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ABSTRACT This study introduces a multicriteria tradeoff analysis method based on Dempster-Shafer (DS)
theory in conjunction with theMixed Aggregation by Comprehensive Normalization Technique (MACONT)
and the e-STEP method, termed DSM-eSTEP method, to assist transportation agencies in making optimal
investment decisions under alternative budget allocation scenarios. Specifically, the DS evidence theory
is employed to develop belief functions from preferences of multiple transportation performance criteria
revealed by transportation decision-makers. The belief functions are transformed to probability functions
using the pignistic transformation technique, leading to a set of initial weights that could reflect the priorities
of decision-makers on the performance criteria. To enhance the robustness of relative weights assigned, the
MACONT technique and the entropy measure are employed to derive refined weights via context-dependent
adjustments. Having established the refined weights of transportation performance measures, the multi-
objective budget allocation formulation according to various tradeoff scenarios could be converted to a linear
programming model readily solvable for optimality. An empirical study is conducted for optimal budget
allocation of 233 highway bridge and pavement preservation projects proposed for a U.S. state-maintained
urban Interstate highway network. Cross comparisons of budget allocation results are made between the
proposed method and the widely used compromise programming (CP) method. It shows that the proposed
DSM-eSTEP method could generate efficient investment outcomes and slightly outperform the CP method.

INDEX TERMS Dempster-Shafer theory, e-STEP method, multicriteria, transportation, budget allocation.

I. INTRODUCTION
The surface transportation system in the United States
comprises more than four million miles of public roads,
including over 48.5 thousandmiles of Interstate highways and
approximately 550 thousand road bridges, that constitutes
one of the most valuable assets owned by the public
sector [1]. These facilities are the nation’s backbone in
the way to support the economy and people’s daily lives.
Over the years, extensive efforts have been made by state
and local transportation agencies to preserve the conditions
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of transportation facilities and sustain performance levels
of system usage concerning user costs, mobility, safety,
and environmental impacts. Economic prosperity has led
to steady increases in people travel and goods movement,
entailing accelerated deterioration in facility conditions and
degradation in system usage performance levels. This poses
tremendous challenges to transportation decision-makers to
make truly optimal decisions in allocating limited budgets
to preserve facility conditions and sustain system usage
performance.

On the other hand, transportation funding is primarily
generated from fuel taxes, vehicle and motor carrier regis-
tration fees, and tolls. With the use of more fuel-efficient
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vehicles and a higher market penetration rate biofuel and
battery-operated vehicles, it becomes extremely challenging
to upkeep the revenue stream at the current level. This has
enlarged the gap of transportation funding between what
is available and actually needed over time. Meanwhile, the
higher public expectation for more efficient and safer travel
and goods delivery urges transportation agencies to employ
the state-of-the art approaches to help achieve optimal
budgets allocation [2], [3], [4].

A. CURRENT PRACTICE OF TRANSPORTATION BUDGET
ALLOCATION
Transportation budget allocation approaches at the state
level vary greatly in sophistication and analytic capa-
bility. Historically, state transportation agencies have
employed legacy-driven, fix-it-first, partial optimization, and
performance-based approaches for budget allocation [5].

The legacy-driven approach involves allocating transporta-
tion funds to achieve an agency’s transportation system
management goals, which are primarily determined by the
existing structure of various system management programs.
The amount or share of funding allocated to each program is
often based on historical practice. This approach is popular in
many U.S. states, such as Kansas, Louisiana, andMississippi,
but lacks adaptability when new issues arise [6], [7], [8].

The fix-it-first approach prioritizes funding for facility
preservation, leaving minimal funding for other transporta-
tion system management goals. Some states using this
approach include Colorado, Georgia, South Carolina, and
Virginia [9], [10], [11], [12].

Other states, such as Arizona, Michigan, North Carolina,
and Ohio, have incorporated optimization techniques into
transportation investment decisions to better align with
holistic considerations of various system management goals
and priority settings [13], [14], [15], [16].
In the last two decades, many states have adopted a

performance-based budget allocation approach that holis-
tically addresses the preservation of different types of
transportation facilities and performance of different aspects
of system usage, including user costs, mobility, safety,
environmental impacts, and economic development. Budgets
are typically designated to different management programs,
with multi-year budgets allocated within individual pro-
grams or across multiple programs to achieve maximized
performance gains for the entire transportation system.
Exemplary states that have adopted this approach include
Florida, Utah, Virginia, andWashington. The main difference
between the performance-based approach and the previously
mentioned approaches is that the decision outcomes are
mainly derived from data-driven analytical methods and
models [17], [18], [19].

B. MOTIVATION
Transportation budget allocation is a highly intricate
decision-making process that involves multiple performance
criteria, impacting both transportation agencies and system

users. The primary objective of transportation agencies
is to minimize costs related to facility construction,
maintenance, and repair, while simultaneously ensuring
the highest level of facility condition preservation. On the
other hand, transportation users aim to reduce vehicle
operating costs, maximize travel time savings, and avoid
accidents. Additionally, both parties are concerned about
mitigating the environmental impact caused by motor
vehicle usage, particularly concerning vehicle air emissions.
However, achieving these transportation system performance
goals becomes challenging due to their conflicting nature,
necessitating careful consideration of trade-offs during the
decision-making process.

The process of budget allocation for transportation further
faces several constraints. A fundamental constraint lies in the
availability of budgets for a given multi-year analysis period
for various management programs associated with facility
preservation and system usage.

As a result, the transportation budget allocation problem
falls into the category of multicriteria decision-making
(MCDM) problems. MCDM methods involve utilizing
preferences to guide the selection of investment projects
proposed for possible implementation under budget and other
constraints through weighting, scaling, amalgamation steps,
coupled with optimization techniques. However, in order for
these methods and models to be useful in support of budget
allocation by transportation agencies, they must meet certain
analytical conditions.

