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ABSTRACT With the rise of deep learning technology, the field of medical image segmentation has
undergone rapid development. In recent years, convolutional neural networks (CNNs) have brought many
achievements and become the consensus in medical image segmentation tasks. Although many neural
networks based on U-shaped structures and methods, such as skip connections have achieved excellent
results in medical image segmentation tasks, the properties of convolutional operations limit their ability to
effectively learn local and global features. To address this problem, the Transformer from the field of natural
language processing (NLP) was introduced to the image segmentation field. Various Transformer-based
networks have shown significant performance advantages over mainstream neural networks in different
visual tasks, demonstrating the huge potential of Transformers in the field of image segmentation. However,
Transformers were originally designed for NLP and ignore the multidimensional nature of images. In the
process of operation, they may destroy the 2D structure of the image and cannot effectively capture low-
level features. Therefore, we propose a new multi-scale cross-attention method called M-VAN Unet, which
is designed based on the Visual Attention Network (VAN) and can effectively learn local and global features.
We propose two attention mechanisms, namely MSC-Attention and LKA-Cross-Attention, for capturing
low-level features and promoting global information interaction. MSC-Attention is designed for multi-scale
channel attention, while LKA-Cross-Attention is a cross-attention mechanism based on the large kernel
attention (LKA). Extensive experiments show that our method outperforms current mainstream methods in
evaluation metrics such as Dice coefficient and Hausdorff 95 coefficient.

INDEX TERMS CNNs, deep learning, medical image processing, NLP, semantic segmentation.

I. INTRODUCTION
Skin cancer is one of the most common and deadliest forms
of cancer, with its primary risk factor being the production
of melanin by melanocytes in the epidermis at an abnormally
high rate due to ultraviolet (UV) radiation. The lethal form
of skin cancer is melanoma, and outdoor activities and expo-
sure to sunlight have been important contributing factors to
the increasing incidence of melanoma in the past 70 years.
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Due to the increased exposure to UV radiation, melanoma
has rapidly increased in the white population in the past
few decades, with an annual increase of about 3-7% [1].
According to the American Cancer Society (ACS) forecast,
the number of new melanoma cases in the United States is
expected to reach 97,610 in 2023, with a high mortality rate
of 7,990. However, if melanoma is detected early, the five-
year survival rate of patients is over 94% [2]. In the United
States, 90% of the cost of treating melanoma is related to late
detection. Therefore, detecting melanoma at an earlier stage
can significantly reduce healthcare costs and is also crucial
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for saving patients’ lives. The current diagnostic approach
for melanoma mainly relies on the use of thermoscopic
images. However, due to varying levels of expertise among
clinicians, the sensitivity and specificity rates for diagnosing
melanoma using these images range from 69% to 92% and
from 94% to 99% respectively [3]. Therefore, the use of
image segmentation techniques can undoubtedly minimize
reliance on clinical experience and‘ reduce misdiagnosis
rates. Earlymelanoma lesions exhibit varying shades of color,
fuzzy edges, and are often hidden in hair follicles, making
them difficult to detect. Furthermore, the presence of bubbles,
ruler marks, lighting changes, and low contrast in actual
thermoscopic images pose significant challenges to image
segmentation. As a result, the segmentation of skin lesions
is inherently challenging.

Currently, medical image segmentation is primarily based
on fully convolutional networks (FCNN) using encoder-
decoder structures [4], [5], such as U-Net [4], which is almost
the most widely used model in current segmentation projects.
U-Net is a fully symmetric U-shaped model consisting of an
encoder and a decoder that captures fine-grained features and
fuses high- and low-level semantic features through skip con-
nections, enabling it to achieve high accuracy with less train-
ing data. U-Net’s simple structure and high performance have
spurred further research into this technology and the develop-
ment of a series of variant networks, such as Res-UNet [6],
U-Net++ [7], U2-Net [8], BCDU-Net [9], which have also
been widely used in skin lesion image segmentation. Based
on the FCNN method, excellent results have proved the
strong feature segmentation ability of convolutional neural
network (CNN) in image segmentation. However, due to the
limited convolution receptive field, it has certain limitations,
which restrict its performance in image segmentation [10].
To address these issues, Attention U-Net proposed the Atten-
tion Gate block [11], which extracts locally important fea-
tures through attention mechanisms and dynamically learns
the weights of attention through forward feedback. However,
these methods still have certain limitations in modeling long-
term dependencies. Recently, the success of Transformers in
the natural language processing (NLP) [12] field has attracted
attention. Researchers have successfully developed Vision
Transformer (ViT) [13] for the visual domain. Through
multi-head attention mechanisms (MSA), Transformers can
effectively establish long-term dependencies between global
contexts, and their performance on large datasets is com-
parable to CNNs. TransUnet [14] which developed based
on ViT, was the first to introduce Transformers into the
field of image segmentation, demonstrating that Transformer-
based methods yield better results than CNN-based methods.
Through further design, TransNorm [15] attempted to inte-
grate Transformers into skip connections and achieved good
results. However, ViT requires training on large datasets
and is affected by quadratic complexity. Moreover, Tran-
sUnet still relies on CNN for hierarchical feature extraction.
In DeiT [16], the authors proposed a data-efficient image

