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ABSTRACT Azimuth electromagnetic (EM) Logging While Drilling (LWD) tools play an important role
in geological steering and reservoir evaluation. Its measuring response is amplitude ratio (ATT) and phase
difference (PS), which can’t directly reflect formation information. To obtain direct formation information
such as resistivity and formation boundary, accurate and efficient inversion method is essential. However,
the existing inversion methods (i.e., iterative method) have some problems, such as slow computation speed,
dependence on initial value selection and easy to be trapped by local minimum. Therefore, this paper
proposes an intelligent inversion method for azimuthal EM LWD measurements based on the U-net deep
learning network framework. Firstly, an efficient analytical solution is used to generate amounts of EM
LWD data. Those samples are divided into training and test sets in a 9:1 ratio, which are used for training and
testing of the network, respectively. Then, the network parameters are constantly adjusted during training to
ensure its inversion performance. Finally, the trained network is utilized to invert the samples of the test sets,
and the inversion results are compared with the forward formation model. The study’s results demonstrate
that the network is capable of efficiently and precisely inverting both isotropic and anisotropic formations,
with a single sample being inverted less than 0.05 seconds. Its noise layer parameters can be improved to
successfully invert noisy data, leading to good robustness. In addition, the network has good applicability for
the inversion of complex formations. These consequences highlight the significant potential of this method
in azimuthal EM LWD inversion applications.

INDEX TERMS Intelligent inversion, azimuth EM LWD, resistivity, formation boundary.

I. INTRODUCTION
In recent years, the azimuthal EM LWD tool has been widely
used in geosteering and reservoir evaluation [1], since it can
provide azimuth information of formation boundary [2], [3].
Its measurement signals are ATT and PS. They can’t directly
reflect the information of resistivity and the distance between
the tool and formation boundary. It is necessary to obtain
the formation resistivity and interface position by inversion
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methods. Presently, the inversion methods of azimuthal
EM LWD consist of gradient algorithm and artificial intel-
ligence algorithm.

Gradient algorithms use gradient information to search
for the descending direction to obtain the solution of the
least squares problem [4], [5], and the more commonly
used are the Born inversion method and the Gauss-Newton
(GN) method. Born method can be used for inversion cal-
culation of low-frequency EM field [6], but the iteration
speed is slow, and the convergence of high-resistivity con-
trast model is poor [7]. The degenerated Born iterative
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method (DBIM) was proposed by Chew and improved by
many scholars [8], [9]. It can be used to analyze the EM
field problems in 2D or 3D high-resistivity contrast mod-
els [10], [11]. Its convergence rate is faster than that of Born
method, but the calculation amount of DBIM is much larger
than that of Born method [12]. Compared with GN and other
nonlinear convergence algorithms, the Born method is a lin-
ear convergence algorithm, and its convergence speed is slow.
In fact, the inversion of azimuthal EM LWD requires high
real-time performance, so the applicability of Born method is
limited.

GN method proposed by Gauss [13] is widely used in
inverting the azimuthal EM LWD data [14], [15]. It directly
minimizes the resulting quadratic function and avoids eval-
uating the second derivative of the regression function. The
convergence rate is significantly better than the linear conver-
gence rate [16]. However, GNmethod has a high requirement
for selecting initial value, and an improper initial value may
cause method failure or local minimum.

The use of deep learning in the inversion of azimuthal EM
LWD measurements has become increasingly prevalent in
recent years, largely due to advancements in computer per-
formance [17], [18], [19], [20]. Many scholars use different
deep learning networks to invert the data of EMmeasurement.
Shahriari et al. used deep learning method to invert logging
data in anisotropic formation, but the inversion results were
very different from the real formation information, so it
couldn’t be directly used for interpretation of logging data in
anisotropic formation and could only be used as a reference
before inversion [21]. Fan et al. used LSTM network to
invert geological parameters such as formation boundary and
resistivity, while also estimating the uncertainty of inversion
results. However, they didn’t verify the inversion of noise
data [22]. Hu et al. combined deep neural networks (DNNs)
with traditional inversion flow and improved inversion results
by using multi-physical data iteration [23]. Zhu et al. used
the three-layer formation model to invert parameters such
as resistivity and layer thickness in anisotropic formations
and obtained relatively accurate inversion results. However,
due to the simple network architecture, complex and diverse
logging response could not be processed [24]. Noh et al.
established an inversion flow of the three-layer formation
model based on the ResNet network to invert the forma-
tion resistivity distribution and fault state in the presence of
faults [25], [26]. Jin et al. developed an inversion network
for azimuthal EM LWD measurements using a combination
of data-driven and physically driven models. However, the
formation model used in their study was limited in its sim-
plicity and did not account for the network’s applicability to
anisotropic formations [27].
Compared to shallow neural network with limited compu-

tational accuracy, convolutional neural networks have more
hidden layers and can extract richer input data informa-
tion with higher computational accuracy [28]. The published
results show that the trained convolutional neural network
could invert azimuthal EM LWD measurements quickly.

