
Received 4 July 2023, accepted 21 July 2023, date of publication 25 July 2023, date of current version 31 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3298810

Distributed Split Computing System in
Cooperative Internet of Things (IoT)
SEUNG-YEON KIM 1 AND HANEUL KO 2, (Senior Member, IEEE)
1Department of Computer Convergence Software, Korea University, Sejong 30019, South Korea
2Department of Electronic Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea

Corresponding author: Haneul Ko (heko@khu.ac.kr)

This work was supported in part by the National Research Foundation (NRF) of Korea funded by the Korean Government
[Ministry of Science, ICT and Future Planning (MSIP)] under Grant 2021R1I1A3042204, and in part by the Institute for
Information & Communications Technology Planning & Evaluation (IITP) funded by the Korean Government [Ministry of
Science and ICT (MSIT)] under Grant 2021-0-00739.

ABSTRACT The split computing approach, where the head and tail models are respectively distributed
between the IoT device and cloud, suffers from high network latency especially when the cloud is located
far from the IoT device. To mitigate this problem, we introduce a distributed split computing system
(DSCS) where an IoT device (called split computing requester) broadcasts a split computing request to
its neighboring IoT devices. After receiving the request, the neighboring IoT devices (i.e., requestees)
distributively determine whether or not to accept the split computing request by taking into account the
unnecessary energy consumption and computation time. Tominimize energy consumptionwhilemaintaining
a specified probability of on-time computing completion, we develop a constrained stochastic game model.
Then, a best-response dynamics-based algorithm is used to obtain the Nash equilibrium. The evaluation
results demonstrate that the DSCS consumes can reduce more than 20% energy consumption compared to a
probabilistic-based acceptance scheme, where the IoT devices accept a split computing request based on a
predefined probability, while providing high on-time computing completion probability.

INDEX TERMS Split computing, stochastic game, energy consumption, inference time, distributed system.

I. INTRODUCTION
Deep neural networks (DNNs) are currently the most fre-
quently used machine learning approach in intelligent mobile
applications and have grown more popular owing to their
accurate and reliable inference capability [1]. Meanwhile,
despite the recent improvements in the computing capabili-
ties of IoT devices, their performances fall far short of that
of cloud computing. Thus, when conducting inference for
the entire DNN model, a sufficiently low latency cannot be
achieved. In addition, the battery capacities of IoT devices
have severe limitations, especially for inference with high
complexity. Therefore, there is increasing interest in the split
computing approach [2], [3]. In this approach, the DNN is
split into two subnetworks (i.e., head and tail models), and
the head and tail models are distributed between the IoT
device and cloud, respectively. The IoT device first conducts

The associate editor coordinating the review of this manuscript and

approving it for publication was Eyuphan Bulut .

inference of the head model to obtain intermediate data (i.e.,
output of the head model). It then sends this intermediate
data to the cloud. Using the intermediate data as the input,
the cloud processes the tail model sequentially. However, this
split computing approach suffers from high network latency
between the IoT device and cloud, especially when the cloud
is located far from the IoT device [4], [5].
To mitigate this problem, we introduce a distributed split

computing system (DSCS); here, an IoT device simply deter-
mines whether to use the split computing approach and the
splitting point by considering its available computing power
as well as computing deadline. If the IoT device decides to
use the split computing approach, it conducts inference of
the head model based on the splitting point. Then, the IoT
device (which is the split computing requester) broadcasts
a split computing request that includes the splitting point,
intermediate data, computing latency of the head model,
and computing deadline to its neighboring IoT devices.
After receiving the request, the neighboring IoT devices

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 77669

https://orcid.org/0000-0003-3838-5404
https://orcid.org/0000-0002-9067-445X
https://orcid.org/0000-0003-4744-9211

S.-Y. Kim, H. Ko: Distributed Split Computing System in Cooperative Internet of Things (IoT)

(i.e., requestees) distributively determine whether or not to
accept the split computing request by taking into account
the unnecessary energy consumption and computation time.
Because the total number of IoT devices (i.e., requestees)
accepting the split computing request affects the amount
of energy consumed and the probability of completing the
computations on time, each IoT device should consider the
actions of its neighboring IoT devices. In this context, we for-
mulate a constrained stochastic game model and utilize a
best-response dynamics-based algorithm to obtain the multi-
policy constrained Nash equilibrium with minimized energy
consumption while maintaining desirable on-time computing
completion probability. The evaluation results show that the
DSCS consumes can reducemore than 20% energy consump-
tion compared to a probabilistic-based acceptance scheme,
where the IoT devices (i.e., requestees) accept a split comput-
ing request based on a predefined probability, while providing
high on-time computing completion probability. Moreover,
it is found that the best-response dynamics-based algorithm
converges quickly to the Nash equilibrium within a few iter-
ations.

The main contributions of this study are as follows: 1) the
proposed system is a pioneering effort in which the actions
of the split computing requestees are distributively decided
to optimize the performance of the split computing system;
2) the optimal policy of the requestees regarding acceptance
of the computing request can be obtained in a few iterations,
indicating that the proposed algorithm can be implemented in
actual systems without significant signaling cost; 3) we show
and scrutinize the evaluation results under various conditions
to provide guidance for constructing a DSCS.

The remainder of this manuscript is structured as follows.
The related works are detailed in Section II, and the proposed
DSCS is described in Section III. The stochastic game model
development is detailed in Section IV. The evaluations are
reviewed in Section V, and the final conclusions are summa-
rized in Section VI.

II. RELATED WORK
Many reported studies have investigated the possibility of
lowering task completion times in split computing environ-
ments [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18].

