.8 7.778 0.8 7.817 1.6 7.892 7.408 1.6 7.871
0.85 7.457 0.85 7.404  0.85 7.368  0.85 7.593  0.85 7.378 1.7 7.828 7.630 1.7 7.638
0.9 7.506 0.9 7.553 09 7.405 09 7.713 09 7.864 1.8 7.579 7.361 1.8 7.695
0.95 7469  0.95 7.840  0.95 7.574 095 7484  0.95 7.730 1.9 7.746 7.881 1.9 7.386
1 7.579 1 7.766 1 7.475 1 7.709 1 7792 2 7.410 7.639 2 7.869
8.0
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—
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FIGURE 7. The sensitivity analysis of the convergence time.
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FIGURE 8. Histogram of the convergence time.

evaluation metric. To pick the best subset of features for algorithm and used in conjunction with the KNN classifier.
various problems, this work proposed a hybrid approach In the proposed algorithm, the original DTO is used to expand
called bSCWDTO, a binary DTO algorithm based on the SC the search space and the SC to expand the diversity of the
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TABLE 18. The convergence of fitness resulting from different values of SCWDTO’s parameters.

rl 2 3 4 5 6 17 K1 K2
Values  Fitness  Values Fitness Values  Fitness Values Fitness Values Fitness Values Fitness Values Fitness Values Fitness Values  Fitness
0.05 74503  0.05 73.616  0.05 74207  0.05 73.885  0.05 74.036 0.1 73.468 0.1 74.101 0.1 73.830 0.1 74.338
0.1 74415 0.1 74.546 0.1 73319 0.1 73.838 0.1 73942 0.2 74213 0.2 73.830 0.2 74217 0.2 73.171
0.15 73457  0.15 73200 0.15 74.029  0.15 74475  0.15 74424 03 74546 0.3 74.165 0.3 73.579 0.3 73.364
0.2 73.683 0.2 74544 0.2 73253 0.2 73792 0.2 74517 04 73519 04 74551 04 73.527 04 74.186
0.25 73.303 025 74.568  0.25 74.147  0.25 74.029  0.25 74.135 05 73319 05 73.886 0.5 74.600 0.5 73.193
0.3 73476 0.3 74.193 03 74450 0.3 73.647 0.3 74522 0.6 73219 0.6 73972 0.6 74.069 0.6 73.884
0.35 73.879 0.35 74542 0.35 74.056  0.35 73.641 0.35 73.698 0.7 73935 0.7 73.845 0.7 74.135 0.7 73.544
0.4 73295 04 73.889 04 74.059 0.4 74250 04 74072 0.8 74.193 0.8 73971 0.8 73.651 0.8 74.308
0.45 73.545 0.45 74.504  0.45 73.683 0.45 73.604 045 73.391 0.9 74.041 0.9 73.795 09 74286 0.9 73.164
0.5 73.629 0.5 73262 0.5 73203 0.5 74176 0.5 74200 1 73380 1 74.042 1 74336 1 73.773
0.55 74482  0.55 74521 0.55 74424 0.55 73953 0.55 73.143 1.1 73.184 1.1 74.066 1.1 74.193 1.1 73.340
0.6 73.397 0.6 74.042 0.6 73.680 0.6 74273 0.6 74.020 1.2 73431 1.2 74287 1.2 74358 1.2 73.444
0.65 73.778  0.65 73.470  0.65 74216  0.65 74.073 0.65 74.037 1.3 74.134 1.3 73.946 1.3 73.440 1.3 74.298
0.7 73418 0.7 74.181 0.7 73.944 0.7 74120 0.7 74.138 14 73229 14 73395 14 73.843 1.4 73.748
0.75 73971  0.75 73.794  0.75 73.859  0.75 74.159  0.75 73536 1.5 7349 1.5 73.802 1.5 73572 15 73.561
0.8 74366 0.8 73.840 0.8 73942 0.8 74.003 0.8 74.065 1.6 74505 1.6 74.105 1.6 73414 1.6 74.193
0.85 74382  0.85 73277 085 74.128 0.85 73.609  0.85 73.262 1.7 74.406 1.7 73.264 1.7 73.523 1.7 74.093
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FIGURE 10. Histogram of the convergence fitness.