First, MCDM methods must be coherent, well-structured,
and robust enough to address multiple categories of system
management goals holistically, to ensure achieving truly
global optimality in terms of maximized overall returns
on investments to the entire transportation system. Second,
they need to incorporate the capability of tradeoff analysis
as one of the key features in the decision-making process
by evaluating the impacts of various investment levels and
allocation strategies on the overall system performance,
as well as the extent to which one performance goal/criterion
can be exchanged for another. Unfortunately, these analytical
capabilities are largely absent in current practice.

To address this limitation, a new MCDM tradeoff analysis
method is proposed for optimal transportation budget alloca-
tion. The proposed method consists of a model formulation
along with solution algorithms. In addition, a computational
experiment is conducted formodel application to demonstrate
its applicability.

The remainder of this paper is organized as follows:
Section II provides a brief literature review of MCDM
methods and solution techniques developed for transporta-
tion budget allocation over the years. Section III offers
background information on the methods and techniques
used in the proposed method. Section IV elaborates on the
proposed method and model formulation along with solution
algorithms. Section V presents a computational experiment
for themodel application. Finally, SectionVI provides a study
summary and draws conclusion.
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II. RELATED WORK
The MCDM methods for transportation budget allocation
can be broadly classified into two groups: multi-attribute
decision-making (MADM) methods and multi-objective
decision-making (MODM) methods [20], [21]. From a
practical viewpoint, the MADM methods conduct decision-
making analysis for a relatively small set of alternatives
using qualitative criteria, measures, or attributes. Alterna-
tively, MODM generally deals with quantitative criteria or
measures.

Along with the methods and models, a variety of
solution techniques have been developed mainly based
on two approaches: exact algorithms and heuristic algo-
rithms [22], [23]. In general, the exact solution approach
transforms a multi-attribute or multi-objective optimization
formulation into a single-attribute or single-objective opti-
mization model that is readily solvable for optimality. Con-
versely, the heuristic approach uses straightforward ‘‘rules of
thumb’’ that are established based on past experiences. They
are normally cognitive tools to help decision-makers quickly
proclaim good enough judgments.

Table 1 summarizes notable MCDM methods and models
along with solution techniques developed over the years
for transportation budget allocation. It can be seen that the
methods developed based on the MADM approach have
the advantage of being straightforward for applications.
However, they normally require a greater deal of effort from
the decision-makers to express their preferences towards
multiple performance criteria and the set of investment alter-
natives proposed for possible implementation. Therefore,
it makes them hard to be scaled up to simultaneously handle
extensive performance criteria and be applied to multiple
levels of transportation agencies involving a large number of
investment alternatives. On the contrary, theMODMmethods
could readily deal with the scale-up issues and budget
allocation tasks involving a large number of alternatives.

When using the exact solution approach to solve the multi-
attribute decision-making or multi-objective optimization
problem, the weighting component is essential for converting
the multi-attribute or multi-objective formulation to a single
attribute or objective model. Therefore, the quality of
methods for weighting analysis will influence the solution
quality. At present, relative weights of multi-attribute or
multi-objective functions are generally determined based
on the preferences of performance measures expressed
by the decision-makers by assuming the presence of full
and completed information on them. This is not always
the case.

On the other hand, the use of heuristic techniques to derive
near-optimal solutions for budget allocation is advantageous
in that it reduces the requirements in computational power
for large problem instances. However, the pre-defined
‘‘rules of thumb’’ are hard to determine and may not
be applied across the transportation agencies at different
levels. In contrast, the exact algorithms using mathematical
programming models could generate optimal solutions but

typically require significantly more effort in data preparation
and computational resources when dealing with large-scale
problems. In some cases, it might not be practical to generate
decision outcomes in a timely manner if the number of
alternatives or performance criteria is too large.

With an effort to improve the weighting process and
solution technique for multicriteria transportation budget
allocation with tradeoffs, the current study introduces a
new weighting procedure that establishes initial weights of
performance criteria and refines them based on additional
information made available. For deriving the initial weights,
the Dempster-Shafer (DS) evidence theory is employed to
construct degrees of belief profile assigned by decision-
makers to all elements of the power set created for the
performance criteria. Then, the degrees of belief profile
are transformed into probabilities using the pignistic trans-
formation technique that are treated as initial weights
for the performance criteria. Further, context-dependent
adjustments are performed to derive refined weights for
the performance criteria. These adjustments are achieved
by implementing the Mixed Aggregation by Comprehensive
Normalization Technique (MACONT) technique alongside
entropy measures of the e-STEP method [38], [39].
With relative weights in place, the multi-objective opti-

mization formulation can be converted to a linear program-
ming model solvable for optimality [40]. For this reason, the
proposedmethod is termed the DSM-eSTEP tradeoff analysis
method that provides a promising framework for allocating
transportation budgets in a fair and transparent manner.

III. BACKGROUND
This section first elaborates on fundamental elements of the
DS theory, including basic belief assignment (BBA), belief
function (Bel), plausibility function (Pl), and DS rule of
evidence combination for constructing the degrees of belief
profile. It then presents the background of the pignistic
transformation technique for converting degrees of belief
profile to probabilities that are treated as relative weights
of multiple performance criteria. Lastly, the MACONT
technique for calculating, normalizing, and synthesizing
values of different performance criteria into a single value is
discussed.