Kang et al. [6] created an automated two-step model split-
ting technique. In the first step, performance prediction mod-
els are created for each layer. In the second step, the splitting
point is dynamically determined from the prediction models
by considering the importance of performance metrics. Li et
al. [7] suggested a model splitting framework that considers
early exit and allows the inference task to be undertaken
at an appropriate intermediary layer; they decided the exit
and splitting points concurrently to maximize the accuracy
of inference while ensuring that the task completion time
remained below a specified threshold. Laskaridis et al. [8]
presented a system that continually monitors the resources of
the edge cloud and mobile device to decide the splitting point

by considering application requirements. Krouka et al. [9]
introduced a technique involving pruning and compres-
sion before splitting the DNN model to minimize energy
consumption by the mobile device while assuring correct-
ness of inference. Yan et al. [10] jointly optimized placing
and splitting of the model to minimize energy consump-
tion and reduce task completion time while accounting for
the network dynamics. Eshratifar et al. [11] determined sev-
eral optimal splitting points by converting the presented
model into a well-known one to exploit existing algorithms.
Zhou et al. [12] suggested a strategy to minimize task com-
pletion time by pruning the model and compressing the inter-
mediate data. He et al. [13] exploited a queuingmodel for task
completion time to formulate a joint optimization problem
regarding the splitting point and resource allocation, which
can be divided into subproblems; moreover, they designed
a heuristic algorithm to solve the subproblems sequentially.
Tang et al. [14] designed an algorithm that uses the structural
characteristics of the model splitting problem to obtain its
solution in polynomial time. Wang and Zhang [15] designed
a split computing architecture that exploits the error-tolerant
characteristics of the intermediate data to reduce the commu-
nication overhead; in this architecture, the controller decides
if retransmission is needed depending on the error rate.
Wang et al. [16] proposed a multiple-splitting-points deci-
sion system that determines several optimal splitting points in
real time with low signaling overhead. Matsubara et al. [17]
suggested a supervised compression method that discretizes
the intermediate data to avoid high communication overhead.
Ahn et al. [18] introduced a system in which the DNN model
is partitioned and deployed between the IoT device and cloud
to improve inference accuracy and reduce task completion
time. In [19] and [20], to minimize system energy con-
sumption, authors developed a distributed DNN computing
system orchestrating cooperative inference among multiple
IoT devices by considering available computing power and
network condition of IoT devices. Zhang et al. [21] intro-
duced a collaborative and adaptive inference system that can
handle various types of DNN models and optimize the trade-
off between the computation and synchronization. In [22]
and [23], authors introduced a method dynamically detect-
ing the best splitting point for a given DNN based on the
communication channel state, batch size, and multiclass cat-
egorization. In [24], authors proposed a novel framework for
the split computing, in which a round-robin schedule to select
a device and Hungarian optimization algorithm to assign a
layer to the device are exploited.

However, there are no existing works for optimizing the
split computing performance from the perspective of the
requestees in a distributed manner.

III. DISTRIBUTED SPLIT COMPUTING SYSTEM
Figure 1 shows the proposed DSCS in which an IoT device
(i.e., requester) generates the computing task periodically.
During the computing task, the IoT device checks its available
computing power and task deadline. If the available power is

77670 VOLUME 11, 2023

S.-Y. Kim, H. Ko: Distributed Split Computing System in Cooperative Internet of Things (IoT)

FIGURE 1. System model.

sufficient to complete the task within the deadline, the IoT
device performs inference for the entire DNN model. Other-
wise, the IoT device decides the splitting point according to
its available computing power. Specifically, the entire DNN
model is split at the mth splitting point, and m is obtained
as ⌈αC⌉ where α is a scale factor and C is the available
computing power of the IoT device. Note that the scaling
factor can be set to NL

Cmax where NL and Cmax denote the total
number of layers and the maximum computing power of the
IoT device, respectively. After deciding the splitting point,
the IoT device conducts inference for the head model with
the mth splitting point to obtain the intermediate data (i.e.,
result of the head model). Then, the IoT device broadcasts
the split computing request message to its neighboring IoT
devices using LoRa [25]1. This split computing request mes-
sage includes the 1) splitting point, 2) intermediate data, 3)
computing latency of the head model, and 4) task deadline.

After receiving the split computing request, the neigh-
boring IoT devices (i.e., requestees) distributively determine
whether to accept the split computing request by considering
the unnecessary energy consumption and computation time.
If the IoT device determines not to accept the request, it does
nothing. Otherwise, it conducts inference of the tail model
with the mth splitting point. At this point, the only neighbor-
ing IoT devices who can complete the task within its deadline
accept the request. Therefore, even though the IoT device
(i.e., requester) does not consider the computing power of
the neighboring IoT devices (i.e., requestees), the on-time
computing completion can be achieved. After completing
inference, the IoT device returns the outcome of the tail model
to the requester.

As the number of IoT devices accepting the request
increases, the probability that at least one IoT device can
complete the computations within the deadline (i.e., on-time
computing completion probability) also increases. However,
excessive duplicate acceptances increase the total amount
of energy consumed. This means that each IoT device
should consider the actions of others to achieve tradeoff
between unnecessary energy consumption and on-time com-

1Note that IoT devices (LoRa class C devices) can transmit the packet
without the synchronization [26].

TABLE 1. Summary of notations.

puting completion probability. Accordingly, we develop a
constrained stochastic game model to minimize the energy
consumed while ensuring that the on-time computing com-
pletion probability remains above a specified threshold; this
model is explained in the following section.

IV. CONSTRAINED STOCHASTIC GAME
In this section, we present the development of a constrained
stochastic game model [27], [28] to accomplish distributed
implementation of the split computing service. In the game,
NI players (i.e., NI requestees) exist, and they have five
tuples: 1) local state space; 2) local action space; 3) transition
probability; 4) cost function; 5) constraint function. Table 1
summarizes some important notations.