population. The continuous values were discretized using
the sigmoid function to apply the proposed algorithm to the
feature selection problem. Experiments were conducted on
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thirty UCI machine learning repository datasets to exam-
ine the algorithm’s stability and robustness. The achieved
results were compared with those obtained using the bDTO,
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TABLE 19. Statistical analysis applied to the results of the sensitivity analysis of the convergence time.

rl 2 r3 r4 r5 r6 r7 K1 K2
Number of values 20 20 20 20 20 20 20 20 20
Minimum 7.363 7.353 7.343 7.366 7.377 7.342 7.36 7.361 7.386
25% Percentile 7.466 7.434 7.37 7.499 7.512 7.398 7.474 7.414 7.534
Median 7.605 7.512 7.536 7.638 7.641 7.508 7.564 7.635 7.734
75% Percentile 7.741 7.731 7.677 7.774 7.844 7.765 7.714 7.77 7.813
Maximum 7.891 7.84 7.866 7.897 7.865 7.892 7.869 7.881 7.871
Range 0.528 0.487 0.523 0.531 0.488 0.55 0.509 0.52 0.485
Mean 7.608 7.567 7.546 7.647 7.648 7.575 7.595 7.601 7.681
Std. Deviation 0.1624  0.1626 0.1686 0.1647 0.1745 0.1932  0.1524 0.1736 0.167
Std. Error of Mean  0.0363  0.03635  0.03771  0.03683  0.03903  0.0432  0.03407 0.03883  0.03733
Sum 152.2 151.3 150.9 152.9 153 151.5 151.9 152 153.6
TABLE 20. ANOVA test applied to the results of the sensitivity analysis of the convergence time.
ANOVA table SS DF MS F (DFn, DFd) P value
Treatment (between columns)  0.3055 8 0.03819 F(8,171)=1.335 P=0.02290
Residual (within columns) 4.89 171  0.0286
Total 5.196 179
TABLE 21. Wilcoxon signed-rank test applied to the results of the sensitivity analysis of the convergence time.
rl 2 r3 4 5 16 17 K1 K2
Theoretical mean 0 0 0 0 0 0 0 0 0
Actual mean 7.608 7.567 7.546 7.647 7.648 7.575 7.595 7.601 7.681
Number of values 20 20 20 20 20 20 20 20 20
One sample t test
t, df =209.6,df=19  t=208.2,df=19  t=200.1,df=19  (=207.6,df=19  t=196.0,df=19 t=175.4,df=19 1=222.9,df=19 (=195.8,df=19  =205.7, df=19
P value (two tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
P Value Summary sokok seckeokok deskeokok EEEES EEEES sekok seskkok sekok seckeokok
Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 7.608 7.567 7.546 7.647 7.648 7.575 7.595 7.601 7.681
SD of discrepancy 0.1624 0.1626 0.1686 0.1647 0.1745 0.1932 0.1524 0.1736 0.167
SEM of discrepancy 0.0363 0.03635 0.03771 0.03683 0.03903 0.0432 0.03407 0.03883 0.03733
95% confidence interval 7.532t07.684  7.491 to 7.643 7.467 to 7.625 7.570to0 7.724 7.566 to 7.730 7.485 to 7.665 7.524t0 7.666  7.520 to 7.682 7.603 to 7.759
R squared (partial eta squared)  0.9996 0.9996 0.9995 0.9996 0.9995 0.9994 0.9996 0.9995 0.9996
TABLE 22. Statistical analysis applied to the results of the sensitivity analysis of the convergence fitness.
rl r2 r3 r4 S r6 17 K1 K2
Number of values 20 20 20 20 20 20 20 20 20
Minimum 73.17 73.2 73.2 73.32 73.14 73.18 73.26 73.41 73.16
25% Percentile 73.4 73.66 73.68 73.68 73.58 73.39 73.81 73.57 73.38
Median 73.59 74.11 74.04 73.92 74.04 73.73 73.96 73.84 73.83
75% Percentile 74.27 74.52 74.21 74.15 74.18 74.21 74.1 74.24 74.16
Maximum 74.5 74.57 74.45 74.48 74.52 74.55 74.55 74.6 74.34
Range 1.336 1.368 1.247 1.156 1.379 1.362 1.287 1.186 1.174
Mean 73.74 74.04 73.94 73.93 73.95 73.81 73.93 73.91 73.77
Std. Deviation 0.4568 0.477 0.3793 0.2804 0.4178 0.4819  0.3145 0.3657 0.4032
Std. Error of Mean  0.1021  0.1067  0.08482  0.0627  0.09343  0.1078  0.07033  0.08178  0.09016
Sum 1475 1481 1479 1479 1479 1476 1479 1478 1475
TABLE 23. ANOVA test applied to the sensitivity analysis results of the convergence fitness.
ANOVA table SS DF MS F (DFn, DFd) P value
Treatment (between columns)  1.505 8 0.1882 F(8,171)=1.159 P=0.03265
Residual (within columns) 2775 171  0.1623
Total 29.26 179
bSC, bPSO, bWOA, bGWO, bMVO, bSBO, bGA, and bFA APPENDIX