A. DEMPSTER-SHAFER EVIDENCE THEORY
The DS evidence theory is considered an extension of
the Bayesian theory that can effectively handle incomplete
information or information under risk and uncertainty
through multiple aggregation operations for greater control
of the decision-maker’s judgments [41]. It was first intro-
duced by Dempster [42] in 1976 and further developed
by Shafer [43]. Over the last several decades, the DS
theory has been widely applied for decision analysis for
cases under risk, uncertainty, or lack of information. The
primary fields of applications include multidimensional
data generation and fusion [44], multi-source information
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TABLE 1. Notable studies on different MCDM methods in transportation resource allocation.
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fusion [45], [46], [47], [48], [49], [50], [51], [52], [53],
adaptive multi-agent trust analysis [54], artificial intelli-
gence [55], [56], [57], [58], [59], data mining [60], quantum
computing and decision-making [61], [62], risk and uncer-
tainty assessment [63], [64], [65], [66], [67], [68], [69], fuzzy
measures and cognitive maps [70], [71], [72], [73], portfolio
optimization [74], automatic disease detection [75], [76] epi-
demic decision support system [77], visual recognition [78],
image forgery detection [79], multispectral pedestrian detec-
tion [80], vehicle route planning [81], robot navigation
systems [82], [83], [84], civil infrastructure construction and
management [85], [86], and climatic and natural hazards
management [87], [88].

Some notable applications of the DS theory in MCDM
problems are seen in studies of Chen and Rao [89],
Fang et al. [90], Hamid et al. [91], Hua et al. [92],
Le et al. [93], Ma and An [94], Merigo et al. [95], Rong [96],
Tang et al. [97], Wang et al. [98], Wu and Liao [99], and
Zhong et al. [100], [101].
There are three essential elements in the DS theory,

namely, the basic belief assignment function (BBA), the
Belief function (Bel) and Plausibility function (Pl), and the
rule of combined evidence.

1) BASIC BELIEF ASSIGNMENT
It is assumed that there exists a set of hypotheses K that
represents a finite nonempty set with mutually exclusive
and exhaustive elements. In the context of multicriteria
decision-making (MCDM), K can be referred to as a set of
performance criteria. For instance, if K performance criteria
are considered for a transportation budget allocation problem,
the set of hypotheses called as the frame of discernment can
be expressed as K ={K1, K2, . . . , KK}. The power set of
discernment X is defined as a set that contains all possible
propositions of the subsets of K , with a total of 2K elements
covering all possible ways that decision makers can combine
their judgments on the K performance criteria. It can be
expressed as follows:

{φ, {K1} , {K2} , . . . {KK } , {K1,K2} , . . . , {K1,K2, . . . ,KK }}

(1)

where φ is the null set.
A basic belief assignment (BBA) is defined as a normalized

mass function n in the interval [0,1] assigned for each possible
proposition in 2K , and satisfies the following conditions:

m:χ → [0, 1] , (2)

n (φ) = 0, and (3)∑
C⊂χ

m (A) = 1 (4)

where A is a subset in χ with non-zero mass value.
Specifically, the BBAs are regarded as levels of pri-

orities/importance that a decision-maker assigns to any
performance criterion or any combination of performance
criteria in χ .

2) BELIEF AND PLAUSIBILITY FUNCTION
From the basic belief assignment, the upper and lower bounds
of an interval can be defined. This interval contains the
precise probability of a set of interest (in the classical sense)
and is bounded by two nonadditive continuous measures
called Belief and Plausibility.

The lower bound Belief for a set A is defined as the sum
of all the basic probability assignments of the proper subsets
(B) of the set of interest (A) (B ⊆ A), which can be calculated
by:

Bel (A) =

∑
B|B⊂A

m (B) (5)

The upper bound, Plausibility, measures the sum of all the
basic probability assignments of the sets (B) that intersect the
set of interest (A) (B ∩ A ̸= ∅). Formally, for all setsA that are
elements of the power set (A ∈ χ), which yields:

Pl (A) =

∑
B|B∩A=∅

m (B) (6)

3) RULE OF COMBINED EVIDENCE
In the multicriteria decision analysis process, such as the
process of transportation decision making, it is rarely the
case where a decision outcome is achieved based on a
single assessment of multiple performance criteria. Normally,
multiple rounds of judgments on performance criteria from
a collection of decision-makers are performed. Therefore,
it is essential to have a rigorous method to aggregate diverse
opinions of decision makers on individual performance
criteria. The purpose of aggregation of information is to
meaningfully summarize and simplify a corpus of data
whether the data is coming from a single source or multiple
sources. As robust as its basic belief assignment method,
the DS rule of combined evidence provides a flexible
means of consolidating the BBAs regardless of the level of
certainty that each decision maker maintains with the belief
assignment.

Given two basic belief assignments ni and nj associated
with two sources i and j, the information can be treated as
two sets of evidence from the decision makers. The combined
evidence of subset C in χ using orthogonal rule of the DS
theory can be defined as:

m (C) = (mi⊕mj)(C) =


∑

A∩B=C mi (A)mj (B)

1 −M
, C ̸= φ

0, C = φ

(7)

where A,B, and C ∈ χ;mi (A) and mj (B) are two BBAs
determined on proposition A by source i and on proposition
B by source j, respectively; M =

∑
A∩B=φ mi (A)mj (B)

represents basic belief mass associated with conflict, which
is determined by summing up the products of the BBAs
of all sets where the intersection is null; and φ is the
null set.
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In the general case where multiple sources of evidence are
available, the combined evidence of C is calculated by:

(m1⊕m2⊕ . . . ⊕ mm)(C)

=


∑

A1∩...∩Am=C m1 (A1)m2 (A2) . . .mm (Am)

1 −M
, l ̸= φ

0, l = φ

(8)

where M =
∑

A1∩...∩Am=φ m1 (A1)m2 (A2) . . .mm (Am); m is
number of sources of information.