A. STATE SPACE
Let Si be a finite local state space of player i (i.e., IoT
device i or requestee i). Then, the global state space S can
be represented as

∏
i
Si, where

∏
is the Cartesian product. Si

can be defined as

Si = Pi × Ci × Hi × Ei, (1)

where Pi and Ci are the state spaces of IoT device i for the
splitting point and available computing power, respectively.
In addition, Hi and Ei denote the state spaces of IoT device i
for the channel gain and energy level, respectively. To denote
an element of each local state space of the IoT device i, we use
italic letters (i.e., Pi ∈ Pi, Ci ∈ Ci, Hi ∈ Hi and Ei ∈ Ei).

Without loss of generality, we assume that the entire DNN
model consists ofM layers. Then, Pi can be described as

Pi = {1, 2, . . . ,M} , (2)

where Pi = m denotes the mth splitting point.

VOLUME 11, 2023 77671

S.-Y. Kim, H. Ko: Distributed Split Computing System in Cooperative Internet of Things (IoT)

When Cmax is the maximum computing power of the IoT
device, Ci can be represented by

Ci =
{
uC , 2uC , . . . ,Cmax} , (3)

whereCi and uC are the computing power and unit computing
power, respectively.

Since the channel is quantized to Q levels [29], Hi can be
represented by

Hi =
{
h1, h2, . . . , hQ

}
, (4)

where Hi = hq represents the qth quantized channel gain.
When Emax denotes the maximum energy level of the IoT

device, Ei can be represented by

Ei =
{
0, 1, 2, . . . ,Emax} , (5)

where Ei is the energy level of the IoT device.

B. ACTION SPACE
Let Ai be a finite local action space of player i. The global
action space A is denoted by

∏
i
Ai. Here, the IoT device can

accept or reject the computing request. Therefore, Ai can be
represented by

Ai = {0, 1} . (6)

Here, for Ai ∈ Ai, Ai = 1 denotes that IoT device i accepts
the computing request and Ai = 0 means that IoT device i
does not accept the computing request.

C. TRANSITION PROBABILITY
Let P[S ′

i |Si,Ai] be a transition probability from the current
state Si to the next state when the IoT device i performs the
chosen action Ai. The energy of the IoT device i decreases
when it accepts the request. In addition, depending on the
splitting point, the energy consumed by IoT device i varies.
That is, the transition of Ei is influenced by Pi and Ai. Mean-
while, the other states change independently. Thus, the tran-
sition probability from the current state Si = [Pi,Ci,Hi,Ei]
to next state S ′

i = [P′
i,C

′
i ,H

′
i ,E

′
i] can be represented as (7),

shown at the bottom of the next page.
According to the source condition, the harvesting energy

volume changes. Therefore, it can be assumed that the har-
vested energy k during the decision epoch in the IoT device i
follows a Poisson distribution with mean λE ,PE (λE , k) [30].
That is, the energy level of IoT device i can increase by
k with probability PE (λE , k) when it does not accept the
computing request (i.e., Ai = 0) and its current energy level is
less than the maximum energy level Emax. Note that the IoT
device i cannot harvest more energy if its current energy level
is maximum. To summarize, the corresponding probabilities
can be expressed as (8) and (9), shown at the bottom of the
next page.

When the IoT device i accepts the split computing request
(i.e., Ai = 1), it consumes fE (Pi) units of energy, where
fE (Pi) is a function that returns the energy consumption
for the tail model with splitting point Pi. If the IoT device

i has insufficient energy for the tail model (i.e., Ei <

fE (Pi))2, then it does not consume any energy even though it
accepts the split computing request. In addition, its energy can
increase by k the probabilityPE (λE , k). Therefore,P[E ′

i |Ei ≥

fE (Pi) ,Pi,Ai = 1] and P[E ′
i |Ei < fE (Pi) ,Pi,Ai = 1] can

be represented as (10) and (11), shown at the bottom of the
next page, respectively.

It is assumed that the available computing power of the
requesting IoT device follows a discrete uniform distribu-
tion [31]. Then, since the requesting IoT device decides the
splitting point according to its available computing power, the
transition probability of Pi can be defined as

P[P′
i|Pi] =

1
M

, if P′
i ∈ {1, 2, . . . ,M}

0, otherwise.
(12)

The available computing power of the IoT device i (i.e.,
Ci) is assumed to follow a Poisson distribution with mean
λC ,PC (λC , k), and P[C ′

i |Ci] can be defined as follows:

P[C ′
i |Ci] =

{
PC (λC , k), if C ′

i = k
0, otherwise.

(13)

In the channel gain with Q quantized levels [29], when the
channel model follows Rayleigh fading with average channel
gain ρ, P[H ′

i |Hi] is defined as follows [32]:

P[H ′
i |Hi] =

{
F(hq+1) − F(hq), if hq ≤ H ′

i < hq+1

0, otherwise,

(14)

where F(x) = 1 − e−x/ρ .

D. COST FUNCTION
The energy consumption of the IoT device is exploited as the
cost function r (Si,Ai), which is defined as

r (Si,Ai) = AifE (Pi) . (15)

E. CONSTRAINT FUNCTION
To provide high on-time computing completion probability,
the constraint function c (Si,Ai) is defined. First, the comput-
ing completion time is derived as follows.

Because the size of output the DNNmodel output is gener-
ally much smaller than that of the intermediate data [33], the
latency for result transmission from the IoT device i to split
computing requester can be neglected. Then, the computing
completion time can be calculated as the summation of the
computational latency LH of the head model, latency LD

for transmitting the intermediate data from split computing
requester to IoT device i, and computing latency LT of the tail
model at IoT device i. Therefore, the computing completion
time L can be represented by

L = LH + LDi + LTi . (16)

Note that the computing latency LH of the head model is
included in the split computing request message. Meanwhile,

2In this case, the IoT device i cannot conduct the tail model.

