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ABSTRACT This paper proposes a two-dimensional resource allocation technique for vehicle-to-
infrastructure (V2I) communications. Vehicular communications requires high data rates, low latency, and
reliability simultaneously. The 3rd generation partnership project (3GPP) included various numerologies
to support this, leading to diversification of transmit time interval (TTI). It enables the two-dimensional
resource allocation that considers time and frequency simultaneously, which has yet to be studied much.
To tackle this issue, we propose a reinforcement learning approach to solve the two-dimensional resource
allocation problem for V2I communications. A reinforcement learning agent in a base station allocates
a quality of service (QoS) guaranteed two-dimensional resource block to each vehicle to maximize the
sum of achievable data quantity (ADQ). It exploits received power information and a resource occupancy
status as input. It outputs vehicles’ allocation information that consists of a time-frequency position,
bandwidth, and TTI, which is a solution to the two-dimensional resource allocation. The simulation results
show that the proposed method outperforms the fixed allocation method. Because of the ability to pursue
ADQ maximization and QoS guarantee, the proposed method performs better than an optimization-based
benchmark method if each vehicle has a QoS constraint. Also, we can see that the resource the agent selects
according to the QoS constraint varies and maximizes the ADQ.

INDEX TERMS Deep reinforcement learning, V2X communications, quality of service, resource allocation.

I. INTRODUCTION
With the advent of complex applications that combine high
data rates, low latency, or high reliability, discussions on
next-generation communication networks have been actively
conducted to support them. The international telecommuni-
cation union (ITU) radiocommunication sector has defined
three service types to meet the requirements of new appli-
cations: enhanced mobile broadband (eMBB) for appli-
cations requiring high data rates, massive machine-type
communications (mMTC) for applications requiring high-
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density networks, and ultra-reliable low-latency communi-
cations (URLLC) for latency-sensitive applications. Vehicle-
to-everything (V2X) communications is a highly complex
application requiring all three service types. It consists of
several vehicle-related communications, such as vehicle-to-
infrastructure (V2I) and vehicle-to-vehicle (V2V) commu-
nications. Vehicles utilize V2V communications for direct
information exchange between themselves and V2I com-
munications to convey information to the infrastructure
such as base stations or roadside units (RSUs) and vice
versa [1], [2], [3], [4].

Early vehicular communications focused on collision
avoidance to reduce car crashes. They need delay-sensitive
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communications, such as V2V communications, to recognize
the location of other vehicles as quickly as possible [5]. Dedi-
cated short-range communications (DSRC) technology, a car-
rier sensing multiple access-based technique, was developed
to support earlyV2V communications. EachDSRC-equipped
vehicle broadcasts its driving information to let the others
decide on potential risks of collisions. Other research for V2V
communications also has been studied. In [6], V2Vmulti-hop
modeling to increase the efficiency of information dissemi-
nation has been proposed. In [7], media access control using
high frequency and periodicity of safety message broadcast
has been proposed. In [8], the authors collected and analyzed
actual DSRC data to model V2V communications in an urban
environment and presented a reliable beaconing method.
In [9], the authors have proposed novel in-vehicle network
mobility models considering car-following and avoidance
behavior. The models show a performance enhancement of
the V2V communications in 5G NR networks. In [10], the
authors have proposed a V2X resource allocation scheme
using machine learning. They presented a joint power, spec-
trum, and local computing ratio allocation problem with
partial CSI and offered a solution that minimizes V2I link
delay and satisfies the V2V reliability constraint.

However, V2V communications has limitations in satisfy-
ing complex functions for recent vehicles. For autonomous
driving, vehicles need to share data generated by their various
sensors, so some methods supporting a high data rate and
reliable information exchange between vehicles are required.
Also, applications such as infotainment require a super high
data rate and relatively small delay because the network needs
to support video, augmented reality (AR), or virtual reality
(VR) data transmission wirelessly for the vehicles. As such,
vehicular communications must support short delay time,
high data rate, and high reliability. It is challenging to meet
these demands with V2V communications. Therefore, the
vehicles need some aid from the high speed communication
entities, such as base stations or RSUs.

Meanwhile, these entities need to be more flexible to
support vehicular communications. The 3rd generation part-
nership project (3GPP) defined new numerology of orthog-
onal frequency division multiplexing (OFDM) to support
new services [11]. Each numerology has different subcarrier
spacing (SCS). Enabling various options of SCS stimulates
the diversification of transmit time interval (TTI) options,
resulting in flexible numerology allocation according to com-
munications service type. For example, the network can
allocate numerology with short TTI to reduce latency for a
URLLC service or with small SCS for applications that need
stability, such as mMTC. Also, various TTI options diver-
sify resource block size and resource allocation flexibility,
enabling two-dimensional resource allocation with resources
that have different numerologies.

However, it must overcome the inter-numerology interfer-
ence (INI) problem caused by out-of-band emission (OOBE)
because resources with different SCS are not orthogonal.

In [12], the authors have proposed an OFDM-based physical
layer with scalable numerologies. They mentioned filters are
mandatory to control it. In [13], the authors conducted a
field test to compare the INI reduction performance of cycli-
cally prefixed OFDM (CP-OFDM), windowing OFDM (w-
OFDM), and filtered OFDM (f-OFDM). In [14], the authors
analyzed the INI between users with different numerology
and the performance of guard subcarriers to reduce INI.
They also compared the INI suppression performance of
CP-OFDM and w-OFDM. In [15], the authors analyzed
users’ performance with different numerology and sampling
rates. The papers above say that the guard subcarriers sig-
nificantly reduce INI. If appropriate numbers of guard sub-
carriers are used, users with different numerology can be
simultaneously serviced in one band or subband, leading
to two-dimensional time-frequency resource allocation using
multi-numerology.