transformer that enables training Transformers on medium-
scale datasets. In Swin Transformer [17], the authors pro-
posed a hierarchical transformer that applies window-based
computing to reduce the computational complexity of ViT,
achieving tremendous success. Subsequently, Swin-Unet [18]
improved U-Net by using Swin Transformer as the backbone
network without requiring convolutional operations, further
enhancing segmentation performance. The emergence of net-
works such as CrossViT [19], Attention Swin-Unet [20], and
HiFormer [21] demonstrated the powerful performance of
multiscale feature representation on ViT. Multiscale feature
representation can effectively help model the remote relation-
ship of feature information and fuse low-level and high-level
features to further capture fine-grained features.

Although Transformer-based visual approaches are effec-
tive in modeling global contextual information, they treat
images as one-dimensional sequences and ignore their two-
dimensional structure. This forced change in the image
dimensions can lead to loss of accuracy in local and global
features [23], which ultimately results in suboptimal segmen-
tation performance.

FIGURE 1. Model parameter comparison chart. our approach is compared
to other methods in terms of parameter quantity and Dice results
obtained on the ISIC2018 dataset [22], and it outperforms them.

In this paper, we drew inspiration from Swin-Unet [18]
and made innovative improvements to the U-Net architec-
ture. Similar to Swin-Unet, our network structure consists
of four parts: encoder, bottleneck, decoder, and skip con-
nections. In the construction of the segmentation network,
we employed the VAN block as the new backbone network.
The encoder and decoder were constructed using DownSam-
ple block and the VAN block, respectively. The DownSample
block facilitated downsampling and dimension expansion
to learn deeper feature representations. The decoder per-
formed upsampling through deconvolutional operations and
fused the output features from the residual connections and
skip connections, while further extracting features using
the VAN block. To enhance the expressive power of the
model, we introduced the LKA-Cross Attention block at the
skip connection level to fuse the low-level features from
the encoder with the high-level features obtained from the
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decoder’s upsampling. This cross-level fusion enabled better
capture of the correlation between features at different levels,
thereby enhancing the model’s expressive power. At the bot-
tleneck position, we integrated the ideas from Inception [24]
and SENet [25] and designed the MSC Attention block. This
block utilizes the PSA block and VAN block with different
receptive field sizes to extract multiscale information and
employs a multi-channel attention mechanism to learn the
relationships and semantic features between different chan-
nels. This design effectively captures important multiscale
contextual information in medical images, particularly in
cases with significant variations in target sizes and shapes.
As shown in FIGURE 1, our proposed method not only
outperforms other models in terms of Dice coefficient but
also has fewer parameters compared tomost models. Through
multiple ablation experiments, we have demonstrated the
effectiveness of the proposed structural design. Our contri-
butions are as follows:

• Based on the VAN block, we have redesigned the seg-
mentation network, referred to as the M-VAN Unet
model.

• We have designed the LKA-Cross Attention block,
a novel cross-attention mechanism that enhances the
fusion of low-level and high-level features in skip
connections.

• We have designed the MSC Attention block, a novel
multi-scale channel attention mechanism, for enhancing
the bottleneck structure.

II. RELATED WORKS
A. CNN-BASED SEGMENTATION NETWORKS
Currently, CNN has become the de facto standard for medical
image segmentation tasks. In particular, with the emergence
of U-Net, researchers have started to focus on improving
the U-shaped encoder and decoder structure, which has the
advantages of simplicity, excellent performance, andmodular
design. For example, H-DenseU-Net [26] replaces the origi-
nal U-Net encoder with a residual network and dense skip
connections to extract more complex features. U-Net++ [7]
inherits the structure of U-Net and also borrows the dense
connection method of DenseNet [27]. It redesigns the skip
connection structure between the encoder and decoder with
dense connections between each layer to bridge the semantic
gap of feature maps between the encoder and decoder. This
method is more efficient than increasing the feature map reso-
lution to capture more feature information. In addition, many
researchers have also borrowed and improved this struc-
ture [28], [29]. Meanwhile, Oktay et al. [11] also proposed
skip connection structures using Attention Gate block, which
extract locally important features through attention mech-
anisms, allowing the network to focus on specific impor-
tant objects while ignoring redundant regions. However, the
receptive field of convolutional operations is limited by the
size of the convolution kernel. Therefore, these CNN-based
methods share a common drawback, which is the limitation
in capturing long-range dependencies. In fact, the locality