77672 VOLUME 11, 2023

S.-Y. Kim, H. Ko: Distributed Split Computing System in Cooperative Internet of Things (IoT)

the transmission latency LD of the intermediate data from the
requester to IoT device i can be calculated as

LDi =
fD (Pi)

T Ri
, (17)

where fD (Pi) is a function that returns the intermediate data
size with the splitting point Pi. In addition, T Ri denotes the
effective transmission rate between the requester and IoT
device i, which is obtained from the spreading factor chosen
according to γ as [34] and [35]. Then γ is given by

γ =
PT |Hi|2

σ 2 , (18)

where PT and σ 2 represent the transmission power and noise
power, respectively.

The computing latency LT of the tail model for the IoT
device i can be calculated as

LTi =
fF (Pi)
Ci

, (19)

where fF (Pi) is a function that returns floating-point opera-
tions (FLOPS) of the tail model for the splitting point Pi.
The probability λi that the IoT device i can complete

computations within the deadline D can be calculated as

λi = P [Ai = 1] · P
[
LH + LDi + LTi < D

]
, (20)

where P [Ai = 1] is the probability that IoT device i accepts
the computing request with its current policy. Meanwhile,
the probability λA that at least one IoT device can complete
computing within the deadline is calculated as λA = 1 −∏
i

(1 − λi), which can be considered as c (Si,Ai).

F. OPTIMIZATION FORMULATION
Let πi and π be a stationary policy of the IoT device i and
the stationary multi-policy of all players, respectively. Then,

the long-term average energy consumption of the IoT device
i can be defined as

ζE (π) = lim
T→∞

1
T

T∑
t=1

Eπ

[
r
(
S t ,At

)]
, (21)

where S t and At are the global state and action at time t ,
respectively.

Meanwhile, IoT device i tries to maintain its on-time com-
puting completion probability above a certain level. Thus, the
constraint can be represented as

ζC (π) = lim
T→∞

1
T

T∑
t=1

Eπ

[
c
(
S t ,At

)]
≥ θD, (22)

where θD is the target on-time computing completion proba-
bility.

The multi-policy π∗
=

(
π∗
i , π∗

−i

)
is the constraint Nash

equilibrium if ζC
((

π∗
i , π∗

−i

))
≤ ζC

((
πi, π

∗
−i

))
for each IoT

device among any πi such that
(
πi, π

∗
−i

)
is feasible [36].

To achieve the multi-policy constrained Nash equilibrium,
the best response policy π∗

i of the IoT device i given any
stationary policies of the other IoT devices π−i can be defined
as ζC

((
π∗
i , π

−i

))
≤ ζC

((
πi, π−i

))
.

Based on the LP problem, we can obtain the best response
policy of IoT device i. Let φi,π−i (Si,Ai) denote the stationary
probability for local state Si and action Ai of the IoT device
i when stationary policies of the other IoT devices π−i are
given. Then, the solution of the LP problem φ∗

i,π−i
(Si,Ai)

can be matched to the best response policy of the constrained
stochastic game.

To minimize the average energy consumption of the IoT
device i, the objective function can be expressed as

min
φ(S,A)

∑
S

∑
A

φi,π−i (Si,Ai) r(Si,Ai). (23)

Since the average on-time computing completion probabil-
ity should be maintained above the target on-time computing

P[S ′
i |Si,Ai] = P[P′

i|Pi] × P[C ′
i |Ci] × P[H ′

i |Hi] × P[E ′
i |Ei,Pi,Ai]. (7)

P[E ′
i |Ei ̸= Emax,Pi,Ai = 0] =

{
PE (λE , k), if E ′

i = Ei + k
0, otherwise.

(8)

P[E ′
i |Ei = Emax,Pi,Ai = 0] =

{
1, if E ′

i = Ei
0, otherwise.

(9)

P[E ′
i |Ei ≥ fE (Pi) ,Pi,Ai = 1] =

{
PE (λE , k), if E ′

i = Ei + k − fE (Pi)
0, otherwise.

(10)

P[E ′
i |Ei < fE (Pi) ,Pi,Ai = 1] =

{
PE (λE , k), if E ′

i = Ei + k
0, otherwise.

(11)

VOLUME 11, 2023 77673

S.-Y. Kim, H. Ko: Distributed Split Computing System in Cooperative Internet of Things (IoT)

completion probability θD, we have∑
S

∑
A

φi,π−i (Si,Ai) c(Si,Ai) ≥ θD. (24)

For the Chapman-Kolmogorov equation [37], we have∑
A

φi,π−i

(
S ′
i ,Ai

)
=

∑
S

∑
A

φi,π−i (Si,Ai)P[S
′
i |Si,Ai].