B. PIGNISTIC POSSIBILITY-PROBABILITY
TRANSFORMATION
The results obtained by the DS combining evidence from
different sources of information are the utility values for the
subsets in χ , where the elements in one subset are different
to those of others. It is also called the belief function of
propositions in χ . Since determining relative weights of
multiple performance criteria is concerned with a probability
measure for a single element in χ , meaning that the
probability measure for individual performance criteria, there
is a need for a transferable belief model offering appropriate
and fair inference with a probability measure for singletons.
The pignistic probability transformation, as proposed by
Smets [102], employs the principle of insufficient reason
to convert degrees of belief to probabilities. This enables
the integration of uncertainty measures into probabilistic
or risk-based analytical frameworks, which can be more
easily combined, updated, and used in decision-making
models [39]. The formulation of pignistic transformation is
defined as:

P
(
Kp
)

=

∑
C⊆χ ,Kp∈C

1
|C|

n (C) (9)

where P
(
Kp
)
is the pignistic probability of performance

criteria Kp in K; and |C| is the number of single elements
in subset C that contains Kp, in χ .
By performing the above calculation, P

(
Kp
)
transfers the

positive mass of belief of each nonspecific element into
individual elements according to the cardinal number of
subsets [39].

C. MIXED AGGREGATION NORMALIZATION
Typically, the impacts of an investment alternative under var-
ious performance criteria such as agency costs, mobility, and
safety are measured in non-commensurable units. In order to
make cross comparisons among the investment alternatives
on an equal basis, the impacts must be transformed to a
commensurable unit. In most cases, this transformation is
often accomplished by a single normalization technique.
However, this treatment is likely to cause deviations between
the normalized and original data [39]. In recent years,
research has been conducted to address this discrepancy
issue of normalized data. Liao and Wu [103] developed a

double normalization technique and introduced an adjust-
ment coefficient to the normalized value. Wen et al. [39]
introduced an MACONT Method to perform and synthesize
three normalized performance values into a single normalized
value to reflect the deviations of the original data set. This
normalization technique is executed in the following steps.

First, a decision matrix is formed from the information
of itemized impacts or benefits associated with individual
performance criteria for each investment alternative as below:

a11 a12 · · · a1k · · · a1K
a21 a22 · · · a2k · · · a2K
...

...
. . .

...
. . .

...

an1 an2 · · · ank · · · aiK
...

...
. . .

...
. . .

...

aN1 aN2 · · · aNk · · · aNK


(10)

where ank is the level of impacts or benefits of the nth

investment alternative concerning performance criterion k .
Next, three normalization operations are executed on the

derived decision matrix. The normalization techniques used
in this step are linear sum-based normalization, ratio-based
normalization, and linear max-min normalization, and can be
calculated by:

á1nk =
ank∑N
n=1 ank

(11)

á2nk =
ank

maxn ank
(12)

á3nk =
ank − minn ank

maxn ank − minn ank
(13)

where á1nk , á
2
nk , á

3
nk are the normalized values of the level of

impacts or benefits of the nth investment alternative relating
to criterion k derived from the execution of linear sum-
based normalization, ratio-based normalization, and linear
max-min normalization, respectively; minn ank is the smallest
value of impacts or benefits associated with performance
criterion k among all N investment alternatives; maxn ank
is the largest value of impacts or benefits associated with
performance criterion k among all N investment alternatives.

Finally, after the three normalization operations are done,
two balance coefficients, β and µ, are introduced to integrate
the normalized values of impacts or benefits. The purpose
of these coefficients is to give decision-makers control over
the aggregated normalized values of impacts or benefits. The
integration equation is of the following specification:

ánk = βá1nk + µá2nk+(1−β − µ)á3nk (14)

where ánk is the aggregated normalized value of the impacts
or benefits of the nth investment alternative related to
performance criterion k; 0 ≤ β, γ, µ ≤ 1 and can be
determined by decision-makers.

Besides the benefit of minimizing the discrepancy between
the normalized and original data, the MACONT technique,
as shown in Equation (13), also allows decision-makers to
have control over the final normalized values of impacts or
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benefits. For example, if the decision-makers want to focus on
the benefits associated with individual performance criteria
of the investment alternatives, the value of β can be assigned
larger; if the purpose is to highlight the best performer among
the investment alternatives, then a higher value of µ should
be assigned. Conversely, if the decision-makers want to the
magnitude of impacts between the best and worst performers,
both coefficients should be kept at small values to emphasize
the importance of á3nk [39].
Owing to the flexibility in normalizing the impacts

or benefits of investment alternatives under various
performance criteria, MACONT technique is employed
in conjunction with the entropy measures for context-
dependent adjustments to the initial weights of performance
criteria [40].

IV. PROPOSED METHOD
This section presents a model formulation for transportation
budget allocation involving multiple performance criteria,
followed by a procedure to derive the optimal solution via
tradeoff analysis.

A. MODEL FORMULATION
1) DECISION VARIABLES
The decision of budget allocation to a candidate project
for possible investment is a zero/one binary choice process,
meaning rejection or selection of the project for actual
investment. In reality, the decision can either be concerned
with each project separately or multiple projects under the
same contract package collectively. Correspondingly, the
decision variables can be denoted as:

xn =

{
1 if project or contract is selected
0 otherwise

(15)

where xn indicates the nth project/contract in the list of candi-
date projects X = {x1, x2, , . . . ,xn, . . . ,xN } , n= 1, 2, . . . ,N .

2) OBJECTIVE FUNCTIONS
The optimization of transportation budget allocation involv-
ing K performance criteria can be formulated as maximiza-
tion of overall benefits or minimization of total costs.Without
loss of generality, all the objective functions are expressed in
maximization form as below:

Maximize {F1 (x) ,F2 (x) , . . . ,FK (x)} (16)

where F= {Fk (x) |k= 1, 2, . . . ,K is a set of objective
functions correspond to K performance criteria used as the
basis of investment decision-making.