optimization algorithms. As proved by the outcomes, the
proposed bSCWDTO algorithm is superior. The proposed
approach is planned to be evaluated in further work on contin-
uous and engineering problems with constraints. In addition,
the proposed approach will be evaluated in terms of the
CEC2019 problems to give additional evidence of its robust-
ness, superiority, and generalization.
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In this appendix, an additional investigation of the effective-
ness of the proposed optimization algorithm is performed
to prove its efficiency in continuous optimization problems.
This appendix consists of two scenarios, the first is the opti-
mization of CEC2017 functions using the continuous version
of the proposed optimization algorithm. Whereas the second
scenario is the sensitivity analysis of the proposed algorithm.
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FIGURE 11. The residual, Homoscedasticity, QQ, and heatmap of the ANOVA test applied to the fitness sensitivity.
TABLE 24. Wilcoxon signed-rank test applied to the sensitivity analysis of the convergence fitness results.
rl 2 r3 r4 5 6 7 K1 K2
Theoretical mean 0 0 0 0 0 0 0 0 0
Actual mean 73.74 74.04 73.94 73.93 73.95 73.81 73.93 7391 73.71
Number of values 20 20 20 20 20 20 20 20 20
One sample t test
t, df t=722.0,df=19  t=694.1,df=19  t=871.8,df=19 t=1179,df=19 t=791.5,df=19 t=685.0,df=19 t=1051,df=19 =903.8,df=19 t=818.3, df=19
P value (two tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
PValue Summary EE sekesteok sfeskesteok sfeskosteok sfekok seskesteok sfesksteok EE T sfeskok
Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 73.74 74.04 73.94 73.93 73.95 73.81 73.93 7391 73.77
SD of discrepancy 0.4568 0.477 0.3793 0.2804 0.4178 0.4819 0.3145 0.3657 0.4032
SEM of discrepancy 0.1021 0.1067 0.08482 0.0627 0.09343 0.1078 0.07033 0.08178 0.09016

95% confidence interval 7353107395 73.82t074.26  73.77 to 74.12
R squared (partial eta squared) 1 1 1 1

73.80 to 74.06

73775t074.14  73.58t074.03  73.79t074.08  73.74t0 74.08  73.59 to 73.96
1 1 1 1 1