(25)

The fundamental properties of the probability are con-
strained by ∑

S

∑
A

φi,π−i

(
Si′,Ai

)
= 1 (26)

and

φi,π−i

(
Si′,Ai

)
≥ 0. (27)

If a feasible solution exists for the LP problem, then the
stationary best response policy of IoT device i is given by

π∗
i (Si,Ai) =

φ∗
i,π−i

(Si,Ai)∑
A′
i∈Ai

φ∗
i,π−i

(
Si,A′

i

) . (28)

Algorithm 1 Best Response Dynamics-Based Algorithm
1: Generate the random policy πi for ∀i.
2: repeat
3: for each IoT device i do
4: Calculate the probability λi
5: Transmit the probability λi to other IoT devices
6: Calculate the probability λA
7: Solve the LP problem to obtain the optimal policy π∗

i
8: end for
9: until All policies of IoT devices are converged

To obtain the optimal policies of the IoT devices, we design
a best response dynamics-based algorithm (see Algorithm 1).
First, each IoT device generates its policy randomly (line 1
in Algorithm 1). Next, each IoT device i calculates the prob-
ability λi that it can complete computing within the deadline
using (20) and transmits the probability to the other IoT
devices (see lines 4-5 in Algorithm 1)3. After receiving the
probability λi from all the IoT devices, each IoT device
calculates λA that at least one the IoT device can complete
computing within the deadline. Each IoT device then solves
the LP problem to achieve the optimal policy π∗

i (line 7
in Algorithm 1). Once the policies of all the IoT devices
converge, the algorithm is complete.

The LP problem is generally solved with low complex-
ity [38]. For example, Vaidya’s algorithm [38], which is one
of the traditional methods of solving the LP problem, has a
polynomial complexity ofO(�(Si) ·�(Ai)3), whereO(·) and
�(·) represent the big O notation and number of elements

3Note that P [Ai = 1] can be calculated as
∑
S

∑
A

φi,π−i (Si,Ai = 1).

TABLE 2. System parameters.

in the given set, respectively. Moreover, since the stationary
policies can be attained from a small number of iterations (as
shown in Section V-A), we conclude that Algorithm 1 has a
manageable overhead and can hence be utilized practically.

V. EVALUATION RESULTS
To evaluate the performance of the proposed system, we built
a simulation program using MATLAB. We simulated a coop-
erative IoT based system with NI = 4 ∼ 8 IoT devices.
We assumed that the initial energies of all IoTs were fully
charged, the target on-time computing completion proba-
bility was θD = 0.9. For the effective transmission rate,
we assumed that the transmission rate is zero when γ is
under threshold γth, i.e., γ < γth. Additionally, PT = 1 and
σ 2

= 1 to observe the effects of the parameters. To obtain
the realistic evaluation setup, we have measured the inference
latency of VGG16 several times at Raspberry Pi 4B according
to the splitting points. For example, the average inference
latency using the whole model for all test data is 5.1 sec. Note
that, sincewemeasure the inference latencywithout any other
background applications, the measured inference latency can
be considered as the inference latency when the IoT device
has themaximum computing power. In addition, it is assumed
that the inference latency is inversely proportional to the
available computing power. Meanwhile, it is assumed that
the energy consumption of IoT device (i.e., requestee) is
proportional to floating point operations (FLOPS) in each
layer. FLOPS in each layer can be measured by python-papi
package [39]. The energy consumption for the layer having
the smallest FLOPS is normalized as 1. The other default
parameter settings are as shown in Table 2.
For the performance evaluation, we compare the proposed

system to five schemes: 1) ALWAYS, where the IoT devices
always accept the computing request; 2) CE-BASED [29],
where the IoT devices perform channel estimation with
imperfect channel-state information; 3) RAND, where the
IoT devices randomly accept the computing request; 4) P-
BASED, where the IoT devices accept a computing request
with probability pA that is set to 0.7; and 5) CoEdge [19],
where the IoT devices compute the evenly splitted the work-
load. For the fair comparison, IoT devices in all comparison
schemes operate in the same channel. The average energy
consumption and average on-time computing completion
probability are used as the performance metrics.

A. CONVERGENCE TO NASH EQUILIBRIUM
Figure 2 describes the process of convergence to the Nash
equilibrium. Herein, the initial probabilities of accepting the
computing requests of IoT devices 1, 2, 3, and 4 are set to
0.9, 0.5, 0.1, and 0.8, respectively. In addition, the computing
power of IoT device 1 is set to 4, whereas those of IoT
devices 2, 3, and 4 are all set to 5. As shown in Figure 2, the

77674 VOLUME 11, 2023

S.-Y. Kim, H. Ko: Distributed Split Computing System in Cooperative Internet of Things (IoT)

FIGURE 2. Converging process to Nash equilibrium.

policies of IoT devices converge to the Nash equilibrium only
after 3 iterations. This indicates that each IoT device needs
to transmit its completion probability λi to the other devices
only 2 times (see line 5 in Algorithm 1)4.
From Figure 2, it is evident that the action of an IoT device

is based on the other IoT devices. For example, in this result,
IoT device 1 has a lower computing power than the other
devices; hence, its acceptance of the computing request is
not helpful for increasing the on-time computing completion
probability. In other words, the acceptance of the computing
request by IoT device 1 can be considered as unnecessary
energy consumption. In this situation, IoT device 1 does not
probably accept the request (i.e., it has low probability of
accepting the computing request). Considering this fact, the
other IoT may devices accept the computing request with a
greater probability.

B. EFFECT OF NI
Figures 3(a) and (b) show the effects of the number of IoT
devices NI on the average energy consumption ζE and aver-
age on-time computing completion probability ζC , respec-
tively. From the figures, it is shown that the DSCS can
minimize the average energy consumed while maintaining
desirable average on-time computing completion probability
(i.e., 0.9). This is because the IoT devices in the DSCS decide
the action regarding acceptance of the computing request by
considering their operating environments. For example, if an
IoT device has high available computing power and channel
gain, it accepts the computing request because it can probably
complete the computation within the deadline, which also
entails avoiding unnecessary energy consumption. On the
contrary, if an IoT device has low available computing power

4Since the cooperative decision can be converged with only 2 iterations
as shown in Figure 2, the time required the cooperative decision can be
neglected.