and weight-sharing properties of convolutional operations
make them unable to understand global context. In CNN, the
problem of limited receptive fields is a common challenge.
In the past few years, many scholars have proposed different
solutions. Among them, Yu et al. [45] proposed a new con-
volution method, which introduces dilated convolution into
the convolutional kernel to increase the receptive field of the
CNN, thereby improving its performance. Huang et al. [31]
proposed an attention-based method based on self-attention,
called Criss-Cross Attention (Ccnet), which can simultane-
ously consider contextual information in different directions,
better extracting image features and improving the accuracy
of image segmentation. Although self-attention was origi-
nally proposed to solve machine translation problems, it has
been successfully applied to image segmentation tasks due to
its spatial adaptability. In addition, Meng et al. [23] proposed
a VAN model that combines the advantages of CNN and
self-attention, with local structural information, long-term
dependencies, and adaptability, and is considered a method
that surpasses other backbone networks based on CNN and
Transformer. In the next section, we will discuss in detail the
characteristics and advantages of VAN.

B. TSRANSFORMERS
In recent years, the success of Transformer in the field of
NLP has received widespread attention, making it an impor-
tant milestone in the history of deep learning. Compared to
traditional recurrent neural network (RNN) and CNN, Trans-
former models the dependencies between any two positions
in a sequence through self-attention mechanism, which can
better handle long sequences and capture long-range depen-
dencies. In the field of computer vision, more and more
Transformer-based methods are emerging. Among them, ViT
was the first method applied to the visual domain, which
divides the input image into multiple patches and inputs them
into a Transformer encoder, and then feeds the output to an
MLP layer for classification. Subsequently, TransUnet [14]
based on ViT was the first to introduce Transformer into the
field of image segmentation, and its performance on large
datasets was comparable to that of CNN. In order to solve
the problem that ViT needs large datasets to show its advan-
tages, a series of improved methods have been proposed.
Swin Transformer [17] proposed a hierarchical transformer
that applies a sliding window to reduce the computational
complexity of ViT, and based on this, Swin-Unet [18] was
proposed for segmentation. DeiT [16] proposed a data-
efficient image transformer that enables the method to show
advantages on small and medium-sized datasets. Networks
such as CrossViT [19], HiFormer [21], and Cat [30] fur-
ther improve network performance by extracting features at
multiple scales using cross-attention. Although Transformer-
based visual approaches can effectively model global con-
textual information and overcome the limitations of large
datasets, they treat images as one-dimensional sequences and
ignore their two-dimensional structure. Forcibly changing
the dimension of the image may lead to loss of accuracy in
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local and global features, ultimately affecting segmentation
performance. Therefore, it is necessary to further explore
how to preserve the two-dimensional structural information
of images to improve segmentation performance.

C. MULTI-SCALE CHANNEL ATTENTION MECHANISM
Several studies have shown [32], [33], [34], [35] that embed-
ding a multi-channel attention block into an existing CNN
network can significantly improve its performance. The
SENet [25] network learns the dependencies between chan-
nels in the form of channel attention, and automatically learns
the importance of each channel in the feature map. This
improves the channels of the feature map that are useful for
the current task and suppresses the feature channels that are
not useful for the current task. Wang [34] believe that the
dimensionality reduction in SENet has side effects on the
channel attentionmechanism, and capturing all the dependen-
cies between channels is inefficient and unnecessary. They
made some improvements to SENet and used an efficient
channel attention (ECA) block directly after the global aver-
age pooling layer, replacing the fully connected layer with
a 1 × 1 convolution (Conv) layer to avoid dimensionality
reduction and efficiently capture feature information between
channels. EPSANet [36] introduced the idea of multi-scale
and PSA block based on multi-channel attention. It replaced
the bottleneck structure of ResNet [37] with a new block
efficient pyramid split attention (EPSA), which can be used
as a ‘‘plug-and-play’’ block for existing backbone networks
and significantly improve their performance.

III. METHODS
In this study, we propose an end-to-end segmentation network
model called M-VAN Unet, as shown in FIGURE 3. The
proposed model consists of an encoder, decoder, LKA-Cross
attention block, and MSC-Attention block. M-VAN Unet is
designed based on a U-shaped structure and embedded with
the VAN backbone network. It relies on the large kernel
attention (LKA) mechanism to enhance contextual feature
capturing and address long-range dependency and adapt-
ability issues. We proposed the LKA-Cross Attention block
to enhance the skip connections between the encoder and
decoder. It is a two-level cross-attention mechanism designed
to enhance the semantic fusion of low-level and high-level
features. We also designed the MSC-Attention block at the
bottleneck, which is a multi-scale attention mechanism used
to extract critical multi-scale and multi-channel contextual
information.

A. ENCODER
Our encoder draws inspiration from the conversion approach
of Swin-Unet [18]. We replaced the Swin Transformer block
with the VAN block [23]. Moreover, we substituted the
Linear Embedding layer and PatchMerging layer with Down-
Sample block to enable linear dimension expansion and
downsampling. The spatial resolution of the encoder and bot-
tleneck structure forms a sequence of four stages, denoted by

FIGURE 2. VAN block and LKA block diagram. d means depth wise
convolution.