A. CEC2017

For the CEC2017 benchmark problems, the proposed
SCWDTO algorithm has proven very useful. The GWO,
PSO, and SFS algorithms are three existing methods that
this one outperforms. The SCWDTO algorithm has improved
exploration and exploitation capabilities using the sine-cosine
weighting method and the dipper-throated mechanism. The
algorithm dynamically balances exploration and exploita-
tion based on the sine and cosine functions for improved
convergence to optimal solutions. However, GWO, PSO,
and SFS algorithms often use inefficient methods of finding
optimal solutions, such as predetermined weight values or
random search strategies. Second, the SCWDTO algorithm
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excels at solving complex optimization problems. Because
of its dipper-throated mechanism and sine-cosine weight-
ing, it can efficiently go across high-dimensional solution
spaces, avoiding the curse of dimensionality. In contrast,
scalability is a common problem for GWO, PSO, and SFS
algorithms, making it hard to explore and exploit solutions
in large-scale problems accurately. Third, the SCWDTO
algorithm has a robust global exploration potential because
of the special combination of the sine-cosine weighting and
the dipper-throated processes. Since GWO, PSO, and SFS
can become stuck in suboptimal portions of the search space,
this one has a leg up on them when breaking free of local
optima. In addressing the CEC2017 benchmark problems, the
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proposed SCWDTO algorithm is superior to the GWO, PSO,
and SFS algorithms. Improved exploration and exploitation,
effective management of high-dimensional problems, and
reliable global exploration are all made possible by the
system’s novel combination of sine-cosine weighting and
dipper-throated methods. These features make the SCWDTO
algorithm a potentially helpful tool for solving challeng-
ing optimization problems. Table 15 presents the results
of the best, worst, median, mean, and standard deviation
fitness achieved by the proposed SCWDTO algorithm for
the 29 CEC2017 benchmark functions. In addition, the results
applying the proposed optimization algorithm and three other
competing algorithms, GWO, PSO, and SFS, are presented
in Table 16. These results confirm the superiority of the
proposed optimization algorithm in solving the CEC2017
benchmark functions.

B. SENSITIVITY ANALYSIS

A sensitivity analysis is conducted to understand further
how the proposed SCWDTO method performs and behaves
with different values of its parameters. The method’s perfor-
mance can be fine-tuned and optimized for certain problem
domains by studying its sensitivity to parameter alterations.
The population size is an important input to the SCWDTO
algorithm. By conducting a sensitivity analysis, we may learn
how changing the population size impacts the algorithm’s
convergence time and the quality of its solution. It aids in
determining the optimum population size that allows for both
exploration and exploitation. There is some evidence that
larger populations improve exploration at the expense of
computing cost, while smaller populations are more prone
to premature convergence and less-than-optimal solutions.
The maximum number of iterations or generations is another
key factor to examine. The convergence behavior of the
algorithm and the best stopping criterion can be evaluated
by adjusting this value. By performing a sensitivity analysis,
one may determine when further iterations will no longer
significantly increase the quality of the answer and so save
computational time. The sensitivity analysis can also exam-
ine how changing the crossover rate or weighting factor
affects the algorithm’s performance. Sensitivity analysis can
be used to determine the best settings for these parame-
ters, which affect the algorithm’s exploration-exploitation
trade-off. Researchers can learn about the resilience and
adaptability of SCWDTO in various problem domains by
assessing how the algorithm responds to varying values of
its parameters. The effect of the dipper-throated mechanism
on the algorithm’s efficacy can also be investigated through
sensitivity analysis. The dipper-throated parameter controls
the depth to which a creature will venture into unknown ter-
ritory. Understanding the algorithm’s sensitivity to changes
in exploration and exploitation might help fine-tune that bal-
ance for individual optimization tasks. Sensitivity analysis
is a must to learn how the SCWDTO algorithm acts and
find the sweet spot for its settings. Understanding how the
algorithm’s parameters affect convergence, solution quality,
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and the exploration-exploitation trade-off is aided by this tool.
Systematic sensitivity analysis allows for further refinement
and customization of the SCWDTO algorithm, making it
applicable to various practical optimization problems.