This is a significant improvement in comparison to tradi-
tional methods, which are known to have slower calcula-
tion speeds. As a result, this approach has the potential
to address the problem of slow calculations in this field.
However, the application of convolutional neural network
in azimuthal EM LWD is still in its infancy. To apply
it to actual data processing, it still needs further research
work.

Therefore, we developed an inversion flow for azimuthal
EM LWD measurements using a U-net convolutional neural
network. The flowwas analyzed to determine the role of each
component and the training parameters of the network were
optimized. The trained network demonstrated high accuracy
and efficiency in inverting azimuthal EM LWD measure-
ments, while also exhibits good robustness.

II. DATA INVERSION FLOW
This paper presents an inversion flow for azimuthal electro-
magnetic measurements, utilizing a convolutional neural net-
work, as shown in Figure 1. The flow starts with establishing a
formation model to calculate the forward sample (Figure 1a).
The data obtained from a single sample is represented as
a 2D image comprising 72 curves, each curve containing
128 sampling points (Figure 1b). Then, a large number of
2D image samples are used to train the convolutional neural
network (Figure 1c). Once trained, the network can extract
features from azimuthal EM LWDmeasurements and predict
new data as depicted in Figure 1d.

A. FORWARD SAMPLES GENERATION
1) FORWARD MODELLING
Convolutional neural network inversion requires a significant
number of samples. However, the numerical method that is
appropriate for 3D problems has a slow computation speed,
which fails to meet the requirements of making a large num-
ber of samples. In cases where the tool size is relatively small
compared to the formation fluctuation, the 3D model can
be approximated as the 2D geological model, as shown in
Figure 2a. The 2D geological model can be simplified as a
horizontal layered formation when the formation undulation
changes little in comparison to the tool scale, as depicted
in Figure 2b. At this point, the analytical method can be
used to calculate the solution of the EM field. The gener-
alized reflection coefficient method [29] is utilized in this
paper to generate the samples of the azimuthal EM LWD
measurements.

2) TOOL PARAMETER
In our study, we utilized Schlumberger’s PeriScope as the tool
for forward calculation. The structure of the tool is depicted in
Figure 3. It comprises axial, inclined, and radial coil systems
that can effectivelymeasure resistivity and geological signals.
Table 1 lists the combination of space (s), frequency (f), and
coil system. It has a total of 72 ATT and PS measurement
signals at the same sampling point.
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FIGURE 1. Inversion flow of the azimuthal EM LWD measurements.

FIGURE 2. Geological model approximation.

FIGURE 3. Structure of PeriScope azimuthal EM LWD tool.

TABLE 1. The coil array of periScope.

3) SAMPLE CALCULATION METHOD
This paper utilizes the propagation coefficient matrix method
to compute the response of a 2D horizontal stratified

formation model, as illustrated in Figure 2b. Unlike the
numerical mode match (NMM) method, this approach elim-
inates the need to solve 2N equations with N layer interfaces
simultaneously, so it has a faster calculation speed.

The propagation of EM in homogeneous medium satisfies
Maxwell’s equations in differential form:

∇ ×H = J +
∂D
∂t

∇ × E = −
∂B
∂t

∇ · B = 0

∇ · D = ρ

(1)

where H is magnetic field strength. J signifies conducted
current density.E denotes electric field intensity.B represents
magnetic induction intensity. D indicates electric displace-
ment vector. ρ signifies the charge density.

In the context of azimuthal EM LWD method, the trans-
mitting coil can be treated as a magnetic dipole source.
The resulting time-harmonic field can be described by the
Maxwell equations:

∇ ×H = σ · E
∇ × E = iωB
B = µ0H + µ0MS

(2)

σ =

 σh 0 0
0 σh 0
0 0 σv

 (3)

where σh denotes the horizontal conductivity. σv indicates the
vertical conductivity. ω is the angular frequency. µ0 signifies
magnetic permeability in vacuum.MS represents the applied
magnetics current.
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FIGURE 4. Inversion network model of azimuthal EM LWD.