FIGURE 3. Effect of the number of IoT devices NI .

and channel gain, it does not accept the computing request to
avoid unnecessary energy consumption5.
From Figure 3(a), it is observed that the average energy

consumption of the DSCS decreases with increasing numbers
of IoT devices. This is because the IoT devices in the DSCS
consider their neighboring devices when deciding whether
to accept the computing request. Specifically, in a situation
where numerous IoT devices exist, from the perspective of a
specific device, it is expected that the task can be completed
with high probability within the deadline even though that
device does not accept the request. Therefore, each IoT device
accepts the computing request with a lower probability to
reduce the amount of energy consumed.Meanwhile, since the
other comparison schemes (except CoEdge) do not consider
the number of IoT devices NI , their average energy consump-
tion are constant regardless ofNI . Note that, all IoT devices in

5Note that, if an IoT device has low available computing power and
channel gain, it does not complete computing within the deadline. This
implies that, if that IoT device accepts the computing request, it just wastes
its energy unnecessarily.

VOLUME 11, 2023 77675

S.-Y. Kim, H. Ko: Distributed Split Computing System in Cooperative Internet of Things (IoT)

FIGURE 4. Effect of the target on-time computing completion probability
θD on the average energy consumption ζE .

CoEdge compute the evenly splitted the workload, its average
energy consumption decreases as NI increases.

C. EFFECT OF θD
Figure 4 shows the effect of the target on-time computing
completion probability θD on the average energy consump-
tion ζE . From the figure, it is seen that ζE of the DSCS
increases as θD increases, whereas ζE of the other schemes
are constant regardless of θD. This can be explained as fol-
lows. As the number of IoT devices accepting the computing
request increases, the probability that at least one of them can
complete the computation within the deadline also increases.
The IoT devices in the DSCS recognize this fact and accept
a computing request aggressively when a higher θD is given.
However, the other schemes compared herein do not consider
the target on-time computing completion probability, so they
do not change their policies.

D. EFFECT OF λE
Figures 5(a) and (b) demonstrate the effects of the average
energy units harvested λE on the average energy consumed
ζE and average on-time computing completion probabilities
ζC , respectively. Interestingly, from Figure 5(a), it is seen that
the average energy consumption ζE of all schemes except
CE-BASED increase logarithmically with increase in λE .
This can be explained as follows. If an IoT device does not
have sufficient energy E (< fE (P)), it cannot infer the tail
model and does not consume any energy. The probability of
occurrence of this situation decreases as λE increases. Thus,
with the increase in λE , the average on-time computing com-
pletion probabilities ζC of all the comparison schemes also
increase, as shown in Figure 5(b). However, the DSCS does
not consume the additional energy to increase the average
on-time computing completion probability in excess above
a certain level (i.e., 0.9 herein); thus, its average on-time
computing completion probability remains unchanged irre-
spective of λE , as shown in Figure 5(b).

FIGURE 5. Effect of λE .

E. EFFECT OF ρ

Figure 6 demonstrates the effect of the average channel gain
ρ on the average energy consumption ζE . As observed in
the figure, ζE of the DSCS decreases as ρ increases. This is
because the intermediate data can be delivered with a lower
latency when ρ is higher, which indicates a higher probability
of completing the computation within the deadline. Each IoT
device in the DSCS recognizes this condition and does not
accept the computing request so as to reduce the amount of
energy consumed. However, since the other schemes except
CE-BASED do not recognize this condition, their average
amounts of energy consumed remain unchanged irrespective
of ρ.

Meanwhile, in CE-BASED, the decision to accept the
computing request is based on the channel condition (i.e.,
the IoT devices accept the request when the channel gain is
high). Thus, its average energy consumption ζE increases as
the average channel gain increases.

77676 VOLUME 11, 2023

S.-Y. Kim, H. Ko: Distributed Split Computing System in Cooperative Internet of Things (IoT)

FIGURE 6. Effect of the average channel gain ρ on the average energy
consumption ζE .

FIGURE 7. Effect of the average computing power λC on the average
on-time computing completion probability ζC .

F. EFFECT OF λC
Figure 7 demonstrates the effect of the average computing
power λC on the average on-time computing completion
probability ζC . Intuitively, when an IoT device has higher
computing power, it can complete inference of the given
tail model within a shorter duration. Therefore, as shown in
Figure 7, the average on-time computing completion prob-
abilities ζC of the other comparison schemes increase with
increase in average computing power λC . However, in the
DSCS, if the IoT devices have more computing power,
they reduce their acceptance probabilities for the computing
request to reduce the amount of energy consumed. Thus,
the average on-time computing completion probability of the
DSCS is maintained at a specific level (i.e., 0.9).

G. EFFECT OF D
Figure 8 demonstrates the effect of the deadline D on the
average energy consumption ζE . When the deadline is farther,
even though the IoT devices accept the computing request
with a lower probability, the desired on-time computing com-
pletion probability can be achieved. In the DSCS, the IoT

FIGURE 8. Effect of the deadline D on the average energy
consumption ζE .

devices are aware of this fact and can thus reduce energy
consumption when D is large, as demonstrated in Figure 8.
However, the other comparison schemes do not alter their
policies according to the deadline D, so their amounts of
energy consumed remain constant.

VI. CONCLUSION
In this work, we introduce a distributed split computing
system (DSCS) wherein the IoT devices (i.e., requestees) dis-
tributively determine acceptance of a split computing request
from a specific IoT device by considering the unnecessary
energy consumption and computation completion time. For
performance optimization, a constrained stochastic game
model is developed, and a multipolicy constrained Nash
equilibrium is attained using a best-response dynamics-based
algorithm. The evaluation results show that the DSCS signif-
icantly reduces the amounts of energy consumed by the IoT
devices while providing high on-time computing completion
probability. Moreover, it is noted that the IoT devices in the
DSCS adaptively adjust their actions by considering their
neighbors’ actions and operating environments. In the future,
we plan to expand the proposed system to also account for
multitask learning.