H
2 ×

W
2 ×C , H4 ×

W
4 ×4C , H8 ×

W
8 ×8C and H

16 ×
W
16 ×16C .

In this context, H and W respectively represent the height
and width of the input image, while C refers to the number of
channels. The features of the first three stages’ resolutions
are subjected to feature learning by multiple consecutive
VAN block, while the features of the last stage’s resolution
are fed into a bottleneck structure for multi-scale channel
learning. The feature information is downsampled at each
stage through DownSample block and then undergoes a 1×1
Conv and a VAN block for learning before entering the next
stage. Here, the DownSample block consists of a 3 × 3
Conv layer, a Batch Normalization layer (BN), and a ReLU
layer. All other layers in each stage maintain the same input
dimensions, i.e., spatial resolution and channel number. Due
to the loss of feature information in deep networks, the out-
puts of the first three VAN block stages, containing features
of different scales, are effectively fused with the high-level
feature information of the corresponding stage of the encoder
through LKA-Cross attention block using skip connections.

B. VAN BLOCK
The VAN block is built on the LKA mechanism [23] and
comprises two main components: the Attention block based
on LKA, and the Feedforward Neural Network (FFN) block,
as shown in FIGURE 2. Prior to each block, a BN is applied
for normalization, and the output is obtained by adding L
copies of the feature maps to the outputs of the Attention and
FFN block through skip connections. In the Attention block,
the feature maps are first passed through a 1 × 1 Conv layer,
GELU activation function, LKA, and another 1 × 1 Conv
layer before the final output is obtained. Similarly, in the FFN
block, the feature maps are passed through a 1 × 1 Conv
layer, 3× 3 Depthwise Conv, GELU activation function, and
another 1 × 1 Conv layer before the final output is obtained.
The computation formula for the VAN block is described as
follows:

Fl = BN (Attention(Fl−1)) + Fl−1, (1)

W = BN (FFN (Fl )) + Fl . (2)

Fl−1 represents the input features of VAN, while Fl and
W represent the output features of the attention and FFN
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FIGURE 3. Model architecture of M-VAN Unet. The M-VAN Unet consists of an encoder, LKA-Cross attention block, MSC-Attention block,
and a decoder. The encoder and decoder are constructed using the VAN block. The LKA-Cross attention block component is built using the
LKA technique, while the MSC-Attention block component combines the VAN and PSA techniques.

components. In this context, Fl−1,Fl ,W ∈ RC×H×W . The
attention calculation formula is as follows:

LKA = Conv1×1(DW_D_Conv(DW_Conv(Fl ))), (3)
Attention = LKA⊗ F. (4)

In this context, F,Attention ∈ RC×H×W , ⊗ means element-
wise product. LKA refers to large kernel convolution,
which is decomposed into three parts: spatial local convolu-
tion (depthwise convolution), spatial long-range convolution
(depthwise dilated convolution), and channel convolution
(1 × 1 Conv). LKA can capture long-term relationships
with relatively small computational costs and parameters.
Unlike common attention methods, LKA does not require
additional normalization functions such as Sigmoid and Soft-
max. Researchers [23] have found that the key feature of the
LKA attention mechanism is the adaptive adjustment of the
output based on the input features, rather than the normalized
attention map.

C. DECODER
As the model follows the symmetry of the U-shaped archi-
tecture, three VAN block are used as decoders corresponding
to the three stages of the encoder. In order to maintain

consistent feature dimensions across each stage, we used
an UpConv layer to reduce the feature dimensionality and
gradually increase the spatial resolution through upsam-
pling. The UpConv layer consists of an Upsample function,
a 3 × 3 Conv, a BN layer, and a ReLU activation function.
The resolution is increased by a factor of two by controlling
the stride and padding. Since upsampling does not bring
additional information and can also impact image quality, the
high-level feature information obtained through upsampling
is effectively fused with the low-level feature information
from the corresponding stage encoder through LKA-Cross
attention block. The fused features are then concatenatedwith
the upsampling feature information and sent to theVANblock
for feature learning. Finally, the features are passed through
a classifier, where the resolution is restored to that of the
input image by upsampling. The feature channel number C is
transformed into the final segmentation class output through
a VAN block and a 1 × 1 Conv.

D. LKA-CROSS ATTENTION BLOCK
The purpose of the skip connections in U-Net is to pro-
vide fine-grained feature information to the decoder and
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FIGURE 4. LKA-Cross attention block. The low-level features and high-level features are separately input into a LKA block for learning
and fusion. After being processed through batch normalization and sigmoid activation, they are fused again through a secondary
attention learning process with a copy of the high-level features. Finally, the output results are obtained.