The Hertz potential theory is used in the derivation, and the
Hertz vector potential and scalar potential satisfy:

σ · E = iωµ0σh∇ × π

H = iωµ0σhπ + ∇9

∇ · (σ · π ) = σv9

(4)

By substituting equation (4) into equation (3), the expression
of magnetic dipole source in uniformly anisotropic media can
be obtained, and it can be transformed into the cylindrical
coordinate system.

Ez = −
1
4π

(
Mx sinα −My cosα

)∫
∞

0
ωµλk2ρ i

J1
(
kρρ

)
kv,z

eiλ |z|kv,zkρdkρ

Hz =
1
4π

(
Mx cosα +My sinα

)∫
∞

0
k2ρ

∂ |z|
∂z

J1
(
kρρ

)
ei|z|kv,zdkρ+

Mz

4π

∫
∞

0
ik3ρ

J0
(
kρρ

)
kh,z

ei|z|kh,zdkρ

(5)

In equation (5), Mx,My and Mz are the components of mag-
netic moments in the x, y and z direction. λ 2

= σh/σv
indicates the anisotropy coefficient. kρ denotes the integral
variable. J1 represents first-order Bessel function. α indicates
the well inclination angle. µ is the permeability. h indicates
a horizontal magnetic dipole. z and z0 are the ordinate of the
receiving point and the transmitting source position respec-
tively. v indicates a vertical magnetic dipole.
Chew’s theory proposes that in a 2D anisotropic forma-

tion model, it is only necessary to calculate the vertical
components of the EM field for each layer. The horizontal
component can then be obtained, allowing for the solution
of the entire EM field. In cylindrical coordinate system, the
vertical component of EM field in horizontal layered model
is calculated by the following recursive formula [29]:

En,z =−
1
4π

(
Mx sinα−My cosα

)
ωµλn

k2ρ
kn,v,z

J1
(
kρρ

)
FTM ,h
n

(6)

Hn,z =
1
4π

(
Mx cosα +My sinα

)
k2ρJ1

(
kρρ

)
FTM ,h
n

+
Mz

4π

ik3ρ
kn,h,z

(
kρρ

)
FTM ,v
n (7)

where En,z denotes the vertical component of electric field of
the n-th layer. Hn,z represents the magnetic field component
of the n-th layer medium. Fn signifies the propagation coeffi-
cient of the nth layer. kn,v,z denotes the vertical component of
the wave number of the n-th layer medium. The superscript
TM is the z component of the TM wave.

The expression for the ρ and ϕ components of the EMfield
is given by the following equation:[
Eρ

Eϕ

]
=

1
λ 2k2ρ

[
0 −1
1 0

] [
1
ρ

∂2

∂z∂ϕ

−
∂2

∂z∂ρ

]
Ez +

iωµ

k2ρ

[
1
ρ

∂
∂ϕ

−
∂
∂ρ

]
Hz

(8)[
Hρ

Hϕ

]
=

1
k2ρ

[
0 −1
1 0

] [
1
ρ

∂2

∂z∂ϕ

−
∂2

∂z∂ρ

]
Hz +

σh

λ 2k2ρ

[
1
ρ

∂
∂ϕ

−
∂
∂ρ

]
Ez

(9)

The vertical component of EM field in each layer of horizon-
tal layered formation model can be obtained by equation (8)
and equation (9), and then the solution to the whole EM field
can be obtained.

After obtaining the EMfield component, the voltage on the
receiving coil is calculated and converted into ATT and PS by
equation (10) and equation (11):

Att = 20lg

√
[Re(VR1)]2 + [Im(VR1)]2√
[Re(VR2)]2 + [Im(VR2)]2

(10)

PS = arctan
Im(VR1)
Re(VR1)

− arctan
Im(VR2)
Re(VR2)

(11)

whereVR1 denotes the voltage signal received near the receiv-
ing coil. VR2 indicates the voltage signal received by the far
receiver coil. Re and Im are the real part and imaginary part
of V respectively.

The range of formation resistivity was set to 0.1 to
100 �·m, which is the typical range for oil reservoir resis-
tivity. The formation thickness varies from 0.1 m to 8 m.
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After performing the above calculation, 72 logging response
curves can be obtained for each set of formation parameters.
In this paper, 240,000 samples were generated by randomly
selecting values of the formation parameters. These sam-
ples are further divided into 120,000 isotropic samples and
120,000 anisotropic samples.