Since most standards and communication methods exploit
a fixed TTI, the two-dimensional resource allocation is
relatively unique research content. There are two popular
ways to allocate two-dimensional resources, one is heuristic
approaches, and the other is optimization-based approaches.
Optimization-based approaches mainly use metrics such as
sum-capacity, latency, quality of service (QoS), reliability,
energy efficiency, et cetera. In [16], the authors have proposed
a heuristic solution to the time-frequency resource alloca-
tion problem to optimize allocation efficiency in situations
with/without QoS constraints. In [17], a heuristic technique
has been proposed to determine the size of resource blocks
based on the allocation proposal and optimize the protocol
efficiency and allocation efficiency. Also, a time-frequency
resource allocation method considering multi-numerology
has been actively studied these days. In [18], which is our
benchmark method, the authors have proposed a method that
satisfies the QoS of users with strict latency while maximiz-
ing the capacity of high throughput users when there are
various service requests from users in a multi-numerology
environment. They proved the problem is NP-hard and pre-
sented a sub-optimal, low-complexity solution based on lin-
ear programming relaxation and Lagrangian dual. However,
it has an unbalanced resource problem for a slow fading
channel and a case of all high throughput users. It also shows
an inability to simultaneously pursue capacity maximization
and QoS guarantee in the case of all QoS users. In [19], the
authors have proposed a two-dimensional resource allocation
that maximizes energy efficiency in services with hetero-
geneous latency requirements. The authors have improved
energy efficiency by adding an algorithm that turns the power
amplifier on and off in response to traffic changes.

Although there are such results on the two-dimensional
resource allocation considering multi-numerology, there are
still many problems related to QoS and complexity. Recently,
reinforcement learning (RL) has been widely used to solve
high-complexity and difficult-to-solve problems. RL is a
method to determine the action that maximizes the return,
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which is a weighted sum of the rewards from the moment
of the action selection until the end of the episode, and it
can maximize not an instantaneous reward but a return that
considers all of the rewards thanks to this attribute. The RL
agent keeps updating a table or function approximator of
the expected return, which is the value function, during the
training. The action selected by the trained agent maximizes
the return on average, and the designer can decide how many
time steps the agent considers by controlling the constant
of the weighted average. In short, the RL agent chooses the
action that produces the most significant profit for the agent
on average, whichmotivates the use of the RL in this research.

These attributes make RL perform well for complex prob-
lems [20], [21]. In [22], the authors have proposed solutions
for power allocation and spectrum sharing problems in uni-
cast and broadcast V2V networks using RL. In particular,
the authors improved performance by including latency as
well as the sum-rate of V2I and V2V links in reward.
In [23], energy-efficient user scheduling and resource allo-
cation techniques with a hybrid energy source have been
proposed. The authors analyzed the performance of RL
techniques and energy efficiency with and without a sus-
tainable energy source. In [24], the authors have proposed
a numerology selection and spectrum allocation policy to
maximize the aggregated capacity of mobile virtual network
operators (MVNO). The authors presented the performance
according to the number of sub-bands and MVNOs and
compared the performance of the deep RL (DRL)-based
method with the optimal algorithm. In [25], the authors
have proposed an RL-basedMax-Min sumRate enhancement
method. They present an optimization problem that outputs
an optimal three-dimensional position of an unmanned aerial
unit (UAV) and power allocation. Because of the expensive
computational cost, the authors exploited Q-learning with an
exploitation strategy. The method showed a better perfor-
mance than the conventional waterfilling scheme. In [26],
the authors have proposed a decentralized resource alloca-
tion using multiagent double deep Q learning. Their method
aims to maximize the V2I sum-capacity while offer reliable
communication for V2V links. In [27], the authors have pro-
posed a DRL-based resource allocation scheme that outputs
each vehicle’s resource blocks and transmit power. The DRL
agent maximizes the sum-capacity while reducing the power
consumption of the V2V links. In [28], the authors designed
a novel fog computing framework for a smart healthcare
system. They presented a structure for data exchange for the
healthcare system. After that, they exploited Q-learning for
the diagnosis of the patients. In [29], the authors presented
DeepMist architecture, which is a low latency energy efficient
deep learning-based mist computing structure for managing
healthcare big data. They incorperated reinforcement learn-
ing for prediction of the heart disease.

To sum up, the two-dimensional resource allocation still
has problems like the relatively inefficient performance of
the heuristic approaches and the computational invalidity of
optimization-based approaches, and RL is a perfect match

to tackle that. Therefore, we propose an efficient RL-based
two-dimensional resource allocation method in V2I commu-
nications. Our main contributions are as follows:

• We propose the achievable data quantity (ADQ) as a
metric for solving two-dimensional resource allocation
with multiple TTIs and bandwidth (BW). The capacity
is a suitable metric for resource allocation considering
a single TTI. However, in the case of having multiple
TTIs, we need a metric to reflect the impact of diversi-
fied TTIs. Therefore, we propose the ADQ as a metric
for the efficient resource allocation method in case of
having multiple numbers of BW and TTI.

• Thanks to the RL method that maximizes the expected
return, RL performs better than the other optimization-
based scheme, motivating us to use it for the research.
We propose a DRL formulation to solve the problem
of two-dimensional resource allocation with multiple
TTIs. The agent exploits the received signal power of
each vehicle and resource occupation state as its state
and outputs an action with a time-frequency position,
bandwidth, and TTI. We design a reward that reflects
ADQ, QoS constraint, and overlapping. With the trained
agent, the network produces the maximum sum ADQ,
and every vehicle can use non-overlapping resources
that guarantee a QoS constraint.

• We simulated the proposed method to evaluate
the method’s performance. We also simulated the
optimization-based benchmark method for comparing
the performance. When there is a QoS constraint, the
results show that the agent allocates more resources to
vehicles with poor link quality than no QoS constraint
environment, which says the proposed method changes
its policy according to the QoS. Also, the proposed
method can maximize a sum ADQ and guarantee a QoS
constraint of each vehicle simultaneously, which the
benchmark does not have.

The rest of the paper is organized as follows. In Section II,
we introduce the system model, problem formulation.
In Section III, the RL formulation to solve the proposed
problem is described. In Section IV, we show the simulation
results and draw conclusions in Section V.

II. PRELIMINARIES
A. SYSTEM MODEL
The network has a macro base station (MBS) and K vehicles.
The set of vehicles is K. An RL agent in the MBS allocates
a resource block to each vehicle based on its received power
and the occupation state of the resources. The agent’s goal is
to maximize the sum of ADQ with/without QoS constraint.
Fig. 1 describes the DRL-based method and the environment
that includes it.

The network considers two-dimensional resource alloca-
tion. It has a resource space, as shown in Fig. 2. The time
duration of the resource space is T , and the frequency range
is B. The numerology specifies the TTI of the resource block.
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FIGURE 1. The DRL-based method and the environment.

FIGURE 2. Resource block of the system.