FIGURE 5. MSC-Attention block. This structure comprises of three channels. The first channel includes skip connection attention, the
second channel includes a VAN block, and the third channel includes a PSA block.

to address the problem of feature information loss caused
by deep networks and upsampling. This is crucial for fea-
ture learning in the process of image segmentation. Some
researchers have redesigned the skip connection part in sev-
eral extended U-Net architectures [7], [39], which has yielded
promising results. This highlights the necessity of research
on the skip connection part. In this work, we also designed
a cross-attention mechanism with multi-level attention called
LKA-Cross Attention to enhance feature fusion. Our design
is illustrated in FIGURE 4. In the same layer, the feature
information copy (Fi1) obtained from the VAN block in the

encoder is processed with a 1 × 1 Conv and Batch Normal-
ization, and then fused with the feature information (Fi2) that
undergoes the same processing using the add method. Next,
the fused feature enters the first-level LKA block for feature
learning. After undergoing BN, Sigmoid activation, and other
steps, the feature is fused with a copy of input feature Fi2
using second-level attention fusion, and the resulting feature
is denoted asW i′ . In the decoder, we adopt a method similar
to the original skip-connection in U-Net for the fusion of
the LKA-Cross attention block output feature W i′ and the
upsampled deep feature Fi2. This approach aims to reduce
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spatial information loss caused by excessive downsampling
and overly deep networks. Subsequently, a linear layer is
used to adjust the dimensionality of the connected features to
match that of the upsampled feature, and the resulting feature
is sent for feature learning in the VAN block. Finally, the i-th
decoder block outputs feature
W i. The entire process can be represented by the following

equation:

Fi(Fi1,Fi2) = Conv1×1(BN (Fi1)) + Conv1×1(BN (Fi2)),

(5)

W i′
= Sig mod (BN (Fi(Fi1,Fi2))) ⊗ Fi2, (6)

W i
= VAN (LN(Cat(W i′ ,Fi2))). (7)

The variable i in the formula denotes the cross-attention
fusion that takes place at the i-th layer. i∈ {1, 2, 3}. Fi1, F

i
2,

W i′ ,W i
∈ RH×W×C .

In FIGURE 4, we visualized the activation heatmaps of
features Fi1, F

i
2 andW i using the Grad-CAM [40] technique.

The figure shows that the feature attention of the low-level
feature Fi1 is too scattered and not entirely focused on the
target. On the other hand, the high-level feature Fi2 is overly
concentrated on the center of the target, causing the edges to
gradually lose focus. After the fusion of LKA-Cross attention
block, the activation heatmap shows a more comprehensive
attention to the target lesion.

E. MSC-ATTENTION BLOCK
In the bottleneck structure of a network, as the image reso-
lution decreases and the feature dimension increases, there
is a problem in medical images where the size and shape
of the object vary greatly, making it difficult to capture fea-
tures effectively. Research on networks such as SENet [25]
and EPSANet [36] has shown that learning through differ-
ent channels can effectively capture spatial information of
feature maps at different scales, enriching the feature space
scale. Furthermore, learning through multiple channels can
strengthen the required features while suppressing the unnec-
essary ones.

In this network, we have designed a two-level multi-
scale channel attention mechanism called MSC-Attention,
as shown in FIGURE 5, that uses a residual connection
channel and two different feature extraction channels within
the block. The first residual connection channel is designed to
address feature loss problems. The second channel is a contin-
uation of the fourth stage of the encoder and is consistent with
the Swin-Unet [18] bottleneck structure. The third channel
incorporates the PSA block [36], which is an efficient multi-
scale channel attention mechanism. The multi-scale feature
extraction in the PSA block is achieved through the use of
the split and concat (SPC) block [36]. The SPC block divides
the input feature map (X ) into S parts (X0,X1, . . .XS−1),
each with C ′

=
C
S channels, where Xi ∈ RC ′

×H×W , i ∈

{0, 1, 2, . . . S−1}. The next step is to extract spatial informa-
tion from feature maps of different scales using multi-scale

convolution. In this case, multi-scale convolution and group
convolution are mainly used. The purpose of using group
convolution is to reduce the number of parameters, and the
size of the Group (G) is adjusted based on the size of the
convolution kernel. Therefore, the formula for the multi-scale
feature extraction process of the SPC block is as follows:

Fi = Conv(K i × K i,Gi)(X i), (8)

K i = 2 × (i− 1) + 1,Gi = 2
Ki−1
2 , (9)

F = Cat([F0,F1,F2,F3]. (10)

The variable F represents the output of the SPC block.
i ∈ {0, 1, 2, . . . S − 1},Fi ∈ RC ′

×H×W . After extracting
multi-scale features from the SPC block, the channel attention
weights are computed for different scales of the feature Fi.
The weight vector for the entire multi-scale channel atten-
tion is then integrated, and the calculation formula is shown
below:

Zi = SEWeight(Fi), i ∈ 0, 1, 2, . . . , S − 1, (11)

Z = Z0 ⊕ Z1 ⊕ Z2 ⊕ Z3. (12)

To establish a long-term channel attention dependency and
facilitate information interaction among multiple scales of
channel attention, we utilize Softmax to re-weight the channel
attention information. The corresponding feature map Fi at
each scale is then multiplied at a Channel-Wise level with
the attention vector (Att i) that has been re-weighted. Finally,
the resulting feature maps, which have been weighted by
multi-scale channel attention, are concatenated dimension-
ally to form the feature mapW

′
. After fusion with the feature

information from the second channel and sigmoid activation,
the resulting feature map W is multiplied with X to gener-
ate a more enriched feature map W. The formula for this
calculation is shown below:

Att i = Soft max(Zi) =
exp(Zi)∑S−1
i=0 (Zi)

, (13)

W
′
= Cat

([
Fi · Att i, . . . ,FS−1 · AttS−1

])
(14)

i ∈ 0, 1, 2, . . . S − 1, (15)

W = Sig mod (W
′
+ VAN (X)) × (X ). (16)

IV. EXPERIMENTS
To validate the effectiveness of our approach, we conducted
relevant experiments on two skin lesion datasets. In this
section, we introduce the datasets, the detailed implementa-
tion details of the experiments, and the evaluation metrics.
We also provide comparisons of the experimental results and
segmentation effect diagrams, and discuss and analyze the
experimental results in detail.

A. DATASET
1) ISIC 2018 DATASET
The ISIC2018 skin lesion dataset [22] is a widely used
dataset of skin diagnostic images provided by the ISIC
Foundation. The dataset includes 2594 training set images
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TABLE 1. Comparison results of methods on ISIC 2018 dataset and PH2 dataset.

(20.0% melanoma, 72.0% nevus, 8.0% seborrheic keratosis),
100 validation set images, and 1000 test set images, with pixel
ranges varying from 0.5 to 29million pixels. As the resolution
of each photo is different, we have uniformly changed it
to 224 × 224 resolution. A unique feature of the ISIC2018
dataset is that it not only provides the images themselves
but also provides pixel-level annotations of these images,
accurately segmenting the lesions in the images. This makes
the dataset useful for developing and evaluating skin lesion
segmentation algorithms.

2) PH2 DATASET
PH2 dataset [41] is an image dataset for skin lesion clas-
sification and segmentation, developed with funding from
the Portuguese Science and Technology Foundation (FCT).
The dataset includes 200 skin lesion images captured by a
handheld digital camera, of which 80 are benign melanoma
images, 80 are malignant melanoma images, and 40 are
normal skin images. Each input image has a resolution of
768× 560 pixels. For ease of training, we resized the images
to a uniform resolution of 224×224, and split the dataset into
a training set and a test set in an 8:2 ratio.

B. IMPLEMENTATION DETAILS
Our model algorithm was implemented using Python 3.9 and
PyTorch 1.11.0. The experiments were conducted on a system
running Windows 11, with an AMD R5 5600X CPU and
32GB of memory. Training was performed on an RTX3090
GPU with 24GB of memory. To increase the diversity of
training data, improve the generalization performance and
robustness of the model, we applied data augmentation using
the Albumentations library [38], including randomflips, rota-
tions, scaling, occlusions, and Gaussian blurring. In order to
ensure a fair comparisonwith other methods, we standardized
the input image resolution to 224 × 224 and set the batch
size to 16. Specifically, after applying data augmentation to

the images, we utilized the Resize function from the Albu-
mentations library to scale the resolution of the images to
224 × 224. Our method employed the SGD optimizer for
backpropagation with a momentum of 0.9 and weight decay
of 1e-4. The learning rate was adjusted using the StepLR
mechanism, with a decay factor of 0.1 every 20 steps, starting
from an initial learning rate of 0.01. We performed a total
of 200 iterations during the training process. CrossEntropy-
Loss and DiceLoss were combined as the loss functions for
training.

C. COMPARISON RESULTS
In our experiments on two skin lesion segmentation
datasets, we used different evaluation metrics to provide
a comprehensive evaluation of our method. The evaluation
metrics used were the Dice coefficient (Dice), 95% Harsdorf
distance (HD95), sensitivity (SE), specificity (SP), Jaccard
index (JS), and Accuracy (ACC).