B. U-NET CONVOLUTIONAL NEURAL NETWORK MODEL
In the inversion flow illustrated in Figure 1c, a U-net convo-
lutional neural network is utilized to establish the inversion
framework. The network employs an encoder-decoder struc-
ture, as shown in Figure 4. In the encoder section, the net-
work utilizes multiple sets of depth separable convolutional
layers and conventional convolutional layers to transform
72 responses of azimuthal EM LWD into several feature
vectors, also known as hidden variables. Then these feature
vectors are scaled and transformed into 6 one-dimensional
sequences of the same size as the resistivity profile using
the decoder part consisting of the upper sampling layer and
the deconvolution layer. In this way, 72 measured responses
were translated into formation parameters at the current point.
Referring to previous practical experience [31]. We also add
four Gaussian Noise Layers (0.01) [32] between these four
separable 1D convolutional layers, which can prevent net-
work learning from over-fitting and improve the robustness
of the network.

III. NETWORK TRAINING
The performance of the network is influenced by the learn-
ing rate and batch size. A large learning rate can cause the
loss function to oscillate and fail to converge, while a small
learning rate will lead slow convergence or the loss function
getting stuck in a local minimum. Increasing the batch size
can lead a more accurate direction of decline and smaller
loss shock within a certain range. To optimize the training
parameters of the network, we experimented with different
learning rates (0.01, 0.001, 0.0001, 0.00001) and batch sizes
(64, 100, 128, 256). Table 2 records the loss errors of the net-
work under different training parameters. The combination
of all possibilities was explored. The network achieved the
minimum average loss with a learning rate of 0.001 and a
batch size of 100.

TABLE 2. Loss function values for different batch sizes and learning rates.

The paper specifies that the optimization algorithm used
for training is the Adaptive Moment Estimation (Adam) opti-
mizer, and the network loss function is the Mean Square
Error (MSE). The network training error is a function of the

weightW, and the weight update formula is:

Wi+1 = Wi − η
∂Loss
∂W

(12)

where i denotes the number of iterations. Wi indicates the
i-th learning weight. η signifies learning rate (LR). Loss
represents the MSE under the current iteration number.

After determining the network parameters, the number of
iterations was set to 400. The error changes during the train-
ing process were illustrated in Figure 5. It shows that the error
no longer decreased significantly with the increasing number
of epochs after 100 iterations. It indicates that the network has
reached convergence. Furthermore, continuous training of the
network does not cause an increase in error, indicating that
the network does not exhibit overfitting even after sufficient
training. Each training process takes approximately seven
hours using an Nvidia GTX machine equipped with Intel
i9-9900K CPU and a Nvidia GeForce RTX 2080 Ti GPU.

FIGURE 5. Change of MSE during training.

FIGURE 6. Error statistical results of isotropic model inversion.

IV. ANALYSIS OF INVERSION RESULTS
A. ISOTROPIC DATA INVERSION
The trained network was applied to a test set of 4000 isotropic
samples, each with 128 sampling points. It had a total of
4000∗128 sampling points. We counted the relative error of
resistivity and the absolute error of the depth to boundary
(DTB) at each sampling point and presented their distribution
patterns in Figure 6. The results showed that in all sampling
points, the relative error of resistivity was less than 10%,
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FIGURE 7. Inversion results of three-layers model.

FIGURE 8. Inversion results of four-layers model.

FIGURE 9. Inversion results of five-layers model.

occupying 96.9% of the points, and the absolute error of
DTB was less than 0.2m, occupying 97.8% of the points.
These results indicate that the network can effectively invert
isotropic samples with high precision.

To ensure the accuracy and reliability of the inversion
results, we randomly select one formation sample from three,
four, and five-layer samples. We then compare the differ-
ence between the forward formation model and the inversion
results, as shown in Figure 7 to Figure 9. In Figure 7a,

the abrupt change in resistivity indicates the location of the
formation boundary. At this point, the value of DTBu is set
to 0 and DTBd represents the thickness of the formation
below the boundary. The similarity between the forward
model values and inversion values suggests that the formation
information obtained through inversion is highly consistent
with the forward formation model. This indicates that the
U-net network is an efficient method for inverting azimuthal
EM LWD measurements.
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FIGURE 10. Inversion results of different noise data (Gaussian Noise Layers: 0.01).

The U-net network not only has high accuracy, but also
has a fast inversion speed in inverting azimuthal EM LWD
measurements. Test results reveal that the network can invert
a single sample in less than 0.05 seconds on average, which is
two orders of magnitude faster than the traditional inversion
method [30].