REFERENCES
[1] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, ‘‘Efficient processing of

deep neural networks: A tutorial and survey,’’ Proc. IEEE, vol. 105, no. 12,
pp. 2295–2329, Dec. 2017.

[2] Y. Matsubara, M. Levorato, and F. Restuccia, ‘‘Split computing and early
exiting for deep learning applications: Survey and research challenges,’’
ACM Comput. Surv., vol. 55, no. 5, pp. 1–30, May 2023.

[3] Y. Matsubara and M. Levorato, ‘‘Split computing for complex object
detectors: Challenges and preliminary results,’’ in Proc. 4th Int. Workshop
Embedded Mobile Deep Learn., Sep. 2020, pp. 7–12.

[4] H. Ko, J. Lee, and S. Pack, ‘‘Spatial and temporal computation offloading
decision algorithm in edge cloud-enabled heterogeneous networks,’’ IEEE
Access, vol. 6, pp. 18920–18932, 2018.

[5] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
‘‘Convergence of edge computing and deep learning: A comprehensive
survey,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 869–904,
2nd Quart., 2020.

VOLUME 11, 2023 77677

S.-Y. Kim, H. Ko: Distributed Split Computing System in Cooperative Internet of Things (IoT)

[6] Y. Kang, ‘‘Neurosurgeon: Collaborative intelligence between the cloud and
mobile edge,’’ in Proc. ASPLOS, Apr. 2017, pp. 1–15.

[7] E. Li, Z. Zhou, and X. Chen, ‘‘Edge intelligence: On-demand deep learning
model co-inference with device-edge synergy,’’ in Proc. Workshop Mobile
Edge Commun., Aug. 2018, pp. 31–36.

[8] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,
‘‘SPINN: Synergistic progressive inference of neural networks over device
and cloud,’’ in Proc. 26th Annu. Int. Conf. Mobile Comput. Netw.,
Sep. 2020, pp. 1–15.

[9] M. Krouka, A. Elgabli, C. B. Issaid, and M. Bennis, ‘‘Energy-efficient
model compression and splitting for collaborative inference over time-
varying channels,’’ in Proc. IEEE 32nd Annu. Int. Symp. Pers., Indoor
Mobile Radio Commun. (PIMRC), Sep. 2021, pp. 1173–1178.

[10] J. Yan, S. Bi, and Y.-J.-A. Zhang, ‘‘Optimal model placement and online
model splitting for device-edge co-inference,’’ IEEE Trans. Wireless Com-
mun., vol. 21, no. 10, pp. 8354–8367, Oct. 2022.

[11] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, ‘‘JointDNN: An effi-
cient training and inference engine for intelligent mobile cloud computing
services,’’ IEEE Trans. Mobile Comput., vol. 20, no. 2, pp. 565–576,
Feb. 2021.

[12] H. Zhou, ‘‘BBNet: A novel convolutional neural network structure in
edge-cloud collaborative inference,’’ Sensors, vol. 21, no. 13, pp. 1–16,
Jun. 2021.

[13] W.He, S. Guo, S. Guo, X. Qiu, and F. Qi, ‘‘Joint DNNpartition deployment
and resource allocation for delay-sensitive deep learning inference in IoT,’’
IEEE Internet Things J., vol. 7, no. 10, pp. 9241–9254, Oct. 2020.

[14] X. Tang, X. Chen, L. Zeng, S. Yu, and L. Chen, ‘‘Joint multiuser DNN
partitioning and computational resource allocation for collaborative edge
intelligence,’’ IEEE Internet Things J., vol. 8, no. 12, pp. 9511–9522,
Jun. 2021.

[15] S. Wang and X. Zhang, ‘‘NeuroMessenger: Towards error tolerant dis-
tributed machine learning over edge networks,’’ in Proc. IEEE INFOCOM
Conf. Comput. Commun., May 2022, pp. 2058–2067.

[16] S. Wang, X. Zhang, H. Uchiyama, and H. Matsuda, ‘‘HiveMind: Towards
cellular native machine learning model splitting,’’ IEEE J. Sel. Areas
Commun., vol. 40, no. 2, pp. 626–640, Feb. 2022.

[17] Y. Matsubara, R. Yang, M. Levorato, and S. Mandt, ‘‘SC2 benchmark:
Supervised compression for split computing,’’ 2022, arXiv:2203.08875.

[18] H. Ahn, M. Lee, C.-H. Hong, and B. Varghese, ‘‘ScissionLite: Accel-
erating distributed deep neural networks using transfer layer,’’ 2021,
arXiv:2105.02019.

[19] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, ‘‘CoEdge: Cooperative
DNN inference with adaptive workload partitioning over heterogeneous
edge devices,’’ IEEE/ACM Trans. Netw., vol. 29, no. 2, pp. 595–608,
Apr. 2021.

[20] E. Samikwa, A. D. Maio, and T. Braun, ‘‘Adaptive early exit of com-
putation for energy-efficient and low-latency machine learning over IoT
networks,’’ in Proc. IEEE 19th Annu. Consum. Commun. Netw. Conf.
(CCNC), Jan. 2022, pp. 200–206.

[21] S. Zhang, S. Zhang, Z. Qian, J. Wu, Y. Jin, and S. Lu, ‘‘DeepSlicing:
Collaborative and adaptive CNN inference with low latency,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 32, no. 9, pp. 2175–2187, Sep. 2021.

[22] A. Bakhtiarnia, N. Miloševic, Q. Zhang, D. Bajovic, and A. Iosifidis,
‘‘Dynamic split computing for efficient deep EDGE intelligence,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2023,
pp. 1–5.