3) CONSTRAINTS
The constraints for transportation budget allocation genrally
include but are not limited to constraints of thr available
budget, and lower and upper bounds of number of projects
that could be implemented together. The feasible region SN

that is bounded by the constraints is specified by:

RN =


∑N

n=1
(cn.xn) ≤ B, n= 1, 2, . . . ,N

LN ≤

∑N

n=1
xn≤UN

(17)

where cn is cost of investment associated with the nth

candidate project; B is total available budget; and LN and UN
are lower and upper bounds of number of projects allowed to
be simultaneously implemented.

B. MODEL EXECUTION PROCEDURE
Fig. 1 illustrates the model execution procedure that includes
three main components: i) initial weight estimation, ii)
context-dependent adjustments, and iii) model execution.
Detailed descriptions follow.

1) INITIAL WEIGHTS OF PERFORMANCE CRITERIA
The purpose of this component is to establish initial
relative weights for transportation performance criteria. The
following steps are executed:
Step 1.1 Identifying the set of K performance criteria and

constructing a power set of discernment χ . With
K performance criteria, the frame of discernment
can be denoted as K =

{
Kp
}
(p= 1, 2, . . . ,K ).

Accordingly, the power set of discernment can be
constructed by Equation (1) as:

χ = {φ, {K1} , {K2} , . . . {KK } , {K1,K2}

, . . . , {K1,K2, . . . ,KK }} .

Step 1.2 Selecting a list of M decision makers that
represents different stakeholder groups, DM =

{mi} (i= 1, 2, . . . ,M). Each decision maker mi
assigns degrees of belief to all elements of
the power set following the conditions of
BBA in Equations (2) - (4), denoted as
mi (ai) (i= 1, 2, . . . ,M) ;ai ∈ χ . Establish belief
and plausibility function as in Equations (5)
and (6) to derive lower and upper bound for each
BBA and generate a collection of BBAs.

Step 1.3 Performing the DS rule of combining evidence as
Equation (8) on the obtained collection of BBAs
to create degrees of belief profile in χ .

Step 1.4 Applying pignistic probability transformation as
Equation (9) to convert degrees of belief pro-
file to probabilities corresponding to the per-
formance criteria, P

(
Kp
)
(p= 1, 2, . . . ,K ) .The

derived probabilities can be used as initial weights
wIp of performance criteria to convert the multi-
objective optimization formulation to a linear pro-
gramming model readily solvable for optimality,
and can be expressed as below:

wIp = P
(
Kp
)

(18)

where
∑K

p=1 w
I
p = 1; and p= 1, 2, . . . ,K .
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FIGURE 1. The iterative model execution process for transportation budget allocation.

2) CONTEXT-DEPENDENT ADJUSTMENTS AND REFINED
WEIGHTS
For a multi-objective optimization problem, one unit increase
in the weight assigned to a performance criterion does not
necessarily lead to increase in benefits estimated by the
performance criterion proportionally. It might even result
in a greater extent of decrease in benefits assessed by
other performance criteria. As an example, we consider two
performance criteria regarding transportation agency benefits
of facility life-cycle agency cost reductions and transportation
user benefits of travel time savings. If one unit increase in the
weight of performance criterion for assessing agency benefits
could bring up one million dollars of agency benefits, the
one unit decrease in the weight of performance criterion for
evaluating user benefits could potentially lead to a greater
level of losses. If a decision maker prioritizes agency benefits
over user benefits, the set of weights could satisfy the
decision maker’s expectation, but the overall benefits could
be worse off. Therefore, it is necessary to calculate the
context-dependent adjustments for initial weights derived
using the DS evidence theory to establish the refined weights
that reflect decision makers’ preference and incorporate
additional information that affects the relative importance of
different performance criteria.

The context-dependent adjustments are computed follow
the MACONT technique [39] and entropy measures used
by the e-STEP method introduced by Benayounet al. [40].
Specifically, a decision matrix is developed for multiple
objective functions. Next, normalization operations are exe-

cuted on the decision matrix. Then, the MACONT technique
is employed to establish the normalized matrices. Finally, the
entropy measures on the mixed aggregated normalized values
are computed to derive context-dependent adjustments to the
initial weights. The calculation steps are presented as follows:
Step 2.1 Estimating project benefits relating to individual

performance criteria.
Step 2.2 Establishing a decision matrix of impacts or

benefits of each candidate project. The columns
of the decision matrix represent the number of
performance criteria, whereas the rows represent
the number of candidate projects proposed for
possible implementation.

Step 2.3 Performing three sets of normalization operations
on the decision matrix using Equations (11)–(13)
and computing mixed values by aggregating three
normalized matrices.

Step 2.4 Calculating the normalized entropy value e(dk ) of
the k th performance criterion by:

e(dk ) = −
1

ln K

∑N

n=1

[(
ánk∑N
n=1 ánk

)

·ln

(
ánk∑N
n=1 ánk

)]
(19)

where ánk is the aggregated normalized value
of impacts or benefits of the nth candidate
project relating to criterion k; 0 ≤ánk ≤ 1;

VOLUME 11, 2023 78529



T. Truong, Z. Li: Incorporated DSM-eSTEP for Multicriteria Tradeoff Analysis

0 ≤e(dk ) ≤ 1;k= 1, 2, . . . ,K ; and n = 1, 2,
. . . ,N.

Naturally, the larger the normalized entropy value
e(dk ) is, the less information is conveyed. There-
fore, the reverse value (1 − e(dk )) should be
used for the context-dependent adjustment to the
initial weight of the k th performance criterion.
The normalized information importance for the
adjustment to the k th performance criterion can be
determined by:

αk =
(1 − e(dk ))∑K
k=1 (1 − e(dk ))

, k = 1, 2, . . . ,K . (20)

Step 2.5 Establishing refined weights of performance cri-
teria by synthesizing the initial weights with
the context- dependent adjustments derived in
Step 2.4 as follow:

wk =
wIk × αk∑K

k=1
(
wIk × αk

) (21)

where k = 1, 2, . . . ,K .