1) ISIC2018 SEGMENTATION
We conducted comparative experiments between our pro-
posed method and other methods based on CNN and Trans-
former on the ISIC 2018 dataset. To ensure consistency, all
training and testing were conducted on the same device.
As shown in TABLE 1, the results demonstrate that our
proposed method outperforms other methods in terms of
evaluation metrics on the ISIC 2018 dataset. Specifically,
compared to the pure convolutional scheme, our method
increased the Dice coefficient by 3.89% and 1.62% com-
pared to Unet++ and Upernet, respectively. Compared to
the Transformer scheme, our method increased the Dice
coefficient by 5.6% and 1.99% compared to TransUnet and
Swin-Unet, respectively. Compared to the hybrid scheme, our
method increased the Dice coefficient by 1.04% compared
to HiFormer-B. This shows that our method has excellent
segmentation performance. We show the visual results of
skin lesion segmentation in FIGURE 6, where the green line
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FIGURE 6. Vishual comparison of different methods on the ISIC 2018 skin lesion segmentation dataset. The true boundary is shown in green,
and the predicted boundary is shown in blue. (a) Input Image. (b) Ground Truth. (c) U-Net. (d) Attention Unet. (e) FAT-Net. (f) Swin-Unet.
(g) Our method.

represents the true lesion boundary and the blue line repre-
sents the predicted boundary. Compared to the segmentation
results of other methods, our method generates smoother
and more accurate edge contours that are closer to the true
boundary. This indicates that our method can capture more
detailed structures and generate more accurate edge contours.

2) PH2 SEGMENTATION
In order to conduct comparative experiments on the PH2

dataset, we used the pre-trained weights from ISIC2018, and
the training and testing methods were the same as those used
on the ISIC2018 dataset. As shown in TABLE 1, our method
achieved better evaluation metrics than other methods, which
is similar to the results obtained on the ISIC2018 dataset.
Specifically, compared to the pure convolutional scheme, our
method improved the Dice coefficient by 3.95% and 1.15%
compared to Unet++ and Upernet, respectively. Compared
to the Transformer scheme, our method improved the Dice
coefficient by 3.17% and 0.74% compared to TransUnet and
Swin-Unet, respectively. Compared to the hybrid scheme, our
method improved the Dice coefficient by 0.62%. Overall,
our method demonstrated superior learning ability in terms
of the HD95, SE, SP, JS, and ACC metrics. These compar-
ative experiments on the two datasets demonstrate that our
method has satisfactory generalization ability across different
datasets.

D. ABLATION STUDY
To better investigate the influence of different factors on the
effectiveness of our method, we conducted ablation exper-
iments on the ISIC 2018 dataset to verify the effectiveness
of the VAN block, LKA-Cross attention block, and MSC-
Attention block. Additionally, we investigated the influence

FIGURE 7. The visualization of bottleneck structure ablation experiments
on the ISIC2018 skin lesion segmentation dataset was performed using
Grad-CAM. (a) Represents the input image. (b) Displays the feature map
of the bottleneck structure without MSC-Attention. (c) Illustrates the
feature map of the bottleneck structure before MSC-Attention.
(d) Presents the feature map of the bottleneck structure after
MSC-Attention.

of different input resolutions on the segmentation results.
These ablation experiments aim to thoroughly evaluate the
importance of different components of our method and pro-
vide us with more detailed conclusions to better under-
stand the role of these blocks in improving our method.
Through the ablation experiments, we can clearly see that the
VAN block, LKA-Cross attention block, and MSC-Attention
block significantly improve our method. Moreover, different
input resolutions were found to have varying effects on the
segmentation results. This further confirms the effectiveness
and practicality of our method’s innovations in practical
applications.

1) IMPACT OF THE VAN BLOCK
To investigate the performance improvement of the
VAN block in our base network, we conducted ablation
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experiments. To avoid interference, we used the basic U-Net
model as a Baseline. To ensure fairness in the experiment,
we did not use the LKA-Cross attention block and MSC-
Attention block proposed in our model in this comparative
experiment. Baseline+ResNet50 is a model that replaces
the feature extraction block of the Baseline model with
the ResNet-layers of ResNet50. Baseline+VAN model is
a model that replaces the feature extraction block of the
Baseline model with the VAN block.

The ablation experiment results on the ISIC2018 dataset
are shown in TABLE 2, indicating that the segmentation
performance of the VAN block is higher than that of the
Baseline and ResNet50. Specifically, the Baseline+VAN
model improved the evaluation metrics of Dice and ACC by
2.74% and 2.09%, respectively, compared to the Baseline
model. Moreover, it also increased by 1.45% and 0.96%
compared to the Baseline+ResNet50 model, respectively.
This suggests that the VAN block is indeed effective in
improving the segmentation performance of the network,
which is consistent with our previous hypothesis that the
VANblock can effectively capture global features.We believe
that the reason why the VAN block can effectively enhance
segmentation performance is due to the existence of large-
kernel convolutional attention. This is achieved through a
combination of deep convolution, dilated convolution, and
channel convolution, which increases the receptive field
without significantly increasing the number of parameters.
The expansion of the receptive field implies a better ability
to capture global features, thereby improving the model’s
performance.

TABLE 2. Ablation experiments of the van block on ISIC 2018.