[23] F. Cunico, L. Capogrosso, F. Setti, D. Carra, F. Fummi, and M. Cristani,
‘‘I-SPLIT: Deep network interpretability for split computing,’’ in Proc.
26th Int. Conf. Pattern Recognit. (ICPR), Aug. 2022, pp. 2575–2581.

[24] T. A. Khoa, D.-V. Nguyen,M.-S. Dao, andK. Zettsu, ‘‘SplitDyn: Federated
split neural network for distributed edge AI applications,’’ in Proc. IEEE
Int. Conf. Big Data (Big Data), Dec. 2022, pp. 6066–6073.

[25] LoRa Alliance, LoRaWAN L2 1.0.4 Specification. Accessed: Jul. 26, 2023.
[Online]. Available: https://lora-alliance.org/resource_hub/lorawan-104-
specification-package/

[26] A. Lavric and V. Popa, ‘‘Internet of Things and LoRa low-power wide-area
networks: A survey,’’ in Proc. Int. Symp. Signals, Circuits Syst. (ISSCS),
Jul. 2017, pp. 1–5.

[27] E. Altman, K. Avrachenkov, N. Bonneau, M. Debbah, R. El-Azouzi,
and D. S. Menasche, ‘‘Constrained cost-coupled stochastic games with
independent state processes,’’ Oper. Res. Lett., vol. 36, no. 2, pp. 160–164,
Mar. 2008.

[28] H. Ko and S. Pack, ‘‘Function-aware resource management framework
for serverless edge computing,’’ IEEE Internet Things J., vol. 10, no. 2,
pp. 1310–1319, Jan. 2023.

[29] R. Xie, Q. Tang, C. Liang, F. R. Yu, and T. Huang, ‘‘Dynamic computation
offloading in IoT fog systems with imperfect channel-state information: A
POMDP approach,’’ IEEE Internet Things J., vol. 8, no. 1, pp. 345–356,
Jan. 2021.

[30] X. Wang, J. Gong, C. Hu, S. Zhou, and Z. Niu, ‘‘Optimal power allocation
on discrete energy harvesting model,’’ EURASIP J. Wireless Commun.
Netw., vol. 2015, no. 1, pp. 1–14, Dec. 2015.

[31] C. Liu, W.-X. Meng, C. Li, and M. Ma, ‘‘Active computing toward 5G
Internet of Things,’’ IEEE Wireless Commun., vol. 29, no. 2, pp. 124–130,
Apr. 2022.

[32] Y. Yuan, W. Yi, W. Choi, and L. Kong, ‘‘Dynamic quantizer design for
target tracking for wireless sensor network with imperfect channels,’’ IEEE
Trans. Wireless Commun., vol. 22, no. 3, pp. 1695–1711, Mar. 2023.

[33] Study on Traffic Characteristics and Performance Requirements for AI/ML
Model Transfer (Release 18), Standard 3GPP TR 22.874, Dec. 2021.

[34] D. Mugerwa, Y. Nam, H. Choi, Y. Shin, and E. Lee, ‘‘Implicit overhearing
node-based multi-hop communication scheme in IoT LoRa networks,’’
Sensors, vol. 23, no. 8, p. 3874, Apr. 2023.

[35] E. F. Silva, L. M. Figueiredo, L. A. de Oliveira, L. J. Chaves,
A. L. de Oliveira, D. Rosário, and E. Cerqueira, ‘‘Adaptive parameters for
LoRa-based networks physical-layer,’’ Sensors, vol. 23, no. 10, p. 4597,
May 2023.

[36] E. Solan, ‘‘Three-player absorbing games,’’ Math. Oper. Res., vol. 24,
no. 3, p. 669 698. Aug. 1999.

[37] J. Karush, ‘‘On the Chapman–Kolmogorov equation,’’ Ann. Math. Statist.,
vol. 32, no. 4, pp. 1333–1337, 1961.

[38] R. J. Vanderbei, Linear Programming: Foundations and Extensions.
New York, NY, USA: Springer-Verlag, 1997.

[39] PyPAPI. Accessed: Jul. 26, 2023. [Online]. Available: https://
flozz.github.io/pypapi/

SEUNG-YEON KIM received the B.S., M.S.,
and Ph.D. degrees in electronics and informa-
tion engineering from Korea University, Sejong,
South Korea, in 2005, 2007, and 2012, respec-
tively. From 2012 to 2013, he was a Research Pro-
fessor with the Institute of Natural Science, Korea
University, where he was a Research Professor
with the Department of Computer and Information
Science, from 2013 to 2015. Currently, he is an
Associate Professor with the Department of Com-

puter Convergence Software, KoreaUniversity. His research interests include
6G networks, network automation, mobile cloud computing, federated learn-
ing, and the Internet of Things.

HANEUL KO (Senior Member, IEEE) received
the B.S. and Ph.D. degrees from the School
of Electrical Engineering, Korea University,
Seoul, South Korea, in 2011 and 2016, respec-
tively. He is currently an Assistant Professor
with the Department of Electronic Engineering,
Kyung Hee University, Yongin-si, South Korea.
From 2019 to 2022, he was an Assistant Professor
with the Department of Computer and Information
Science, Korea University. From 2017 to 2018,

he was a Postdoctoral Fellow with the University of British Columbia,
Vancouver, BC, Canada. From 2016 to 2017, he was a Postdoctoral Fellow
in mobile network and communications with Korea University. His research
interests include 5G/6G networks, network automation, mobile cloud com-
puting, SDN/NFV, and future internet. He was the recipient of the Minister
of Education Award, in 2019, and IEEE ComSoc APB Outstanding Young
Researcher Award, in 2022.

77678 VOLUME 11, 2023