When the numerology of vehicle k ∈ K is µk ∈ M =

{0, 1, . . . , µmax}, the TTI of the vehicle k is Tk = 2−µkTmax ,
where Tmax is the TTI for µ = 0. The bandwidth of the
vehicle k is Bk ∈ B = {B1,B2, . . . ,Bb}.
We partition the resource space into resource elements. The

time duration of it is Tmin, and BW is Bmin. Tmin is the TTI
for µmax , and Bmin is the smallest BW. We name the resource
element i-th in time and j-th in frequency as (i, j)-th element.
We denote the TTI and BW for vehicle k divided by Tmin

and Bmin as T ek and Bek , respectively. T
e
k and Bek mean that

how many resource elements is needed to express T ek and
Bek , respectively. The MBS allocates a resource block with
horizontally or vertically consecutive resource elements to
each vehicle in the resource space.

The interference from other vehicles to vehicle k is

Ik =
1
Tk

∑
k ′ ̸=k

∑
i,j

ρk,ijρk ′,ij
Pk ′ h̃k ′

Bk ′
BminTmin, (1)

where Pk ′ is the transmit power of vehicle k ′, h̃k ′ is chan-
nel power gain of the interference from vehicle k ′, ρk,ij ∈

{0, 1} indicates whether vehicle k occupies the (i, j)-th ele-

ment. Note that we calculate the interference energy in each
resource element, then sum it all up and divide it by Tk to get
the interference power. The signal-to-interference-plus-noise
ratio (SINR) of vehicle k is

γk =
Pkhk

N0Bk + Ik
, (2)

where hk is the power gain of the channel, and N0 is noise
spectral density. The ADQ of vehicle k is

Dk = BkTk log2(1+ γk ). (3)

Note that we use Dk instead of capacity, which is an appro-
priate metric if the Tk of each user is the same as in the
existing resource allocation. However, Dk is greatly affected
by diversified Tk , which cannot be reflected if we use the
capacity instead of Dk .

B. PROBLEM FORMULATION
The optimization task is to allocate resource blocks with
consecutive resource elements to vehicles to maximize the
sum of Dk while guaranteeing a QoS constraint for each
vehicle. The optimization problem is

max
(ρk,ij)

∑
k∈K

Dk

s.t.
is+T ek−1∑
i=is

ρk,ij = T ek , j ∈ {jk,s, jk,s+1, . . . , jk,f }, ∀k ∈ K

js+Bek−1∑
j=js

ρk,ij = Bek , i ∈ {ik,s, ik,s+1, . . . , ik,f }, ∀k ∈ K

Dk > Dmin, ∀k ∈ K, (4)

where ik,s and ik,f are the starting and finishing position of the
allocated resource block for vehicle k in time, respectively,
jk,s and jk,f are the starting and finishing position of the allo-
cated resource block for vehicle k in frequency, respectively,
and Dmin is a QoS constraint. The first two constraints mean
resource blocks allocated to each vehicle are continuous, and
the last one is about the QoS guarantee.

C. REINFORCEMENT LEARNING
RL is a method of learning a policy, which is the selection
probabilities of actions, by interacting with the environ-
ment [30]. The agent chooses an action in a state and receives
a reward from the environment for taking action in the state.
It is crucial to appropriately design the state, action, and
reward to control the agent properly. To understand why,
we need to know about the Markov decision process (MDP).

MDP provides a mathematical foundation for RL. It mod-
els a decision-making process with probability and Markov
property. The next state is determined stochastically depend-
ing on the present state and action. The agent receives a
reward, which is an evaluation of the action. The return is
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a discounted sum of the rewards.

Gt =
∞∑
k=0

γ kRt+k+1

= Rt + γGt+1, (5)

where 0 ≤ γ ≤ 1. We use the expected return, which is the
value function, as a metric to maximize,

qπ (s, a) = Eπ

[
Gt

∣∣∣St = s,At = a
]
, (6)

where π is a policy, s ∈ S is a state from the state space,
a is an action from the action space, St is a state sampled at
time step t , and At is an action sampled at time step t . As we
can see from the equation (6), qπ (s, a) can be different as the
policy π changes, and the purpose of the agent is to learn a
policy that maximizes the qπ (s, a),

π (s) = argmax
a

qπ (s, a). (7)

There are many algorithms to solve (6) and (7), but we
have to know the exact state transition probability and reward
distribution, which is too hard to know in many cases [31].
RL provides a breakthrough to get (6) without additional
information. The RL agent chooses an action in a state and
receives a reward for taking action. Then, it is possible to
sample (6) and update the agent’s policy using the rewards.
The detailed techniques of RL can be distinguished by how
to update (6), whether to use stochastic policy, and whether to
use the function approximation using various methods such
as deep learning (DL) or not, et cetera.

The tabular RL method, which updates a table for value
function every time the agent visits a state-action pair, has
a dimensionality problem. A larger number of states and
actions makes the agent explore more because there is no way
to fully update the value function without visiting all state-
action pairs. This causes a severe problem of long training
and test time.

The function approximation method is a way to solve
this problem [30]. This learning-based method expresses the
value function with features and weights. Several methods
exist, such as linear approximation and tile coding, but deep
RL (DRL) has been the most popular recently. The DRL
method exploits the DL model to estimate the value func-
tion. The agent has a DL model trained with a loss function
based on a difference between Gt and q̂(s, a,w), which is an
approximated value function by the DL model. With power-
ful performance and many kinds of research proving DRL’s
efficiency, DRL makes RL much more popular than ever.

III. PROPOSED METHOD
This section introduces a two-dimensional resource alloca-
tion method for V2I communications using DRL, which we
propose. We describe the state, action, and reward for DRL to
solve the problem. Finally, the training and testing processes
are described.

A. STATE
An RL agent gets information about its state from the envi-
ronment. We assume that states are a deterministic function
of observations. Designing states properly is essential in RL
because of its influence on learning time and performance.
We define the state for this problem with four elements, the
power of the received signal from the vehicle k , that of k+1,
the occupation state of the resource space, and the terminal
state indicator.

We use the power of the received signal from the vehicle
k , Prk = Pkhk , as the first state element when allocating
the resource block of vehicle k . Prk is an essential part of
the (2), significantly affecting the ADQ. It helps the agent
to guess how much ADQ the link between the MBS and the
vehicle would produce. It also allows the agent to allocate
the appropriate resource block size depending on the QoS
constraint. We note that we take log base ten to Prk because of
its indistinguishably small value, so the first state element is
s1 = log10 P

r
k .