1) SENSITIVITY ANALYSIS OF THE CONVERGENCE TIME

The proposed SCWDTO algorithm’s convergence time is an
essential metric for sensitivity analysis. Table 17 presents the
resulting convergence of time for the changes of each param-
eter used in the proposed SCWDTO algorithm. In addition,
Figure 7 and Figure 8 show the sensitivity and histogram of
the convergence time. The time it takes for an algorithm to
converge to a reasonable solution or meet another stopping
requirement is meant here. The algorithm’s efficiency and
efficacy in addressing optimization issues can be learned
by examining the convergence time. During a sensitivity
analysis, researchers can examine the time required for
convergence by changing factors like population size, the
maximum number of iterations, and the control parame-
ters. Researchers can evaluate the algorithm’s sensitivity to
these parameters and determine which combinations result in
faster convergence without compromising solution quality by
monitoring the convergence time under different parameter
settings. If an algorithm can swiftly converge to optimal or
near-optimal solutions, that’s a good thing. Convergence time
and solution quality are two factors that must be balanced.
An algorithm may converge quickly, yet its results may be
less than ideal. In this way, sensitivity analysis speeds up the
algorithm’s convergence and guarantees its continued preci-
sion when solving the problem. Furthermore, the convergence
time can be investigated for numerous problem domains and
benchmark functions via sensitivity analysis. The algorithm’s
robustness is evaluated across various problem dimensions,
sizes, and types. It’s helpful since it shows how the algorithm
handles different kinds of optimization issues and how well it
scales. In addition, sensitivity analysis can show if there are
any compromises between convergence speed and comput-
ing power. Some choices of parameters may result in faster
convergence, albeit at the expense of more CPU time. Using
sensitivity analysis, scientists may zero in on the parameter
settings that strike the best balance between fast convergence
and low computing cost. In general, the sensitivity analysis
of the SCWDTO method relies heavily on the convergence
time. Optimizing the algorithm’s performance, balancing
convergence time and solution quality, and ensuring optimal
resource use can be achieved by studying the algorithm’s
convergence behavior under varied parameter settings and
problem domains.

The statistical analysis results help to understand how long
it will take for the proposed SCWDTO algorithm to converge
as presented in Table 19. Descriptive statistics for a sample
size of 20 values are provided for the parameters rl, r2, r3,
r4, 15, 16, 17, K1, and K2. The fastest observed convergence
time for any given parameter ranges from 7.363 to 7.386,
where 7.363 is the minimum value. To better understand
how convergence times are distributed, we can look at the
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25th, median, and 75th percentiles, with the median being
the typical number. Variability in convergence times is rep-
resented by a range from 0.485 to 0.531, where 0.485 is the
minimum, and 0.531 is the maximum. All parameters have
a mean convergence time between 7.546 and 7.681, with
rl’s averaging 7.608 seconds, 12’s averaging 7.567 seconds,
and so on. Convergence times show reasonably constant
behavior across parameters, as measured by the standard
deviation, which ranges from 0.1624 to 0.1932. Indicating
how confident one can be in the calculated means, the stan-
dard error of the mean approximates the sample mean’s
precision. The total observed convergence time ranges from
150.9 to 153.6, calculated by adding the convergence times
for each of the sample’s parameters. The statistical evalua-
tion provides a wide-ranging survey of the features affecting
SCWDTO’s convergence time. Convergence times, along
with their range, mean, variability, and consistency, are high-
lighted so researchers can evaluate the algorithm’s effective-
ness and make educated decisions about parameter adjust-
ment and optimization.

The ANOVA table details the treatment-specific (between
columns), residual-specific (within columns), and total-
specific variance components and degrees of freedom, as pre-
sented in Table 20. The treatment SS captures the variance
that can be traced to the various parameter settings. At the
same time, the residual SS accounts for the variation that
cannot be assigned to any one setting. The sum of the SS
quantifies the complete range of values during the conver-
gence time. By comparing the treatment MS to the residual
MS, we can obtain the F-statistic. In this situation, the F
value is 1.335 (DFn, DFd), where DFn is the number of
degrees of freedom associated with the treatment, and DFd
is the number of degrees of freedom associated with the
residual. The corresponding p-value of 0.02290 represents
the statistical likelihood of observing this outcome due to
chance alone. The ANOVA test indicates significant differ-
ences in convergence time between the various parameter
configurations because the p-value (P = 0.02290) is less than
the predetermined significance level. To isolate the specific
pairwise changes between the configurations that contribute
to these substantial variations, however, more post hoc testing
would be required. Using the ANOVA test, Researchers can
infer the effect of various parameter settings on the SCWDTO
algorithm’s temporal convergence. There appears to be a
statistically significant relationship between the parameter
configurations and the convergence time, suggesting that this
topic deserves more attention.