3) ITERATIVE MODEL EXECUTION
In presence of the refined weights of performance criteria, the
multi-objective optimization formulation can be converted to
a linear programmingmodel with the objective of minimizing
the Chebyshev distance [104], defined as the maximum
weighted relative distance between the ideal and actual
objective function values of respective performance criteria.
This model formulation is of the following specification:

Minimize
{
L∞ = Max

∣∣∣∣wk .(F∗
k − Fk (x)

F∗
k

)∣∣∣∣} (22)

Subject to

X ∈ RN (23)

The above model can be iteratively solved with constraints
updated based on new information becoming available.
In cases where not all the optimal values of the objective
functions Fp(X) are satisfactory, the decision maker could
relax 1Fp amount of a satisfactory objective function Fp
to improve the unsatisfactory objective function(s) in the
subsequent iteration. In general, the feasible region of the
constraints in the t th iteration is expressed as:

RtN =


Rt−1
N

Fp (X) ≥ Fp
(
X t−1

)
− 1Fp

Fk (X) ≥ Fk
(
X t−1

)
, k ̸= p

(24)

C. MODEL SOLUTION TOOLS
The model execution for determining initial weights follows
Steps 1.1 to 1.4 is coded in Python programming environ-
ment. The same program is used to derive context-dependent

adjustments as Steps 2.1 to 2.5. The linear programming
model as Expressions (22) and (23) is handled using the
MS Excel Solver plugin capable of solving large-scale linear
programming models. For each iteration of model execution,
its feasible region is updated using Equation (24).

V. EMPIRICAL STUDY
A. DATA COLLECTION AND PROCESSING
Two datasets are used for the current experimental study.
The first set of data is solicited from questionnaire surveys
to help establish the initial weights [105]. The second set
of data is on projects proposed for improving an U.S. state-
maintained urban Interstate highway system to help derive
the refined weights and executing the proposed optimization
model for budget allocation [106]. In the multi-objective
optimization formulation, five performance criteria including
highway agency costs, vehicle operating costs, travel time,
vehicle crashes, and vehicle air emissions are used as the basis
of allocating available budget to various candidate projects.
In this respect, a frame of discernment corresponding to
the above five performance criteria can be constructed,
which is denoted as K = {K1,K2,K3,K4,K5}. To derive
initial weights for the performance criteria, two questionnaire
surveys are administered for respondents from the transporta-
tion agency group and highway user group, respectively.
The survey participants from the agency group comprise
29 officials including executive staff, district directors, and
division chiefs of a state transportation agency. The survey
participants from highway user group contain 28 highway
drivers randomly selected for participation. Each of the
survey attendants is asked to assign the relative importance
of the above performance criteria using a rating scale of
1 to 10 to indicate ascending importance levels. Two rounds
of surveys are arranged using the Delphi technique. For
participants from each group, the average and standard
deviation ratings of the first-round surveys are provided
to each survey participant, followed by the second-round
surveys.

Having collected the second-round survey data from the
two groups of participants, ratings of the five performance
criteria assigned by each respondent are normalized and
treated as BBAs follow the DS rules as Expressions (2)–(6).
As shown in Table 2, BBAs of a decision maker are presented
in a form of relative importance next to the performance
criteria. For instance, BBAs of decision maker 1 in the
agency group are recorded as {{K1, 0.179}, {K2, 0.143},
{K3, 0.286}, {K4, 0.250}, {K5, 0.142}}, indicating that in
a normalized total scale of 1, degrees of belief in the relative
importance of agency costs, user costs, mobility, safety, and
environmental impacts are 0.179, 0.143, 0.286, 0.250, and
0.142, respectively.

The dataset on candidate projects proposed for U.S.
state-maintained urban Interstate highway improvements
in a six-year budget allocation period contains details of
233 bridge and pavement preservation projects, whichmainly
include project ID, project description, implementation year,

78530 VOLUME 11, 2023



T. Truong, Z. Li: Incorporated DSM-eSTEP for Multicriteria Tradeoff Analysis

TABLE 2. Summary of basic belief assignments by survey participants.

project duration, number of travel lanes, project length, daily
traffic, work type, and estimated costs. In order to apply
the proposed model to prioritize available budget, benefits
of each candidate project under individual performance
criteria need to be estimated. In this respect, additional data
details of agency and user costs associated with the same
highway system are collected. The specifics include unit
rates of construction, maintenance, and repair treatments
for pavements and bridges; unit rates concerning vehicle
operations, travel time, vehicle crashes, and air emissions;
annual traffic growth rates; and discount rates.

B. ESTIMATION OF PROJECT BENEFITS
1) HIGHWAY COSTS
Highway costs include agency costs and system usage costs.
Agency costs are expenses of the highway agency during the
entire service life of the highway facility, mainly including
costs of facility construction, maintenance, and repair in the
facility lifespan. Construction cost relates to right-of-way
acquisition, pre-engineering, and the activities on designing
and constructing the highway facility. Maintenance cost
pertains to annual and periodic (with multi-year interval)
maintenance activities to preserve the aging condition of the
highway facility. Repair cost is related to interventions for
facility condition restoration.

Highway user costs are costs of system usage largely
concerned with vehicle operations, travel time, crashes, and
vehicle air emissions. Each cost can be calculated as a
function of factors including traffic volume, vehicle compo-
sition, engine type and age, vehicle speed and speed-change

cycle, geometry of the facility, traffic control measures,
pavement surface conditions, climate features, and weather
conditions.

2) HIGHWAY PROJECT BENEFITS
The benefits of implementing a highway project can be drawn
from reductions in agency and user cost perspectives. Agency
benefits are computed as the decrease of agency costs in the
facility service life cycle as a result of timely investment
implementation. User benefits are estimated in aspects of
reductions in vehicle operating costs, improvements of traffic
mobility, enhancements of safety, and cutbacks of environ-
mental impacts such as vehicle air emissions.