The second state element is the received power of vehicle
k + 1, Prk+1, which will be allocated right after the vehicle
k . Every time the agent allocates a resource block to each
vehicle, the agent needs to know the received power of other
vehicles to guess how large Prk is among the vehicles. So we
choose to exploit Prk+1 as the second state element to give
the agent contextual information about the received power of
other vehicles, which helps to decide the resource block size
of the vehicle k . Note that the agent cannot distinguish each
vehicle if we use all the received power from the vehicles as
the second state element. Doing it makes a similar input state
every time the agent gives a resource to each vehicle, which
is meaningless. We also note that the second state element is
0 if there is no more vehicle to allocate after vehicle k , and we
take log base ten if there are vehicles to allocate. The second
state element is

s2 =

{
0 if the state is terminal
log10 P

r
k+1 otherwise.

(8)

The third state element is the occupation state of the
resource space. The agent needs this to avoid allocating
overlapped resources to each vehicle, which leads to SINR
degradation. The ρij ∈ [0, 1, . . . ,K ] denotes how many
vehicles occupy the (i, j)-th element during the allocation
process. The third state element is

s3 = [ρ00, ρ01, . . . , ρ0q, ρ10, ρ11, . . . , ρpq], (9)

where p = T/Tmin and q = B/Bmin are the last time and
frequency index of the resource space expressed as a resource
element, respectively.

The fourth state element is an indicator,

It =

{
1 if the state is terminal
0 otherwise,

(10)

that lets the agent know whether it is a terminal state or not.
We need this because there is no particular expression of
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terminal state like the stage clear in game playing problem
in the simulator. Overall, we use four state elements for state
vector for vehicle k as

sk = [s1, s2, s3, It ]. (11)

B. ACTION
It is vital to design suitable action to solve the problem
and adequately control the agent. Since we are working on
the two-dimensional resource allocation problem, setting the
time-frequency position, TTI, and BW of the resource block
is the appropriate action for the agent. Therefore, the action
of the vehicle k is

ak = [fk , tk ,Bk ,Tk ], (12)

where fk and tk are the position of the resource element
in the resource space. The first two elements determine the
starting point of the resource block, and the last two elements
determine its size.

C. REWARD
The reward is the evaluation of actions chosen by the agent.
The agent in a state has the value function and updates it with
rewards, then utilizes it to decide what action to take if it faces
the same state again. It is vital to design rewards properly to
reinforce the agent as we want. We propose one positive and
two negative reward elements for controlling the agent. Using
the combination of the three reward elements, we propose the
reward for training agents with/without the QoS constraint.

The first reward element is the ADQ at the moment of the
allocation. The agent trained with this reward element tries to
give vehicles with high channel quality a large resource block
and with low channel quality a small resource block. The first
reward element is

r = c1Dk
= c1BkTk log2(1+ γk ), (13)

where c1 is a constant. We can guess two consequences with
r . The first is SINR improvement. If multiple vehicles use the
overlapped resource, the log part of Dk will be significantly
reduced, leading to a decrease in r . Therefore, the agent
would allocate each vehicle’s resource block in the empty
part of the resource space so that interference does not occur.
The second is fully exploited resource space. The agent will
try to fill the resource space as much as possible because Dk
increases with BkTk . In other words,Dk prevents the resource
space from being empty. However, if the received power of
some vehicles is much larger than the other vehicles, (13)
is large by itself, so the agent learns to allocate most of the
resources to the vehicles. In this case, certain vehicles occupy
most of the resources, hindering the resource allocation of
others. For this reason, other rewards should be exploited to
prevent this situation.

Note that r is derived immediately after the agent executes
an action, regardless of what resource block the agent allo-
cates to other vehicles. Once r is determined, it is not changed

even if overlaps happen after the allocation processes of other
vehicles, leading to a decrease in the value. If we calculate r
after finishing resource allocation for all vehicles and use it
as a reward element, the MDP is broken because the agent’s
subsequent actions affect the reward.

The second reward element is a negative reward for allo-
cating overlapped resources. The agent trained with this has
some ability to allocate a non-overlapping resource to each
vehicle. It can also control allocating a manageable size of
each resource because too large resources make overlaps
because of the little resource space to allocate.

The third reward element is a negative reward for the QoS
violation. The agent receives it if the ADQ of the vehicle is
smaller than the pre-defined threshold, QoS constraint. The
agent needs the capability to infer that the non-allocated part
of the resource space is enough to guarantee QoS for others,
and this reward element helps it. If we only use the reward
elements mentioned earlier, the agent leaves a small part of
resource space insufficient to satisfy the QoS constraint of
each vehicle with bad channel quality. That could cause a
severe problem if a vehicle with low channel quality needs
to communicate in an emergency.

We use three reward element mentioned earlier for the
reward. The reward, which maximizes the sum ADQ of all
vehicles while guarantees the QoS, is

Rcapk =


−c2 Ok ≥ 1
−c3 Ok < 1 and Dk ≤ Dmin
r Ok < 1 and Dk > Dmin,

(14)

where Ok means how many resource elements of vehicle k
are overlapped. Note that, as can be seen from (14), we give
the second reward a higher priority than the third reward
because it is difficult to match the QoS constraint when an
overlap occurs.

D. RL METHODS
RL varies greatly depending on the methods. They produce
differences in the convergence of the value function estimate
or in its representation. We mention three representative cat-
egories. The first is how to express the sample of the value
function, the second is ϵ-greedy policy for exploration, and
the third is the value function expression.

The Monte Carlo method is a way to sample the value
function. A sample of the value function when using the
Monte Carlo method is (5), and this is an unbiased estimator
of (6). If we have enough samples, the value function estimate
converges to the true value function. On the other hand, the
learning process with Monte Carlo method is slow because
the agent has to wait until the end of an episode, and it cannot
be used in continuing tasks where the episode continues.
However, the two problems of the Monte Carlo method do
notmake an impact in our case becausewe use relatively short
episodes, which is not continuing. So, in our case, using the
Monte Carlo method allows us to have an estimate with no
bias and is not slow.
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Algorithm 1 ϵ-Greedy Policy

Input: Value function qπ , state sk , ϵ.
Execution:
1: Generate uniform random variable nu ∼ U[0, 1).
2: if nu ≤ ϵ

3: p(ak |sk ) = 1/|A|.
4: Sample ak from p(ak |sk ).
5: else
6: ak = argmax

a
qπ (sk , a)

Return: ak

TABLE 1. Simulation parameters.