Time convergence from a sensitivity study of the pro-
posed SCWDTO method was subjected to the Wilcoxon test,
also known as the Wilcoxon signed-rank test, as presented
in Table 21. The test yielded the following findings: The
SCWDTO algorithm’s r1, r2, 13, r4, 15, 16, r7, K1, and K2
were put to the test. All parameters had their theoretical
means set to zero, and their respective average convergence
times were then determined. Twenty values were explored
for every parameter. The t-values and degrees of freedom
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(df) from one-sample t-tests on each parameter are provided.
All parameters have two-tailed p-values smaller than 0.0001,
as computed. According to the summary of p-values, there
were statistically significant deviations from the theoreti-
cal mean in the convergence times for all parameters. The
variance between the observed and expected convergence
times was calculated for each parameter. The discrepancies
were analyzed by computing their standard deviation (SD)
and standard error of the mean (SEM), which shed light on
their variability and accuracy. A range estimate of the real
disparity was produced for each parameter using the 95%
confidence intervals. The R-squared (partial eta squared)
values were also determined, showing what percentage of
the overall convergence time variation may be attributed to
parameter variations. R-squared values near 1 indicated high
degrees of correlation between the parameters and the conver-
gence time. According to the Wilcoxon test, the SCWDTO
algorithm’s convergence time is considerably impacted by
all of its parameters. The mean’s standard deviations and
standard errors were minimal for the estimations supplied by
the differences between the observed and theoretical mean
convergence periods. High R-squared values indicate strong
correlations between parameter differences and the observed
convergence time. These results highlight the significance of
proper parameter selection in achieving the fastest possible
SCWDTO convergence time.

2) SENSITIVITY ANALYSIS OF THE CONVERGENCE FITNESS

Results from the proposed SCWDTO optimization method
were subjected to a sensitivity analysis of the convergence
fitness for different parameters rl, r2, r3, r4, 15, 16, 17,
K1, and K2 values. Table 18 presents the resulting con-
vergence of fitness for the changes of each parameter used
in the proposed SCWDTO algorithm. In addition, Figure 9
and Figure 10 show the sensitivity and histogram of the
convergence fitness. The fitness values for each parameter
combination were recorded and evaluated to learn how they
affected the algorithm’s ability to converge. The fitness val-
ues associated with the optimization algorithm’s parameter
settings are listed in the table below. Parameter values and
their corresponding fitness ratings are shown in the columns,
while rows represent possible parameter combinations. Sev-
eral conclusions can be drawn from this table. First, it is
clear that the fitness values associated with various parameter
settings differ. A fitness value of 74.503 is achieved with
rl = 0.05, whereas a value of 73.629 is attained with rl =
0.5. This suggests that the algorithm’s fitness for convergence
can be influenced by adjusting rl. Other factors, such as
12, 13, r4, r5, r6, 17, K1, and K2, also show fitness value
changes. Changing the parameters causes a noticeable shift
in the fitness values, indicating that they also affect the con-
vergence fitness. Additional investigation of the parameter
combinations is needed for a thorough sensitivity analysis.
It is feasible to determine whether values of the parameters
lead to more or lesser convergence fitness by comparing the
fitness values across different parameter settings. This study
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is useful for learning how the algorithm responds to changes
in its parameters and for determining which values to use for
those parameters to achieve the desired level of convergence.
In conclusion, the impact of different parameters on the per-
formance of the SCWDTO optimization algorithm is shown
by a sensitivity analysis of the convergence fitness based on
the results obtained. Insights into the algorithm’s sensitivity
to different parameter values can be gleaned by comparing the
fitness values corresponding to different parameter combina-
tions. We can enhance its convergence properties with this
information by fine-tuning the method and choosing suitable
parameter settings.