To assess the robustness of the U-Net network, we con-
ducted tests on data with varying levels of noise: 5%, 10%,
20%, and 30%. The forward formation model is shown in
Figure 10a. Figure 10 (b, c, d, e, f) displays the 2D curtainmap
obtained through inversion under different noise intensities.
The color of each pixel’s represents the formation resistivity
value, and the black dotted line indicates the LWD tool’s path.
In the absence of noise, the resistivity value experiences a
sudden change when the tool crosses the formation interface
and remains consistent with the forward formation. How-
ever, as the relative noise intensity increases, the accuracy of
network rapidly declines, indicating poor robustness of the
network.

To enhance the robustness of the network, the param-
eter value of the Gaussian noise layer was increased
from 0.01 to 0.1. The network was then retrained using
this new parameter and subsequently tested on the test set
samples. The error distribution rule and the results of the
robustness test are presented in Figure 11 and Figure 12
respectively. In 91.9% of the sampling points, the relative
error of resistivity is less than 10%, while in 97.1% of the
points, the absolute error of DTB is less than 0.2m. Enlarg-
ing the Gaussian noise layer parameters slightly decreases
the inversion accuracy, but the logging data can still be
inverted well. The network is able to perform a good inver-
sion of data containing 10% relative noise, thereby improv-
ing its robustness significantly. According to the research,

FIGURE 11. Error statistical results of isotropic model inversion.

expanding the parameters of the Gaussian noise layer can
enhance the robustness of the network at a low cost to
inversion accuracy. Therefore, during network training, it can
obtain high robustness by increasing the parameters of the
Gaussian noise layer as much as possible while meeting the
requirements of accuracy.

B. ANISOTROPIC DATA INVERSION
To evaluate the effectiveness of the network on anisotropic
formations, the horizontal stratified formation model as
shown in Figure 1a was set to anisotropy, and 120,000 sam-
ples were generated. We trained and inverted the anisotropic
sample data using the same network as described in
Section IV-A. Figure 13 depicts the resistivity and formation
boundary inversion curves of a randomly selected sample.
The horizontal and vertical resistivity, as well as the formation
boundary, all exhibit positive inversion effects. In Figure 14,
the network inversion errors of 3000 test sample data were
calculated, and it was found that the relative error of resistiv-
ity was less than 10% in 92.9% of the sampling points, while
the absolute error of DTB was less than 0.2m in 90.7% of the
points. Hence, the network is highly applicable to anisotropic
data.
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FIGURE 12. Inversion results of different noise data (Gaussian Noise Layers: 0.1).

FIGURE 13. Inversion results of anisotropic model.

FIGURE 14. Error statistical results of anisotropic model inversion.

C. COMPLEX FORMATION INVERSION
To assess the effectiveness of the inversion network, we cre-
ated a micro-undulating formation model consisting of five

FIGURE 15. Inversion results of Complex formation model.

isotropic layers, as depicted in Figure 15a. The model
accounts for changes in resistivity along the longitudinal
direction of the formation, as well as heterogeneity in the
transverse direction (The red line represents the path of the
LWD tool). The EM response of the complex formation
model is calculated by the finite element method and the
2D resistivity curtain by inverting is shown in Figure 15b.
It indicates that the resistivity inversion outcomes are only
marginally imprecise in the vicinity of the formation bound-
ary. However, for themajority ofmeasurement points, it accu-
rately inverts the formation resistivity and determines the
formation boundary position as the tool moves away from
the formation boundary. Although our network is trained
on horizontal formation samples, it is capable of accurately
inverting micro-undulating formation models. This suggests
that the network has strong applicability beyond its original
training data.
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V. CONCLUSION
This paper proposes a new method for inverting azimuthal
EM LWD measurements using U-net convolutional neural
network. The study shows that the network can accurately
invert isotropic and anisotropic horizontal stratified strati-
graphic models. Themethod boasts an unmatched calculation
speed compared to traditional inversion techniques, complet-
ing the inversion of a single sample in just 0.05 seconds.
The study also reveals that the network’s robustness can be
improved by increasing the parameters of the Gaussian noise
layer, albeit at a slight cost to inversion accuracy. According
to the result, the trained network has a high inversion accuracy
for data with noise levels below 10%.

The complex formation model is tested using the net-
work, which shows high inversion accuracy and the inver-
sion speed does not slow down with increasing complexity
of the formation model. Therefore, the proposed method
for inverting azimuthal EM LWD measurements is both
accurate and efficient. The intelligent inversion method
has significant potential for practical applications in LWD
operations.
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