TABLE 2. Guard band.

It is essential to balance exploration and exploitation in
RL. Too much exploitation makes the agent greedy and
prevents it from visiting all state-action pairs. Conversely,
excessive exploration causes the agent not to be greedy,
which prevents it from having a good policy. So we use
ϵ-greedy policy to solve the problem. The policy is shown in
Algorithm 1 [30].

In order to decide whether to express the value function
with the tabular method or the function approximation, it is
important to carefully consider the size of the state space
and action space. When the sizes of the spaces are small,
it is not easy to use the function approximation because
of performance degradation by over-generalization, which
makes states non-distinguishable. On the other hand, if the
tabular method is used when the size of the spaces is large,
the agent cannot complete the exploration itself, so learning
is impossible. In our problem, the state space is relatively
small compared to problems in other fields which use RL.
However, in the case of the action space, if the size of the
resource elements is 0.25 ms and 5 MHz in our simulation
and that of the resource space is 2 ms and 20 MHz, the
number of resource elements is 32. Considering TTI, BW,

and resource location, the number of possible actions is more
than 150. That is a lot considering the number of actions in
the existing problem in other fields [33]. Therefore, we use
function approximation, which is trained using the Huber loss
function for vehicle k , which is

Lk =

{
0.5(q̂(s, a,w)− Gkt )

2 if |q̂(s, a,w)− Gkt | ≤ 1
|q̂(s, a,w)− Gkt | − 0.5 otherwise.

(15)

E. TRAINING AND TEST
The proposed method has training and testing algorithms like
other RL algorithms. At the start of the training algorithm,
as shown inAlgorithm 2, we initialize the neural network and
the episode buffer. After that, we repeat the following process
for each episode. First, we generate vehicles, MBS, and links
between them. Second, the agent samples a vehicle’s state,
chooses a action according to the policy, and receives a
reward. It is stored in the episode buffer. After completing
the episode, the neural network is updated based on the return
calculated from the rewards in the buffer. We decay ϵ at the
end of every episode for the ϵ-greedy policy. When ϵmax is 1,
ϵmin is 0.1, and the greedy interval is Tgreedy, the ϵ is

ϵt = min(ϵt−1 −
ϵmax − ϵmin

Tgreedy
, ϵmin). (16)

Note that we need to wait until the episode is over since we
use the Monte Carlo technique, so we use a buffer to store
each data. The test algorithm shown in Algorithm 3 is the
same as the training algorithm, except that there is no training
of the neural network and no buffer.

IV. SIMULATION
In this section, we describe the simulation environment dis-
cuss the simulation results.

A. ENVIRONMENT AND NEURAL NETWORK
ARCHITECTURE
It is crucial to make a concrete simulation environment that
models a realistic environment as possible. Fortunately, some
standards offer information about the communication channel
and how to deploy the entities, such as an MBS and vehicles.
We refer to the freeway case of 3GPP TS 36.885 for this
purpose [34]. We assume a slow fading and frequency flat
channel. The road configuration is 2 km long and 4 m wide in
one lane, and six such lanes exist. When the horizontal posi-
tion is x, the vertical position is y, and the antenna position
is z, the position of each object on the road is (x, y, z). The
MBS is at (999.5m, 0m, 35m), and each vehicle is located
at (u m, v m, 1.6m), where u ∼ U (0, 2000) and v is the
discrete uniform distribution that outputs a value from a set
V = {2, 6, 10, 14, 18, 22}. The size of the resource space is
2 ms-20 MHz. Please refer to Table 1 for the details about the
simulation environment.

Table 2 shows the guard band size [11]. We assume there is
no INI since the guard band is large enough [13]. Assuming
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Algorithm 2 Training
Input: The parameters of the network.
Output: The weights of the trained network θµ.
Training:
1: Initialize the neural network.
2: Initialize the episode buffer D.
3: for each episode t = 0, 1, . . . ,T do
4: Place vehicles and an MBS on the simulation

plane.
5: Initialize links between the MBS and vehicles.
6: for each vehicle in the episode k = 0, 1, . . . ,K do
7: The agent samples sk , the state of vehicle k .
8: The agent selects an action based on the

ϵ-greedy policy, ak .
9: Execute action, receive reward, R.
10: Save the tuples (sk , ak ,R) in D.
11: end for
12: Calculate all of the return of vehicles by using

the data saved in D.
13: Update the neural network by minimizing the loss

in (15).
14: Clear D.
15: ϵ ← min(ϵ − (ϵmax − ϵmin)/Tgreedy, ϵmin).
16: end for
Return: w

Algorithm 3 Test
Input: The trained neural network w.
Test:
1: Load w.
2: for each episode t = 0, 1, . . . ,T do
3: Place the vehicles and the MBS on the simulation

plane.
4: Initialize links between MBS and vehicles.
5: for each vehicle in the episode k = 0, 1, . . . ,K do
6: The agent samples sk , the state of vehicle k .
7: The agent selects action, ak .
8: end for
9: Evaluate the actions.
10: end for

that the guardband is divided into equal sizes and located at
both ends, each contains eight or more subcarriers, which is
sufficient. Note that we do not use the 5 MHz BW for µ = 2,
as in 3GPP TS 38.101-1 and the Table 2 [11]. We consider
the cyclic prefix length as defined in [35].
The neural network of this research consists of 2 layers,

the first layer has 1024 nodes, and the second layer has
168, equal to the number of actions. The activation function
of the first layer is the Rectified Linear Unit (ReLU). The
learning rate is 2 × 10−4. We use L1 and L2 regularizer as
kernel regularizers, and their coefficients are 10−5 and 10−4,
respectively.

FIGURE 3. Training reward progress (Dmin = 0).

FIGURE 4. Training reward progress (Dmin = 20 kbit).