The statistical tests conducted on the proposed SCWDTO
algorithm yield useful information about its convergence fit-
ness as presented in Table 22. Each of the parameters r1, r2,
3, 14, 15, 16, 17, K1, and K2 are analyzed with a sample size
of 20 values. The results provide the minimum, maximum,
average, and consistency of fitness levels, giving researchers
a basis for judging the algorithm’s efficacy and making deci-
sions about fitness evaluation and optimization. The lowest
observed fitness levels attained during convergence have min-
imum values between 73.14 and 73.41, respectively. As a
central tendency measure, the median is a value halfway
between the 25th and 75th percentiles, depicting the distri-
bution of fitness values. The range, defined as the difference
between the least and maximum values, spans from 1.156 to
1.379, illustrating the spectrum of fitness levels. The aver-
age fitness for each parameter ranges from 73.74 to 74.04,
with rl averaging 73.74, 12 averaging 74.04, and so on.
Variability in fitness levels around the mean is measured by
the standard deviation, which varies from 0.2804 to 0.4819,
suggesting a wide range of dispersion. Indicating how con-
fident one can be in the calculated means, the standard
error of the mean approximates the sample mean’s preci-
sion. The overall fitness achieved in the sample was between
1475 and 1481, and it was calculated by adding the fitness
values for each parameter. Overall, the statistical analysis
tells us much about the SCWDTO algorithm’s fitness for
convergence.

The ANOVA table details the treatment-specific (between
columns), residual-specific (within columns), and total-
specific variance components and degrees of freedom, as pre-
sented in Table 23 and as shown in the plots of Figure 11.
The treatment SS captures the variance that can be traced
to the various parameter settings. At the same time, the
residual SS accounts for the variation that cannot be assigned
to any one setting. The sum of SS can be considered
a measure of the fitness convergence’s overall variability.
By comparing the treatment MS to the residual MS, we can
obtain the F-statistic. The degrees of freedom associated
with the treatment (DFn) and the residual (DFd) add up
to a total of 1.159 for the F statistic. The corresponding
p-value of 0.03265 represents the statistical likelihood of
observing this outcome due to chance alone. The ANOVA
p-value (P = 0.03265) is below the set statistical signifi-
cance threshold, suggesting that different parameter settings
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produce significantly different fitness convergent distribu-
tions. This indicates that the parameter settings significantly
affect the SCWDTO algorithm’s convergence. However, post
hoc testing or additional research is required to identify
the specific pairwise differences across the configurations
that account for these substantial changes. Researchers can
learn how different sets of parameters affect the SCWDTO
algorithm’s fitness convergence with the help of the ANOVA
test. These results show that careful choice of parameter
values is necessary to achieve optimal method convergence.
Researchers can use these results to fine-tune the algorithm
and select appropriate parameters for the desired fitness
convergence.

The fitness convergence from the sensitivity analysis of
the proposed SCWDTO algorithm was examined using the
Wilcoxon test, especially the Wilcoxon signed-rank test,
as presented in Table 24. Here are what we found in our
tests: The SCWDTO algorithm’s parameters K1, K2, K3,
K4, K5, K6, and r7 were put to the test. We first fixed the
theoretical mean fitness convergence to zero for all param-
eters to compute the true values for mean convergence.
Twenty values were explored for every parameter. T-values
and degrees of freedom (df) were calculated using one-
sample t-tests on each parameter. All parameters have two-
tailed p-values below 0.0001, according to our calculations.
According to the summary p-values, there are statistically
significant deviations from the predicted mean in fitness
convergence for all parameters. The deviations from the the-
oretical mean fitness convergence were calculated for each
variable. To learn more about the variability and accuracy
of the discrepancies, we computed their standard deviation
(SD) and standard error of the mean (SEM). In addition, 95%
confidence intervals were determined to approximate the
likely range in which the disparities fall. R-squared values,
also called partial eta-squared values, were calculated and
determined to equal 1. This means that every variation in the
data may be attributed to differences in fitness convergence.
The Wilcoxon test shows that the fitness convergence of all
SCWDTO algorithm parameters varies significantly from the
theoretical mean. Consistently small standard deviations and
standard errors of the mean characterize the gaps between
observed and predicted mean values of convergence. The
high values of R2 indicate a robust correlation between the
parameter deviations and the measurable fitness convergence.
These results highlight the significance of picking suitable
parameter values to maximize the SCWDTO algorithm’s fit-
ness convergence. Using the Wilcoxon test, we can see that
the parameters we choose significantly affect the algorithm’s
fitness convergence. These findings can help researchers
identify optimal parameter settings for the algorithm during
fine-tuning.
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