To calculate reductions in agency costs in the highway
facility service life cycle, the base-case agency cost profile
where all required maintenance and repair treatments are
timely implemented in an ideal manner to yield the lowest
life-cycle agency costs is compared with the actual life-
cycle agency profile reflecting the real-world implementation
of maintenance and repair interventions. The base-case and
actual life cycle agency costs are directly subtracted to
establish agency benefits, typically expressed in equivalent
uniform annualized amounts.

Similarly, the based-case and actual user cost profiles in
the highway facility service life cycle could be separately
created for itemized user costs concerning vehicle operations,
mobility, safety, and environmental impacts. By comparing
the two sets of itemized user cost profiles and adopting the
concept of changes in consumer surplus, user benefits of
timely investing in a candidate project could be estimated and
expressed in equivalent uniform annualized values.
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TABLE 3. Costs and estimated benefits of some candidate projects.

Table 3 presents information on costs and estimated
benefits of some candidate projects. Specifically, project
costs, agency benefits are expressed in 2022 constant million
U.S. dollars per year with a discount rate of 4% used for
calculations. The remaining user benefits are first quantified
as dollars of vehicle operating cost reductions, vehicle-hours
of travel time savings, decreases in number of crashes, and
kilograms of cutbacks in vehicle air emissions.

C. METHOD APPLICATION
For establishing initial weights of the performance criteria
including agency costs, user costs, mobility, safety, and
environmental impacts, the DS rule of combining evidence
and pignistic transformation as Equation (8), (9) and (18)
are separately applied to data as in Table 2 on BBAs from
the agency survey group, user survey group, and the two
groups combined. Table 4 lists initial weights of performance
criteria.

The multi-objective optimization model for allocating
budget to 233 candidate projects proposed for urban Interstate
highway improvements that could help achieve maximized
overall benefits can be formulated as:

Maximize

F (X) = {F1 (X) ,F2 (X) ,F3 (X) ,F4 (X) ,F5 (X)} (25)

Subject to

RN =



97, 395 ≤

∑174

n1=1
cn1 .x

B
n1 ≤78, 840, 500

187, 298 ≤

∑59

n2=1
cn2 .x

P
n2 ≤278, 116, 000

xBn1 , x
P
n2 = 0

/
1,n1= 1, 2, . . . , 174,
n2= 1, 2, . . . , 59

0 ≤

∑174

n1=1
xBn1 +

∑59

n2=1
xPn2≤ 233

(26)

TABLE 4. Initial weights of performance criteria.

where F (X) = {Fk (X)} is a vector of project benefits
associated with multiple performance criteria and Fk (X) =∑
bn1k .xn1 , b

n1
k represents itemized benefits of the k th per-

formance criterion expected to be generated from candidate
project n1; cn1 is the cost of candidate project n1; xBn1 , x

P
n2

represent the decision variable of candidate project n1
and n2 under work categories of bridge preservation and
pavement preservation, respectively; xBn1 , x

P
n2 = 0/1 is

a decision variable for rejection or selection of candi-
date project n1 and n2 corresponding to work categories
of bridge preservation and pavement preservation; k =

1, 2, . . . , 5; n1= 1, 2, . . . , 174;n2= 1, 2, . . . , 59. Lower and
upper bounds in the first and second terms of Expression (26)
refer to the lowest investment amount of a single project
and the total budget for bridge and pavement preservation
projects, respectively.

The decision matrix is established as illustrated in Expres-
sion (10). Based on the derived decisionmatrix, the procedure
of applying MACONT technique as Equations (11)–(14) and
entropy measures as Equation (19) is executed and context-
dependent adjustments to the initial weights are calculated
using Equation (20). Table 5 summarizes payoff matrix
of some candidate projects, entropy measures, context-
dependent adjustments, and refined weights of performance
criteria.

After deriving refined weights for the performance criteria,
the multi-objective optimization formulation can be readily
converted to a linear programming (LP) model with a single
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TABLE 5. Payoff matrix, entropy measures, and refined weights of performance criteria.

objective of minimizing the Chebyshev distance under budget
and other constraints as Expressions (25) and (26). The
optimal solution shows that the available budget should be
allocated to 121 out of the 233 candidate projects. Of which,
79 projects are for bridge preservation, and 42 are for
pavement preservation. The annualized total benefits include
$458,409,663 of agency cost decrements, $198,865,639 of
vehicle operating cost (VOC) reductions, 2,844,899 vehicle-
hours of travel timing savings, 656 crash decreases, and
190,976,861 kg of vehicle air emission cutbacks per year.
The total costs of 121 prioritized projects are $351,741,230
with $73,984,606 allocated to bridge preservation and
$277,752,624 for pavement preservation.

D. COMPARISONS OF BUDGET ALLOCATION USING
DIFFERENT METHODS
To further assess the significance of the DSM-eSTEP tradeoff
method for transportation budget allocation, especially in
the process of determining relative weights of performance
criteria, cross comparisons are made between the proposed
method and the traditional compromise programming (CP)
method that utilizes the same set of performance criteria
for highway budget allocation. In general, the CP method
uses distance measure to emulate the ideal solution as close
as possible with no preferences in the relative importance
among performance criteria [59], [104]. Since the proposed
method and the CP method are both based on the same
minimax optimization mechanism, they should derive the
same optimal outcomes if the same set of relative weights
is used. To facilitate the comparative analysis, the proposed
method with two weighting scenarios, with and without
context-dependent adjustments, is used to compare with the
CP method using four budget levels that are equivalent to
25%, 50%, 75%, and 100% of the original budget amount,
respectively.