B. SIMULATION RESULTS
In this subsection, we present the results of the simulation.
Fig. 3 and Fig. 4 show the reward according to the training
progress with/without a QoS constraint. Dmin in the Fig. 3 is
0 and in the Fig. 4 is 20 kbit. In all cases, the agents for each
constraint find an excellent policy since the reward increases
as the training progresses. At the beginning of the training, the
rewards decrease as the number of vehicles increases because
there is a high probability of resource overlaps when using a
poorly trained policy. The rewards at the end of the training
show us the policy is converged well.

Fig. 5 shows the performance of the agents trained with
different rewards. We tested this 100,000 times. In the figure,
NoQoS is when there is no QoS constraint, QoS20 is the case
where there is a reward element for overlap and a QoS con-
straint of 20 kbit. NoOL20 is the case with the QoS constraint
and no negative reward element. NoNeg is the case where
there are no negative reward elements. Detailed constants
are in the Table 3. Fig. 5 verifies our reward design. The
NoNeg case shows the worst performance among the agents,
and the NoOL20 case is better than that, but there is still
much room for performance improvement. The NoQoS case
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FIGURE 5. Comparison of the proposed agents with the different reward
(8 vehicles).

FIGURE 6. Comparison of the proposed and fixed RA methods (8
vehicles).

TABLE 3. Constants of the reward for each case.

shows the best sum ADQ performance among the agents but
relatively bad minimum ADQ performance. The QoS20 case
shows relatively high sum ADQ performance and the best
minimum ADQ performance. This means that the negative
reward element for violating a QoS constraint reinforces the
agent to make actions to reserve resources for the vehicles
with bad channel quality.

Fig. 6 shows the performance of the RL-based methods,
the resource allocation with a fixed size policy, which is a
cellular’s policy, in the environment with eight vehicles, and
the method in [36]. The resource allocation with fixed size
policy allocates resources of the same size to all vehicles
without overlap. The bandwidth and TTI of the resource

FIGURE 7. Sum ADQ of the proposed agents as the number of vehicles
increases.

allocated using this method are 10 MHz and 0.5 ms, respec-
tively. The method in [36] is a resource allocation strategy
to service eMBB and URLLC users at the uplink simul-
taneously. In this method, the basestation allocates fixed
resources to eMBB users and forces the eMBB users to
share their resources with URLLC users. For comparison,
each eMBB user has 10 MHz-1 ms resources and shares
their resources by puncturing or superposition with a URLLC
user, and they should decide how to share the resources.
Each URLLC user gets 10 MHz-0.25 ms resources from the
eMBB user. One of the proposed agents, one without QoS
constraint, shows higher sum ADQ performance compared
to the case of using fixed policy but lower minimum ADQ
performance. However, the agent with 20 kbit QoS constraint
shows good performance in all cases compared to the fixed
policy. This means that the proposed agents are superior to the
fixed policy. Moreover, the proposed agents show superior
performance than the method in [36], and this is because
of the number of users and the flexibility of the resource
allocation method. The superposition method in [36] exploits
non-orthogonal multiple access, which performs great when
there is a large difference in signal power. So, one user of the
eMBB-URLLC pair must be nearby the basestation, and the
other must be at the edge of the cell. However, in the target
environment, a highway vehicular communication environ-
ment, there are a few users, whichmeans there is no guarantee
of a significant distance between each user. Also, the pro-
posed methods have flexibility in deciding the resource size
of each user, which has the advantage of maximizing ADQ
and guaranteeing QoS.

Figs. 7 and 8 show the sum ADQ and the minimum ADQ
of the agents trained with the proposed method among the
vehicles, respectively. We ran 100,000 simulations for each
vehicle case. In the case of the agents with a QoS constraint
in Fig. 7, the sumADQ starts to decrease when there are more
than 5 vehicles because the agent allocates many resources
to vehicles with bad channel quality to guarantee QoS. This
also can be seen in Fig. 8. For agents with a QoS constraint,
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FIGURE 8. Minimum ADQ of the proposed agents as the number of
vehicles increases.

FIGURE 9. The ADQ of users sorted in descending (6 vehicles, Dmin = 0).

the minimum ADQ among the vehicles is larger than the case
without a QoS constraint when there are more than 5 vehicles.
We conclude from these results that the reward element for a
QoS violation makes the agent act differently and forces it to
reserve resources for users with bad channel quality.

Figs. 9 and 10 show performance comparisons of the pro-
posed method and the existing method [18] with and without
a QoS constraint, respectively. The constants for Fig. 9 are
same with the NoQoS case, and those for Fig. 10 are same
with the QoS20 case. We simulated all the methods 10,000
times and averaged the results. Fig. 9 shows us that the best
performance user in the benchmark method is better than the
one in the proposed method, but the others in the benchmark
have no resources. The benchmark method allows the MBS
to allocate multiple resource blocks to each user. That means
allocating all the resources to the user with the best channel
quality is the most suitable way to get the highest ADQ.
However, there is no resource to allocate to other users. Even
if the purpose is to get the sum ADQ as high as possible, it is
irrational for most of the users. Fig. 10 shows a comparison
of the benchmark and the proposed method with a QoS

FIGURE 10. The ADQ of users sorted in descending (6 vehicles,
Dmin = 20 kbit).

FIGURE 11. Selection rate of each resource.

constraint of 20 kbit, and we can see that the proposed one
outperforms the benchmark method. The benchmark method
allocates resources to QoS users as small as possible and the
rest of the resources to users requiring a large volume of data.
This causes a problem of the underutilized resource space if
there are only QoS users. However, unlike the benchmark
method, the proposed one pursues to maximize ADQ and
satisfy the QoS constraint simultaneously and shows higher
ADQ performance and no QoS violation.

Fig. 11 shows the probability that each resource block is
selected by the agents with/without a QoS constraint. Cases
with 2 to 10 vehicles were simulated 100,000 times each, and
the number of times each resource block is selected is added
up and then divided by the number of resource selections.
We place the resources in the order from smallest to largest
in the Fig. 11. Two things can be checked from this figure.
The first is that if the number of resource elements is the
same, the agent allocates a resource to each vehicle with
the resource elements long arranged in time. This occurs
because of the shape of the resource space. In our simulation
environment, the number of resource elements in time is more
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than those in frequency. That means the agent trained by the
proposed RL-based method has learned how to use resource
space efficiently. This will have greater meaning in resource
allocation methods with delay constraints or semi-persistent
resources. The second is that the QoS constraint increases
the size of the resource selected by the agent for a vehicle
with bad channel quality. Resource blocks composed of two
resource elements are the smallest resource. The vehicles
with these resource blocks often have bad channel quality
if there is no QoS constraint to maximize ADQ. However,
if there is a QoS constraint, the agent must allocate a resource
block of enough size to the vehicle to ensure QoS.