2) IMPACT OF THE LKA-CROSS ATTENTION BLOCK
To explore the impact of the LKA-Cross attention block
on model performance, we conducted multiple experiments.
As presented in TABLE 3, when the LKA-Cross attention
block was added to the model, the segmentation performance
improved compared to the baseline VAN Unet. Specifically,
we conducted ablation tests on the ISIC2018 dataset and
found that the LKA-Cross attention block improved the Dice
coefficient and ACC by 1.23% and 1.83%, respectively. This
indicates the effectiveness of fusing low-level and high-level
features at the jump connection. Furthermore, by visualizing
the heat map of feature activations in FIGURE 4, we found
that integrating the LKA-Cross attention block led to a more
comprehensive focus on the target lesion, illustrating the
validity of the LKA-Cross attention block in the medical
image segmentation task. We further analyzed the factors
contributing to the performance improvement of the model

through the LKA-Cross attention block. In the medical image
segmentation task, interactions among different feature maps
can help the model better fuse the information of these maps,
thus improving the segmentation accuracy. Specifically, the
LKA-Cross attention block allows the model to pay more
attention to those features that are relevant to the task, while
suppressing those that are unrelated to the task, making the
model’s judgment more accurate.

TABLE 3. Ablation experiments of the lka-cross attention block on
ISIC 2018.

3) IMPACT OF THE MSC-ATTENTION BLOCK
Analysis of the experimental results in TABLE 4 indicates
that the segmentation accuracy is significantly improved by
using the MSC-Attention block compared to the baseline
model. Specifically, in the ablation experiments conducted on
the ISIC2018 dataset, the MSC-Attention block improved the
Dice coefficient and ACC by 1.14% and 2.03%, respectively.
This result confirms the effectiveness of the MSC-Attention
block, and indirectly confirms the effectiveness of the PSA
block. FIGURE 7 presents a visual comparison between the
baseline VAN Unet model and the model with the mul-
tiscale attention bottleneck structure using the Grad-CAM
tool. It is noteworthy that attentional distraction is more
prominent in the baseline model (FIGURE 7 (b) compared to
FIGURE 7 (c)), whereas after processing the features using
the bottleneck structure of the MSC-Attention block, the
feature activation heat map in FIGURE 7 (d) demon-
strates more accurate attention than in FIGURE 7 (b) and
FIGURE 7 (c). This result further confirms the importance of
the MSC-Attention block in improving segmentation accu-
racy, and provides intuitive visualization support for a deeper
understanding of its effectiveness.

4) INPUT RESOLUTION INFLUENCE
In the aforementioned comparative experiments, we used an
input resolution of 224×224 pixels for the skin lesion dataset.
To investigate the impact of input resolution on segmentation
results [46], we conducted additional ablation experiments
with low-resolution (112 × 112) and high-resolution
(384 × 384) inputs, as shown in TABLE 5, to assess the
influence of this factor on model performance.

The results demonstrate that as the input resolution
increases, the segmentation results become more accurate.
The most significant improvement is observed when tran-
sitioning from 112 × 112 to 224 × 224 input resolu-
tion. High-resolution input samples provide finer details,
leading to better segmentation results. Although high-
resolution inputs yield higher Dice and ACC scores, indicat-
ing the model’s segmentation capability, they also introduce
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TABLE 4. Ablation experiments of the msc-attention block on ISIC 2018.

TABLE 5. Ablation experiments of the Input the resolution on ISIC 2018.

higher computational complexity and additional computa-
tional costs. On the other hand, low-resolution inputs reduce
computational complexity but result in subpar segmentation
performance. Therefore, we have chosen 224× 224 pixels as
the input resolution for our model.

V. DISCUSSION AND CONCLUSION
After exploration and experimentation in this paper, we pro-
posed a skin lesion segmentation model based on the VAN
with a multi-scale cross attention mechanism. This model
significantly improves the current performance of skin lesion
segmentation and has the following main contributions and
scientific achievements:

Firstly, we redesigned the basic segmentation network by
borrowing the Swin-Unet model and introducing the VAN
block, which improved the ability to capture global features
and led to better segmentation results. Secondly, we proposed
the LKA-Cross attention block between the encoder and
decoder, which can effectively promote the fusion of low-
level and high-level features, thereby improving the feature
fusion and segmentation performance of the model. Next,
we designed an MSC-Attention block at the bottleneck posi-
tion, which can effectively capture features at different scales
and obtain richer multi-scale feature information, further
improving the segmentation performance and robustness of
the model. Finally, we further validated the effectiveness and
improvement of our method through ablation experiments
and Grad-CAM feature visualization. We conducted com-
prehensive experimental validation of the proposed method,
and the results showed that our method outperformed cur-
rent mainstream methods in evaluation metrics such as Dice,
HD95, and ACC.

We believe that the superiority and innovation of the
skin lesion segmentation model proposed in this paper will
provide strong support for clinical applications and patient
treatment.
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