With no preferences on relative weights of the performance
criteria, the CP method could convert the multi-objective
optimization model shown in Equations (22) and (23) to an
LP model in the minimax sense as follows:

Minimize max

{

∣∣∣∣20, 054, 165−F1 (X)

20, 054, 165

∣∣∣∣; ∣∣∣∣22, 449, 467−F2 (X)

22, 449, 467

∣∣∣∣;∣∣∣∣281, 593−F3 (X)

281, 593

∣∣∣∣ ; ∣∣∣∣56− F4 (X)

56

∣∣∣∣ ;∣∣∣∣30, 548, 073−F5 (X)

30, 548, 073

∣∣∣∣
(27)

Subject to

RN =



97, 395 ≤

174∑
n1=1

cn1 .x
B
n1 ≤78, 840, 500

187, 298 ≤

∑59

n2=1
cn2 .x

P
n2 ≤278, 116, 000.

xBn1 , x
P
n2 = 0

/
1,n1= 1, 2, . . . , 174,

n2= 1, 2, . . . , 59

0 ≤

∑174

n1=1
xBn1 +

∑59

n2=1
xPn2≤ 233

(28)

Table 6 summarizes comparative results of budget allo-
cation using proposed DSM-eSTEP tradeoff method, the
DSM-eSTEPmethodwithout adjustments, and the CPmodel.
For the annual benefits achieved, both agency benefits and
VOC reductions are expressed in dollar values where VOC
reductions amount to 4.3–6.2% of agency benefits. Travel
time savings, crash decreases, and emission cutbacks are in
vehicle-hours, number of crashes, and kilograms of pollutants
per year, respectively.

The proposed DSM-eSTEP method, utilizing the refined
weights, demonstrates superior performance compared to the
DSM-eSTEPmethod without context-dependent adjustments
of initial weights and the CP method, across budget levels
ranging from 40% to 100% of the original budget amount.
This performance improvement is evident in at least three
out of the five performance criteria analyzed, with a
notable emphasis on the benefits achieved, particularly in
terms of agency cost reductions and travel time savings.
These benefits are often the most significant components
driving positive outcomes in transportation budget allocation
decisions. For the remaining benefits relating to decreases
in vehicle crashes and cutbacks of vehicle air emissions, the
budget allocation by the proposed method would result in
either a lower level of decreases in vehicle crashes coupled
with a higher level of cutbacks of vehicle air emissions,
or vice versa. The change in the combined benefits appears
to be marginal.

In comparison of the proposed DSM-eSTEP method
without context-dependent adjustments of initial weights to
the proposed method using the refined weights, the losses of
agency benefits and travel time savings that could be achieved
at 40–100% of the original budget level vary by 3.2–6.3% and
5.0–11.6%, respectively. Further comparing the CP method
with the proposed method using the refined weights, the
losses of agency benefits and travel time savings that could be
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TABLE 6. Payoff matrix, entropy measures, and refined weights of performance criteria.

achieved at 40–100% of the original budget level correspond
to 2.7–10.7% and 4.8–9.0%.

VI. SUMMARY AND CONCLUSION
This paper presents a new multicriteria tradeoff analysis
method for efficient transportation budget allocation. The
proposed method consists of several key components,
including two rounds of relative weight derivation, multi-
objective optimization model formulation, model conver-
sion, and iterative model execution to generate a tradeoff
solution.

To establish the initial weights for the performance
criteria, the pignistic possibility-probability transformation
technique, rooted in the DS evidence theory, is used. Once
additional information on the relative importance of the
performance criteria is made available, the initial weights
are refined by context adjustments using the MACONT tech-
nique and entropy measures of the e-STEP method. With the

refined weights established, the multi-objective optimization
model can be converted into a linear programming model
that is executed iteratively to deriving the optimal tradeoff
solution. Python scripts and MS Excel solver are used to
execute the computational steps.

The proposed DSM-eSTEP tradeoff method is imple-
mented in an empirical study using a dataset on six-year
budget allocation for a U.S. state-maintained urban Interstate
highway network. To gain insights into the efficiency
of the proposed method incorporating context-dependent
adjustments to the initial weights of performance criteria,
the same dataset is applied to the proposed method without
context-dependent adjustments and traditional CPmethod for
budget allocation by varying budget amounts at 40%, 60%,
80%, and 100% of the original budget level, respectively.

Compared to the proposed method that uses the refined
weights for budget allocation, the proposed method relying
on the initial weights and CP method appear to be less
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efficient in maximizing agency benefits, with up to 6.3%
and 10.7% lower agency benefits, and travel time savings
up to 9.0% and 11.6% lower, respectively. Meanwhile,
the combined effect of changes in vehicle crashes and air
emissions tends to be marginal. Since agency benefits and
travel time savings constitute the predominant portion of the
overall benefits, it reveals that adopting the proposed method
will be beneficial to transportation agencies in developing
efficient investment programs.

The proposed method offers several advantages over exist-
ing approaches to transportation budget allocation. It uses a
rigorous procedure to derive and refine the relative weights
of transportation performance criteria, thereby ensuring a
comprehensive and robust evaluation of the investment
alternatives. Additionally, it incorporates a tradeoff analysis
feature that enables transportation agencies to make informed
decisions about the allocation of limited budgets among
competing investment alternatives. Finally, the computational
study provides evidence of the efficiency of the proposed
method in maximizing overall benefits, which suggests
its potential as a valuable tool in support of optimal
transportation investment decisions.

With the passage of time, new multicriteria
decision-making methods and models are expected to be
developed and used by various transportation agencies.
Cross-comparisons can be carried out between the proposed
method and those methods and models to identify the
strengths and limitations of the current method. Meanwhile,
further refinements to the proposedmethod could be explored
by incorporating more advanced multicriteria optimization
techniques or applying it to multimodal transportation budget
allocation. In addition, it may be useful to investigate
the potential benefits of integrating the proposed method
into other decision-making frameworks to provide a more
comprehensive and holistic approach to transportation budget
allocation.
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