V. CONCLUSION
In this paper, we have proposed an RL-based two-
dimensional resource allocation technique with/without QoS
for V2I communications. We formulated a two-dimensional
resource allocation problem that considers multiple TTIs and
BWs, maximizes sum ADQ, and satisfies several constraints
including QoS. We have proposed a DRL formulation to
solve the problem of two-dimensional resource allocation.
The state is the received power of vehicles and the occupancy
of the resource space, and the action is the resource start
time, start frequency, and size of the resource. In the reward
design process, we found that capacity is not a function of the
TTI and does not fit to train the RL agent for this problem.
So, we propose ADQ, which is a product of capacity and
TTI, for the element of the ADQ. We combine the ADQ and
negative constants which indicate resource overlap and QoS
constraint as the reward of the agent. Through simulation,
we could see that the agent maximizes sum ADQ without
violating QoS constraints. We can also check whether the
QoS constraint affects the resource selection rate. Finally,
the proposed method shows superior performance than the
benchmarks, in the point that it can simultaneously maximize
ADQ and guarantee QoS constraint.

REFERENCES
[1] K. Abboud, H. A. Omar, and W. Zhuang, ‘‘Interworking of DSRC and

cellular network technologies for V2X communications: A survey,’’ IEEE
Trans. Veh. Technol., vol. 65, no. 12, pp. 9457–9470, Dec. 2016.

[2] O. Kaiwartya, A. H. Abdullah, Y. Cao, A. Altameem,M. Prasad, C.-T. Lin,
and X. Liu, ‘‘Internet of Vehicles: Motivation, layered architecture,
network model, challenges, and future aspects,’’ IEEE Access, vol. 4,
pp. 5356–5373, 2016.

[3] J. Contreras-Castillo, S. Zeadally, and J. A. Guerrero-Ibañez, ‘‘Internet of
Vehicles: Architecture, protocols, and security,’’ IEEE Internet Things J.,
vol. 5, no. 5, pp. 3701–3709, Oct. 2018.

[4] F. Tang, Y. Kawamoto, N. Kato, and J. Liu, ‘‘Future intelligent and secure
vehicular network toward 6G:Machine-learning approaches,’’ Proc. IEEE,
vol. 108, no. 2, pp. 292–307, Feb. 2020.

[5] J. B. Kenney, ‘‘Dedicated short-range communications (DSRC) stan-
dards in the United States,’’ Proc. IEEE, vol. 99, no. 7, pp. 1162–1182,
Jul. 2011.

[6] M. J. Farooq, H. ElSawy, andM.-S. Alouini, ‘‘A stochastic geometrymodel
for multi-hop highway vehicular communication,’’ IEEE Trans. Wireless
Commun., vol. 15, no. 3, pp. 2276–2291, Mar. 2016.

[7] J. Gao, M. Li, L. Zhao, and X. Shen, ‘‘Contention intensity based dis-
tributed coordination for V2V safety message broadcast,’’ IEEE Trans.
Veh. Technol., vol. 67, no. 12, pp. 12288–12301, Dec. 2018.

[8] F. Lyu, H. Zhu, N. Cheng, H. Zhou, W. Xu, M. Li, and X. Shen, ‘‘Charac-
terizing urban vehicle-to-vehicle communications for reliable safety appli-
cations,’’ IEEE Trans. Intell. Transp. Syst., vol. 21, no. 6, pp. 2586–2602,
Jun. 2020.

[9] R. Ali, R. Liu, A. Nayyar, I. Waris, L. Li, and M. A. Shah, ‘‘Intel-
ligent driver model-based vehicular ad hoc network communication in
real-time using 5G new radio wireless networks,’’ IEEE Access, vol. 11,
pp. 4956–4971, 2023.

[10] G. Chai, W. Wu, Q. Yang, R. Liu, and F. R. Yu, ‘‘Learning-based resource
allocation for ultra-reliable V2X networks with partial CSI,’’ IEEE Trans.
Commun., vol. 70, no. 10, pp. 6532–6546, Oct. 2022.

[11] NR; User Equipment (UE) Radio Transmission and Reception; Part 1:
Range 1 Standalone, 3GPP TS 38.101-1, Version 16.5.0, Nov. 2020.

[12] A. A. Zaidi, R. Baldemair, H. Tullberg, H. Bjorkegren, L. Sundstrom,
J. Medbo, C. Kilinc, and I. Da Silva, ‘‘Waveform and numerology to
support 5G services and requirements,’’ IEEE Commun. Mag., vol. 54,
no. 11, pp. 90–98, Nov. 2016.

[13] P. Guan, D. Wu, T. Tian, J. Zhou, X. Zhang, L. Gu, A. Benjebbour,
M. Iwabuchi, and Y. Kishiyama, ‘‘5G field trials: OFDM-based waveforms
and mixed numerologies,’’ IEEE J. Sel. Areas Commun., vol. 35, no. 6,
pp. 1234–1243, Jun. 2017.

[14] L. Zhang, A. Ijaz, P. Xiao, A. Quddus, and R. Tafazolli, ‘‘Subband
filtered multi-carrier systems for multi-service wireless communica-
tions,’’ IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1893–1907,
Mar. 2017.

[15] B. Yang, L. Zhang, O. Onireti, P. Xiao, M. A. Imran, and R. Tafazolli,
‘‘Mixed-numerology signals transmission and interference cancellation for
radio access network slicing,’’ IEEE Trans. Wireless Commun., vol. 19,
no. 8, pp. 5132–5147, Aug. 2020.

[16] Y. Ben-Shimol, I. Kitroser, and Y. Dinitz, ‘‘Two-dimensional mapping
for wireless OFDMA systems,’’ IEEE Trans. Broadcast., vol. 52, no. 3,
pp. 388–396, Sep. 2006.

[17] T. Wang, H. Feng, and B. Hu, ‘‘Two-dimensional resource allocation for
OFDMA system,’’ in Proc. IEEE Int. Conf. Commun. Workshops (ICC
Workshops), May 2008, pp. 1–5.

[18] L. You, Q. Liao, N. Pappas, and D. Yuan, ‘‘Resource optimiza-
tion with flexible numerology and frame structure for heterogeneous
services,’’ IEEE Commun. Lett., vol. 22, no. 12, pp. 2579–2582,
Dec. 2018.

[19] W. Sui, X. Chen, S. Zhang, Z. Jiang, and S. Xu, ‘‘Energy-efficient resource
allocation with flexible frame structure for heterogeneous services,’’ in
Proc. Int. Conf. Internet Things (iThings) IEEE Green Comput. Commun.
(GreenCom) IEEE Cyber, Phys. Social Comput. (CPSCom) IEEE Smart
Data (SmartData), Jul. 2019, pp. 749–755.

[20] Q. Mao, F. Hu, and Q. Hao, ‘‘Deep learning for intelligent wireless net-
works: A comprehensive survey,’’ IEEE Commun. Surveys Tuts., vol. 20,
no. 4, pp. 2595–2621, 4th Quart., 2018.

[21] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and
D. I. Kim, ‘‘Applications of deep reinforcement learning in communica-
tions and networking: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21,
no. 4, pp. 3133–3174, 4th Quart., 2019.

[22] H. Ye, G. Y. Li, and B. F. Juang, ‘‘Deep reinforcement learning based
resource allocation for V2V communications,’’ IEEE Trans. Veh. Technol.,
vol. 68, no. 4, pp. 3163–3173, Apr. 2019.

[23] Y. Wei, F. R. Yu, M. Song, and Z. Han, ‘‘User scheduling and resource
allocation in HetNets with hybrid energy supply: An actor-critic reinforce-
ment learning approach,’’ IEEE Trans. Wireless Commun., vol. 17, no. 1,
pp. 680–692, Jan. 2018.

[24] M. Zambianco and G. Verticale, ‘‘Spectrum allocation for network slices
with inter-numerology interference using deep reinforcement learning,’’ in
Proc. IEEE 31st Annu. Int. Symp. Pers., Indoor Mobile Radio Commun.,
Aug. 2020, pp. 1–7.

[25] Z. Kaleem, A. Ahmad, O. Chughtai, and J. J. P. C. Rodrigues, ‘‘Enhanced
max-min rate of users in UAV-assisted emergency networks using rein-
forcement learning,’’ IEEE Netw. Lett., vol. 4, no. 3, pp. 104–107,
Sep. 2022.

[26] A. D. Mafuta, B. T. J. Maharaj, and A. S. Alfa, ‘‘Decentralized resource
allocation-based multiagent deep learning in vehicular network,’’ IEEE
Syst. J., vol. 17, no. 1, pp. 87–98, Mar. 2023.

[27] D. Han and J. So, ‘‘Energy-efficient resource allocation based on deep
Q-network in V2V communications,’’ Sensors, vol. 23, no. 3, p. 1295,
Jan. 2023.

VOLUME 11, 2023 78877



H. Jin et al.: Deep RL-Based Two-Dimensional Resource Allocation Technique for V2I Communications

[28] S. S. Tripathy, A. L. Imoize, M. Rath, N. Tripathy, S. Bebortta, C.-C. Lee,
T.-Y. Chen, S. Ojo, J. Isabona, and S. K. Pani, ‘‘A novel edge-computing-
based framework for an intelligent smart healthcare system in smart cities,’’
Sustainability, vol. 15, no. 1, p. 735, Dec. 2022.

[29] S. Bebortta, S. S. Tripathy, S. Basheer, and C. L. Chowdhary, ‘‘DeepMist:
Toward deep learning assisted mist computing framework for managing
healthcare big data,’’ IEEE Access, vol. 11, pp. 42485–42496, 2023.

[30] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[31] R. Bellman, ‘‘Dynamic programming,’’ Science, vol. 153, no. 3731,
pp. 34–37, Jul. 1966.

[32] 5G; Study on Channel Model for Frequencies From 0.5 to 100 GHz, 3GPP
TR 38.901, Version 17.0.0, Apr. 2022.

[33] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[34] Technical Specification Group Radio Access Network: Study LTE-Based
V2X Services, document 3GPP TR 36.885, 3rd Generation Partnership
Project, Release 14, Jun. 2016.

[35] NR; Physical Channels and Modulation, document 3GPP TS 38.211,
Version 17.2.0, Jul. 2022.

[36] A. Manzoor, S. M. A. Kazmi, S. R. Pandey, and C. S. Hong, ‘‘Contract-
based scheduling of URLLC packets in incumbent EMBB traffic,’’ IEEE
Access, vol. 8, pp. 167516–167526, 2020.

HEETAE JIN received the B.S. degree from the
Department of Electronics Engineering, Pusan
National University, Busan, South Korea, in 2016,
where he is currently pursuing the Ph.D. degree
in electronics engineering. His research inter-
ests include the V2V, V2X communications, and
applied machine learning in communications.

JEONGBIN SEO received the B.S. degree from
the Department of Electronics Engineering, Pusan
National University, Busan, South Korea, in 2019,
where he is currently pursuing the Ph.D. degree
in electronics engineering. His research inter-
ests include the index modulation and applying
machine learning in communication system.

JEONGHUN PARK received the B.S. degree from
the Department of Electronics Engineering, Pusan
National University, Busan, South Korea, in 2021,
where he is currently pursuing the master’s degree
in electronics engineering. His research interest
includes applied machine learning for communi-
cations.

SUK CHAN KIM (Senior Member, IEEE)
received the B.S.E. degree (summa cum laude) in
electronics engineering from Pusan National Uni-
versity (PNU), Busan, South Korea, in February
1993, and the M.S.E. and Ph.D. degrees in electri-
cal engineering from the Korea Advanced Institute
of Science and Technology (KAIST), Daejeon,
South Korea, in February 1995 and 2000, respec-
tively. He has been a Professor with the Depart-
ment of Electronics Engineering, PNU, since

2002. He is a member of the Institute of Electronics Engineers of Korea
(IEEK) and the Korean Institute of Communication Sciences (KICS), and
a Senior Member of the Institute of Electrical and Electronics Engineers
(IEEE). His research interests include mobile communications, statistical
signal processing, and applied machine learning for healthcare and commu-
nications. He won the Haedong Paper Award from KICS, in 2005.

78878 VOLUME 11, 2023


